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Abstract.
Modern graphics processing units (GPUs) have been at the leading edge of in-

creasing chip-level parallelism over the last ten years, and the CUDA programming
model has recently allowed us to exploit its power across many computational do-
mains. Within them, dense linear algebra algorithms emerge like a natural fit for
CUDA and the GPU because they are usually inherently parallel and can naturally
be expressed as a blocked computation. In this paper, we extensively analyze the
GPU programming and performance of one of the fundamental building blocks in
numerical lineal algebra algorithms: The Matrix-Matrix Multiply. Different pro-
gramming approaches and optimization techniques have already been published in
the literature, which we review and analyze to pursue further optimizations and un-
veil the potential of some hardware resources when programming the GPU under
CUDA. Experimental results are shown on a GeForce 8800 GTX and a Tesla C870
GPU with a performance peak of 43 GFLOPS.

Keywords. Graphics Processors, Linear Algebra, High-Performance Computing,
CUDA Programming.

1. Introduction

Driven by the demand of the game industry, Graphics Processing Units (GPUs) have
completed a steady transition from mainframes to workstations to PC cards, where they
emerge nowadays like a solid and compelling alternative to traditional computing, de-
livering extremely high floating point performance at a very low cost. This fact has at-
tracted many researchers and encouraged the use of GPUs in a broader range of applica-
tions, where developers are required to leverage this technology with new programming
models which ease the developer’s task of writing programs to run efficiently on GPUs.

Nvidia and ATI/AMD, manufacturers of the popular GeForce and Radeon sagas of
graphics cards, have released software components which provide simpler access to GPU
computing power. CUDA (Compute Unified Device Architecture) [4] is Nvidia’s solu-
tion as a simple block-based API for programming; AMD’s alternative is called Stream
Computing [8]. Those companies have also developed hardware products aimed specif-
ically at the scientific General Purpose GPU (GPGPU) computing market: The Tesla
products are from NVIDIA, and Firestream is AMD’s product line.

Between Stream Computing and CUDA, we chose the latter to program the GPU
for being more popular and providing more mechanisms to optimize general-purpose



applications. More recently, the Apple’s OpenCL framework [9] emerges as an attempt
to unify those two models with a superset of features, but since it is closer to CUDA
and inherits most of its mechanisms, we are confident on an eventual portability for the
methods described throughout this paper without loss of generality.

The Matrix-Matrix Multiply has traditionally been chosen as benchmark for scoring
the highest rates of performance on standard CPU architectures and parallel machines,
reporting a number of GFLOPS close to the machine’s peak. In GPUs, however, this was
not that straightforward, and using shaders and Cg we saw a disappointing period where
CPU outperformed most GPU implementations, with only the ATI X800XT producing
comparable results to those 12 GFLOPS achieved by a 3 GHz Pentium 4. The advent of
CUDA as programming model in 2007 quickly reversed this situation, and significantly
faster GPU implementations started to see the light in early 2008.

For example, Ryoo et al. [6] reported 91 GFLOPS, followed by 125 GFLOPS
achieved by Nvidia in their CUBLAS library. More recently, Volkov et al. [10] reported
180 GFLOPS in their implementation using a block algorithm similar to those used for
vector computers, enabling GPU registers and per-block shared memory to store the data
blocks. As the GPU has an unusually large register file, this can be used as the primary
scratch space for the computation.

While writing a basic dense Matrix-Matrix Multiply kernel is a fairly simple exer-
cise (see [5] for details), achieving this high level of performance requires much more
dedication. This paper tries to illustrate the basic development cycle to achieve this goal
while providing the keys for the success.

2. The CUDA programming model and hardware interface

Modern GPUs are powerful computing platforms recently devoted to general-purpose
computing using CUDA (Compute Unified Device Architecture) [4]. As a hardware in-
terface, CUDA started by transforming the G80 microarchitecture related to the GeForce
8 series from Nvidia into a parallel SIMD architecture endowed with up to 128 cores
where a collection or threads run in parallel. Figure 1.a outlines the block diagram of this
architecture. From the CUDA perspective, G80 cores are organized into 16 multiproces-
sors, each having a set of 32-bit registers, constants and texture caches, and 16 KB of
on-chip shared memory as fast as local registers (one cycle latency). At any given cycle,
each core executes the same instruction on different data (SIMD), and communication
between multiprocessors is performed through global memory.

As a programming interface, CUDA consists of a set of C language library functions,
and the CUDA-specific compiler generates the executable for the GPU from a source
code where the following elements meet (see Figure 1.b):

1. A program is decomposed into blocks that run logically in parallel (physically
only if there are resources available). Assembled by the developer, a block is a
group of threads that is mapped to a single multiprocessor, where they can share
16 KB of memory.

2. All threads of concurrent blocks on a single multiprocessor divide the resources
available equally amongst themselves. The data is also divided amongst all of
the threads in a SIMD fashion with a decomposition explicitly managed by the
developer.
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Figure 1. CUDA highlights: (a) Hardware interface for the Nvidia G80 GPU. (b) Programming model.

3. A warp is a collection of threads that can actually run concurrently (with no
time sharing) on all of the multiprocessors. The developer has the freedom to
determine the number of threads to be executed (up to a limit intrinsic to CUDA),
but if there are more threads than the warp size, they are time-shared on the actual
hardware resources.

4. A kernel is the code to be executed by each thread. Conditional execution of
different operations can be achieved based on a unique thread ID.

In the CUDA model, all of the threads can access all of the GPU memory, but,
as expected, there is a performance boost when threads access data resident in shared
memory, which is explicitly managed. In order to make the most efficient usage of the
GPU’s computational resources, large data structures are stored in global memory and
the shared memory should be prioritized for storing strategic, often-used data structures.

3. Benchmarking GPUs to Tune Matrix-Matrix Multiply

3.1. Our metrics

We have used several metrics to evaluate real performance and bandwidth attained on the
GPU when running the Matrix-Matrix Multiply.

For performance, we use FLOPS (Floating-Point Operations Per Second), by tak-
ing the operations from the PTX code generated by the NVCC compiler with the -ptx
flag. This is an internal representation later used by the back-end to produce the actual bi-
nary code on a particular platform, so it should be taken as an estimation. Another useful
metric we use is throughput, calculated as the product between the peak performance
and the ratio of FLOPS per instruction, again taken from the PTX code.

For bandwidth with off-chip video memory, we use GB/sc. (Gigabytes per second),
calculated by multiplying four magnitudes: the number of accesses to device memory
(from the PTX code), the amount of bytes transferred on each access, the actual number
of cores the GPU has, and the core clock frequency.
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Figure 2. Threads organization for the initial version of our Matrix-Matrix Multiply.

3.2. Departure point

Our first version of the Matrix-Matrix Multiply does not exploit the benefits of the shared
memory. One thread is created to produce each output result, loading a row from source
matrix A and a column from source matrix B (see Figure 2). Products are performed on
pairs of elements from device memory, accumulating them on and on (see Figure 2).

Figure 3 outlines this version, where indexes are calculated based on thread and
block coordinates. We use 9 registers per thread, and each block contains 256 threads.
Thus, each multiprocessor holds 3 blocks, reaching its maximum of 768 threads and
being fully utilized.

for (int i=0; i<WA; i++)
{
  Csub += A[indexA] * B[indexB];
  indexA++;

}

C[indexC+WB*ty+tx] = Csub;

float Csub = 0.0;

}

#define  WC  MATRIX_SIZE
#define  WB  MATRIX_SIZE
#define  WA  MATRIX_SIZE
#define  MATRIX_SIZE  4096

{
  int bx = blockIdx.x;
  int by = blockIdx,y;
  int tx = thredIdx.x;
  int ty = threadIdx.y;
  int indexA = by*BLOCK_SIZE*WA + ty*WA;

int indexB = bx*BLOCK_SIZE + tx;

  indexB += WB;

int indexC = by*BLOCK_SIZE*WC + bx*BLOCK_SIZE;

__global__ void matrixMul (float* C, float* A, float* B)

Figure 3. Kernel code for the initial version of our Matrix-Matrix Multiply.

Table 1 shows the performance for this kernel depending on the matrix size and the
platform used, where we see how GeForce 8800 GTX slightly outperforms Tesla C870.
On a 4Kx4K matrix size, GeForce delivers 64 GFLOP and 36.36 secs., for a total of
1.76 GFLOPS. By examining the PTX code, there are eight instructions in the inner
loop where the kernel spends most of its execution time. One of these intructions is a
floating-point fused multiply-add (madd). The peak performance for this code is then
43,2 GFLOPS (128 cores * 2 instructions per core* 1.35 GHz * 1/8 FLOP), far from our
achievements and also from those 10.58 GFLOPS reported in [6,7].

The PTX code also reveals two loads in the inner loop, so this kernel has 2/8 load
operations for a total bandwidth required of 173 GB/sc. (128 SPs * 1/4 instructions * 4



Matrix size 1024x1024 2048x2048 4096x4096

GFLOPS on Tesla C870 1.51 1.60 1.72
GFLOPS on GeForce GTX 280 1.75 1.86 1.76

Table 1. Performance in GFLOPS for the initial version of our Matrix-Matrix Multiply.

Matrix size 1024x1024 2048x2048 4096x4096

Time for accesing A uncoalesced 0.59 msc. 4.42 msc. 35.02 msc.
Time for accessing B coalesced 0.07 msc. 0.54 msc. 4.25 msc.

Table 2. Performance comparison when accessing to matrix A uncoalesced and matrix B coalesced in device
memory. We provide overall accessing time for each matrix on the Tesla C870 GPU.

bytes/instruction * 1.35 GHz). This is twice the bandwidth available on GeForce 8800
GTX, so access to device memory becomes the actual bottleneck for this kernel, which
also explains why Tesla C870 is slower (its DDR memory is clocked at 2x800 MHz,
versus 2x900 MHz on the GeForce).

To reduce the bandwidth requirements, we first use coalesced accesses and then
shared memory, also reorganizing computations to exploit tiling.

3.3. Coalescing accesses to device memory

The goal for coalescing is to organize 16 data accesses in a way suitable for being recov-
ered simultaneosly from device memory in a half-warp, so that all threads within it can
compute in parallel. The condition for a coalesced access (see [5]) is that each of these
16 threads accesses to the following address: HalfWarpBaseAddress + N, where N is the
thread id. In our case, threads of the same half-warp access to the same elements in the
same row of matrix A, so the access to device memory is fully uncoalesced [5]. At the
same time, threads of the same half-warp get the data from different columns in matrix
B, leaving accesses fully coalesced [5]. We have created a couple of micro kernels to
compare the performance of these two access patterns when accessing to device memory.
Table 2 shows the execution times, where the access to B is almost ten times faster on
large matrices.

These results encourage us to provide coalesced access for matrix A, and to do so,
all threads have to access different elements in a way that thread 0 should access the
HalfWarpBaseAddress+0 address, thread 1 should access to the HalfWarpBaseAddress
+ 1 address, and so on. This fulfillment will be combined with the use of shared memory
and tiling in what constitutes our next optimization step.

3.4. Tiled version using shared memory

At this point of our work, the bottleneck is the device memory bandwidth. In order to
alleviate the pressure on this device memory, we will perform tiling [2] to reuse data
located in a lower level of the memory hierarchy. This faster level in CUDA is represented
by the shared memory.

Three main steps are needed to implement the tiling technique in CUDA:

1. Copy from device to shared memory all the data used by all the threads in a
block. These threads cooperate with each other to load the data efficiently, that
is, accesses to device memory are coalesced.
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Figure 4. Computing the tiled version of our Matrix-Matrix Multiply.

#define  WC  MATRIX_SIZE
#define  WB  MATRIX_SIZE
#define  WA  MATRIX_SIZE
#define  MATRIX_SIZE  4096

{
  As[ty][tx] = A[indexA];
  Bs[ty][tx] = B[indexB];
  indexA += BLOCK_SIZE;
  indexB += WB*BLOCK_SIZE;
  __syncthreads();
  for (int k=0; k<BLOCK_SIZE; k++)
    Csub += As[ty][k] * Bs[k][tx];
  __syncthreads();

C[indexC+WB*ty+tx] = Csub;

}
int indexC = WB*BLOCK_SIZE*by + BLOCK_SIZE*bx;float Csub = 0.0;

__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];
__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];

int indexA = WA*BLOCK_SIZE*by + ty*WA + tx;
int indexB = bx*BLOCK_SIZE + ty*WB + tx;

for (int i=0; i<WA/BLOCK_SIZE; i++)

Figure 5. Tiled version for the code of our Matrix-Matrix Multiply.

2. Perform the actual computation in shared memory, trying to avoid conflicts when
accessing memory banks [5].

3. Copy the results back to device memory.

Figure 4 illustrates how tiling is performed on the Matrix-Matrix Multiply. The re-
sult matrix C is decomposed in blocks where each thread of a block calculates a single
element. Considering the block size as tile_size * tile_size according to shared memory
limitations, this kernel is required to load tile_size entire rows from matrix A and tile_size
entire columns from matrix B, with those rows and columns coordinates matching those
of the target block. Figure 5 shows the code for this tiled version.

A major constraint for this tiling technique is imposed by the size of the shared
memory, which is 16 KB. in the G80 architecture, and that has to be shared by all the
blocks within a multiprocessor. Therefore, depending on the tile size, this multiprocessor
can execute more or less blocks in parallel. Another upper bounds to account for are
described in [5], among which we highlight the 768 threads that may run in parallel on a
multiprocessor, and the 8192 registers they are allowed to use.

Table 3 shows the performance we obtain when varying the tile size in our code
version. The smaller tile considered, 4x4, has 16 threads per block and uses only 64 bytes
per block (16 threads x 4 bytes/thread). Since a maximum of eight blocks may run in



Tile size No tiling 4x4 8x8 12x12 16x16

GFLOPS for the MxM kernel 1.72 3.76 7.73 11.34 22.10
Table 3. Performance in GFLOPS for different tile sizes of our Matrix-Matrix Multiply using kernels that
require 14 registers running on the Tesla C870 GPU.

parallel on a multiprocessor, the shared memory usage is just 512 bytes out of 16 KB.
(3.125%) and the amount of extracted parallelism is 128 threads out of 768 (16.7%).

As we increase the tile size, performance improves due to a better use of shared
memory together with the cooperation of a higher number of threads in parallel. 16x16
is the largest tile size for the G80 platform, which may reach 256 threads per block as
long as the kernel uses ten or les registers. But our kernel requires 14 registers, so only
two blocks can be scheduled on a single multiprocessor (2 blocks x 256 threads/block x
14 registers/thread require 7168 registers out of the 8192). Even with this constraint, the
16x16 tiled version improves performance more than any other tile size because it uses
more shared memory.

In addition, memory accesses are coalesced in all these tiled versions as computa-
tions are rearranged, so device memory bandwidth is fully exploited and data movement
between device and shared memory is greatly amortized.

3.5. Increasing arithmetic intensity

An important issue to consider when optimizing codes on graphics processors is arith-
metic intensity, defined as the percentage of instructions executed on ALUs from a to-
tal including branches, memory address calculation, data accesses and so on. One way
to greatly improve this parameter through CUDA code transformations is to apply loop
unrolling [6].

By default, the nvcc compiler performs this transformation on small loops like the
innermost one in Figure 5. When this is applied, the PTX file shows 63 instructions,
and 16 of them are MADD (25.4%). However, without unrolling, the PTX file shows 19
instructions, but only one is MADD (5.2%).

3.6. Optimizing registers usage

Each multiprocessor in our G80 architecture contains 8192 registers which are dynami-
cally partitioned among the threads running on it. When a kernel uses at most ten regis-
ters for each of the threads, a maximum of 768 threads can be scheduled per multipro-
cessor (768 x 10 = 7680 < 8192).

For the 16*16 tiled version of our code with a 4K * 4K matrix size (see Figure 5), we
use 14 registers per thread. The PTX code for this kernel also reports that the innermost
loop is totally unrolled.

Figure 6 illustrates the development cycle we have followed to minimize the regis-
ters usage. With the help of the PTX and .cubin files, we can extract valuable infor-
mation. For example, the .cubin file shows the number of registers per thread used
by the kernel and the local memory consumed by the kernel, together with some other
magnitudes. On the other hand, the PTX code shows an estimation for the registers used
by the kernel. The problem with the PTX file is that it uses more registers than those
reported by the cubin file, so it is difficult to have an idea about the registers usage
with only those files. We complement that information with the Decuda application [4],
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Figure 6. The development cycle we have followed to minimize the registers usage.

which uses the binary code in the .cubin file to provide a more comprehensive version
for the code generated for the GPU G8x and G9x architectures, including the use of the
same number of registers that the .cubin file says.

Another useful tool to reduce the number of registers is the compiler flag -
maxregistercount, which reduces the number of registers used by the kernel at the ex-
pense of mapping them onto local memory, which is slower than the registers. However,
it is also possible that extra registers can be removed due to compiler optimizations in-
stead of being sent to local memory. So, there is a tradeoff between occupancy and mem-
ory speed. Based on our experience, we provide the following heuristics to minimize the
number of registers in a CUDA code:

1. Try to use preprocessing instructions instead of instantiate kernel parameters so
that the compiler may map those as constants rather than registers.

2. Array indices do not use extra registers, neither block nor thread indices.
3. The tile size has a strong influence on the registers usage. For instance, the 4*4

tiled version uses 9 registers in its unrolling version, whereas 16*16 tiled version
uses 14 registers.

3.7. Performance evaluation

Figure 7 shows the results for the experiments we have conducted on different tile sizes
and hardware platforms: The Tesla C870 and the Geforce 8800GTX. We also compare
them with those published in [6].

Our performance peak is 43 GFLOPS, scored by the 16*16 tiled version unrolled
and running on a GeForce 8800GTX (the Tesla C870 performs slightly worse because
of a slower memory clock). The registers usage for this version is 10 registers, allowing
the maximum of 768 threads to be scheduled per multiprocessor. The PTX code for the
16*16 tiled and unrolled version shows 16 fused multiply-add out of 63 instructions in
the main loop. This produces a potential throughput of 87.77 GFLOPS (345.6 Peak *
16/63 MADDs) In terms of device memory bandwidth, 2/63 operations executed during
the loop are loads from off-chip memory, which would require a bandwidth of 21.94
GB/s (128 SPs * 2/63 load instructions * 4 bytes/instructions * 1.35 GHz), which is
almost 4 times less than GeForce 8800 GTX can deliver. This leads us to conclude that
the device memory bandwidth has successfully been removed as a serious bottleneck in
the underlying architecture.



Figure 7. Performance comparison for the Matrix-Matrix Multiply using CUDA in our GPU platforms and
with respect to results published in [6] (T & U stands for tiled and unrolling).

4. Summary and conclusions

This work presents a guide for the CUDA implementation of kernels and applications on
the GPU using CUDA, taking a typical Matrix-Matrix Multiply as example. This code
has been extensively used as benchmark on virtually any existing platform, so we wanted
to explore the CUDA capabilities on an emerging and successful architecture like the
GPU. We chose two different platforms, the GeForce 8800 GTX and the Tesla C870, to
evaluate the influence of three issues: the clock frequency for the cores and the speed and
size of the video memory. Our results show that we list them according to their impact
in performance, from more to less.

The optimization process was also described as a guideline to tune dense linear
algebra codes. Starting from a naive version, we show how to use the shared memory,
exploit it efficiently by coalescing accesses and solving conflicts to memory banks, and
rearrange the code to increase arithmetic intensity and reduce registers usage. As a result,
we reach 43 GFLOPS as performance peak, and device memory bandwidth is removed
as the actual bottleneck for the code.

Using CUDA (Compute Unified Device Architecture) to implement scientific appli-
cations on the GPU we can fully exploit SIMD programming to populate with work the
hundreds of cores the GPU possesses, and these gains will extend in the future thanks to
the promising scalability and larger number of cores that GPU architectures will bring to
the marketplace at a commodity cost.
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