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Abstract The discovery of new drugs can be drastically accelerated with the use of
Virtual Screening (VS) methods, ongoing trend in medical research. VS methods
need to screen chemical compound databases with millions of ligands but they
are completely constrained by the access to computational resources. In order to
solve this problem we worked on the adaptation of their main bottlenecks to GPUs
using a grid approach with different interpolation methods. In our first studies for
medium size proteins, our CUDA implementation runs around 30 times faster than
the sequential counterpart.
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1. Introduction

The discovery of new drugs can enormously benefit from the use of Virtual Screening
(VS) methods, which need to process databases with millions of ligands [5] and which
are constrained by a lack of computational resoruces [6]. We propose to overcome these
limitations by the exploitation of GPUs [3,11]. We described previously how the bot-
tleneck of VS methods are related with the computation of full non-bonded interactions
Kernels and how GPUs can yield speedups of up to 260 times [4]. Nevertheless, men-
tioned Kernels need to perform N2 interactions calculations (N = total number of parti-
cles in the system) and even using GPUs, the required computation time grows polynom-
ically with N so this imposes serious limitations for the simulation of big size systems.
Thus we decided to look for alternatives to full Kernels and decided to use grid Kernels
[9]. We have checked that just in the sequential version, speedups of 200 times versus
the full non-bonded Kernel are obtained.

We will therefore unleash the potential of GPUs for the calculation of non-bonded
potentials in VS using grids. Previous works have investigated this approach in a similar
fashion but for long range interactions using Ewald-Mesh methods [1]. Given the molec-
ular sizes involved in protein-ligand interactions, we will be interested only in short-
range electrostatics. Related works reported a 3 times speedup using a different approach
[2], a 50 times speedup focusing on the acceleration of more particular Kernels of the
docking program Autodock [7], and a 7 times acceleration of the Dock6 scoring function
by Yang et al. [13].
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Figure 1. (A) Representation of the grid for the protein streptavidin. Length of the side of the cube (L) is 50
Å, spacing between grid points d is 5 Å, and the total number of grid points is equal to 113. (B) Biotin in the
binding pocket of streptavidin

2. Calculation of non-bonded interactions using grids

The protein is placed inside a cube of minimal volume V ol = L3 that encloses it. A three
dimensional grid is created dividing the cube into (N − 1)3 smaller cubes of identical
volume, each one of side length d = L/N , so that the total number of grid points is N3.
The electrostatic potential due to all protein atoms is calculated on each grid point i ac-
cording to the Coulomb expression [9]. A graphical depiction of the grid for streptavidin
can be seen in Figure 1(A) and in more detail for the ligand biotin on its binding pocket
in Figure 1(B).

Once the protein grid is loaded into memory, the calculation of the electrostatic po-
tential for the protein-ligand system is performed as follows; for each ligand atom i with
charge qi at point Pi we calculate which are the eight closest protein grid point neigh-
bours. Next, an interpolation procedure is applied to estimate the value of the electro-
static potential due to all protein atoms at Pi. The same procedure is applied to all ligand
atoms summing them up. Different interpolation procedures in 3D have been used [12];
linear, cubic and Gauss interpolation.

3. Code Design

In this section, we introduce the CPU and GPU designs for the calculation of the elec-
trostatic (ES) potential using grids. We have used NVIDIA’s CUDA [10] for the GPU
implementations on two different machines; a) a host Intel Xeon E6850 CPU with a
NVIDIA GeForce GTX 465 GPU and b) a host Intel Xeon E5620 with a NVIDIA Tesla
C2050 GPU. They will be referred as Fermi and Tesla. We use GNU gcc version 4.3.4
with the -O3 flag to compile our CPU implementations, and CUDA compilation tools
(release 4.0) on the GPU side.

3.1. ES energy calculation on CPU

We perform a VS experiment where a ligand database containing up to thousands
of ligands is screened against a single protein molecule. The precomputed protein grid



Algorithm 1 Sequential pseudocode for the calculation of the electrostatic potential
1: for i = 1 to N do
2: for j = 1 to nlig do
3: energy[i ∗ nlig + j] =

interpolate(lig[i ∗ nlig + j], ESGrid)
4: end for
5: end for

is read from file and loaded onto memory. Next, the electrostatic (ES) energy of each
atom is calculated using interpolation on the grid as explained before and following the
pseudocode shown in algorithm 1, where N is the number of ligands, nlig is the number
of atoms of each ligand and the function interpolate performs the calculation of the
electrostatic potential for each atom.

3.2. ES energy calculation on GPU

We describe in this part the different strategies studied for the GPU implementation.
All designs have in common that one thread calculates the energy of only one atom.
The threads are organized in blocks of fixed size numThreads, being this an important
optimization parameter.

3.2.1. GM; use of device memory

In this initial design the whole grid is stored in the GPU device memory. No additional
optimizations are implemented.

3.2.2. ROI; truncation to the grid around the ligand

In this strategy we have implemented some optimizations with respect to the previous
version (GM); In order to reduce the CPU-GPU data transfer time, we can take advantage
of the fact that we only need to access the grid positions in the volume where the ligand
is enclosed. So we can define a region of interest (ROI) of the grid around the ligand and
send only that part to the GPU instead of the whole grid.

3.2.3. ZIP; compression of the grid

In addition, we can shorten the CPU-GPU grid transfer time with the compression of the
positions of the ligand atoms. For that purpose we discretize the volume that encloses
the ligands in another cubic regular grid, where each ligand atom is specified only by its
grid cell index. The advantage of this approach is that if we perform a fine grain division,
each atom can be conveniently represented by just 3 short integers (instead of the three
doubles required for position) and reduce memory usage to a quarter.

3.2.4. SM and TM; use of shared and texture memories

We can benefit from the use of shared and texture memory to improve memory access.
In the shared memory approach (SM), threads of a block cooperate to copy ROI of the
grid to the shared memory in order to obtain a lower memory access penalization. It
must be noticed that accessing grid data on SM is coalesced in order to leverage memory



bandwith. Regarding texture memory (TM) approach, we can store protein grid into the
texture memory unit (TMI), so that just accessing different memory indexes gives us
directly the interpolated [10] energy value for each atom.

3.2.5. ROI-TM-ZIP and ROI-SM-ZIP

Algorithm 2 GPU pseudocode for the calculation of the electrostatic potential
Host (CPU)

1: CopyDataCPUtoGPU(GridROI)
2: clig = compress(lig)
3: CopyDataCPUtoGPU(clig)
4: nBlocks := N ∗ nlig/numThreads
5: Kernel <<< nBlocks, numThreads >>> (GridROI, clig, energy)
6: CopyDataFromGPUtoCPU(energy)

Kernel 1: ROI-TM-ZIP
1: for all nBlocks do
2: dlig = decompress(clig[myAtom])
3: ilig = positionToROICoordinates(ROIinfo, dlig)
4: energy[myAtom] = accessToTextureMemory(GridROI, ilig)

5: end for
Kernel 2: ROI-SM-ZIP

1: for all nBlocks do
2: copyDataToSM(GridROI)
3: dlig = decompress(clig[myAtom])
4: ilig = positionToROICoordinates(GridROI, dlig)
5: energy[myAtom] = interpolate(GridROI, dlig, ilig)

6: end for

Kernels shown in Algorithm 2 describe two different mixed groups of optimizations
based on the previous strategies. In both Kernels, the host sends the ROI of the grid
and the compressed ligand atom positions to the GPU. In Kernel 1 of Algorithm 2, each
thread decompresses the coordinates of the corresponding atom and calculates its co-
ordinates in the ROI coordinates system. Next, it performs interpolation in the TMI. In
Kernel 2 of Algorithm 2, each thread also decompresses coordinates but the interpolation
function is implemented in the code as described. Finally, energy values are copied back
to CPU.

4. Results

4.1. Grid spacing and interpolation accuracy

Figure 2 shows how grid spacing d influences accuracy in the different interpolation
procedures. We wondered about the smallest possible value of d that yields good accu-
racy and that uses the less possible number of points for the grid, and therefore mem-
ory. We found that a value of d = 0.5 Å gives good accuracy for the three interpolation
methods. Smaller values of d do not improve accuracy significantly while they require
more memory (it depends on (1/d)3). From the other side, higher values of d, like 1.5 Å
yield unacceptable results for all studied interpolation methods in the rugged parts of the



Figure 2. Interpolation results obtained in a part of the grid streptavidin-biotin for grid spacing values of
0.5 (left picture) and 1.5 (right picture) Å, and using different interpolation procedures. For clarity of the
comparison we show the values for the grid points pertaining to a grid with a spacing of 0.5 Å.

Figure 3. (A) Comparison of running times for the sequential and GPU implementations. Protein studied
is streptavidin and the screening was performed using a ligand database containing 2000 ligands, each one
containing around 32 atoms. (B) Total running times for the two GPUs used in our study and in float and double
precision.

curve, which happens often due to the typical charge distribution in proteins. Therefore
we accepted a value of d = 0.5 Å as optimal. Regarding the interpolation procedure we
discarded the Gauss interpolation given its worst results in the rugged parts of the curve,
if we compare it with cubic and linear interpolations, which yield similar accuracy. We
finally decided to use only the latter given its lower computational cost. We also dis-
carded interpolation methods of higher order since in the ROI strategy (grid is reduced
around the ligand) they would not be able to access grid points out of ROI, yielding
wrong results.

4.2. Analysis and performance of the sequential code

In Figure 3(B) we can see the timing results obtained for the sequential code in a ligand
database screening with 2000 ligands. The trilinear interpolation needs to access eight
adjacent cells of a ligand atom positions. It implies two memory accesses to four different
rows of the grid. Furthermore, we cannot exploit the use of the cache due to the fact



Figure 4. (A) Values of the maximum and total error per atom obtained when using the compressed grid for
representing the ligand database for several values of the number of cells and memory consumption in KB (B)
Influence of the number of threads per block on the running time for the different implementation strategies
studied.

that the atoms are spread in random positions in the 3D space. Therefore most of the
RAM accesses represent a bottleneck. Nevertheless, we have used this grid Kernel as
starting point and investigated how to adapt it to the GPU architecture, since it is widely
used in most biomolecular simulation methods. An additional reason is the 150 to 200
speedups in the sequential version versus the full kernel [4] for several grid densities and
size ranges of rigid proteins.

4.3. Compression of the ligand database atomic positions

In Figure 4 we can observe how the number of cells influences the error for the calcu-
lation of the electrostatic potential. As one would expect, increasing the number of cells
reduces on average the maximum error for the calculation of the potential per atom, and
the same for the total error. A maximum error of 0.25% is obtained when we use 35000
cells to compress the whole ligand database. At the same time, memory consumption
increases only linearly given the efficiency of the compression method used and only
around 300 KB are needed to store the whole ligand database.

4.4. Threads per Block

We have also investigated the influence of the number of threads per block as can be
seen in Figure 4(B). Since the designs ROI-SM and ROI-SM-ZIP use the shared mem-
ory, they are more affected by the value of the block size than the others. If the number
of threads per block is smaller than the ROI size, threads need to perform too many it-
erations to copy the whole ROI into the shared memory while the high bandwidth mem-
ory is unused. For a number of threads per block higher than the ROI size, the memory
access bandwidth is improved because there are many simultaneous memory accesses.
The global and texture memory are cached (only in the Fermi architecture) and the data
copy is performed automatically in background independently of the number of threads.
As a consecuence we choose a number of threads equal to 512 as optimal for the shared
memory designs.

4.5. Texture Memory



Figure 5.: Value of the electrostatic potential calculated
for each atom of biotin in the binding pocket of strepta-
vidin comparing the grid approach used in FlexScreen
and using the Texture Memory of the GPU.

In the TM strategy we have first
checked whether we obtain the same
interpolation results than in the se-
quential version and this is confirmed
in Figure 5. We can also see how
the use of this memory unit de-
creases considerably the time needed
for the calculation of the interpola-
tion. It is clearly shown in Figure
3(A) in cases GRID-GM to GRID-
TM and ROI-SM or ROI-SM-ZIP to
ROI-TM. Therefore it is a good idea
to use always the TMI when linear
interpolation is required. Finally, if we look at Figure 3(A) it is clear that ROI-TM-ZIP
and ROI-SM-ZIP offer the best performance since they combine all the best advantages
from the previous strategies.

4.6. Floating point accuracy influence on different GPUs

We have also performed this study in several NVIDIA GPUs, both in simple and double
precision, in order to check how the architectural design affects performance and preci-
sion. In Figure 3(B) we can observe that on average, Tesla GPU runs faster than Fermi
GPU. For both cases the running times are smaller working on single than in double
floating point precision, as one would expect. In the results obtained in the different GPU
strategies presented, Tesla also outperforms Fermi due to the higher number of cores
(448 versus 352). This is more accurate in the cases like GRID-GM where interpolation
computations take a high percentage of the total running time.

5. Conclusions and outlook

In this work we have efficiently shown how the CUDA language can be used to efficiently
exploit the GPU architecture and as far as we know, this is the first GPU implementation
of a grid Kernel in a VS methodology. For typical and representative VS calculations of
a database with 2000 ligands we have obtained speedups of up to 20x (Fermi architec-
ture) and 30x (Tesla architecture) versus the sequential grid Kernel counterpart and we
have determined which are the optimal values of the most relevant parameters like the
number of threads per block, grid spacing and number of cells of the compressed ligand
database atomic positions. We have also shown that the most optimal interpolation pro-
cedure tested is the linear one. Between the strengths of our implementation, we are sat-
isfied with our in-depth study of different and alternative GPU implementation strategies,
and between the weaknesses of our work we think we could have studied more different
interpolation procedures.

On the application side, this GPU grid Kernel can be used in many different simu-
lation methodologies that imply interactions between many particles; rigid-rigid systems
(like the studied cases here; docking of biotion in streptavidin) or mixed rigid-flexible
systems (our next step). This Kernel can also be used with sligth modifcations in another
fields like astrophysics.



At the moment we are targeting our efforts to the implementation of this GPU Ker-
nel in the VS program FlexScreen [8], where the authors have already contributed to
its development, adding new functionalities related with an improved scoring function
that can efficiently handle not only electrostatics but other new physical terms in the
description of the protein-ligand interactions.

The source code of the program is available upon request.
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