Reducing the Latency of L2 Missesin Shared-M emory M ultiprocessor sthrough
On-Chip Directory Integration

Manuel E. Acacio, José Gonzalez, José M. Garcia
Dpto. Ing. y Tecnologia de Computadores

Universidad de Murcia
30071 Murcia (Spain)

{meacacio, joseg, jmgarcia}editec.um.es

Abstract

Recent technology improvements allow multiprocessor
designers to put some key components inside the processor
chip, such as the memory controller and the network inter-
face. Inthiswork we exploit such integration scale, present-
ing a new three-level directory architecture aimed at reduc-
ing the long L2 miss latencies and the memory overhead
that characterize cc-NUMA machines and limit their scal-
ability. The proposed architecture is based on the integra-
tioninto the processor chip of the directory controller and a
small first-level directory cachethat stores precise informa-
tion for the most recently referenced memory lines, as the
means to reduce miss latencies. The second- and third-level
directories are located near main memory and they are only
accessed when a directory entry for a certain memory line
isnot present in thefirst-level directory. This off-chip struc-
ture achieves the performance of a big and non-scalable
full-map directory with a very significant reduction in the
memory overhead. Using execution-driven simulations, we
show that substantial latency reductions can be obtained by
using the proposed directory architecture. Load, store and
read-modify-write misses are significantly accelerated (la-
tency reductions of more than 35% in some cases). These
reductions trand ate into important improvements on the fi-
nal application performance (reductions up to 20% in exe-
cution time).

1. Introduction

The key property of shared-memory multiprocessors is
that communication occurs implicitly as a result of con-
ventional memory access instructions which makes them
easier to program than message-passing multicomputers.
In order to alleviate the problem of high latencies, most
shared-memory multiprocessors employ the cache hierar-
chy to keep data as close as possible to the processor. The
coherence protocol is responsible for keeping caches coher-

José Duato
Dpto. Inf. de Sistemas y Computadores
Universidad Politécnica de Valencia
46071 Valencia (Spain)

jduato@gap.upv.es

ent. The adopted architectures are quite different depending
on the number of processors.

Snooping-based multiprocessors (usually known as
SMPs), which depend on broadcasting coherence transac-
tions to all processors and memory over a network with a
completely ordered message delivery (traditionally a bus),
are the preferred architecture for machines with a small
number of processors involved. However, some snooping-
based designs have recently moved from small to medium
scale (up to 64 processors) replacing the bus with more
sophisticated interconnection network organizations. For
instance, the Sun UE10000 [3] separates addresses and
data onto distinct wires. In turn, the address network uses
four interleaved buses. Each of them is implemented as a
pipelined broadcast tree. This complex address network,
designed to perform ordered broadcasts, significantly in-
creases the final cost of the system. Besides, snoop band-
width limitations and the need to act upon all transactions
at every processor, make snooping-based designs extremely
challenging, especially in light of aggressive processors
with multiple outstanding requests.

On the other hand, directory-based multiprocessors are
much better suited for larger designs and have tradition-
ally constituted the selected architecture for medium and
large scale multiprocessors. Directory-based cache coher-
ence protocols keep a directory entry for every memory
line. Each directory entry consists of state information and a
sharing code[4] that indicates the caches containing a copy
of the line. In these designs, memory and directory infor-
mation are distributed among the nodes of the system and a
scalable interconnection network is employed. A state-of-
the-art example is the SGI Origin 2000 [12] which can scale
to several hundred processors.

However, there are two important issues preventing cc-
NUMA designs from being the dominant architecture for
very large- and small-scale servers: the hardware overhead
of using directories (for very large systems) and the long

L2 miss latencies (for all the systems). The most important
component of the hardware overhead is the amount of mem-
ory required to store the directory information. In [1], we
proposed to organize the directory as a two-level structure
and showed that, with such directory architecture, memory
overhead can be significantly reduced while achieving the
same performance as a traditional non-scalable full-map di-
rectory.

Long miss latencies of directory protocols are caused by
the inefficiencies that the distributed nature of the protocols
and the underlying scalable network imply. One of such
inefficiencies is the indirection introduced by the directory
access. This represents an unique feature of directory pro-
tocols, not present in SMPs. The consequences of such
indirection are particularly serious for those cache misses
that must obtain data from other processors’ caches. These
misses are usually known as tree-hop transactionsor cache-
to-cache transfers and constitute, in some cases, more than
60% of the misses [8]. To date, these long miss latencies
constitute one of the main reasons that makes SMPs to dom-
inate the market of small- and moderate-scale multiproces-
sors (up to 64 processors).

On the other hand, current technology improvements al-
low designers to introduce some key components of the sys-
tem inside the processor chip. For example, the Compaq
Alpha 21364 [6] includes on-chip memory controller and
network interface. Multiprocessors can be organized based
on fast processor-to-processor connections, following a par-
ticular topology. Consequently, totally ordered message de-
livery becomes infeasible in these organizations.

Taking these system organizations as a starting point and
considering the opportunities provided by current integra-
tion scale, we propose to reduce the L2 miss latencies and,
consequently, to improve the overall performance through
a novel multilevel directory architecture that takes advan-
tage of on-chip directory integration. Our scheme includes
a small first-level directory and the directory controller on
the processor chip and one or more directory levels near
main memory. In this way, the overhead introduced by di-
rectory indirections is reduced: first, the directory controller
can operate at processor frequency and second, an access
to main memory (to get directory information) is saved for
those coherence transactions that can be satisfied using the
information at the first-level directory.

In this work, we propose a three-level directory architec-
ture as a means to obtain, at the same time, performance and
scalability. The on-chip integration of the small first-level
directory and the directory controller ensures performance.
Whereas, scalability is guaranteed by having two directory
levels out of the processor chip [1]. The third-level direc-
tory is a complete directory structure (one entry per memory
line) that uses a compressed sharing code to drastically re-
duce memory requirements and the second-level directory

is a small directory cache that tries to minimize the negative
effects of having an imprecise third level.

The main contribution of this work is the significant re-
duction in the L2 miss latency, which leads to performance
improvement over traditional directory-based architectures.
The simplicity of our proposal and the fact that it could be
introduced on commercial processors would cut its cost off,
conversely to the expensive sophisticated network designs
required by state-of-the-art moderate-scale SMPs.

The rest of the paper is organized as follows. The re-
lated work is presented in Section 2. The new directory
architecture is proposed and justified in Section 3. Section
4 discusses our evaluation methodology. Section 5 shows a
detailed performance evaluation of our novel proposal. Fi-
nally, Section 6 concludes the paper.

2. Related Work

Caching directory information was originally proposed
in [5] and [15] as a means to reduce the memory overhead
entailed by directories. More recently, Michael and Nanda
[13] propose to integrate directory caches inside the coher-
ence controllers in order to minimize directory access time,
although the memory overhead problem is not considered.

Some hardware optimizations, proposed to shorten the
time processors loose because of cache misses and invali-
dations, were evaluated in [18]. More recently, in [9], [10]
and [14], coherence messages are predicted and in [11],
prediction-based self-invalidation techniques are applied to
reduce the coherence overhead. Bilir et al. [2] try to pre-
dict which nodes must receive each coherence transaction.
If the prediction hits, the protocol approximates the snoop-
ing behavior (although the directory must be accessed in
order to verify the prediction). In [7], the remote memory
access latency is reduced by placing caches in the cross-
bar switches of the interconnect to capture and store shared
data as they flow from the memory module to the request-
ing processor. Subsequently, in [8] the same idea is applied
to reduce the latency of read misses that are served from a
remote cache. In this case, small directory caches are imple-
mented in the crossbar switches of the interconnect medium
to capture and store ownership information as the data flows
from the memory module to the requesting processor. In
both cases, special network topologies are needed to keep
coherent the information stored in these switch caches.

3. A Directory Architecture Exploiting On-
Chip Integration

In a previous work [1], we presented a two-level direc-
tory architecture capable of significantly reducing the mem-
ory overhead entailed by the directory information while
achieving the same performance as a non-scalable full-map
directory. This approach can be generalized to a multilevel

directory architecture. A multilevel directory consists of
several directory cache structures (each of them has a re-
duced number of entries) and a complete directory struc-
ture which stores up-to-date sharing information for every
memory line. The main difference between the former two
types of structures is found in the sharing code employed.
For directory cache structures, uncompressed sharing codes
should be used (as for example, limited number of pointers
or full-map) in order to provide precise information for the
most referenced lines. For the complete directory structure,
a more scalable sharing code (compressed sharing code)
must be employed (as, for example, coarse bit vector [5]
or binary tree with subtrees [1]) to store correct but impre-
cise information for all memory lines, even if they have not
been referenced for a long time.

While uncompressed sharing codes provide precise in-
formation about the nodes caching a certain memory line,
compressed sharing codes provide an in-excess represen-
tation, which leads to the presence of unnecessary coher-
ence messages, that is, coherence messages that would not
appear if a precise sharing code were used. A big num-
ber of such messages can seriously hurt the performance of
shared-memory applications (see [1] for more details).

As it will be discussed in Section 5, first-level directory
size is chosen to be a small fraction of the L2 cache size.
Thus, it could be incorporated into the processor chip along
with the directory controller, remaining the other directory
structures close to the main memory. As a result of such
integration, the time required to process a request will be
smaller than in traditional single-level directories. Thus, an
important L2 miss latency reduction is expected for those
misses that do not involve any main memory access. Since
they can constitute a large percentage of total misses, this
reduction may lead to a significant improvement on final
performance.

3.1. Three-Level Directory Architecture

The proposed three-level directory architecture consists
of:

1. First-level Directory: It uses a small set of entries, each
one containing a precise sharing code. For this level,
a limited number of pointers has been chosen. Note
that, as it is shown in [4], a small number of pointers
generally suffices to keep track of the nodes caching a
memory line. We have chosen this sharing code since
this level is included inside the processor chip. Choos-
ing a sharing code linearly dependent on the number of
processors (such as full-map) could make it infeasible
to be incorporated on the processor chip, compromis-
ing both scalability and performance. It is preferable
to invest the transistor budget dedicated to this direc-
tory in increasing the number of entries (which affects

the hit rate) rather than the directory width. Finally,
we expect this first-level directory to satisfy most of
the requests due to the locality exhibited by memory
references, even remote accesses to a home node.

2. Second-level Directory: It is located outside the pro-
cessor chip, near main memory, and also has a small
number of entries. In this case, a non-scalable but
precise full-map [4] sharing code is employed. In
this way, when the number of sharers is larger than
the number of pointers in the first-level directory, the
second-level entries can be used. Second-level direc-
tory can be seen as a victim cache of the fist level since
it contains those entries that have been evicted from
the first-level directory or do not fit there. Note that, if
a directory entry for a certain memory line is present
at the first level, it cannot be present at the second one,
and vice versa.

3. Third-level Directory: This level constitutes the com-
plete directory structure (i.e., an entry per memory
line). We use a binary tree with subtrees (BT-SuT)
[1] as the sharing code. This sharing code solves the
common case of a single sharer by directly encoding
the identifier of that sharer. When several nodes are
caching the same memory line, the system is seen as a
logical binary tree with the nodes located at the leaves.
Then, the sharing code codifies the two minimal sub-
trees covering all sharers. Binary tree with subtrees
sharing code introduces a very low memory overhead
(max {(1 +log, N), (1 +2 + 2 [log, (log, N))}
bits per entry), which makes it much more scalable for
this level than other schemes, such as the well-known
coarse bit vector ([2] bits per entry).

While the third-level directory has an entry for each
memory line assigned to a particular node, the first- and
second-level directories have just a few entries, used only
by a small subset of the memory lines. The first-level di-
rectory is integrated into the processor chip (along with the
directory controller). Such integration reduces the directory
latency for two reasons: the directory controller operates at
the processor frequency and each time the directory infor-
mation for a particular memory line is found in the first-
level directory, an access to main memory is saved. Thus,
this will bring important reductions in the component of the
miss latency owed to the directory. The second- and third-
level directories are allocated near main memory. They are
accessed in parallel each time the directory information for
a certain memory line is not present in the first level. Note
that the aim of the second-level directory is not to reduce
the directory access time when there is a hit, but to avoid
the performance degradation due to the unnecessary coher-
ence messages that can appear if the third-level compressed
directory provides the sharing information to the controller.

FIRST-LEVEL DIRECTORY
Overflows &

TAG | State | 3-Pointer Sharing Code

TAG | state | 3-Pointer Sharing Code

ON-CHIP
DIRECTORY
Second-level

Buffer

=

——
ia
¥

OFF-CHIP
DIRECTORY

() [state [BTSuT Sharing Code

TAG | Full-Map Sharing Code

State | BTSUT Sharing Code
State | BTSUT Sharing Code
State | BTSUT Sharing Code

State

TAG | Full-Map Sharing Code

State

ing Code

SECOND-LEVEL DIRECTORY

State | BTSUT Sharing Code

THIRD-LEVEL DIRECTORY

Figure 1: Three-level Directory Architecture

Figure 1 shows the architecture of the proposed three-
level directory. The directory structure is divided into two
different parts (On-chip and Off-chip directories) according
to their location in the node. The On-chip directory includes
the first-level directory and the directory controller. The
Off-chip directory comprises the second- and third-level di-
rectories. Second- and third-level directories have an as-
sociated buffer in charge of storing the requests in order.
These buffers permit a decoupled access among the differ-
ent directory levels.

Each time a request comes to the directory, a slot in the
third-level buffer must be available before the directory con-
troller is allowed to service it, since all requests must update
this directory level. A directory entry for the corresponding
memory line is searched at the first-level directory. If the ac-
cess to the first level misses, two read orders enter into the
second- and third-level buffers (this ensures that previous
updates to these directories complete before the beginning
of the read operation) and the controller must wait until all
the cycles needed for previous accesses to complete (if any)
plus the main memory latency to obtain the directory en-
try. Whenever an update in the first level is done, the update
order is placed inside the third-level buffer. This guaran-
tees that up-to-date information can always be found at the
third-level directory. Finally, if a directory entry in the first
level is evicted, a write into the second-level directory can
only be done as long as there is a free slot in the second-
level buffer. Experimentally, we have checked that 1 and 5
entries for the second- and third-level buffers, respectively,
are enough to avoid overflow situations.

3.2. Implementation I ssues
In this paper we assume the organization of the first-

and second-level directory caches to be fully associative,
with a LRU replacement policy®. Each line in the first- and

LPractical implementations can be set-associative, achieving similar
performance at lower cost [13].

second-level directories contains only one directory entry.

When a request for a certain memory line reaches the
home node, its corresponding entry in the third-level direc-
tory is always updated and, additionally, an entry in the first-
level directory is allocated only in one of the following three
situations:

1. The line is in Uncached state. This means that the line
will be only held by the requesting node.

2. When the request implies a coherence event that changes
the memory line state to exclusive. Again, once the re-
quest has been completed, only the node that issued the
request will cache a copy of the line.

3. An entry for this line is found in the second-level direc-
tory and the final number of nodes caching the line is not
greater than the number of pointers used in the sharing
code of the first-level directory.

Note that, in order to allocate an entry in the first-level
directory precise information must be guaranteed.

An entry in the first-level directory is freed when a write-
back message for a memory line in exclusive state is re-
ceived. This means that this line is no longer cached in any
node, so its corresponding entry is available for other mem-
ory lines.

An entry in the second-level directory is allocated each
time that an overflow in the first-level directory occurs
or whenever a replacement in this first level takes place
and several sharers are codified in the sharing code of the
evicted entry. Note that, when only one node is caching
a memory line, its identifier can be exactly encoded with
the sharing code of the third-level directory (which has the
same access time as the second-level one). An entry in the
second-level directory is freed each time a write-back mes-
sage for a memory line in exclusive state is received.

Finally, replacements in the first- and second-level direc-
tories are not allowed for entries associated to memory lines
with pending coherence transactions.

4. Simulation Environment

We have used a modified version of Rice Simulator for
ILP Multiprocessors (RSIM), a detailed execution-driven
simulator [16]. RSIM models an out-of-order superscalar
processor pipeline, a two-level cache hierarchy, a split-
transaction bus on each processor node, and an aggressive
memory and multiprocessor interconnection network sub-
system, including contention at all resources. The system
implements an invalidation-based four-state MESI direc-
tory cache-coherent protocol and a sequential consistency
model. Table 1 summarizes the parameters of the simulated
system. These values have been chosen to be similar to the
parameters of current multiprocessors. The cache sizes are
chosen commensurate with the input sizes of our applica-
tions, following the methodology described in [19]. Table 2
shows the no-contention round-trip latency of a read access.

16-Node System
ILP Processor
Processor Speed 1GHz
Max. fetch/retire rate 4
Instruction Window 64

Functional Units 2 integer arithmetic
2 floating point

2 address generation

Memory queue size 32 entries
Cache Parameters
Cache line size 64 bytes

L1 cache WT

Direct mapped, 32KB
L1 request ports 2

L1 hittime 2 cycles
L2 cache WB 4-way associative, 128KB
L2 request ports 1
L2 hit time 15 cycles, pipelined
Number of MSHRs 8 per cache
Directory Parameters
First-level directory access time 1 cycle
Second-level directory access time 70 cycles
Third-level directory access time 70 cycles

First coherence message creation time
Next coherence messages creation time

4 directory cycles
2 directory cycles

Directory controller cycle off-chip 10 cycles
Directory controller cycle on-chip 1 cycle

Memory Parameters
Memory access time 70 cycles (70 ns)
Memory interleaving 4-way

Internal Bus Parameters

Bus Speed 1GHz
Bus width 8 bytes

Network Parameters
Topology 2-dimensional mesh
Flitsize 8 bytes
Non-data message size 2 Flits
Router speed 250 MHz
Arbitration delay 1 router cycle
Router’s internal bus width 64 bits
Channel speed 500 MHz
Channel width 32 bits

Table 1: Base system parameters

[Round Trip Access | Latency (Cycles) |

Secondary Cache 19
Local 118
Remote (1-Hop) 234

Table 2: No-contention round-trip latency of read accesses

The application programs used in our evaluations are
MP3D and Water from the SPLASH benchmark suite
[17] and Barnes, Radix, Ocean and FFT from SPLASH-
2 benchmark suite [19]. The input data sizes are shown in
Table 3. All experimental results reported in this paper are
taken from the parallel phase.

[Program] Size |

Barnes-Hut 4,096 Bodies
FFT 16k
MP3D 24,000 particles, 5 time steps
Radix 1M keys, 1,024 radix
Water 344 molecules, 2 time steps
Ocean 130x 130 grid

Table 3: Applications and input sizes

5. Simulation Resultsand Analysis

In this section we present and analyze the performance
results obtained through extensive simulation runs to com-
pare three systems: the Base, Limited Directory Caches
(LDC) and Unlimited Directory Caches (UDC). The Base
system represents a cc-NUMA with a non-scalable and
single-level full-map directory architecture. In this con-
figuration the directory controller and storage are located
out of the processor chip (near main memory). LDC and
UDC systems represent two cc-NUMAS using the three-
level directory organization discussed in Section 3. In both
systems, the directory controller and a first-level directory,
which uses a 3-pointer sharing code, are integrated into the
processor chip. First- and second-level directories have an
unlimited number of entries in UDC, so that there are no
capacity replacements at the first and second levels. In LDC
the number of entries for the first- and second-level directo-
ries are 512 and 2048, respectively?.

Table 4 presents the percentage of accesses satisfied by
each of the directory levels for LDC and UDC systems.
Comparing the results obtained for both configurations, it
can be concluded that a small number of entries in the first
level is enough to satisfy, in most of the cases, the same
percentage of requests as an unlimited first-level directory
cache. Besides, for all applications but Radix and Ocean,
the first- and second-level directories satisfy almost all re-
quests. For Radix application, we have observed that most
of the directory references arrive for lines in the Uncached
state, for which there is not any associated directory entry
neither in the first level nor in the second one. This situation
also takes place in Ocean but in less extent.

Finally, for FFT, MP3D and Water the first level satis-
fies almost all directory requests, which may imply a sig-
nificant reduction in the L2 miss latencies. Barnes ap-
plication requires especial attention. Approximately half
of the requests found the directory information at the first
level. This rate is not due to replacements, as can be seen
from the small difference between LDC and UDC. Also,
it is not caused by references to uncached lines, since the
second-level directory provides the information when the

2Since the main memory is four-way interleaved, each memory module
has associated a first- and second-level directories of 128 and 512 entries,
respectively. Note that, for our 16-node system, a 512-entry first-level di-
rectory constitutes a 0.6% of the L2 size, which is integrated into the pro-
cessor chip in some recent microprocessors (e.g., Alpha 21364).

First-Level i Second-L evel i Third-Level |

[Application]| LDC [UDC [LDC [UDC [LDC [UDC |
Barnes-Hut 51.57% 54.22% 46.56% 45.12% 1.87% 0.66%
FFT 89.50% | 99.45% 0.39% 0.06% 10.11% 0.49%
MP3D 94.44% 95.27% 0.63% 0.66% 4.93% 4.08%
Radix 2.18% 9.56% 0.55% 0.27% 97.27% 90.17%
Water 97.23% 97.23% 2.26% 2.26% 0.51% 0.51%
Ocean 40.87% 52.66% 6.36% 5.06% 52.77% | 42.28%

Table 4: Percentage of references satisfied by the first-, second- and third-level directories

Load Misses OMisc
Barmes FFT MP3D Radix Water Ocean |EDirectory
500
M Network
8 400 4
S 0 -
>
[_ _ m U
> 3000 _
3 i o .
2 [H o
© HH -
- 200 A N ool HH
®
X U
<
g 100 B
) I H
0 g 00200 200BLY 8OV B O
[%] 1] 1%} [%] [2] [%]
8539852855853 8528583

Figure 2: Average Load Miss Latency

first one cannot. The reason for this behavior is that en-
tries in the first level frequently overflow because more than
three nodes usually share a memory line.

5.1. Impact on Average Miss Latency of Loads,
Storesand RMWs

L2 misses can be classified according to the instruction
type which caused them. This way, we distinguish three
types of misses: those caused by load instructions (load
misses), store instructions (store misses) and read-modify-
write instructions (read-modify-write misses). This section
presents an analysis of how on-chip directory integration
affects the average latency of each category.

[Application | Load Misses | Store Misses | RMW Misses |

Barnes-Hut 79.57% 15.74% 4.69%
FFT 54.84% 45.16% 0%
MP3D 51.72% 47.86% 0.42%
Radix 45.30% 54.70% 0%
Water 38.49% 42.92% 18.59%
Ocean 50.02% 48.82% 1.16%

Table 5: L2 misses according to instruction types

Table 5 shows the percentage of L2 misses falling into
each category for the applications considered in our study.
As we can observe, the percentage of misses caused by
read-modify-write instructions is null for FFT and Radix
applications. This is because this instruction is used to im-
plement locks, which are not present in the latter applica-
tions. Figures 2 to 4 show the average latency (in cycles)
for each type of miss split into network latency, directory la-
tency and miscellaneous latency (buses, cache accesses...).

Figure 2 shows the average load miss latency for the con-
sidered applications. The LDC configuration obtains impor-

Store Misses OMisc
500 Barnes FFT MP3D Radix Water Ocean | Directory
M Network
400 + A —
300 ~ R 1o

200 +

100 ~

Average Latency (Cycles)

Figure 3: Average Store Miss Latency

tant latency reductions for all the applications (34% for FFT,
30% for Water and 29% for MP3D) but Radix (9%), Barnes
(8%) and Ocean (14%). There are two possible actions for
the directory to satisfy a load miss: (1) when the memory
line is in the Private state, to forward the request to the sin-
gle node caching the line (cache-to-cache transfer) and, (2)
when the memory line is in the Uncached or the Shared
states, to access to main memory to directly provide data.
Note that, for the first case, our three-level directory archi-
tecture saves the access to main memory when the direc-
tory entry is found in the first-level directory, and then, only
for this case important improvements are expected (due to a
significant reduction in the component of the latency associ-
ated to the directory). We have observed that the first action
is in the majority in FFT, Water and MP3D, while the sec-
ond one is the predominant for Radix, Barnes and Ocean,
which constitutes the main reason of the load latency re-
ductions found in each case (important improvements for
the first group of applications and poor load latency reduc-
tions for the second one).

Average store and read-modify-write latencies are shown
in Figure 3 and Figure 4, respectively. Three actions are
possible by the directory to satisfy a write and a read-
modify-write miss: (1) when the line is in the Private state,
to forward the request to the single node caching the line (as
for load misses), (2) when the state of the line is Uncached,
to access to main memory to provide data and, finally, (3)
when the line is in the Shared state, to invalidate the copies
of the line and to provide the line to the requester (if neces-
sary). The first two actions are equivalent to those reported
for the load miss case. For the third action, the integration of
the directory controller and the first-level directory into the

RMW Misses

OMisc
O Directory
W Network

Barnes MP3D Water Ocean

Average Latency (Cycles)

Figure 4: Average RMW Miss Latency

processor chip makes possible to create invalidation mes-
sages faster and to decrease the time needed to access the
directory information, respectively. So, important latency
reductions are also expected for this case.

Actions (1) and (3) represent the most frequent direc-
tory actions for Barnes, FFT, MP3D, Water and Ocean
applications, which explains the significant reductions in
the average store latency obtained for Barnes (26%), FFT
(40%), MP3D (30%), Water (35%) and Ocean (22%) (see
Figure 3). On the contrary, more than 95% of the store
misses found the line in the Uncached state for Radix,
which constitutes the reason for the low benefit obtained
for this application. The average read-modify-write miss
latency for those applications that use it is also significantly
reduced: Barnes (35%), MP3D (32%), Water (32%) and
Ocean (26%), see Figure 4. This is due to the high percent-
age of the read-modify-write misses (more than 90%) for
which the line was in the Shared and the Private states.

5.2. Impact on Execution Time

The ability that the integration of directory controller and
first-level directory has to reduce the application execution
times will depend on the reductions in the average miss la-
tency of load, store and read-modify-write instructions, the
percentage of L2 misses caused by each instruction type and
the weight these misses have on the application execution
time.

Application | Cycles Misses to Total L2
‘ %108 ‘ directories | miss rate ‘
Barnes-Hut 24.32 209,258 10.32%
FFT 3.05 43,491 3%
MP3D 13.65 407,618 21.88%
Radix 21.50 597,863 8.94%
Water 37.95 440,124 22.19%
Ocean 37.68 915,997 13.25%

Table 6: Execution times, misses reaching the directory and L2
miss rate for our Base system

Table 5.2 shows, for the evaluated applications, the exe-
cution time (in processor cycles), the number of L2 misses
going to the directory and the L2 miss rate when Base sys-

Normalized Execution Time
1.2

M Base
ELDC
oubc

0.8

0.6

0.4

0.2 -

Barnes FFT MP3D Radix Water Ocean

Figure 5: Normalized Execution Time

tem is used. Figure 5 presents the normalized execution
time for each application for the three configurations con-
sidered. Important improvements, in terms of total execu-
tion time reductions, are reached for the four applications
that can take significant advantage of the directory integra-
tion. The most important reduction is obtained for MP3D
application (20%), since it is significantly affected by the
cost of communications. For FFT, Water and Ocean, which
have a lower coherence miss rate, substantial reductions
are still obtained (10%, 11% and 10%, respectively). Note
that, although the number of misses in Water and MP3D is
very similar, obtained improvements are not. Influence of
L2 misses in Water is lower, due to the fact that they are
spread over a longer execution interval. Finally, Barnes and
Radix cannot benefit from directory integration. For Radix,
as seen before, most of the directory accesses must reach
main memory to provide data, which prevents this appli-
cation from reducing its execution time significantly. For
Barnes, as derived from Figure 2 to Figure 4, important
latency reductions are reached for store and read-modify-
write misses. However, load misses, which conform 79%
of the misses and were only improved 8%, condition the
reduction in the final execution time (only 3%). However,
note that this constitutes the only application for which ex-
ists a significant performance gap between the reductions
obtained with LDC (3%) and UDC (6.2%) configurations.

6. Conclusions

Performance improvement constitutes the main goal of
this work. Our proposal is to reduce the L2 miss latencies
through on-chip directory integration. The multilevel di-
rectory architecture general concept is materialized, in this
work, into a three-level directory, for which the on-chip in-
tegration of the memory controller and a small first-level
directory using a 3-pointer sharing code per directory en-
try ensures performance. Furthermore, scalability is guar-
anteed by having two directory levels out of the processor
chip. The third-level directory is a complete directory struc-
ture (one entry per memory line) that uses our BT-SuT com-
pressed sharing code, drastically reducing directory size and

memory overhead. The second-level directory is a small di-
rectory cache (using full-map as sharing code) that tries to
minimize the negative effects of having an imprecise third
level.

In order to better understand the reasons for performance
improvement, the effects of our proposal has been analyzed
in terms of the type of the instruction that caused the miss.
Using execution-driven simulations, we have shown signif-
icant latency reductions for load, store and read-modify-
write misses (more than 35% in some cases). These latency
reductions translate into important improvements in the ap-
plication execution times (reductions up to 20%).

The reported improvement in performance could make
our architecture competitive for medium-scale systems at
the same time that scalability to larger systems is guaran-
teed. In addition, the simplicity of our proposal and the
fact that it could be easily introduced on commercial pro-
cessors would cut its cost off, conversely to the expensive
sophisticated network designs required by state-of-the-art
moderate-scale SMPs.

Acknowledgments

This research has been carried out using the resources of
the Centre de Computacié i Comunicacions de Catalunya
(CESCA-CEPBA). This work has been supported in part
by the Spanish CICYT under grant TIC2000-1151-C07.

References

[1] M.E. Acacio, J. Gonzalez, J.M. Garcia and J. Duato. “A
New Scalable Directory Architecture for Large-Scale
Multiprocessors”. Proc. of the 7th Int'l Symposium on
High Performance Computer Architecture, pp. 97-106,
January 2001.

[2] E.E. Bilir, R.M. Dickson, Y. Hu, M. Plakal, D.J. Sorin,
M.D. Hill and D.A. Wood. “Multicast Snooping: A
New Coherence Method Using a Multicast Address
Network”. Proc. of the 26th Int'| Symposium on Com-
puter Architecture, May 1999.

[3] A. Charlesworth. “Extending the SMP Envelope”.
|EEE Micro, pp. 39-49, Jan/Feb 1998.

[4] D.E. Culler, J.P. Singh and A. Gupta. “Parallel Com-
puter Architecture: A Hardware/Software Approach”.
Morgan Kaufmann Publishers, Inc., 1999.

[5] A. Gupta, W.-D. Weber and T. Mowry. “Reduc-
ing Memory and Traffic Requirements for Scalable
Directory-Based Cache Coherence Schemes”. Proc.
Int’| Conference on Parallel Processing, pp. |: 312-321,
August 1990.

[6] L. Gwennap. “Alpha 21364 to Ease Memory Bot-
tleneck”. Microprocessor Report, pp. 12-15, October
1998.

[7] R. lyer and L.N. Bhuyan. “Switch Cache: A Frame-
work for Improving the Remote Memory Access La-
tency of CC-NUMA Multiprocessors”. Proc. of the 5th
Int'l Symposium on High Performance Computer Ar-
chitecture, January 1999.

[8] R. lyer, L.N. Bhuyan and A. Nanda. “Using Switch Di-
rectories to Speed Up Cache-to-Cache Transfers in CC-
NUMA Multiprocessors”. Proc. of the 5th Int’| Parallel
and Distributed Processing Symposium, May 2000.

[9] S. Kaxiras and C. Young. “Coherence Communication
Prediction in Shared-Memory Multiprocessors”. Proc.
of the 6th Int’l| Symposium on High Performance Com-
puter Architecture, January 2000.

[10] A. Lai and B. Falsafi. “Memory Sharing Predictor:
The Key to a Speculative DSM”. 26th Proc. of the Int’|
Symposium on Computer Architecture, May 1999.

[11] A. Lai and B. Falsafi. “Selective, Accurate, and
Timely Self-Invalidation Using Last-Touch Predic-
tion”. 27th Proc. of the Int’'| Symposium on Computer
Architecture, May 2000.

[12] J. Laudon and D. Lenoski. “The SGI Origin: A cc-
NUMA Highly Scalable Server”. Proc. of the 24th Int’|
Symposium on Computer Architecture, 1997.

[13] M.M. Michael and A.K. Nanda. “Design and Perfor-
mance of Directory Caches for Scalable Shared Mem-
ory Multiprocessors”. Proc. of the 5th Int’'| Symposium
on High Performance Computer Architecture, January
1999.

[14] S.S. Mukherjee and M.D. Hill. “Using Prediction to
Accelerate Coherence Protocols”. Proc. of the 24th Int’|
Symposium on Computer Architecture, July 1998.

[15] B. O’Krafka and A. Newton. “An Empirical Evalu-
ation of Two Memory-Efficient Directory Methods”.
Proc. of the 17th Int’'| Symposium on Computer Archi-
tecture, pp. 138-147, May 1990.

[16] V.S.Pai, P. Ranganathanand S.V. Adve. “RSIM Refer-
ence Manual version 1.0”. Technical Report 9705, De-
partment of Electrical and Computer Engineering, Rice
University, August 1997.

[17] J.P. Singh, W.-D. Weber and A. Gupta. “SPLASH:
Stanford Parallel Applications for Shared-Memory”.
Computer Architecture News, vol. 20, March 1992.

[18] P. Stenstrom, M. Brorsson, F. Dahlgren, H. Grahn
and M. Dubois. “Boosting the Performance of Shared
Memory Multiprocessors”. IEEE Computer, 30(7), pp.
63-70, July 1997.

[19] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh and A.
Gupta. “The SPLASH-2 Programs: Characterization
and Methodological Considerations”. Proc. of the 22nd
Int’'| Symposium on Computer Architecture, pp. 24-36,
June 1995.

