
Optimizing a 3D-FWT Video Encoder for SMPs and HyperThreading
Architectures

Ricardo Fernández José M. Garcı́a Gregorio Bernabé
Manuel E. Acacio

Departamento de Ingenierı́a y Tecnologı́a de Computadores
Universidad de Murcia

Campus de Espinardo - 30080 Murcia (España)
{r.fernandez,jmgarcia,gbernabe,meacacio}@ditec.um.es

Abstract

In this work we evaluate the implementation of a video
encoder based on the 3D Wavelet Transform optimized for
HyperThreading technology and SMPs. We design several
implementations of the parallel encoder with Pthreads and
OpenMP using functional decomposition. Then, we com-
pare them in terms of execution speed, ease of implemen-
tation and maintainability of the resulting code. Our exper-
iments show that while Pthreads provides the best results in
terms of execution time, OpenMP can provide a nearly op-
timal execution time without sacrificing the maintainability
of code.

1. Introduction

Current trends in computer architecture seek to exploit
increasing parallelism at every level. Nowadays, an in-
creasing number of computers are shared memory multi-
processors or they have processors able to execute several
threads at the same time using Simultaneous Multithread-
ing (SMT [12] [15] [18]). However, successfully exploit-
ing these architectures requires using several threads or pro-
cesses, which forces us to rethink the implementation of
many algorithms.

Examples of these architectures are the Intel R© proces-
sors with HyperThreading technology [19]. This technol-
ogy makes feasible that a single processor can execute si-
multaneously two processes or threads adding relatively lit-
tle complexity to the processor design.

On the other hand, the Wavelet transform allows codify-
ing video at high quality while achieving great compression
rates. This property makes the Wavelet transform a good op-
tion for building a video encoder able to obtain better per-
formance than other more general purpose algorithms such

as MPEG [20] or MPEG-4 [4] [5], as shown in [13] [8].
One of the main problems when working with the video se-
quence as a tridimensional signal is the huge datasets that
have to be dealt with. Therefore, memory accesses slow
down the encoder execution.

Multimedia applications have an increasing importance
in many areas. Namely, there is a growing need to store and
transmit high quality video for applications where common
coding schemes do not yield enough quality. An example of
this is medical video, whose quality requirements are very
high and there exist regulations which mandate to keep it
stored for long time. This makes necessary good compres-
sion techniques, but due to quality requirements, lossless
compression techniques are commonly used (JPEG-LS [2]),
which are impractical due to the low compression rates that
can be obtained using them.

In the case of parallelizing a video encoder, the auto-
matic parallelization ([3] [10]) methods available to us do
not yield any benefit. It is necessary to use manual paral-
lelization, specially to take advantage of the benefits that
HyperThreading technology provides [7].

Manual parallelization poses a considerable burden in
software development. It would be desirable to minimize
this increase in complexity. There are a number of alterna-
tives for implementing a parallel algorithm, each one with
a different level of difficulty, maintainability and flexibil-
ity. This paper deals with the implementation of a parallel
video encoder using the 3D wavelet transform. We evaluate
and compare two of these alternatives: OpenMP [11] and
Pthreads [1], in terms of the execution time of the result-
ing programs, ease of implementation, maintainability and
reusability of the produced code. We present an implemen-
tation of the encoder described in [7] using OpenMP which
is easier to implement, more readable and nearly as efficient
as the original implementation using Pthreads.

The rest of the paper is organized as follows: in section
2, the basics of the 3D wavelet and the technologies em-

ployed in this paper (i.e., OpenMP and Pthreads) are pre-
sented. Section 3 discuses previous work on the encoder,
including several optimizations applied to the sequential al-
gorithm and parallelization strategies explored. Section 4
exposes the new parallel implementations of the algorithm.
Finally, Section 5 studies the execution time of each imple-
mentation and compares it with the sequential implementa-
tion, and Section 6 presents the conclusions and the future
work of this paper.

2. Background

2.1. Pthreads

Pthreads (POSIX threads, [1]) is a commonly portable
API used for programming shared memory multiproces-
sors. This API is a lower level than OpenMP. Hence, it al-
lows a greater control about how to exploit concurrency at
the expense of increasing difficulty to use it.

In the Pthreads programming model the programmer has
to create explicitly all threads and take care of all the neces-
sary synchronization. Pthreads has a rich set of synchroniza-
tion primitives which include locks (mutex), semaphores
and condition variables.

2.2. OpenMP

OpenMP [11] is an specification which allows the imple-
mentation of portable parallel programs in shared memory
multiprocessor architectures using C, C++ or FORTRAN.

Programming using OpenMP is based on the use of di-
rectives which show the compiler what to parallelize and
how. These directives allow the programmer to create par-
allel sections, mark parallelizable loops and define critical
sections. When a parallel region or parallel loop is defined,
the programmer has to specify which variables are private
for each thread, shared or used in reductions.

The programmer does not have to specify how many
threads will be used or how the execution of a parallel loop
will be scheduled. OpenMP includes a number of policies
which can be chosen at run time.

OpenMP allows an incremental parallelization of pro-
grams. Therefore, it is specially well suited for adding paral-
lelism to programs which were initially written sequentially.
In most cases, it is possible to keep the same code for the se-
quential and parallel versions of the program just ignoring
the OpenMP directives when compiling the sequential pro-
gram. This is specially useful in the development phases to
allow an easier debugging.

2.3. SMT and HyperThreading

An SMT processor can execute several treads simultane-
ously, sharing most hardware resources like caches, func-
tional units, branch predictors, etc and duplicating only
those resources necessary to store the status of every pro-
cess, such as registers. This way, a single physical proces-
sor looks to the operating system and applications as two
different virtual processors.

Resource sharing allows a better use of processor re-
sources, permitting a thread to continue execution while an-
other is blocked by a cache miss or branch misprediction. It
is possible that, in some cases, the execution time of a se-
quential application increases, but the overall productivity
of the system is improved.

Intel R© has introduced an implementation of SMT called
HyperThreading [19] in its high performance x86 proces-
sors like XeonTM and PentiumTM IV obtaining improve-
ments in execution time around 30% in some cases [16].

2.4. Fast Wavelet Transform

The Wavelet transform decomposes a signal extracting
the information present at several resolutions [17]. The fast
Wavelet transform can be implemented using a pair of QMF
filters. The transform of a discrete signal is calculated by the
convolution of the signal with each filter and downsampled
by 2.

One of the filters, H , is a low-pass filter which extracts
coarse grain information from the signal, while the other, G,
is a high-pass filter which extracts the details from the sig-
nal. Hence, we obtain two signals, low and high, with half
of the samples of the original signal.

Applying several times the transform to the coarse grain
part produces a greater decorrelation of the original infor-
mation. This increases the number of coefficients that can be
discarded during the umbralization phase. Hence, a greater
compression ratio can be achieved in the following phases.
However, this fact has a significative impact on the quality
of the reconstructed video. So, there is a tradeoff between a
greater compression and better quality.

The Wavelet transform is generalized to two or more
dimensions by applying successively the one dimensional
Wavelet transform to each dimension. The particular order
is not important [14].

3. Previous Work

We are interested in applying the fast 3D wavelet trans-
form algorithm (3D-FWT) to the compression of medical
video of size 512 × 512 and grayscale (8 bits per pixel) in
sequences of 64 frames. From previous work [8], we have
concluded that the best configuration uses the Daubechies

Wavelet
Transform Thresholding Quantization

Entropic
Coding Coded VideoVideo signal

H

G

�
2

�
2 detail

coarse

Figure 1. Encoder phases.

of 4 coefficients as mother function and does two passes in
each dimension.

In figure 1, we show a diagram of the phases of the en-
coder that we have developed. After the Wavelet transform,
we apply a thresholding step which discards wavelet coeffi-
cients whose absolute value is less than a certain constant.

Then, we make the most costly step in terms of CPU
time: the quantization, which converts the floating point co-
efficients of the transform into unsigned integers with cer-
tain number of bits which is determined depending of the
current cube.

Finally, we perform an entropic coding using binary 3D
run-length coding and the result is compressed using an
arithmetic coder.

3.1. Optimizing the sequential algorithm

Below we are going to present a number of techniques
that we developed [6] [8] [9] to improve the execution time
of our encoder.

3.1.1. Blocking From the data shown above, the size of
the signal to be coded is 16 MB. Under these circumstances,
the execution time is dominated by memory accesses due to
the huge size of the working set and the low locality of the
accesses. Blocking raises the locality of the algorithm and
reduces the traffic between memory and the processor, in-
creasing the number of hits at the higher levels of cache.
In [9], both a cube partitioning and rectangle partitioning
blocking strategies were presented, being able in each case
to introduce overlapping or not.

Both approaches had the same drawback: they caused
some quality degradation because they isolated the pixels at
the borders of the subregions from those that surround them.
In the case of a mother function with four coefficients the
value of the transform in each pixel depends on the four ad-
jacent pixels. Hence, in the case of the pixels near the limit
of the subregions created by blocking, they depend on pix-
els which are outside the subregion.

The non overlapping strategies use the value from pixels
from that same block, either replicating the pixels from the
border or using those from the opposite side. This produces
an appreciable quality loss, specially in the limits between
regions where image discontinuities appear.

The overlapping strategies use the pixels from the ad-
jacent blocks, avoiding the quality loss but exploiting less
spatial locality. Also, this approach implies some redundant
calculations. It is possible to store these results and reuse
them for the next block and it has been shown that it is ben-
eficial at least in the case of rectangle partitioning [9].

We call the last strategy rectangular blocking with over-
lapping and operation reuse and it will be the strategy as-
sumed in the rest of this work. It has been determined (see
previous paper [9]) that 32× 512× 16 is the optimal block-
ing size.

3.1.2. Vectorization The target architecture for our opti-
mizations (Intel R© XeonTM) provides us with vectorial in-
structions specifically targeted to multimedia applications.
SSE extensions allow us to exploit fine grain parallelism
vectorizing loops which perform a simple operation over
data streams. It is possible to exploit these instructions to
reduce the number of floating point instructions executed to
calculate the transform.

The calculation of four low pixels and four high pixels of
the 3D-FWT requires 32 floating point multiplications and
24 floating point additions. Using SSE, it is possible to per-
form those operations with only 15 instructions [6].

3.1.3. Columns Vectorization Given that the signal is
stored in row order, locality is exploited when the transform
is applied in the X dimension. When the transform is ap-
plied in the Y dimension, the number of memory misses in-
creases considerably even when the blocking strategies pre-
viously described are applied. This is due to the need of val-
ues from several successive rows to calculate each column
transform.

Column vectorization consists of interleaving the calcu-
lations of the transform in the Y dimension and the trans-
form in the X dimension, exploiting the fact that the results
from the X dimension are the values needed to perform the
calculations in the Y dimension [6].

The speedup obtained with this optimization is very im-
portant [6], specially when combined with the use of SSE
instructions for the calculations in the Y dimension.

3.2. Parallelization

In [7], we developed two strategies for parallelizing the
Wavelet transform specially targeted to the HyperThread-
ing technology: using data decomposition and functional
decomposition.

Data decomposition applies the transform simultane-
ously to two independent blocks of frames from the se-
quence. The strategy allows for good load balancing and
incurs very little communication. However, the working set
doubles and both threads perform identical functions, which

makes this technique poorly suited for the HyperThreading
architecture.

Functional decomposition performs independent phases
of the encoder in parallel. Namely, we can simultaneously
perform the transform and quantization phases.

Wavelet transform takes less than half the time of the
quantization to be executed, hence the workload is not bal-
anced. Also, memory requirements increase as in the case of
data decomposition because it is necessary to copy the re-
sults of the transform to use them in the quantization with-
out being overwritten by the next operations.

It is possible to obtain a better functional decomposition
noticing how coding is performed. When the first transform
pass has been applied to a video block in the T dimension,
half of its frames represent low frequencies and the other
half high frequencies. After applying the transform to the
three axis, only an eight part of the pixels are necessary to
the second pass of the transform: those which represent low
frequencies.

In the new parallelization scheme a thread performs the
wavelet transform and the quantization of the low part while
another thread performs the quantization of the high part.
The second thread can start once the first pass has been fin-
ished, hence the overlapping happens between the wavelet
transform plus the quantization of the low part and the quan-
tization of the high part. This strategy is better balanced than
the previous one and does not require any data copying.

In [7] we implemented the described strategy using
Pthreads, which implies a low level programing which al-
lows for a great control and flexibility to decide exactly how
to parallelize the program. In that implementation, we ex-
ploited this fact to avoid the creation and destruction of a
thread for each block, which could be quite costly. We de-
signed a scheme (pthreads1) which used only two threads
for all blocks. These threads were created at the begin-
ning of the coding process and we used locks to achieve
synchronization between them.

It is not enough to use a critical region protected with
a single lock because we need both threads to be executed
in partial order. That is, the slave thread can’t start with a
new block until the first thread has finished the first pass of
the Wavelet transform for the previous block and the main
thread cannot start a new block until the slave thread has fin-
ished it.

To achieve this partial ordering we have used two locks
which are acquired alternately by both threads. In figure 2,
we show an scheme of the implementation.

The changes made to the code with respect to the sequen-
tial version are large. The main changes are:

• Extract the code related with the slave thread and put it
in an independent function. This is necessary because
Pthreads requires the entry point for every thread to be
a function.

1st pass 3D-FWT

2nd pass 3D-FWT

Quantization low

Quantization high

Main thread Slave thread

lock(mutex1)

lock(mutex2)
unlock(mutex1)

unlock(mutex2)
lock(mutex1)

unlock(mutex2), except 1st iteration
lock(mutex1)

unlock(mutex1)

lock(mutex2)
unlock(mutex1)

unlock(mutex2)

Figure 2. First parallelization scheme.

• Create an auxiliary structure for parameter passing.
The functions used as thread entry points must have a
specific signature. Namely, they can only take one pa-
rameter. The usual pattern for passing more than one
parameter consists of creating an auxiliary structure
with a field for each necessary parameter and pass a
pointer to that structure. Because we extract the slave
thread’s code into an independent function, it is neces-
sary to communicate some information that was previ-
ously available in local variables.

• Duplicate the loops of the encoder in each thread and
add the synchronization points using locks.

These changes imply a deep restructuring of the code
with the associated drop in legibility and maintainability.
The new code, which can be seen in figure 3, is very dif-
ferent to the sequential code and it does not seem obvious
what things are related to the algorithm and what are re-
lated with the parallelization.

Recently, independently to our work, Tenllado et al. [21]
have developed a related work parallelizing the discrete
Wavelet transform (DWT) for its execution using Hyper-
Threading technology and SIMD. Some of their conclu-
sions are similar to ours: they also found that a functional
decomposition better suited for HyperThreading than a data
decomposition, although they did not use functional de-
composition when comparing SMT against HyperThread-
ing. Unlike our work, they only use OpenMP for doing the
parallelization and the working set of their application is
smaller than ours, because they apply the DWT only to bidi-
mensional images instead of a tridimensional signal repre-
senting a video sequence.

struct thr data { int rows, cols, frames, ... };
pthread mutex t mutex1 = PTHREAD MUTEX INITIALIZER;
pthread mutex t mutex2 = PTHREAD MUTEX INITIALIZER;

int slave thread (struct thr data *data)
{

for (...) /* outer loop */
{

if (/* not in the 1st iteration */)
{

pthread mutex unlock (&mutex2);
}
pthread mutex lock (&mutex1);
/* quantization alta */
pthread mutex lock (&mutex2);
pthread mutex unlock (&mutex1);

}
pthread mutex unlock (&mutex2);

}

void fwt (int rows, int cols, int frames, ...)
{

struct thr data data;
pthread t thread;
pthread mutex lock (&mutex1);
data.rows = rows; data.cols = cols; ...;
pthread create (&thread, NULL,

(slave thread, &data);
for (...) /* outer loop */
{

/* 1st pass 3D-FWT */
pthread mutex lock (&mutex2);
pthread mutex unlock (&mutex1);
/* 2nd pass 3D-FWT */
/* quantization low */
pthread mutex unlock (&mutex2);
pthread mutex lock (&mutex1);

}
pthread mutex unlock (&mutex1);
pthread join (thread, NULL);

}

Figure 3. Code snippet for the pthreads1
scheme.

4. Using OpenMP to ease the implementation

Next, we describe an OpenMP alternative implementa-
tion with the same performance characteristics than the pre-
vious one but significantly easier to code and more main-
tainable.

4.1. Using OpenMP like Pthreads

OpenMP also allows using critical regions and locks.
Hence, it is possible to use the same scheme previously de-
scribed and implement the algorithm using OpenMP as de-
scribed in figure 2 (openmp1). However, this approach is
not much better and the result is not more comprehensible.

To make this implementation, it is necessary to do part of
the manual transforms used in the previous scheme. It is not
necessary to create new structures and it is not necessary to

void fwt (int rows, int cols, int frames, ...)
{

omp lock t lock1;
omp lock t lock2;
omp set lock (&lock1);
#pragma omp parallel sections
{

#pragma omp section
{

for (...) /* outer loop */
{

/* 1st pass 3D-FWT */
omp set lock (&lock2);
omp unset lock (&lock1);
/* 2nd pass 3D-FWT */
/* quantization low */
omp unset lock (&lock2);
omp set lock (&lock1);

}
omp unset lock (&lock1);

}
#pragma omp section
{

for (...) /* outer loop */
{

if (/* not the 1st iteration */)
{

omp unset lock (&lock2);
}
omp set lock (&lock1);
/* quantization high */
omp set lock (&lock2);
omp unset lock (&lock1);

}
omp unset lock (&lock2);

}
}

}

Figure 4. Code snippet for the openmp1
scheme.

extract the code of the slave thread to another function ei-
ther. However, it is still necessary to duplicate the loops, re-
structuring the code considerably, as can be seen in figure
4.

The resulting code (with the introduction of locks)
means the loss of one of the advantages of OpenMP: the
parallelized code cannot be compiled and run as sequen-
tial code correctly. This way of using OpenMP is not
typical and does not take advantage of the features pro-
vided by it.

4.2. Easily using OpenMP

It is actually easier to create a parallel version using
OpenMP if we start directly from the sequential implemen-
tation and just add the needed directives.

In figure 5, we show the scheme of the implementation
(openmp2) of a block codification. In each iteration for each
block of 32× 512× 16 pixels, an independent slave thread

1st pass 3D-FWT

2nd pass 3D-FWT

Quantization low

Quantization high

Main thread Slave thread

Figure 5. Second parallelization scheme.

for (...) /* outer loop */
{

/* 1st pass 3D-FWT */
#pragma omp parallel sections
{

#pragma omp section
{

/* 2nd pass 3D-FWT */
/* quantization low */

}
#pragma omp section
{

/* quantization high */
}

}
}

Figure 6. Code snippet for the openmp2
scheme.

performs the quantization of the high part while the main
thread performs the second pass of the Wavelet transform
and the quantization of the low part. Thresholding is per-
formed by the same thread than the transform in order to
achieve better load balancing.

The changes that we have introduced to the sequen-
tial code are minimal thanks to OpenMP’s high expressive
level. Namely, it has not been necessary to use any explicit
synchronization primitive.

Specifically, we have simply used a #pragma omp
parallel sections directive which defines two
blocks that are executed in parallel. Each block is speci-
fied with a #pragma omp section directive. One of
the blocks (main thread) contains the code for the sec-
ond pass of the transform and the quantization of the low
part while the other block contains the code for the quan-
tization of the high part. The result is shown in figure
6.

It is important to note that this implementation creates
a new thread for each block, unlike the pthreads1 and
openmp1 implementations and does not use any manual
synchronization.

struct thr data { int f, r, c, ... };

int slave thread (struct thr data *data)
{

/* quantization high */
}

void fwt (int rows, int cols, int frames, ...)
{

for (...) /* outer loop */
{

struct thr data data;
pthread t thread;
/* 1st pass 3D-FWT */
data.f = f; data.r = r; data.c = c; ...;
pthread create (&thread, NULL,

slave thread, &data);
/* 2nd pass 3D-FWT */
/* quantization low */
pthread join (thread, NULL);

}
}

Figure 7. Code snippet for the pthreads2
scheme.

The resulting code is very similar to the sequential im-
plementation. Actually, if we ignore the OpenMP directives,
it is possible to execute it as a sequential program obtaining
correct results. This proves the simplicity of the paralleliza-
tion using OpenMP and its maintainability and reusability
properties.

4.3. Using Pthreads like OpenMP

The same scheme from figure 5 has been implemented
using Pthreads (pthreads2) for comparison purposes. We
have taken the previous version as a starting point and we
have derived an equivalent version using Pthreads instead
of OpenMP.

We have had to perform some of the same changes that
we did for the pthreads1 version. We have not had to du-
plicate the loops because the threads are created inside each
iteration and we have been able to avoid the use of man-
ual synchronization, but we have had to extract the body of
the slave thread to an independent function and we have had
to create an auxiliary structure for parameter passing.

The resulting code after the manual transformation is
quite different to the sequential version, as can be seen in
figure 7. The implementation is not very complicated be-
cause it consists mostly of structural changes to the code
following some well known patterns, but the new data struc-
tures and functions created degrade the legibility, maintain-
ability and reusability of the code.

���������	��
 � �� �	
 ��� ������	� �����	������� ������������� �	
 ��� ��������
�� ���
�� !��
�� ���
�� !��
�� ���
�� !��
"� ���
"� !��
���
!��
!� ���
!� !��

#�$

�� "%�

���

�� # " �� # �

#�$

"	 ���

!� ���

"� ��� "� ���

&(') * + ,�- .�/�0�1�1�.	-
243�,�0�- 576�- 0�8%9�+ :�;

<>= ?�@�= A�BDC

EF
GH
I J
K

Figure 8. Execution times for the different im-
plementations.

Hardware
Processors 2 Intel R© XeonTM

Frequency 2 GHz
TLB 64 entry, fully associative
Level 1 Instruction Cache Trace Cache 12 K micro-ops
Level 1 Data Cache 8 KB, 4 way, 64 byte/line
Level 2 Unified Cache 512 KB, 8 way, 128 byte/line
RAM memory 512 MB DRAM

Software
Operative System Linux 2.4.18-3smp
Compiler Intel R© v7.1

Table 1. Evaluation environment characteris-
tics

5. Evaluation and Analysis

In this section, we present the evaluation of the perfor-
mance of each one of the previous techniques with respect
to their execution time and its maintainability. In figure 8,
we show the execution times for the different implementa-
tions using two independent processors and a single proces-
sor with HyperThreading technology. In table 1 we show
the relevant hardware and software used for our tests. For
the HyperThreading tests we have used the same machine
enabling the HyperThreading capability of one of the two
processors while completely disabling the other one.

First, we notice that when we get an improvement using
two processors, we obtain a proportional improvement us-
ing HyperThreading. Even if the improvement is smaller, it
is still significative. As mentioned in section 3.2, this is due
to the parallelization scheme used that does different oper-
ations in each thread to avoid contention in the functional
units of the processor.

Three of the implementations achieve enough coding
speed to be used for real-time video coding (more than 24
frames per second) when they are used in a multiproces-
sor architecture. However, this is not the case using Hyper-
Threading.

The pthreads1 implementation is the one which obtains
the best performance, and it is also the most difficult one to
implement and the one which generates the most maintain-
ability problems due to the great code restructuring neces-
sary with respect to the sequential version. The performance
advantage that it obtains with respect to the other simpler
implementations is very small and does not justify the in-
creased complexity. The programming effort needed to ob-
tain a little speedup with respect to openmp2 is too big to be
justified. Specifically, the introduction of explicit synchro-
nization is problematic due to the difficulty to obtain a cor-
rect implementation and the danger of introducing hard to
detect errors like data races.

The openmp1 implementation obtains the worst results,
taking even more time than the sequential version to exe-
cute. It is important to note that this version is equivalent
to the pthreads1 version, so the decrease in performance is
caused only by the transformations carried out by the com-
piler and the OpenMP support library. Additional tests sug-
gest that the locks provided by the Intel OpenMP support
library have worse behaviour than Pthreads mutexes under
heavy contention, like in our parallelization scheme.

The openmp2 and pthreads2 implementations ob-
tain practically the same times. Amongst these two, the
first one is considerably easier to implement and more leg-
ible because, as seen above, the needed changes to the
sequential code for openmp2 are limited and easily com-
prehensible, while the pthreads2 requires a certain restruc-
turing and the introduction of new data structures. Also,
the same code of openmp2 can be used for both a se-
quential and a parallel versions, which is very useful for
debugging during the development phase.

6. Conclusions

In this work we have improved the implementation of
the video encoder presented in [7]. The applied techniques,
Pthreads and OpenMP, have been evaluated and compared
in terms of execution time of the produced program, diffi-
culty to accomplish the parallelization, and readability and
maintainability of the resulting code.

Using OpenMP instead of manual Pthreads paralleliza-
tion has clear advantages with respect to ease of use and leg-
ibility of the resulting code. This is specially evident when
converting sequential code into parallel code.

From our results, we can infer that the optimum imple-
mentation strategy depends on the technology that is going
to be used. The more natural forms to solve the problem in

each one of the tested technologies have obtained the best
results (openmp2 y pthreads1). The technique which best
result have obtained in general has got a very poor result
when applied to a technology that is not usually used in that
way and is not optimized for it.

The poor result obtained by openmp1 points to a defi-
cient implementation of the synchronization primitives in
Intel’s OpenMP support library.

On the other hand, the good results obtained by openmp2
and pthreads2, practically the same and very near to those
of the best implementation makes us believe that the cost of
creating and destroying many threads is not very big com-
pared to its alternative based in synchronization.

As future work, it would be interesting to compare the re-
sult obtained using other compilers which support OpenMP
as well as SSE intrinsics.

References

[1] IEEE P1003.1c-1995: Information technology-portable op-
erating system interface (POSIX), 1995.

[2] FCD 14495, lossless and near-lossless coding of continu-
ous tone still images (JPEG-LS), 1997. ISO/IEC JTC1/SC29
WG1 (JPEG/JBIG).

[3] U. Banerjee, R. Eigenmann, A. Nicolau, and D. A. Padua.
Automatic program parallelization. Proceedings of the
IEEE, 81(2):211–243, 1993.

[4] S. Battista, F. Casalino, and C. Lande. MPEG-4: A multime-
dia standard for the third millenium, part 1. IEEE Multime-
dia, 6(4):74–83, October 1999.

[5] S. Battista, F. Casalino, and C. Lande. MPEG-4: A multime-
dia standard for the third millenium, part 2. IEEE Multime-
dia, 7(1):76–84, January 2000.

[6] G. Bernab é, J. Garc ı́a, and J. Gonz ález. Reducing 3D
Wavelet transform execution time through the streaming
SIMD extensions. In 11th Euromicro Conference on Par-
allel Distributed and Network based Processing, February
2003.

[7] G. Bernab é, J. Gonz ález, and J. M. Garc ı́a. An efficient 3D
Wavelet transform on Hyper-Threading technology. Techni-
cal report, Universidad de Murcia, 2004.

[8] G. Bernab é, J. Gonz ález, J. M. Garc ı́a, and J. Duato. A new
lossy 3D Wavelet transform for high-quality compression of
medical video. In IEE EMBS International Conference on
Information Technology Applications in Biomedicine, pages
226–231, November 2000.

[9] G. Bernab é, J. Gonz ález, J. M. Garc ı́a, and J. Duato. Memory
conscious 3D Wavelet transform. In 28th Euromicro Con-
ference, Multimedia and Telecommunications Track, pages
108–113. IEEE, September 2002.

[10] W. Blume, R. Eigenmann, J. Hoeflinger, D. Padua, P. Pe-
tersen, L. Rauchwerger, and P. Tu. Automatic detection of
parallelism: A grand challenge for high performance com-
puting. Parallel and Distributed Technology: Systems and
Applications, IEEE, 2(3):37–47, 1994.

[11] O. A. R. Board. OpenMP C and C++ application program
interface, version 2.0, March 2002.

[12] S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, R. L. Stamm,
and D. M. Tullsen. Simultaneous multithreading: A plat-
form for next-generation processors. IEEE Micro, 17(5):12–
24, 1997.

[13] B.-J. Kim and W. A. Pearlman. An embedded wavelet video
coder using three-dimensional set partitioning in hierarchical
trees (SPIHT). In Designs, Codes and Cryptography, pages
251–260, 1997.

[14] R. Kutil and A. Uhl. Optimization of 3D Wavelet decompo-
sition on multiprocessors. Journal of Computing and Infor-
mation Technology (Special Issue on Parallel Numerics and
Parallel Computing in Image Processing, Video Processing,
and Multimedia), 8(1):31–40, 2000.

[15] J. L. Lo, J. S. Emer, H. M. Levy, R. L. Stamm, and D. M.
Tullsen. Converting thread-level parallelism to instruction-
level parallelism via simultaneous multithreading. ACM
Transactions on Computer Systems, 15(3):322–354, 1997.

[16] W. Magro, Petersen, P., and S. Shah. Hyper-Threading tech-
nology: Impact on compute-intensive workloads. Intel Tech-
nology Journal, 6(1):58–66, February 2002.

[17] S. G. Mallat. A theory for multiresolution signal decompo-
sition: the wavelet representation. IEEE Trans. Pattern Anal.
Machine Intell., PAMI-11:674–693, July 1989.

[18] P. Marcuello and A. Gonzalez. Exploiting speculative
thread-level parallelism on a SMT processor. In HPCN Eu-
rope, pages 754–763, 1999.

[19] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty,
J. A. Miller, and M. Upton. Hyper-Threading technology ar-
chitecture and microarchitecture. Intel Technology Journal,
6(1):4–15, February 2002.

[20] T. Sikora. MPEG digital video–coding standards. IEEE Sig-
nal Processing Magazine, 14(5):82–100, September 1997.

[21] C. Tenllado, C. Garcia, L. Piñuel, M. Prieto, and F. Tirado.
Exploiting multilevel parallelism within modern micropro-
cessors: DWT as a case study. In Int. Meeting on Vector and
Parallel Processing (VECPAR’04), June 2004.

