
Parallelization of Virtual Screening in Drug Discovery on Massively Parallel
Architectures

Ginés D. Guerrero, Horacio E. Pérez-Sánchez, José M. Cecilia, José M. Garcı́a
Grupo de Arquitectura y Computación Paralela

Dpto. de Ingenierı́a y Tecnologı́a de Computadores
Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain

{gines.guerrero, horacio, chema, jmgarcia}@ditec.um.es

Abstract

The current trend in medical research for the discovery
of new drugs is the use of Virtual Screening (VS) methods.
In these methods, the calculation of the non-bonded interac-
tions, such as electrostatics or van der Waals forces, plays
an important role, representing up to 80% of the total exe-
cution time. These kernels are computational intensive and
massively parallel in nature, and thus they are well suited
to be accelerated on parallel architectures. In this work, we
discuss the effective parallelization of the non-bonded elec-
trostatic interactions kernel for VS on three different par-
allel architectures: a shared memory system, a distributed
memory system, and a Graphics Processing Units (GPUs).
For an efficient handling of the computational intensive and
massively parallelism of this kernel, we enable different
data policies on those architectures to take advantage of all
computational resources offered by them. Four implemen-
tations are provided based on MPI, OpenMP, Hybrid MPI-
OpenMP and CUDA programming models. The sequential
implementation is defeated by a wide margin by all paral-
lel implementations, obtaining up to 72x speed-up factor on
the shared memory system through OpenMP, up to 60x and
229x speed-ups factors on the distributed memory system
for the MPI implementation and the Hybrid MPI-OpenMP
implementation respectively, and finally, up to 213x speed-
up factor for the CUDA implementation on the GPU ar-
chitecture to offer the best alternative in terms of perfor-
mance/cost ratio.

1. Introduction

The discovery of new drugs can enormously benefit from
the use of Virtual Screening (VS) methods [12]. The dif-
ferent approaches used in VS methods differ mainly by
the way they model the interacting molecules but all of
them have in common that they screen databases of chem-

ical compounds containing up to millions of ligands [11].
Larger databases increase the chances of generating hits or
leads, but the computational time needed for the calcula-
tions increases not only with the size of the database but also
with the accuracy of the chosen VS method. Fast docking
methods with atomic resolution require a few minutes per
ligand [29], while more accurate molecular dynamics-based
approaches still require hundreds or thousands of hours per
ligand [28]. Therefore, the limitations of VS predictions
are directly related to a lack of computational resources, a
major bottleneck that prevents the application of detailed,
high-accuracy models to VS.

In most of the VS methods the biological system is rep-
resented in terms of interacting particles. For the calcula-
tion of the interaction energies, classical potentials are com-
monly used, separated into bonded and non-bonded terms.
The latter describe interactions between all the elements of
the system. The relevant non-bonded potentials used in VS
calculations are the Coulomb and the Lennard-Jones poten-
tials, since these describe very accurately the most impor-
tant short and long range interactions between protein and
ligand atoms.

In VS methods the most intensive computations are spent
in the calculation of non-bonded kernels. For example, in
Molecular Dynamics it takes up to 80% of the total execu-
tion time [14]. Thus this part can be considered as a bottle-
neck, and its has been shown that its parallelization and op-
timization [23] permits VS methods to deal with more com-
plex systems, simulate longer time scales or screen larger
databases.

High Performance Computing (HPC) solutions [13, 24]
have demonstrated they can increase considerably the per-
formance of the different VS methods, as well as, the qual-
ity and quantity of the conclusions we can get from screen-
ing. In addition, emergent HPC platforms such as Cell BE
processor [3], and more recently, Graphics Processing Units
(GPUs) [15] are at the leading edge of increasing chip-level

parallelism. They have been widely applied in many dif-
ferent fields of applications [17, 6], and concretely in VS
methods [22] [8]. Moreover, driven by the video game mar-
ket, they offer this compelling solution at very low prices.
All GPU platforms can be programmed using the Compute
Unified Device Architecture (CUDA) programming model
which makes the GPU to operate as a highly parallel com-
puting device.

In this work, we discuss different HPC implementations
for a VS method on three different parallel architectures: a
shared memory system, a distributed memory system and a
Graphics Processing Unit (GPU). Moreover, three different
programming models are used: MPI [16], OpenMP [21],
and CUDA [20]. We also mix MPI and OpenMP to provide
a hybrid solution [25] that takes advantage of all resources
available on a cluster.

Our results reveals that all our designs defeat by a
wide margin the sequential counterpart version of the non-
bounded kernel. We obtain up to 72x speed-up factor on
shared memory system, using a OpenMP implementation;
up to 60x and 229x speed-ups factors on the distributed
memory architecture for the MPI implementation and the
Hybrid MPI-OpenMP implementation respectively, and fi-
nally, up to 213x speed-up factor for the CUDA implemen-
tation on the GPU architecture. The GPU architecture pro-
vides a really compelling high performance solution, ob-
taining similar performance than large cluster of computers
but a much lower cost.

The rest of the paper is structured as follows. In Sec-
tion 2 we present the previous work and the main objec-
tives of this research. Section 3 describes the sequential
algorithm, and the parallel algorithms that have been imple-
mented in CUDA, OpenMP, MPI programming models. We
present the performance evaluation of them in the Section 4.
Finally, Section 5 ends with some conclusions and ideas for
future work.

2. Previous Work and Objectives

The implementation and optimization of biologically rel-
evant simulation kernels in parallel arquitectures is a very
active field. The effort in the last years has been targeted to
the exploitation of the Cell Broadband Engine (CBE) and
Graphics Processing Units (GPUs) for such objective. Sev-
eral authors achieved speed-ups up to 200 or 300 times for
some variants of non-bonded kernels and in some specific
conditions [23]. More general implementations of this ker-
nel for GPUs and CBE reached speed-ups of 260 times [8].

Regarding parallel implementations in Supercomputers,
there have been previous efforts to port the FlexScreen pro-
gram in DEISA environments [4], by means of the middle-
ware UNICORE [1]. At this point we realized that this ap-
proach can be drastically improved since the original code

of the program was designed for serial/sequential proces-
sors. Similar scenario can be found for another VS meth-
ods [18]. A better strategy is to isolate the most expen-
sive computing kernels (non-bonded interactions) and to
implement them in parallel. Actually we did not find an
implementation of full non-bonded interactions kernels for
OpenMP/MPI thus we decide to work in this direction and
exploit HPC infrastructures to accelerate Virtual Screening
calculations. We will study how to obtain an efficient and
scalable OpenMP/MPI implementation for this kernel.

3. Data Policies Description

In this section, we describe the data policies for the cal-
culation of the electrostatic potential kernel on the shared
and distributed memory systems as well as GPUs.

CUDA [20] programming model is used for GPU archi-
tecture, where the global data is visible for all the threads,
and a particular model of computation previously described
is carried out.

OpenMP [21] programming model is used for the shared
memory architectures, in which the shared memory space
is uniformly distributed among the n processes. Finally,
the distributed programming model MPI [16] is used by our
designs on the distributed memory architectures, in which
the master process orchestrates the data distribution, so that
all the processes (including the master) perform the required
calculations.

To exploit all the resources available on the supercom-
puter, such as vector operations and the multiple cores
within a chip, we decide to develop a hybrid MPI-OpenMP
implementation that enables vector operations. This imple-
mentation somehow emulates the execution of our applica-
tion in the GPU, enabling two levels of parallelism in a vec-
torized fashion, to provide a fair comparison between the
traditional parallel programming models and CUDA.

3.1. Sequential Baseline

In our study we focus on the particular case of protein-
ligand docking, and concretely, in the calculation of the
electrostatic potential kernel show in Algorithm 1. This is
the baseline for several methodologies used in VS methods,
such as Molecular Dynamics and protein-protein docking,
just to name a few.

Algorithm 1 The sequential pseudocode.
1: for i = 0 to nrec do
2: for j = 0 to nlig do
3: calculus(rec[i], lig[j])
4: end for
5: end for

Both receptor and ligand molecules are represented by
rec and lig particles, which are specified by their positions
and charges, being nrec the number of atoms of rec and
nlig the number of atoms of lig.

3.2. Implementation on the GPU

The CUDA programming model is based on a hierarchy
of abstraction layers. The thread is the basic execution unit
that is mapped to a single SP. A block is a batch of threads
which can cooperate together because they are assigned to
the same multiprocessor, and therefore they share all the re-
sources included in this multiprocessor, such as register file
and shared memory. A grid is composed of several blocks
which are equally distributed and scheduled among all mul-
tiprocessors. Finally, threads included in a block are divided
into batches of 32 threads called warps. The warp is the
scheduled unit, so the threads of the same block are sched-
uled in a given multiprocessor warp by warp. The program-
mer declares the number of blocks, the number of threads
per block and their distribution to arrange parallelism given
the program constraints (i.e., data and control dependen-
cies), providing two-levels of parallelism [2].

NREC/X ATOMS

NLIG ATOMS

....

......
Thread 2 Thread i Thread n

......

Thread Block

Thread 0

......

….. ….. …..

Figure 1. CUDA design for X thread blocks
(with X = 1) with n threads layout.

Our departure point is a CUDA implementation previ-
ously presented in [8]. Figure 1 shows this design. Each
atom from the receptor molecule is represented by a sin-
gle thread. Then, every CUDA thread goes through all
the atoms of the ligand molecule. The double parallelism
within CUDA is exploited by

1. having as many thread blocks as the number of nrec
atoms divided by the number of threads within a block.
This number is a configuration parameter of our appli-
cation.

2. having as many threads as nrec atoms, each thread
computes the energy calculations with the entire lig-
and data.

We also enable a tiling technique to take advantage of the
data locality, and thus to increase the memory bandwidth of
our application. We group atoms of the ligand molecule in
tiles, and thus threads can collaborate in order to bring that
information to the shared memory. Insights can be found
in [8].

3.3. The Shared Memory Implementation

In the shared memory architecture, the energy compu-
tation is divided among different processors. Each proces-
sor only performs the computation associated with its own
part of the receptor data (nrec atoms in Figure 2). Thus,
each processor computes the energy interactions between
its own private nrec atoms and all atoms from the ligand
(nlig atoms in Figure 2). To obtain the final result a reduc-
tion of the partial results is performed. Notice that, both
nlig and nrec atoms are placed in the same memory space
without any data duplications.

NREC ATOMS

NLIG ATOMS

.... …..
Thread 0 Thread 1

Figure 2. Design for computing the electro-
static interaction kernel with 2 threads in
shared memory architectures.

3.4. The Distributed Memory Implementa-
tion

In the distributed memory architecture, the underlying
design for the energy computation is quite similar than the
shared memory one. The nrec data is distributed among
all processors, however now, the entire nlig data is sent to
all the processors in the cluster which are taking part of the
computation.

In order to reduce the communication overhead be-
tween nodes in the cluster, all information related with one
molecule (positions, charge, energies) is sent all at once in
a single packet. In this way, we submit the data of both
molecules through two collective sends, instead of sub-
mitting many small messages with the information of the
molecules which is much more inefficient [25].

The distribution can be done with two MPI instructions:
MPI Scatter and MPI Bcast, the first one splits the
receptor data among all the MPI processes, and the sec-
ond one allows MPI processes to share the entire ligand
data. Both instructions perform a collective communication
which is usually optimized for this architecture, minimizing
the communication times [7]. Figure 3 shows an example
of this issue.

NREC ATOMS

NLIG ATOMS

Packet 0 Packet 7

Core 0 Core 1

Core 2 Core 3

NODE 0

Core 0 Core 1

Core 2 Core 3

NODE 1

......

Pakets 0-7

Packet 3

Figure 3. Design for computing the electro-
static interaction kernel with 8 processes in
distributed memory architectures.

3.5. Hybrid MPI-OpenMP Implementation

A hybrid solution is implemented using both OpenMP
and MPI, which becomes more important on modern multi-
core parallel systems, decreasing unnecessary communica-
tions between processes running on the same node, as well
as, decreasing the memory consumption, and improving the
load balance. With this implementation, we can emulate
the two-levels of parallelism we can find in the CUDA pro-
gramming model. On one hand, the block-level parallelism
is matched by the parallelism between nodes in the cluster
(the data will be distributed by MPI). On the other hand, the
threads cooperate in parallel to perform the energy calcula-
tions within each node in a vectorized fashion like warps in
CUDA.

Figure 4 shows the landscape of communications in this
implementation. MPI is used to send the data of both
molecules to the nodes. instead of sending all the infor-
mation to each core. The communications are reduced by a
ratio of number of cores per node with respect to
the MPI implementation. Once the data has been distributed
by MPI, the calculation of the energy is performed on each
node with OpenMP, using its own memory and executing as
many threads as the number of cores per node.

Moreover, the communication and computation can be
overlapped by asynchronous send/receive instructions. To
do so, as soon as a subset of nlig data belonging to each pro-
cessor is received, the processor starts the energy compu-
tation while it is waiting for receive another subset of nlig

NREC ATOMS

NLIG ATOMS

Packet 0 Packet 1

Core 0 Core 1

Core 2 Core 3

NODE 0

Core 0 Core 1

Core 2 Core 3

NODE 1

Packets 0-1

Figure 4. Design for computing the electro-
statics interaction kernel in a hybrid MPI-
OpenMP implementation with 2 MPI pro-
cesses and 4 OpenMP threads per node.

data (see Figure 5). For this purpose we use the instructions:
MPI Isend and MPI Irecv instead of MPI Bcast to
send/receive the ligand data.

The fact of overlapping communication and computation
causes an unnecessary overhead whenever the nlig data is
received and the process is performing parallel computa-
tions with nrec. The parallel sections are released as long
as a chunk of nlig data is processed. Therefore, we decide
takes the parallel sections out of the outer loop where the
data packets are received [25].

NREC ATOMS

NLIG ATOMS

Packet 0

Node 0

Packet 0 Packet 1

Communication
Time

Computation
Time

Overlapped
Time

Nrec0

Nlig0

Nlig1
Compute

Nrec0-Nlig0

Compute
Nrec0-Nlig1

Figure 5. Packet timeline of asynchronous
data communications and computations,
which are overlapped along the time.

An additional gain of performance can be obtained by
taking advantage of the vector instructions to enhance the
energy calculation. The nrec atoms are placed in a 128-
bytes vector, and each element of nlig is copied four times
into another 128-bytes vector. The energy calculation is
now vectorized by each processor. The SSE instructions
of the x86 processor are used to vectorize the code.

4. Performance Evaluation

This section evaluates our energy interactions kernel
implementations in three different platforms. The shared
memory platform is a HP Integrity Superdome SX2000.
The distributed memory system is a HP BladeSystem. Fi-
nally, our GPU-based platform is GPU Nvidia Tesla C2050
based on the Fermi architecture [19]. Hardware and soft-
ware features are summarized in Table 1 and Table 2.

Table 1. Summary of hardware and software
features for the platform used during our ex-
perimental survey.

Shared
memory

Distributed
memory

Compute Capacity 819 GFlops 9,72 TFlops
Processor Model Intel Itanium2

Dual-Core
Montvale

Intel Xeon
Quad-Core

E5450
Cache 18 MB 3 MB (L1 32

KB)
Number of nodes 1 102
CPU cores 128 816
Clock Frequency 1,6 GHz 3 GHz
Main memory (DRAM) 1536 GB 1072 GB
Compiler icc 11.1 Intel MPI 4.0

Table 2. Hardware features for C2050 GPUs.
GPU element Feature Tesla C2050
Streaming Cores per multiprocessor 32
processors Number of multiprocessors 14
(GPU Total number of cores 448
cores) Clock frequency 1 147 MHz
Maximum Per multiprocessor 1 536
number of Per block 1 024
threads Per warp 32
SRAM 32-bit registers 32 K
memory Shared memory 16 KB or 48 KB
available per L1 cache 48 KB or 16 KB
multiprocessor Total SRAM (shared + L1) 64 KB

Size 3 GB
Global Speed 2x1500 MHz
(video) Width 384 bits
memory Bandwidth 144 GB/sc

Technology GDDR5 DRAM

We now present a performance evaluation for all our im-
plementations. They include all associated overheads such
as communications, synchronization, load balancing, etc.
The performance metric to compare our parallel implemen-
tations is the execution time. Our sequential code is the
MPI version of a single process. We evaluate the scalabil-
ity by varying both the nrec and nlig sizes. The maximum
cores number used in our test is determined by the num-
ber of cores that have the shared memory system, in this

case 128 cores. The CUDA implementation is only ana-
lyzed for comparison purposes. A deeper analysis can be
found in [8].

4.1. The Shared Memory Platforms

Figure 6(a) shows the execution times for the OpenMP
implementation. Different overheads introduced by
OpenMP such as load balancing and synchronization are
quite representative for the smallest benchmarks. More-
over, the scalability problem becomes an issue whenever
the value nrec ≥ 215 and a many threads are working in
parallel, obtaining in some cases a similar execution time
with a different number of threads for a specific benchmark
configuration. However, we report up to 72x speed-up fac-
tor compared to its sequential counterpart.

4.2. The Distributed Memory Platform

4.2.1 Only MPI

The execution times for the MPI code are shown in Fig-
ure 6(b). We also vary the benchmark size to analyze the
scalability. In this case it is noteworthy to mention that the
scalability improves along with the problem size, even when
the value nrec ≥ 215. The communication and initializa-
tion overheads to send data related to small molecules is
actually much higher than the compute time. Moreover, the
execution time is drastically affected by the interconnection
network status when a large number of processors partici-
pate in the execution, producing variations in the commu-
nication time which can be hidden by larger computation
times. In the MPI case, the maximum speed-up factor ob-
tained is above 60x.

4.2.2 Hybrid MPI-OpenMP Results

In the hybrid solution, we obtain initially worse results than
in the other two implementations because each MPI pro-
cess (that was mapping to a specific core of each node) was
the only responsible to perform the parallel OpenMP com-
putations. This occurs due to conflicting settings between
the MPI distribution and the OpenMP runtime. When using
hybrid MPI/OpenMP strategy, the OpenMP threads are cre-
ated as part of the MPI process. If the affinity for the threads
is not set explicitly, they all inherit the affinity mask of the
process. CPU affinity allows us to specify which CPU each
thread should run on. We use the KMP AFFINITY [10] en-
vironment variable for the Intel C/C++ compiler to force
the threads to be tied down to individual cores. The results
of this implementation are shown in Figure 6(c), where the
reduction in the number of communications is reflected as
previously discussed. In this case, there are eight cores in
each node, then the number of communication are reduced

9 12 15 18 9 12 15 18 9 12 15 18 9 12 15 18
9 12 15 18

0,001

0,01

0,1

1

10

100

1000

OpenMP (1 procs) OpenMP (2 procs) OpenMP (4 procs) OpenMP (8 procs)
OpenMP (16 procs) OpenMP (32 procs) OpenMP (64 procs) OpenMP (128 procs)

NLIG variation for each value of NREC (num of atoms in power of 2)

E
xe

cu
tio

n
tim

e
in

 s
ec

s
(lo

g
sc

al
e)

(a) OpenMP implementation.

9 12 15 18 9 12 15 18 9 12 15 18 9 12 15 18
9 12 15 18

0,001

0,01

0,1

1

10

100

1000

MPI (1 procs) MPI (2 procs) MPI (4 procs) MPI (8 procs)
MPI (16 procs) MPI (32 procs) MPI (64 procs) MPI (128 procs)

NLIG variation for each value of NREC (num of atoms in power of 2)

E
xe

cu
tio

n
tim

e
in

 s
ec

s
(lo

g
sc

al
e)

(b) MPI implementation.

9 12 15 18 9 12 15 18 9 12 15 18 9 12 15 18
9 12 15 18

0,001

0,01

0,1

1

10

100

1000

Hybrid (8 procs) Hybrid (16 procs) Hybrid (32 procs)
Hybrid (64 procs) Hybrid (128 procs)

NLIG variation for each value of NREC (num of atoms in power of 2)

E
xe

cu
tio

n
tim

e
in

 s
ec

s
(lo

g
sc

al
e)

(c) Hybrid MPI-OpenMP implementation.

9 12 15 18 9 12 15 18 9 12 15 18 9 12 15 18
9 12 15 18

0,0001

0,001

0,01

0,1

1

10

100

1000

Hybrid Vec. (8 procs) Hybrid Vec. (16 procs) Hybrid Vec. (32 procs)
Hybrid Vec. (64 procs) Hybrid Vec. (128 procs)

NLIG variation for each value of NREC (num of atoms in power of 2)

E
xe

cu
tio

n
tim

e
in

 s
ec

s
(lo

g
sc

al
e)

(d) Hybrid MPI-OpenMP vectorized version implementation.

Figure 6. The execution time obtained for the calculation of the electrostatic potential by the different
implementations for different molecular size ratios, in single precision.

Table 3. The execution time obtained for the calculation of the electrostatic potential by different
NLIG block sizes, in single precision, for 8 MPI processes (64 OpenMP threads).

Nrec Nlig 512 1024 2048 4096 8192 16384 32768 65536 131072 262144

512 32768 0,005813 0,005716 0,036385 0,005318 0,005412 0,004766 0,006283
262144 0,041912 0,041761 0,062274 0,03616 0,035454 0,041171 0,043 0,042115 0,046315 0,043294

4096 32768 0,016155 0,014836 0,017325 0,016492 0,026334 0,013769 0,018485
262144 0,130676 0,128422 0,13464 0,187063 0,126647 0,176818 0,134821 0,15087 0,139603 0,143179

32768 32768 0,126015 0,091419 0,133345 0,108467 0,11098 0,08681 0,115749
262144 0,780044 0,739505 0,789636 0,766617 0,724251 0,765314 0,752469 0,767784 0,749612 0,724349

262144 32768 0,667324 0,700655 0,724774 0,734036 0,720468 0,519282 0,66324
262144 4,986411 4,928454 4,88287 4,896011 4,984927 4,87261 4,902244 4,926879 4,929046 4,998905

by a factor of eight. These eight threads are created by gen-
erating (1) a MPI process per node, and (2) seven OpenMP
processes per node. This give us the total of eight processes
running within a node. Figure 6(c) shows the reduction of
communications and the use of the OpenMP to perform the
energy computation allow in this implementation achieve
up to 83x.

4.2.3 Code Vectorization

In all the previous implementations the Intel compiler auto-
vectorize the code. This can be generated by compiling with
-vec-report1 flag [9]. However, we obtain a perfor-
mance gain of 2.2x respect the Intel auto-vectorize version,
given a total of 182x speed-up factor respect the sequential

version (see Figure 6(d)).

4.2.4 Overlapping Communications/Computations

As previously mentioned the communication overhead can
be reduced by an asynchronous computation overlapped
with the computation time. We empirically demonstrate that
an improvement is achieved whenever large data is sent in-
stead of having smaller package to be sent. This improve-
ment depends on the chunk size of the receptor data.

Figure 7(a) shows the execution times of this technique
compared to the rest of versions. This technique is rewarded
with up to 1.25x gain. This improvement is not only due to
overlap communications and computations, but also to take
advantage of the data locality. Whenever a small ligand data

9 12 15 18 9 12 15 18 9 12 15 18 9 12 15 18
9 12 15 18

0,001

0,01

0,1

1

10

100

1000

MPI (1 procs) OpenMP (64 procs) MPI (64 procs)
Hybrid (64 procs) Hybrid Vec. (64 procs) Hybrid Vec. Asyn. (64 proc)

NLIG variation for each value of NREC (num of atoms in power of 2)

E
xe

cu
tio

n
tim

e
in

 s
ec

s
(lo

g
sc

al
e)

(a) Fixing the number of threads to 64.

1 2 4 8 16 32 64 128
1

10

100

1000

OpenMP MPI Hybrid
Hybrid Vec. Hybrid Vec. Asyn. CUDA

Number of cores

E
xe

cu
tio

n
tim

e
in

 s
ec

s
(lo

g
sc

al
e)

(b) Fixing the benchmark size to nrec = nlig = 262144 particles.

Figure 7. Comparative times obtained in the different implementations for the calculation of the
electrostatics potential.

packet is received, it can be fully stored in the highest level
of cache. Table 3 shows the execution times for the asyn-
chronous version with 64 cores by setting different block
sizes of nlig. It reveals the optimal block size configuration
is between 32KB and 64KB which is very close to the L1
cache size (32 KB).

4.3. Overall Comparison

Finally, Figure 7(b) shows an overall comparison be-
tween our shared and distributed memory designs and a
GPU tiled version. Several conclusion can be extracted
from this analysis: (1) The performance of the OpenMP im-
plementation is limited by the parallel overheads whenever
more than eight cores are utilized concurrently, (2) Simi-
lar execution times are obtained by eight and sixteen cores
on the distributed memory architecture. The reason of that
is only a node is required to execute a MPI program with
eight processes, whereas two nodes are need whenever six-
teen MPI processes are involved in the execution. There-
fore the communication overhead hides the scalability of
using twice the number of nodes, and finally (3), the Fig-
ure 7(b) shows the execution time achieved by the GPU de-
feats almost all implementations developed on the other two
architectures, obtaining similar performance with the ver-
sion that overlaps communication/computation and reduces
cache misses. The maximum speed-up factor obtained by
this version is 229x while the GPU obtain up to 213x.

5. Conclusions and Future Work

In this article, we have described the implementation
for the calculation of non-bonded interactions applied to
electrostatics interactions on three different parallel archi-
tectures based on shared memory, distributed memory and
GPUs. We have also used three different programming
models: OpenMP, MPI and CUDA respectively.

Two main levels of parallelism are identified in the
CUDA programming model which are matched in the dis-
tributed memory by vectorizing the code and providing a
hybrid MPI-OpenMP execution. In addition, we optimize
this code by overlapping communication/computation and
reducing cache misses.

The results obtained in the OpenMP implementation
show a reasonable scalability on shared memory architec-
ture, obtaining the lowest performance since the pressure on
shared resources increases with the number of processors.

The distributed memory system exhibits good scalability
with the number of processors, which is explained by the
low number of communications required by our simulations
in the hybrid MPI-OpenMP implementation. The hybrid
optimized version reaches up to 229x speed-up factor versus
its sequential counterpart.

Our previous GPU implementation for the same kernel
using CUDA programming model, obtains similar gains
versus the sequential code (213x speed-up factor). There-
fore, GPUs provides good performance but a much lower
cost. Our main conclusion here is GPUs can even outper-
form a supercomputer for massively parallel computation as
the one targeted here. Moreover, the programming effort of
optimizing a code in a supercomputer is quite similar to the
one employed to do so in GPUs, as long as, the programmer
wants to take advantage of all available resources in them.
The GPU version of this kernel has been implemented in
multiple-target [27] and fast blind VS [26] VS methodolo-
gies. In both cases, final global speedups of up to 60x are
reached.

For the future, we are working on the implementation of
other relevant VS kernels, using the targeted platforms of
this work. Our main goal is to provide several high perfor-
mance alternatives over different computational patterns to
evaluate each of them, and thus look for the best solution in
terms of performance, power consumption and total cost of
ownership.

Acknowledgements
This research was supported by Fundación Séneca

(Agencia Regional de Ciencia y Tecnologı́a, Región de
Murcia) under grant 00001/CS/2007, and by the Span-
ish MEC and European Commission FEDER under grants
CSD2006-00046 and TIN2009-14475-C04, and also by a
postdoctoral contract from the University of Murcia (30th
December 2010 resolution). We would also like to acknowl-
edge the support of the Centro de Supercomputación de la
Fundación Parque Cientı́fico de Murcia where our experi-
ments were conducted.

References

[1] Uniform Interface to Computing Resources (UNICORE),
2011. http://www.unicore.eu/unicore/.

[2] J. M. Cecilia, J. M. Garcı́a, G. D. Guerrero, M. A. Martı́nez-
del-Amor, I. Pérez-Hurtado, and M. J. Pérez-Jiménez. Sim-
ulation of P Systems with Active Membranes on CUDA.
Briefings in Bioinformatics, 11(3):313–322, 2010.

[3] T. Chen, R. Raghavan, J. N. Dale, and E. Iwata. Cell broad-
band engine architecture and its first implementation: a per-
formance view. IBM J. Res. Dev., 51:559–572, 2007.

[4] Distributed European Infrastructure for Supercomputing
Applications. High Throughput in-silico screening in HPC
architectures for new inhibitors for treatment of blood
diseases. http://www.deisa.eu/science/deci/
projects2010-2011/BLOODINH. (accessed, July,
2011).

[5] B. Fischer, S. Basili, H. Merlitz, and W. Wenzel. Accuracy
of binding mode prediction with a cascadic stochastic tun-
neling method. Proteins, Apr. 2007.

[6] M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hard-
wick, S. Morton, E. Phillips, Y. Zhang, and V. Volkov. Par-
allel Computing Experiences with CUDA. IEEE Micro,
28:13–27, July 2008.

[7] J. P. Grbović, T. Angskun, G. Bosilca, G. E. Fagg,
E. Gabriel, and J. J. Dongarra. Performance analysis of MPI
collective operations. Cluster Computing, 10(2), 2007.

[8] G. Guerrero, H. Pérez-Sánchez, W. Wenzel, J. Cecilia, and
J. Garcı́a. Effective Parallelization of Non-bonded Inter-
actions Kernel for Virtual Screening on GPUs. In 5th In-
ternational Conference on Practical Applications of Com-
putational Biology and Bioinformatics (PACBB 2011), vol-
ume 93 of Advances in Intelligent and Soft Computing,
pages 63–69. Springer Berlin / Heidelberg, 2011.

[9] Intel Corporation. A Guide to Vectorization with Intel C++
Compilers, 2010.

[10] Intel Corporation. Intel(R) Math Kernel Library for Linux*
OS User’s Guide, 2010.

[11] J. J. Irwin and B. K. Shoichet. ZINC – A Free Database of
Commercially Available Compounds for Virtual Screening.
Journal of Chemical Information and Modeling, 45(1):177–
182, 2005.

[12] W. L. Jorgensen. The Many Roles of Computation in Drug
Discovery. Science, 303:1813–1818, 2004.

[13] K. Kadau, T. C. Germann, and P. S. Lomdahl. Molecular
Dynamics Comes of Age: 320 Billion Atom Simulation on

BlueGene/L. International Journal of Modern Physics C,
17(12):1755–1761, 2006.

[14] S. K. Kuntz, R. C. Murphy, M. T. Niemier, J. Izaguirre, and
P. M. Kogge. Petaflop computing for protein folding. In
In Proceedings of the Tenth SIAM Conference on Parallel
Processing for Scientific Computing, pages 12–14.

[15] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym.
NVIDIA Tesla: A Unified Graphics and Computing Archi-
tecture. Ieee Micro, 28(2):39–55, 2008.

[16] Message Passing Interface Forum. Message Passing Inter-
face (MPI). http://www.mcs.anl.gov/mpi. (ac-
cessed, July, 2011).

[17] M. Morgan Kaufmann, Boston. GPU Computing Gems
Emerald Edition (Applications of GPU Computing Series).
Morgan Kaufmann, 1 edition, Feb. 2011.

[18] G. M. Morris, D. S. Goodsell, R. Huey, and A. J. Olson. Dis-
tributed automated docking of flexible ligands to proteins:
Parallel applications of AutoDock 2.4. Journal of Computer-
Aided Molecular Design, 10(4):293–304, Aug. 1996.

[19] NVIDIA Corporation. Whitepaper NVIDIA’s Next Genera-
tion CUDA Compute Architecture: Fermi, 2009.

[20] NVIDIA Corporation. NVIDIA CUDA C Programming
Guide 4.0. 2011.

[21] OpenMP Architecture Review Board. The OpenMP Spec-
ification. http://www.openmp.org. (accessed, July,
2011).

[22] H. Pérez-Sánchez and W. Wenzel. Implementation of an
effective non-bonded interactions kernel for biomolecular
simulations on the Cell processor. In GI Jahrestagung, pages
721–729, 2009.

[23] H. Pérez-Sánchez and W. Wenzel. Optimization methods
for virtual screening on novel computational architectures.
Curr Comput Aided Drug Des, 7(1):44–52, 2011.

[24] N. D. Prakhov, A. L. Chernorudskiy, and M. R. Gaiin. VS-
Docker: a tool for parallel high-throughput virtual screen-
ing using AutoDock on Windows-based computer clusters.
Bioinformatics, 26(10):1374–1375, 2010.

[25] A. Rane and D. Stanzione. Experiences in Tuning Perfor-
mance of Hybrid MPI/OpenMP Applications on Quad-Core
Systems. 2009.

[26] I. Sánchez-Linares, H. Pérez-Sánchez, J. M. Cecilia, and
J. M. Garcı́a. Bindsurf: a fast blind virtual screening
methodology on gpus. In Network Tools and Applications
in Biology (NETTAB 2011), Clinical Bioinformatics, pages
95–97, 2011.

[27] I. Sánchez-Linares, H. Pérez-Sánchez, G. D. Guerrero, J. M.
Cecilia, and J. M. Garcı́a. Accelerating multiple target drug
screening on gpus. In Proce. of the 9th International Confer-
ence on Computational Methods in Systems Biology, CMSB
’11, pages 95–102, New York, NY, USA, 2011. ACM.

[28] J. Wang, Y. Deng, and B. Roux. Absolute Binding Free En-
ergy Calculations Using Molecular Dynamics Simulations
with Restraining Potentials. Biophys. J., 91(8):2798–2814,
Oct. 2006.

[29] Z. Zhou, A. K. Felts, R. A. Friesner, and R. M. Levy. Com-
parative performance of several flexible docking programs
and scoring functions: enrichment studies for a diverse set
of pharmaceutically relevant targets. Journal of Chemical
Information and Modeling, 47(4):1599–1608, 2007.

