
Accelerating Fibre Orientation Estimation from Diffusion Weighted Magnetic
Resonance Imaging using GPUs

Moisés Hernández, Ginés D. Guerrero, José M. Cecilia and José M. Garcı́a
Grupo de Arquitectura y Computación Paralela. Universityof Murcia (Spain)

{moises, gines.guerrero, chema, jmgarcia}@ditec.um.es

Alberto Inuggi
Dpto. Psicologı́a Básica y Metodologı́a. University of Murcia (Spain)

a.inuggi@bcbl.eu

Stamatios N. Sotiropoulos
Oxford Centre for Functional MRI of the Brain

Department of Clinical Neurology. University of Oxford (UK)
stam@fmrib.ox.ac.uk

Abstract

Diffusion Weighted Magnetic Resonance Imaging (DW-
MRI) and tractography approaches are the only tools that
can be utilized to estimate structural connections between
different brain areas, non-invasively and in-vivo. A first step
that is commonly utilized in these techniques includes the
estimation of the underlying fibre orientations and their un-
certainty in eachvoxel of the image. A popular method to
achieve that is implemented in the FSL software, provided
by the FMRIB Centre at University of Oxford, and is based
on a Bayesian inference framework. Despite its popular-
ity, the approach has high computational demands, taking
normally more than 24 hours for analyzing a single subject.
In this paper, we present a GPU-optimized version of the
FSL tool that estimates fibre orientations. We report up to
85x of speed-up factor between the GPU and its sequential
counterpart CPU-based version.

1. Introduction

The brain is one of the most complex biological sys-
tems. It is comprised of billions of inter-connected process-
ing units calledneurons. Information betweenneuronsis
transferred by processes calledaxons, which conduct elec-
trical impulses away from neurons’ cell bodies.Axonsare
usually bundled together and form coherent structures or fi-
bre tracts, that mediate information flow between different
brain regions and are very important for brain’s function.

Many neurological diseases are associated with the inter-
ruption and damage of fibre tracts.

Traditional neuroimaging techniques do not provide
enough information about such structural connections be-
tween brain regions. However, with the advent of Diffusion-
Weighted Magnetic Resonance Imaging (DW-MRI) [11]
and variants, such as Diffusion Tensor Imaging (DTI) [2],
estimation of fibre tracts has become feasible.

DW-MRI is sensitive to the diffusion motions of wa-
ter molecules, whose features vary throughout the differ-
ent brain tissues; white matter, which mostly comprises
of axons, gray matter, which contains mainly cell bodies
and cerebrospinal fluid (CSF)-filled regions. Particularly
in white matter, water diffuses preferably along rather than
across theaxons[4]. By applying strong magnetic field gra-
dients in several and different directions, it is possible to
map these preferred diffusion orientations (PDOs) in each
image volume element (orvoxel). PDOs are commonly
assumed to give local fibre orientation estimates, i.e. the
major axon orientations within an imagevoxel [15]. Us-
ing tractography approaches, PDOs can then be utilized to
reconstruct the underlying fibre tracts [3]. Tractography is
currently the only tool that allows the study of structural
connections in the brain, non-invasively and in-vivo [10].

Various model-based and model-free approaches have
been suggested to estimate the PDOs [17]. A popular ap-
proach that also takes care of within-voxel fibre crossings,
a common problem in tractography, is the ball & stick
model [5, 6]. The approach has been implemented in the
FSL software (developed by the FMRIB centre at the Uni-



versity of Oxford) [18] and the respective tool is calledBed-
post. Bedpostapplication estimates the PDOs, as well as
their uncertainty given the data, using a Bayesian inference
framework. Despite its popularity, its main drawback is the
long computation time, since depending on the parameters
of the MRI sequence, the analysis of a single subject can
take more than 24 hours on a CPU.

Modern Graphics Processing Units (GPUs) are mas-
sively parallel processors that are capable of supporting
thousands of threads running in parallel, reaching theoret-
ical peak performance up to a TeraFLOP (1012 Floating
Point operations per second). Many general purpose ap-
plications have been successfully ported to these platforms,
obtaining considerable accelerations [7,8].

In this paper, we discuss the parallelization of theBed-
post application on NVIDIA GPUs by using the CUDA
programming model [12]. We identify two main stages in
this application that are studied separately. The first is the
Levenberg-Marquardtalgorithm which is designed by us-
ing a data-parallelism approach. The second is theMarkov
Chain Monte Carlo (MCMC)algorithm in which several
techniques are proposed to increase the parallelism, and
also avoiding long-stall warp serialization. These imple-
mentations provide us a speed-up factors of 127x and 56x
for theLevenberg-Marquardtand theMCMCalgorithms re-
spectively, and an overall speed-up factor of theBedpost
application reaching up to 85x compared to the sequential
counterpart version.

2. Diffusion-Weighted MRI and the ball &
stick model

Water molecules are in constant random motion known
as diffusion, which is solely driven by thermal energy. Dif-
fusion in the brain is interesting because the presence of tis-
sue microstructures hinders these motions. In white matter,
this hindrance is systematic, due to the presence of axonal
membranes and myelin sheaths [4] and there is a prefer-
ence for diffusion towards a particular direction along the
main axon orientation. Such a diffusion profile is called
anisotropic. On the contrary, there is no systematic struc-
ture in gray matter or CSF-filled regions. Diffusion appears
to be equally likely towards all directions and the profile
is called isotropic. In the anisotropic regions, the Preferred
Diffusion Orientation (PDO) has a biophysical meaning and
provides an estimate for the main orientation of the under-
lying axons. These estimates are utilized by tractography
approaches to reconstruct long-range fibre tracts.

To estimate the PDOs a set of diffusion-weighted mag-
netic resonance images are needed. Each DW image has a
contrast that depends on diffusion motions along a specific
direction, the direction of an applied diffusion-sensitizing
magnetic field gradient [19]. Many DW images are com-

monly acquired alongK different directions to effectively
sample the signal on a unit sphere domain. The ball & stick
model explains this signal in eachvoxelof the brain vol-
ume, using a multi-compartment decomposition. It assumes
a fully isotropic compartment (the ball) andL ≥ 1 perfectly
anisotropic compartments (the sticks). The orientations of
these sticks provide the PDOs in avoxel.

Equation 1 shows the signal model when each of thek =
1 : K gradient directions is applied [5,6]:

(1)

Sk = S0[(1−

L
∑

j=1

fj) exp(−bkd)

+

L
∑

j=1

fj exp(−bkd(g
T
k vj)

2)] + e

S0 is a baseline signal measured without any diffusion
weighting;bk depends on the magnitude and duration of the
kth diffusion-sensitizing gradient,gk indicates the direction
of this gradient,d is the diffusivity, and finallyfj ∈ [0, 1]
andvj describe the volume fraction and orientation of the
jth stick, with:

vj =
[

sin(θj) cos(ϕj) sin(θj) sin(ϕj) cos(θj)
]T

(2)

andθj ∈ [0, π] andϕj ∈ [0, 2π]. Equation 1 also contains
an error terme that represents noise and can be assumed to
follow a zero-mean Normal distribution.

Bedpostapplication inverts the above model using a
Bayesian framework. Equation 1 can be used to obtain the
likelihood, the conditional distribution of the dataSk given
the model parameters. Bayes theorem allows us to calcu-
late the posterior probability of the parameters given the
dataP (parameters| data) [5]. Thus a distribution is esti-
mated for each of the model parametersS0, d, θj ,ϕj andfj ,
j = 1 : L. This is performed using aMarkov Chain Monte
Carlo (MCMC) algorithm [1], which is initialized using a
Levenberg-Marquardtfit of the model to the data [16].

3. Description of the Bedpost application

The input of theBedpostapplication is a brain’s image
of a given subject. This image is composed of severalslices
that may have different sizes depending on the area of the
brain that they represent. Moreover, these slices are com-
posed of severalvoxels, which are processed sequentially
on the CPU (see Figure 1).

Algorithm 1 summarizes the sequential steps of this
application: (1) An initial estimation of the parameters
throughLevenberg-Marquardtalgorithm, and (2) the esti-
mation of the posterior distribution of the model parame-
ters given the data through aMarkov Chain Monte Carlo
(MCMC) algorithm.



Figure 1. A sequential thread computing M ∗
N voxelsof a slice.

Algorithm 1 The sequential pseudo-code ofBedpost

1: for all slice do
2: for all voxel do
3: LevenbergMarquardt()
4: MCMC()
5: end for
6: end for

The Levenberg-Marquardtalgorithm is based on an it-
erative optimization procedure that minimizes the sum of
squared model residuals. This method applies several ma-
trix operations, with the inverse matrix operation being the
most time consuming part. The matrices have a size that
depends on the number of parameters to be estimated.

The MCMC algorithm takes as input the values calcu-
lated in theLevenberg-Marquardtstep. The algorithm then
proposes in an iterative fashion random values for each pa-
rameter to be estimated, drawn from Normal proposal dis-
tributions. Actually, two random numbers are generated for
each parameter at each iteration of theMCMC algorithm,
one drawn from a uniform and one from a normal distri-
bution. It is worth noticing the computational cost of this
random generation as hundreds of millions of random num-
bers need to be generated. The proposed parameter values
are accepted or rejected depending on a Metropolis accep-
tance criterion that utilizes the respective posterior proba-
bility values.

4. Parallel design of the Bedpost application in
CUDA

A first alternative for a parallel design ofBedpostap-
plication is motivated by the parallel nature of processing
all slices. This is the philosophy followed by the FSL de-
velopers [18]. They run eachslice independently by us-
ing several different processors on a large cluster using
the SunGridEngine software application [9]. This design,
however, is based on task parallelism, and thus it involves

heavy tasks assigned to each processor. The task-based par-
allelism is not theoretically well-suited for the GPU pro-
gramming, where a data-based approach can lead to better
performance, taking advantage of the thousands of light-
weight threads that can run in parallel (for more details
about CUDA programming model refer to [12])

Our data-based parallelism approach for this problem is
obtained by thinking about how data can be partitioned.
As previously mentioned, eachslice is composed of many
voxels, and thosevoxelscan be processed independently.
Therefore, a CUDA kernel processes allvoxelswithin a
slice in parallel.

Four different kernels run sequentially, with paralleliza-
tion occuring within each kernel (see Algorithm 2). The
first CUDA kernel performs theLevenberg-Marquardtal-
gorithm. This kernel follows the design previously com-
mented, mapping each CUDA thread to avoxel, and having
as many threads asvoxelscontained in a particularslice.
Each thread estimates the initial values of all model param-
eters for eachvoxel.

Algorithm 2 CUDA Design of theBedpost application.
1: for all slice do
2: bloqs := voxels/blockSize1
3: levenbergKernel(bloqs, blockSize1)
4: genNumsKernel(bloqs, blockSize1)
5: adjustNumsKernel(bloqs, blockSize1)
6: bloqs := (voxels ∗K)/blockSize2
7: mcmcKernel(bloqs, blockSize2)
8: end for

The other three CUDA kernels implement the MCMC
step. The first one (genNumsKernelin the Algorithm 2) is
responsible for the generation of random numbers. This is
a critical issue for performance as the algorithm needs to
generate many random numbers from a pseudo-random se-
quence. We decided to pre-calculate those random num-
bers in an homogenous separate kernel instead of having
a coarse-grained kernel with a heterogeneous set of in-
structions. Random numbers are generated by using the
CURAND library [14]. After their generation, the pseudo-
random numbers are adjusted in the second kernel (adjust-
NumsKernelin the Algorithm 2) to a uniform and normal
distribution as global synchronization is required. Both pre-
vious kernels follow the design described above.

Finally, the last kernel implements theMCMC compu-
tation (mcmcKernelin the Algorithm 2). The design of
this kernel is a bit different from the previous ones. Many
signal evaluations must be performed for each voxel, con-
cretely as many evaluations as gradient directions are ap-
plied. In order to obtain light-weight threads, we decide that
each thread models a predicted signal for a single diffusion-
sensitizing directionk. This increases the parallelism by



having#voxels × k threads, and thus the work can be
distributed among them. Moreover,voxelsare equally dis-
tributed among CUDA thread-blocks, according to the num-
ber of gradient directions (see Figure 2).

��
�

�������	
��
��

� ��� ������������������� �
��

�

��������

�
��

�
�
�
�
�

�������	
��
��

�

���

��� �
�

���

���������������������������������� ���

� ��� ���� �
�

�
��

��������������������

Figure 2. M ∗N ∗K threads running in parallel
for the processing of M∗N voxelsof a slicewith
K gradient directions, grouped into X blocks
of size Y , where Y is a multiple of K.

5. Performance Evaluation

This section evaluates all kernels previously explained
for theBedpostapplication on GPUs. Intel-based host ma-
chine provide service to a GPU system based on an Nvidia
Tesla C2050 [13]. The main processor of this machine is
an Intel Xeon E5620 2.40GHz and 4GB of main memory
where the sequential experiments were developed on. Fi-
nally, we used for our tests the 4.0 CUDA version and gcc
4.4.3 with option -03 enable.

The input data for theBedpostapplication, i.e. the num-
ber ofslices, voxels, and diffusion gradients is determined
by the acquisition protocol during imaging. We vary the
number of parameters to be estimated in the range of eight
to fourteen.

Figure 3 shows a performance comparison between CPU
and GPU when executing Levenberg-Marquardtvarying the
number of parameters modeled and images size. Figure 3
shows a performance gain proportional to the number of
voxels, as a major number of threads run concurrently on the
GPU. For eight parameters configuration, we report up to
20x speed-up factor, and up to 56x for fourteen parameters
compared to the sequential counterpart version.

The generation of pseudorandom number is a critical is-
sue in the performance of theBedpostapplication. The
CPU version uses therand() function that belongs to the
C++ libraryCSTDLIB of C++, while the GPU version uses
theCURAND library from NVIDIA. We report up to 140x
speed-up factor when up to 380 million of pseudo-random
numbers are generated in parallel.

��� ��� ���� ���� ���� ���� 	��� ����� ����� �����

�

��

���

����

�����


��
�
���������� ���
�
���������� 
��
��
���������� ���
��
����������

������
������

�
��
�

�
�

�
�
�
�
�
 
�

Figure 3. CPU and GPU execution times (in
log scale) running Levenberg-Marquardt with
8 and 14 parameters.

Moreover, an extra 14x performance gain is achieved by
generating the normal and uniform distribution of pseudo-
random numbers on the GPU.

For theMCMC algorithm we vary the number of itera-
tions and also the parameters to be modeled by using two
and four fibres. In this case, the GPU defeats by a wide
margin the CPU reaching up to 127x speed-up factor.

Finally Figure 4 shows the performance evaluation in
CPU, CPU with four cores using the SGE software, and in
GPU, for theBedpostapplication with a image dimensions
of 128x128x47 with 35 gradient directions, two and four fi-
bres modelled and varying the number ofMCMC iterations.
The maximum speedup obtained is up to 85X comparing a
core of CPU with GPU, and 18X comparing four cores of
CPU with GPU.

6. Conclusions and Future Work

The brain is one of the most complex biological systems,
and a proper understanding of its function is still a challenge
in the scientific community. Our role as computer scientist
is to provide efficient tools to help experts in these areas.
FSL help to understand structural connections between re-
gions within the brain. However the analysis of a single
subject may take up to 24 hours.

In this paper, we contribute with the GPU paralelization
of the Bedposttool within the FSL framework, which is
used to estimate fibre orientations from diffusion-weighted
magnetic resonance images. We report an overall speed-up
of up to 85x compared to the sequential counterpart ver-
sion within FSL. This means, in practical terms, that our
approach reduces the execution time ofBedpostdown to 17
minutes for a single subject.

Moreover, given the adequacy of GPUs for the optimiza-
tion of Bedpostapplication, our next step will be the GPU



���� ���� ���� ���� �����

�

��

���

����

�����

������

�������

�	�	
��
�������

�
��




�
�

�



�
�
�
�
�

	��
�
����� ���
�
����� 	��
���
��
���
� 
�
�����

(a) 2 Fibres

���� ���� ���� ����

�

��

���

����

�����

������

�������

����	
��
������

�
��

�
	�
�
	�

�
�
�
�
�
�

���	������� ���	������� ���	���	��	��
���	�������

(b) 4 Fibres

Figure 4. Comparison of total execution time (in log scale) o f Bedpostapplication in CPU, CPU with
four cores using the SGE software, and in GPU with image dimen sions 128x128x47, 35 gradient
directions and modeling two and four fibres.

implementation of other tools included in FSL.

Acknowledgements

This research was supported by Fundación Séneca
(Agencia Regional de Ciencia y Tecnologı́a, Región de
Murcia) under grant 00001/CS/2007, and also by the Span-
ish MEC and European Commission FEDER under grants
CSD2006-00046 and TIN2009-14475-C04.

References

[1] C. Andrieu, N. de Freitas, A. Doucet, and M. I. Jordan.
An Introduction to MCMC for Machine Learning.Machine
Learning, 50(1):5–43, Jan. 2003.

[2] P. J. Basser, J. Mattiello, and D. Le Bihan. Estimation ofthe
Effective Self-Diffusion Tensor from the NMR Spin Echo.
Journal of Magnetic Resonance Series b, 103(3):247–254,
1994.

[3] P. J. Basser, S. Pajevic, C. Pierpaoli, J. Duda, and A. Al-
droubi. In vivo fiber tractography using DT-MRI data.Mag-
netic Resonance in Medicine, 44(4):625–632, 2000.

[4] C. Beaulieu. The basis of anisotropic water diffusion inthe
nervous system - a technical review.NMR in Biomedicine,
15(7-8):435–455, 2002.

[5] T. E. Behrens, M. W. Woolrich, M. Jenkinson, H. Johansen-
Berg, R. G. Nunes, S. Clare, P. M. Matthews, J. M. Brady,
and S. M. Smith. Characterization and Propagation of Un-
certainty in Diffusion-Weighted MR Imaging.Magnetic
Resonance in Medicine, 50(5):1077–1088, 2003.

[6] T. E. J. Behrens, H. Johansen-Berg, S. Jbabdi, M. F. S. Rush-
worth, and M. W. Woolrich. Probabilistic diffusion tractog-
raphy with multiple fibre orientations: What can we gain?
NeuroImage, 34(1):144–155, 2007.

[7] M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hard-
wick, S. Morton, E. Phillips, Y. Zhang, and V. Volkov. Par-

allel Computing Experiences with CUDA.IEEE Micro,
28:13–27, July 2008.

[8] W. W. Hwu, editor. GPU Computing Gems: Emerald Edi-
tion. Morgan Kaufmann, 2011.

[9] Inc. Sun Microsystems. Sun N1 Grid Engine 6.1 User’s
Guide, 2007.

[10] S. Jbabdi and H. Johansen-Berg. Tractography: Where Do
We Go from Here?Brain Connectivity, 3:169–183, Septem-
ber 2011.

[11] D. Le Bihan, E. Breton, D. Lallemand, P. Grenier, E. Ca-
banis, and M. Laval-Jeantet. MR imaging of intravoxel
incoherent motions: application to diffusion and perfusion
in neurologic disorders.Radiology, 161(2):401–407, Nov
1986.

[12] NVIDIA. NVIDIA CUDA C Programming Guide 4.0. 2011.
[13] NVIDIA Corporation. Whitepaper NVIDIA’s Next Genera-

tion CUDA Compute Architecture: Fermi, 2009.
[14] NVIDIA Corporation. CUDA Toolkit 4.0 CURAND Guide,

2011.
[15] C. Pierpaoli, P. Jezzard, P. J. Basser, A. Barnett, and

G. Di Chiro. Diffusion tensor MR imaging of the human
brain. Radiology, (201):637–648, 1996.

[16] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling.Nu-
merical Recipes in C : The Art of Scientific Computing.
Cambridge University Press, 2 edition, 1992.

[17] K. K. Seunarine and D. C. Alexander. Multiple fibers:
Beyond the diffusion tensor. In H. Johansen-Berg and
T. Behrens, editors,Diffusion MRI: From quantitative mea-
surement to in vivo neuroanatomy, pages 55–72. Elsevier,
2009.

[18] S. M. Smith, M. Jenkinson, M. W. Woolrich, C. F. Beck-
mann, T. E. Behrens, H. Johansen-Berg, P. R. Bannister,
M. De Luca, I. Drobnjak, D. E. Flitney, R. K. Niazy, J. Saun-
ders, J. Vickers, Y. Zhang, N. De Stefano, J. M. Brady, and
P. M. Matthews. Advances in functional and structural MR
image analysis and implementation as FSL.NeuroImage,
23:208–219, 2004.

[19] E. O. Stejskal and J. E. Tanner. Spin Diffusion Measure-
ments: Spin Echoes in the Presence of a Time-Dependent
Field Gradient.Journal of Chemical Physics, 42(1), 1965.


