
IX JORNADAS DE PARALELISMO, DONOSTIA - SAN SEBASTI¶AN, SEPTIEMBRE, 1998 1

The Performance of M PI Parallel Jacobi

Implementation on Workstation Clusters
M. A c a c io , O. C¶a n o va s , J.M. Ga r c ¶ ³a a n d P .E . L ¶o p e z -d e -Te r u e l

A bst r act | M P I has be come the standard for imple me nt-

ing me ssage -base d paralle l programs in distribute d-me mory

computing e nvironme nt. T he goal of a paralle l program is

to re duce the e xe cution time re garding the faste r se q ue ntial

program solving the same proble m. Cluste rs of workstations

or P Cs are be ing conside re d as a good alte rnative to tradi-

tional paralle l compute rs, and, curre ntly, the re are some

M P I imple me ntations for W indows N T , Solaris and L inux

e nvironme nts. T his pape r pre se nts a study of the possibili-

tie s of M P I in the se e nvironme nts using the Jacobi me thod

for solving di®e re ntial e q uations. Re sults of pe rformance

te sts indicate that spe e dups of be tte r than p=2 are possible

with an optimal numbe r p of node s on a single E the rne t bus.

K ey w or ds| M P I imple me ntations, M P I pe rformance , Ja-

cobi me thod.

I. Int r oduc t ion

T
HE MPI Forum states the main goal of MPI [5] as \to
develop a widely used standard for writing message-

passing programs. As such the interface should establish a
practical, portable, e±cient and °exible standard for mes-
sage passing".
Recently, clusters of workstations or PCs are being used

to run parallel-distributed versions of computationally in-
tensive application programs. By running in a parallel
mode on a cluster of workstations, it becomes °exible to
execute larger cases of the applications that are impractical
for single workstation execution. The main problem in this
environment is related with the data communication and
process synchronization issues.
Using MPI to code parallel programs adds an extra com-

munication overhead. This overhead has widely been eval-
uated for elementary tests [10], [8], and also for complex
programs [11]. Sometimes, this overhead is seen as an im-
portant di±cult to make an e±cient use of clusters of work-
stations in scienti¯c computation.
This paper shows how MPI implementations can be used

successfully with real problems. We will illustrate it using
MPI implementations for Windows NT and Linux/Solaris
platforms.
As we have already mentioned, portability is one of the

main goals of MPI. The tests we have executed have been
done using the same program, without any changes. The
portability allowed us to write, debug and run our pro-
grams under a Windows NT machine and, once tests had
been made, they were moved to a parallel environment of
clusters of workstations. So, we made the whole work un-
der a visual environment, with more intuitive tools and

T h e au th or s ar e w ith th e Dep ar tam en to d e In gen ier ¶³a y T ecn olog¶³a
d e C om p u tad or es, U n iv er sid ad d e Mu r cia, C am p u s d e E sp in ar d o,
s/n , 30080 Mu r cia (S p ain ). E -m ail: fjm gar cia,p ed r oeg@d if.u m .es.

smaller development times.

Our initial results reported here show that for an opti-
mal number of workstations, p, the speedup is, of course,
not p due to communication overhead, but it is a signi¯-
cant value, greater than p=2, in many cases. Our investi-
gations suggest various ways to improve the performance,
which will make clusters of PCs a competitive approach to
parallel-distributed computation for an important class of
applications.

The organization of the paper is as follows. Section 2
describes the fundamentals of both the sequential and the
parallel versions of the implemented algorithm. In section
3 we show the di®erent issues we have taken into account
in our experiments. The results of the evaluation and a
performance analysis are presented in section 4. Finally, in
section 5 several conclusions and future work are drawn.

II. Jac obi Al gor it hm

Many of the most widely used numerical computing tech-
niques use large multidimensional arrays as the primary
data structure. This presents an opportunity for data par-
allelism, as di®erent elements of the arrays can be processed
in parallel. Many of these algorithms have an iterative na-
ture where, in each iteration, some kind of improvement is
performed on the current solution, until an acceptable one
is reached.

Applications include the numerical solution of sets of dif-
ferential equations, which specify the dynamical behavior
of large systems such as real and arti¯cial neural networks,
iterative methods for solving systems of linear equations,
optimization, and other numerical problems [1]. Also,
many discrete problems such as network °ow, shortest
path, arti¯cial intelligence and computer science problems
involving constraint satisfaction, production systems and
logic programs involve iterative maps.

In this kind of algorithms there is an opportunity for
parallelism within each iteration. Each process can work
on a di®erent part of the global data. However, each pro-
cess should communicate, at the end of each iteration, the
values produced because the rest of processes need these
results for the next iteration.

Jacobi is an algorithm for solving a di®erential equation
called Laplace's equation. An example of the application of
this algorithm is to consider a body represented by a two-
dimensional array of particles. This body is in contact with
a ¯xed value of temperature on the four boundaries; all four
boundaries can have di®erent temperatures, and each par-
ticle has an initial value of temperature. To determine the
¯nal values at the internal particles of the body, one must



IX JORNADAS DE PARALELISMO, DONOSTIA - SAN SEBASTI¶AN, SEPTIEMBRE, 1998 2

solve Laplace's equation for all the internal points. With
the di®erential equation, the temperature at each particle
is the average of the temperatures at its four neighboring
particles.

The Jacobi method [3] is based on the following idea.
First, we have to establish some initial values for the tem-
perature at each particle on the grid. Then, the main iter-
ation is performed repeatedly on the data: recompute the
value at each particle on the grid as the average of its four
neighboring points. The values of all internal particles will
change on each iteration to gradually converge to a more
accurate solution in each iteration. The algorithm stops
when the desired accuracy is reached.

This algorithm is amenable to parallelize because the re-
computation at each point is independent. The only draw-
back is that each process needs the values calculated in the
previous iteration. So, it is not possible to parallelize the
iterations. This section describes the main particularities
of both the sequential and the MPI parallel version.

A. Sequential Implementation

The analysis of this implementation is focused in the iter-
ative loop, which concentrates most of the calculus. There
are two fundamental loops in this phase. In the ¯rst loop,
the new body values are calculated and stored on an in-
termediate matrix. In the second one, the accuracy test is
performed for all points of the body. Each of these loops it-
erates on N2 elements, thus, complexity could be expressed
as O(KN2), where K represents the number of iterations.

B. Parallel Implementation

A row distribution has been chosen for implementing the
parallel version used in this paper. Each process has M
rows of the original matrix. In this approach, each pro-
cess works with less elements, but some communications
are needed to interchange the values of the boundaries be-
tween processes. This reduction on the number of elements
assigned to every process makes the execution phase com-
plexity O(K(NM )).

In the communication phase, two types of data trans-
mission between processes are needed in order to solve the
problem:

² Neighboring rows. The evaluation of each value is per-
formed by using the four adjacent values in the previous
iteration. Some of these values have been calculated by
neighboring processes. For this communication we use the
blocking primitives MPI Send() and MPI Recv().

² Accuracy test. The convergence criterion is reached when

every partition of the matrix passes this test. We per-

form it using MPI collective communications, to be exact,

MPI Allreduce().

In the table I we can see the information about the num-

ber of bytes transmitted by each process.

III. C onsider ed Issues

In order to analyze the utility of parallel programming in

di®erent kinds of environments using MPI, it is necessary

T A B LE I

Siz e of C om m unic at ions.

E xplanation T ransmitte d
information

T ransmitte d
e le me nts

Byte s pe r e l-
e me nt

N eigh b ou r in g
r ow s

U p p er an d low er
r ow s

2 ¤N (° oat) 4 b y tes

A ccu r acy test B oolean v alu e
w ith local r esu lt

1 (in t) 4 b y tes

to take into account some issues. Our analysis focuses on

the next four items:
² Communications network. The choice of the network
technology will concern the results obtained with paral-
lel programs. We have proved both Ethernet 10 Mbps and
Fast Ethernet 100 Mbps in our measures. Such networks
are based in a shared medium without switching devices.
² Operating system. This is the basis on which the program
will be executed. It provides communication primitives and
transmission protocols for the used MPI implementations.
Our measures have been performed on Linux, Solaris and
Windows NT.
² Message-Passing implementation. We have used
W32MPI v.0.8b [4] and MPICH v.1.0.13 [6].
² Portability. It is one of the MPI standard goals. Its aim
is to be able to compile the same program on several plat-
forms with another MPI implementation, without changes
in the source code.

IV. Eval uat ion

A. Testing Environments

We have carried out our tests on several clusters of work-

stations. These environments are the following ones:

² (C1) Cluster of Intel Pentium 200 MHz processor, 32 MB

main memory, 256 KB cache memory and Fast Ethernet

3Com 905-network adapter. The operating system used

is Linux 2.0.32 and the MPI implementation is MPICH

v.1.0.13.

² (C2) Cluster of Intel Pentium 166 MHz processor, 32

MB main memory, 256 KB cache memory and Ether-

net shared medium. The operating system used is Win-

dows NT Workstation v4.0 and the MPI implementation

is W32MPI v.0.8b.

² (C3) Cluster of Intel 486 DX4 133 MHz, 24 MB main

memory, 128 KB cache memory and Ethernet shared

medium. The operating system used is Linux 2.0.32 and

the MPI implementation is MPICH v.1.0.13.

² (C4) Cluster of Sun UltraSparc 145 MHz, 32 MB main

memory, 256 KB cache memory and Ethernet shared

medium. The operating system used is Solaris SunOS 5.5.1

and the MPI implementation is MPICH v.1.0.13.

In the Jacobi problem, we have considered the following

data:

² Boundary temperatures: left 30oC, up 50oC, right 30oC

and down 50oC.

² Body temperature: 15oC.

² Accuracy factor: 0:01oC.



IX JORNADAS DE PARALELISMO, DONOSTIA - SAN SEBASTI¶AN, SEPTIEMBRE, 1998 3

² Body dimensions: 400x400 cm, 800x800 cm and

1600x1600 cm.

The processes-processors mapping is 1:1.

B. Performance Measurements

Figures 1, 2 and 3 illustrate the results obtained in the

clusters mentioned above. As we can observe, the cluster

C4 has only ¯ve machines, so there are no results for the
execution with 6 computers. Furthermore, the sequential
execution with a size of the body of 1600x1600 elements has
only been able to be accomplished in two of the clusters.
Therefore the speedups corresponding to the others two
clusters have been omitted.

Fig. 1. S p eed u p r each ed w ith 400x 400 size.

Fig. 2. S p eed u p r each ed w ith 800x 800 size.

Figure 3 does not re°ect the speedups reached with C2

and C3 clusters for a body size of 1600x1600 elements. This

Fig. 3. S p eed u p r each ed w ith 1600x 1600 size.

is because execution of sequential program has no enough
RAM to accomplish the calculations, so it causes swapping.
The needed time to solve the problem in this case is almost
48 hours, while the execution time using two machines can
be accomplished in less than 30 minutes.

C. Performance Analysis

Six computers have been using as reference on calcula-
tions, because it was the maximum number of available ma-
chines for any cluster (except in the cluster C4). Also, the
results have been represented with respect to the speedup
obtained to normalize the di®erent execution times reached
in these di®erent computers. This speedup is calculated
according to the better sequential algorithm, without tak-
ing into account the initialization and completion phases
of processes.

In the results obtained for the di®erent operating sys-
tems, we can appreciate that the best performance is ob-
tained when Linux is used, as the speedups reached with
the clusters C1 and C3 indicate. We can observe that the
cluster C3 based on Linux behaves better than the cluster
C2, based on Windows NT, both using an Ethernet net-
work. Sun workstations cluster obtains the worse results.

From the point of view of the interconnection network,
we can appreciate that the cluster based on Fast Ethernet
always behaves better than the others do. Furthermore,
this fact becomes more evident for small sizes of the prob-
lem, mainly in the 400x400 case.

As we can observe, for a given size of the problem, there
exist a number of processes from which the speedup di-
minishes, for all the types of networks. The reason is the
following: the transmitted data raise linearly with the num-
ber of processes involved, while the number of instructions
that each processor executes is reduced in a O(1=p) order.
Anyway, the results show that for an adequate number of
workstations, p, the speedup is not p due to communication



IX JORNADAS DE PARALELISMO, DONOSTIA - SAN SEBASTI¶AN, SEPTIEMBRE, 1998 4

overhead, but it is a signi¯cant value, greater than p=2, in
many cases.

V. C onc l usions and F ut ur e W or k

Parallel computing on clusters of workstations and PCs
has very high potential, since it takes advantage of existing
hardware and software. Performance tests of the imple-
mentations show that they are superior to many existing
parallel programming environments for some application
problems. So, clusters of workstations can be considered
as a good alternative to parallel computers.
This paper illustrates how parallel programming with

MPI reaches good results in some clusters available nowa-
days. Here, we have used the Jacobi iteration algorithm to
solve the Laplace di®erential equation. The results show
that for an optimal number of workstations p the speedup is
greater than p=2. Our investigations suggest various ways
to improve the performance, which will make clusters of
PCs a competitive approach to parallel-distributed com-
putation for an important class of applications.
Portability has been displayed as a fundamental property

when we must to work with di®erent platforms. It is one of
the MPI standard goals and it has allowed that our Jacobi
code could be compiled without any changes on di®erent
platforms.
Considering the performance di®erences between both

Fast Ethernet and Ethernet networks, it is sure that Gi-
gabit Ethernet employment will increase considerably the
speedups obtained.
The realization of above tests on Mirynet and Gigabit

networks, and the extension of MPI functionality to visual
programming environments, such as Delphi, could be con-
sidered as future work.

Ref er enc es

[1] D.P . B er tsek as an d J .N . T sitsik ils, P ar allel an d D ist r ibut ed C om-
put at ion : N umer ical Met hods, P r en tice H all, N ew Y or k , 1989.

[2] W . Gr op p et al., U sin g MP I: P or t able P ar allel P r ogr ammin g w it h
t he Message- P assin g In t er face, MIT P r ess, 1994.

[3] B . Lester , T he ar t of par allel pr ogr ammin g, E n glew ood C li®s,
N ew J er sey , P r en tice H all, 1993.

[4] J . Meir eles Mar in h o. W MP I H ome P age, h ttp ://d sg.d ei.u c.p t/-
»fafe/w 32m p i/.

[5] Message P assin g In ter face For u m . MP I: A Message P assin g In -
t er face S t an dar d, In ter n ation al J ou r n al of S u p er com p u ter A p p li-
cation s an d H igh P er for m an ce C om p u tin g, 8 (3/4), 1994.

[6] Message P assin g In t er face (MP I) st an dar d. MP I H om e P age,
h ttp ://w w w .m cs.an l.gov /m p i.

[7] MP IC H - A P or t able Implemen t at ion of MP I, h ttp ://w w w .m cs.-
an l.gov /P r ojects/m p i/m p ich .

[8] N . N u p atir oj an d L.M. N i, P er for man ce E valuat ion of S ome MP I
Implemen t at ion s on W or kst at ion s C lust er s, P r oceed in gs of th e
1994 S calab le P ar allel Lib r ar ies C on fer en ce.

[9] S . Otto et al., MP I: T he C omplet e R efer en ce, MIT P r ess, 1996.
[10] J . P ier n as, A . Flor es an d J . M. Gar c¶³a, A n aly z in g t he P er for -

man ce of MP I in a C lust er of W or kst at ion s Based on Fast E t h-
er n et , 4th E u r op ean P V M/MP I U ser s' Gr ou p Meetin g, v olu m e
1332 of Lectu r e N otes in C om p u ter S cien ce, p p 17-24, 1997.

[11] X . W an g an d E .K. B lu m , P ar allel E xecut ion of It er at ive C om-
put at ion s on W or kst at ion s C lust er s, J ou r n al of P ar allel an d Dis-
tr ib u ted C om p u tin g, 34, p p 218-226, 1996.


