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Abstract
In this paper we propose conflict-defined blocks, a programming language construct that allows programmers to change the
concept of conflict from one transaction to another, or even throughout the course of the same transaction. Defining conflicts in
software makes possible the removal of dependencies which,though not necessary for the correct execution of the transactions,
arise as a result of the coarse synchronization style encouraged by TM. Programmers take advantage of their knowledge
about the problem and specify through confict-defined blockswhat types of dependencies are superfluous in a certain part
of the transaction, in order to extract more performance outof coarse-grained transactions without having to write minimally
synchronized code. Our experiments with several transactional benchmarks reveal that using software-defined conflicts, the
programmer achieves significant reductions in the number ofaborted transactions and improve scalability.
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1. Introduction and Motivation
Transactional Memory (TM) has been proposed as an easier-to-use
programming model that can help developers build scalable shared-
memory data structures, relieving them from the burdens imposed
by fine-grained locking. By using transactions to synchronize the
accesses to shared data, programmers need not reason about inter-
leavings or deadlocks to write correct multithreaded code.Futher-
more, they are encouraged to use a coarse-grained style of syn-
chronization, since the underlying system executes critical sections
speculatively and can potentially achieve performance comparable
to fine-grained locks. Unfortunately, the reality is that large trans-
actions often have data dependencies with other concurrenttrans-
actions, and suchconflictsdegrade performance as a consequence
of the stalls and/or aborts required to resolve them.

In this context, the use of coarse-grained synchronizationbe-
comes a double-edged sword that may create unnecessarily large
transactions, introducing artificial conflicts that are unnecessary for
correct program execution. In the TM terminology, a conflictis said
to occur when two concurrent transactions access the same memory
location, and at least one of the accesses is a write operation. Ac-
cording to this low-level definition, hardware transactional mem-
ory (HTM) systems typically provide a strict memory consistency
model in which all memory references from a transaction thatcom-
mits earlier seem to happen before all memory references from a
transaction that commits afterwards.

However, when data dependencies among transactions are ob-
served from a higher abstraction level, programmers are often able
to formulate looser definitions of exactly which conflicts are actu-
ally important for a given transaction—e.g., exploiting knowledge
about the algorithm, the semantics of the operations, etc. Atypical
example of this scenario is theinsert operation in a sorted linked
list, which must traverse it until the correct position for the new el-
ement is found. A simple thread-safe version of such an operation
would simply wrap the sequential code in a transaction (Figure 1a).
Consequently, once an insertion begins its execution no other op-
eration can concurrently modify the part of the list that hasalready
been traversed by the insertion. However, taking a closer look at
the semantics of insert, a more experienced programmer willre-
alize that this restriction is unnecessary, since there is no harm in
allowing other transactional insertions, deletions, etc.to take place
on the elements which an insert transaction has left behind.

This observation can be expressed in terms of the way in which
conflicts are defined: in this example, write-read dependencies
should notbe considered as conflicts for the insert operation. If
this kind of information is provided by the programmer, thenthe
underlying TM system can dynamically adjust the conditionsfor
signalling a conflict, relaxing or tightening them, thus creating
opportunities for more parallelism. Yet there exists no program-
ming language construct that allows programmers to change the
definition of conflict throughout a transaction, nor the hardware
mechanisms to support a variable conflict definition controlled in
software.

Furthermore, the implementation of the conflict management
mechanism must be efficient, given its critical role in the sys-
tem. Yet its design should be flexible enough so that TM hard-
ware can be applied toward solving problems beyond guarantee-
ing mutual exclusion during the execution of critical regions [4].
A well-known example of flexible design is the inclusion of anin-
struction to explicitly abort a transaction and roll back its tentative
work. Programmers find useful the ability of transactions toexplic-
itly rollback execution upon a certain condition, which need not
necessarily be a conflict with other transaction. Followingthe same
principle, having a conflict detection hardware whose functional-
ity is configurable in software makes possible to customize or even
switch off this component for certain transactions.

int TMinsert(List *list,

string key,
int data){

atomic{
return insert_seq(list,

key,
data);

}
}

int TMinsert_notWR(List *list,

string key,
int data){

atomic{
defconflict(!WR){

return insert_seq(list,

key,
data);

}
}

}

(a) Coarse-grained transaction (b) Software-defined conflicts

Figure 1. Sample code for theinsertoperation in a linked list.

The first contribution of this paper is the introduction ofconflict-
defined blocks, a new construct which allows TM programmers to
eliminate dependencies that are irrelevant to the semantics of their
transactions. Figure 1b illustrates the use of these blockswith the
list-insertion example. While there are other constructs motivated
by performance optimizations, such as early release [11] oropen
nesting [7–9], their use entails a significant increase in the program-
ming and hardware complexity in comparison to our proposal.We
illustrate the use of the proposed construct with examples of its ap-
plication in well-known transactional benchmarks.

As the second contribution, we present a hardware implemen-
tation of this programming construct in a popular HTM system
based on LogTM-SE [13]. We show how an HTM system can be
augmented with an interface to support software-controlled con-
flicts, and how this interface can be used by application develop-
ers through conflict-defined blocks, or directly by system program-
mers. For example, programmers can find the rollback function-
ality useful in algorithms that otherwise need deadlock-recovery
mechanisms, but do not require isolation in the execution ofsuch
transactions. Other programmers may choose to disable the conflict
detection component entirely and instead explicitly introduce their
own detection code, for example, to avoid false conflicts provoked
by the granularity of the detection. Therefore, our hardware TM
system with software-defined conflicts enhances the flexibility of
the whole design.

Our third contribution is demonstrating that using software-
defined conflicts, programmers can extract more performancefrom
coarsely synchronized code, by taking advantage of the their ab-
stract knowlegde. We augmented three STAMP benchmarks with
conflict-defined blocks, and their evaluation on the LogTM-SE sys-
tem shows how the combination of this programming construct
with the appropriate hardware support is able to decrease the num-
ber of aborted transactions between 50 and 90% for 16 and 32-
thread configurations, and consequently reduce execution time.

The rest of the paper is organized as follows: Section 2 dis-
cusses related work. In Section 3 we describe in detail the proposed
language construct and hardware support. In Section 4 we dis-
cuss some practical examples of application for software-defined
conflicts. Section 5 evaluates the performance gains that can be
achieved by relaxing the definition of conflict. We end with Sec-
tion 6, that summarizes the main conclusions of this study.

2. Related Work and Discussion
Several programming language constructs motivated by perfor-
mance optimization have been proposed for TM. Early release(ER)
[11] allows a transaction to remove a data address from its trans-
actional read-set before it commits. This allows other writer trans-
actions to proceed without generating a conflict with the releas-
ing transaction, reducing the probability of long stalls and aborts.
However, ER has several important drawbacks that question its use-
fulness. First of all, programmers must be extremely careful about
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int FGinsert(List *list,

string key,
int data){

...
Lock(list->head->lock);

while(cur!=NULL){
Lock(cur->lock);
if(key<=cur->key){

ins->next=cur;
prev->next=ins;

Unlock(prev->lock);
Unlock(cur->lock);
return 1;

}
Unlock(prev->lock);

prev=cur;
cur=cur->next;

}
ins->next=NULL;
prev->next=ins;

Unlock(prev->lock);

return 1;

}

int ERinsert(List *list,

string key,
int data){

...
atomic{

while(cur!=NULL){

if(key<=cur->key){

ins->next=cur;
prev->next=ins;

Release(&prev->next);
Release(&ins->next);
return 1;

}
Release(&prev->next);

prev=cur;
cur=cur->next;

}
ins->next=NULL;
prev->next=ins;

Release(&prev->next);
Release(&ins->next);

return 1;
}

}
(a) Fine-Grained locking (FG) (b) TM + Early-Release (ER)

Figure 2. Sample parallel codes for insertion.

when, where, and with which address ER is used, to avoid violat-
ing the overall application atomicity and consistency. Because pro-
grammers must explicitly specifyeachmemory address to be re-
moved from the read set, ER is very low-level construct whoseuse
entails a difficulty that resembles a lot that of fine-grainedlocks. As
we can observe by comparing Figures 2a and 2b, the programmer
needs to include areleasestatement for almost every place where
an unlockoperation appears in the lock-based code. On the hard-
ware side, ER is not easy to support in all HTM systems. For exam-
ple, systems that use hash signatures do not have the possibility of
“removing” an individual address from the signature. UsingRW-
bits in the private cache makes early release easy to carry out when
the block is cached, but it becomes quite tricky when the block has
been evicted, since the clean-up of transactional state at the direc-
tory takes place lazily, not explicitly. Furthermore, early release is
difficult to implement consistently in HTM systems that use cache
line granularity, since an early release instruction expects a word
address and thus it is not safe to release the entire cache line.

Open nesting [9] is another programming language construct
motivated by performance. Open nested transactions can improve
concurrency by relaxing the atomicity guarantee. When an open
nested transaction commits, the TM system releases its readand
written data so that other transactions can access them without
generating conflicts. Thanks to open nesting, otherwise-offending
transactions can access the exposed data after the nested transaction
commits, while the outer transaction still runs. This can enhance
the degree of concurrency achieved by a flatenning scheme, which
enforces isolation until the outermost transaction commits. When
compared to our scheme, open nesting limits available parallelism
because full conflict detection is enforced until the nestedtransac-
tion commits, unlike software-defined conflicts. For instance, con-
tinuing with the example presented above, a programmer could
wrap the search phase of the insert operation inside a read-only
open nested transaction, releasing its entire read set at once when it
commits and allowing other insertions to proceed after the insertion
point has been found, but not sooner. With software-defined con-
flicts, however, the system can be configured to not retain isolation
over certain transactional data, so that addresses appear to be imme-
diately released from read and/or write set after the access. On the
programmer side, open nesting requires commit and abort handlers
to be written for each nested transaction. Compensation actions are

run when the enclosing transaction aborts, as simply restoring the
values of memory locations modified by the nested transaction is
insufficient. This additional burden is somewhat similar tothat in-
troduced by transactional boosting [3], another techniqueaimed at
enhancing the concurrency of data structures in which the program-
mer writes inverse methods for recovery, to undo the side effects of
an aborted boosted transaction.

On a different matter, the idea of controlling the conflict man-
agement hardware in software has been previously explored.
FlexTM [10] proposes a set of hardware mechanisms that are
software-accessible. This hybrid approach achieves policy flexi-
bility by allowing software to determine when to manage conflicts,
either eagerly or lazily. With software-defined conflicts, we add
flexibility to the detection stage itself (what is considered a con-
flict), rather than on the policy (when/how are conflicts handled).

3. Software-Defined Conflicts in Hardware TM
In this section, we describe the proposed language featuresto
support programmer-defined conflicts inside transactions,along
with the ISA changes to support this construct in a hardware TM
system.

3.1 Conflict-Defined Blocks

Conflict-Defined Blocks(C-def’s) replace the fixed concept of
“conflict”, with a variable definition that is controllable in soft-
ware. This new construct helps programmers get a tighter grasp
on the conflict management mechanism, as they are now able to
configure the functionality of such a basic transactional component
by simply adjusting the definition of conflict throughout thecourse
of a transaction. This is a powerful yet intuitive feature inthe TM
programming model that had not been considered in the past.

As a programming language construct, the semantics of C-def
blocks is independent from the system in which the program ex-
ecutes. However, the underlying detection policy determines the
types of conflicts that can be detected, and thus narrows the spec-
trum of conflict types on which the definition is based upon. Hence,
the variety of optimizations offered by C-def blocks is restricted by
when and how conflicts are detected, as well as by the data version-
ing policy used. In this way, systems that defer the detection until
transaction commit (a.k.a.lazyor optimistic), carry out the detec-
tion by communicating the write set of the committer transaction
to the rest. Therefore, a conflict for a lazy transaction means that it
read (and/or wrote) data too early, because a remote transaction that
“happens before” this one has changed it. On the other hand, acon-
flict in eager policy means that a remote transactionwantsto write
(read) data that this one has already read/written (written). In this
paper, we explore the applications of software-defined conflicts in a
TM system that employs eager conflict detection and eager version
management. The use of conflict-defined blocks on eager-lazyand
lazy-lazy systems is left as future work.

Dependence Types and Definition of Conflict.A transaction’s
definition of conflict is alocal concept given by its response to
each of the four possible kinds of interactions or dependences that
the local transaction can experience with otherremoteconcurrent
transaction: read-write (RW) –a remote transaction wants to read
data locally written–, write-read (WR), write-write (WW) and read-
read (RR). The definition controls which kinds of dependences are
signaled as conflict, but it does not say anything about the reso-
lution process (i.e. which transaction must be aborted). Inan ea-
ger system, the coherence protocol ensures that a transaction ob-
serves those requests issued by remote transactions that are poten-
tially offending (i.e. for lines that may be in its read and write sets).
The transaction then uses its local definition of conflict to decide
whether the observed access must be considered conflicting or, on
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the contrary, entails a dependence whose type the programmer has
explicitely allowed using conflict-defined blocks. The traditional
definition of conflict, which we refer to as thedefault definition
throughout this paper, considers conflicting those types ofdepen-
dencies in which at least one of the two transactions writes the data
(WW, RW, WR). Moreover, we use the term empty definition to
refer to that definition in which none of the dependence typesare
considered to be conflicting.

Syntax. The syntax of this construct comprises thedefconflict

keyword, the types of conflicts to add/remove from the current
definition, and finally the block (statements and declarations) for
which the new definition of conflict applies.

defconflict ( <dep_types> )
{

BLOCK
}

<dep_types> := <dep_type> [, <dep_types>]

<dep_type> := [!] {WW|RW|WR|RR|ALL|NONE}

Not every dependence type needs to be specified in each C-def
block, but only those the programmer wishes to redefine, if any.
Each type can only appear once in the dependence type list. Each
type may be optionally negated.ALL is equivalent to the default
definition (RW,WR,WW), while NONE is synonymous with!ALL,
representing an empty definition in which no conflicts are detected
while executing the C-def code block. The block is a regular section
of code grouped together, consisting declarations and statements.
Multiple C-def blocks can be nested.

Semantics and Scope.With the introduction of software-defined
conflicts, a new concept ofcurrent definition of conflictcomes
into scene. The current definition appears as an implicit, thread-
local variable with dynamic-scope, which determines whether the
thread considers other memory accesses as offending. When the
program starts, the definition is automatically set toNONE so that
conflict detection is turned off when executing non-transactional
code. New threads inherit the definition of the parent threadat the
time they are created, commonly the empty definition. When the
thread enters a transaction, the current definition is immediately
changed toALL, in order to provide the default definition of “two
memory accesses, at least one of them a write”. We can think of
it as if transactions were implicitly wrapped in the C-def block
defconflict(RW,WR,WW). A C-def block then updates the current
definition before executing the statements in its block, adding or
removing types of dependences. If a type appears negated in the
list, it is disabled–removed from the definition– and not consider
conflicting within the block. If it appears not negated, thenthat
type isenabled–added to the definition–. Conflict types that are
not specified for a given C-def block remain in the same state as
they were outside that block. Adding (removing) a conflict type
that was already enabled (disabled) has no effect on the definition.

The programmer perceives the current conflict definition as a
variable with dynamic scope. All nested function calls inside the
C-def block inherit the same definition, until the program leaves the
C-def block or another nested C-def block redefines it. In thelatter
case, the inner conflict type list overrides the outer definition for the
specified types (the types not listed in the inner C-def declaration
remain unchanged). When the execution abandons a C-def block
the outer definition is restored.

Granularity. The current definition is applied toall incoming
data requests while inside the C-def block, to determine whether
they are conflicting or not. Therefore, C-def blocks are a coarse-
grained mechanism of releasing/reacquiring isolation in regards to

addresses, unlike early release. However, from a coding perspec-
tive, the programmer is free to use C-def blocks with a finer or
coarser block granularity, from wrapping the entire transaction to
having only a few statements inside a C-def block.

Dependence Transformation. C-def blocks guarantee that, once
a remote transaction has trespassed a local transaction’s R&W sets,
the latter cannot access such data again throughout the course of
its execution, and any attempt to do so will cause its immediate
abort. For instance, when WR dependences are disabled, the local
transaction is not allowed to reload nor modify any Rset data
that has been written by a remote transaction. If RW conflictsare
disabled, the local transaction is not allowed to modify anyWset
data that has been read by a remote transaction.

3.1.1 Relaxed Transactional Consistency Models

Generally, HTM systems assume a fixed definition of conflict that
leads to a simple, straight-forward model of sequential consistency
(SC) based on transactions, a model that is easy for the programmer
to reason about.

Transactional SC is a strict memory consistency model that im-
poses strong limitations on the possible interleavings of transac-
tions, thus limiting concurrency and performance. However, those
severe restrictions are not required in all transactions, and some
codes can still produce correct results despite relaxing the defini-
tion of conflict. Such changes of the definition are accomplished
through C-def blocks, introducing relaxed transactional memory
consistency models.

Shared memory systems have likewise implemented relaxed
memory consistency models that allow for further optimizations
in comparison to SC. In this context, we believe it makes sense to
offer the TM programmer the possibility to trade some of the pro-
gramming ease for performance, by using a relaxed transactional
memory consistency model. Just like these models allow for re-
orderings of memory operations that are illegal under SC, C-def
blocks permit overlappings in the read and write sets that are not
possible under transactional SC. Of course, these forbidden inter-
leavings make it more difficult to reason about the correctness of a
program. Therefore, C-def blocks are intended to be used by more
experienced programmers who are willing to address the added
complexity in their quest for performance.

Stale Consistency. When a transactionT1 disables write-read
(WR) conflicts, it allows other transactionT2 to write on blocks
thatT1 has read, and both continue their execution as if no conflict
had happened. If the offenderT2 commits whileT1 is still running,
the values read byT1 becomestalewhenT2 publishes its updates
–hence its name–. Nothing stopsT1 from observingT2’s updates
afterT2 has committed, except for those lines that are also part of
T1’s read set (since that entails a forbidden dependence transforma-
tion). Therefore, the atomicity property is not preserved,asT1 may
read both pre- and post-T2 values throughout its execution. On the
other hand, the execution ofT1 does appear atomic when it com-
mits before any offending writer, and in this case the resultof the
execution is equivalent to the transactional SC model.

Producer Consistency. When a transactionT1 disables its read-
write (RW) conflicts, it allows other transactionsT2, T3 to read
blocks thatT1 has written. The consumers then continue their exe-
cution as if no conflict had happened and may commit even before
the producer. However, ifT1 eventually aborts, the conflicted data
is restored without further notification to the consumers.

3.2 Hardware and Compiler Support

Adding support for software-defined conflicts requires simple
changes at both the compiler and hardware levels. On the one hand,
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the hardware must provide an interface for setting and obtaining
the definition of conflict in software. Many previous HTM pro-
posals incorporate atransaction status registervisible in software,
which we simply augment with three new bits to encode the current
definition of conflict. Each type of dependence (WR,WW,RW) is
represented by one bit in the register, which indicates whether that
kind is enabled (consider conflicting) in that moment. The conflict
check logic is slightly modified so that these three bits control how
the output from the query of the read and write sets must be inter-
preted depending on the type of coherence request received –unlike
traditional HTM systems, which embed this decision in silicon–.
The hardware is extended with aconflict signaturethat summarizes
the addresses of those remote accesses that would have caused a
conflict, had not it been for the relaxed definition established by a
C-def block. After an address is added to this conflict signature, it
must be checked against every local load or store until the end of
the transaction, in order to avoid dependence transformation. Fi-
nally, for eager-versioned systems, the logging logic mustbe made
configurable and capable of operating with word granularityas well
as lines.

The bits that hold the conflict definition in the transaction status
register are manipulated through regular ISA instructionsthat the
compiler inserts in the appropriate places of the code. At the begin-
ning of each C-def block, the compiler must place some instruc-
tions to load the transaction status register and save the current def-
inition of conflict in a space allocated in the local stack. Then, the
corresponding bits of the status register are set or clearedaccord-
ing to the list of dependences types given in the C-def block.When
the end of the C-def block is reached or it is abandoned through
a break, return or other similar statement, the previous definition
is recovered from the stack and restored into the status register.
Finally, the compiler assumes that each regular transaction has an
implicit C-def block with the default definition of conflict.

4. Applications and Use Cases of C-def Blocks
In this section, we show some practical examples of how C-def
blocks can be used in real applications to reduce the amount of
conflicts suffered by the transactions.

4.1 Emulating Early Release:genomeand labyrinth

C-def blocks are useful to remove unessential dependenciesthat
commonly occur when traversing data structures in search ofsome
element. For example, two of the transactions in the benchmark
genome of the STAMP suite [2] comprise a single insert operation
into a sorted linked list that saves the hashes of segment substrings.
We wrap the body of each transaction in a C-def block that unde-
fines WAR conflicts, as shown in Figure 1, to allow other insertions
that modify the elements which another concurrent transaction has
traversed while searching for the location of the insertion.

The labyrinth benchmark is another example of algorithm in
which the programmer can attempt to extract additional perfor-
mance by adjusting the definition of conflict to the semanticsof
the problem. Labyrinth implements a variant of Lee’s algorithm
[12]: For each pair of input points, the program finds the shortest
route that connects them in a three-dimensional uniform grid that
represents the maze. The main transaction of the program encloses
the calculation of the path and its addition to the global grid. To
avoid unnecessary writes to the global grid, each thread creates a
local copy of the global grid and uses it for the route calculation
(expansion and trace-back phases). The pseudocode of the main
transaction can be observed in Figure 3.

At a high abstraction level, a conflict occurs when two threads
pick paths that overlap. This can be expressed in terms of the
conflict definition as “only write-write conflicts on the global grid
are meaningful”. However, before the introduction of software-

Grid global;

forall routes {

atomic {
defconflict(!WR) {

Grid local;

Copy global grid into local grid;

Expand from source to destination; // in local
Traceback from destination to source; // in local

Add found path to global grid;
}

}
}

void grid_addPath (...) {
forall points in path {

if point is full in global grid then abort transaction
else mark point as full in global grid

}

}

Figure 3. Pseudo-code for the labyrinth program with software-
defined conflicts

defined conflicts, the programmer had no way to provide such
valuable information to the underlying levels. In the following
paragraphs, we discuss how C-def blocks can be used to properly
adjust the conflict definition to eliminate unwanted dependencies
without adding any complexity to the reasoning process, andwith
minimal changes to the original code.

Default Conflict Definition. In the process of creating a private
copy of the grid, transactions add the entire global grid to their read
sets, causing write-read conflicts whenever one of them attempts to
add its calculated path to the global grid. Obviously, this definition
completely serializes transactions because, no matter howmany
concurrent transactions are calculating paths in a given moment,
only one of them will be able to update the global grid, while the
rest will have to abort. If the TM system supports it, the benchmark
can use early release in order to remove the global grid from the
transaction’s read set, after the grid copy has completed. Releasing
addresses from the read set requires the grid points along the new
path to be revalidated when the path is added, as we can see in the
addPathfunction of Figure 3. This is to make sure that none of the
selected points has become part of another path after the grid copy.

Disabling Write-Read Conflicts. By using C-def blocks, a pro-
grammer can eliminate WR conflicts without having to manually
release addresses and then worry about validating the foundpath.
The changes to the original code are straight-forward, and consist
of wrapping the main transaction in a C-def block. Under thisdef-
inition, transactions can add paths to the global grid whileother
transactions are calculating their route. Using the relaxed definition
for all the transaction opens more opportunities for concurrency at
the cost of risking an inconsistent snapshot, because pathswould
not appear to be added atomically (T1’s copy could observe only
part of a path committed byT2 during its copy). Nonetheless, cor-
rectness is never threatened since any attempt to update a global
point that has been added to another path since the grid copy,entails
a forbidden dependence transformation that will force the transac-
tion to abort, even if paths are not revalidated at the end.

4.2 Avoiding False Conflicts:labyrinth

If the underlying TM system tracks conflicts on a cache-line gran-
ularity –as most HTM systems do–, unnecessary conflicts arise in
the benchmark labyrinth as a result of false sharing amongstpoints
of the same row. For example, when a grid of size 32 is mapped to
hardware that uses 64-byte cache lines, each row of the grid occu-
pies only two lines (16 points per line, 4 bytes per point). When a
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transaction adds one point to its path, concurrent attemptsto mark
the row-adjacent points of the line will create a false write-write
conflict, causing unnecessary stalls or aborts. If the hardware em-
ploys lazy versioning (or it supports eager versioning withword
granularity), C-def blocks can be used to fight false conflicts.

Disabling Conflict Detection. Thanks to software-defined con-
flicts, experienced programmers also have a tool to address false
sharing in their applications by assuming full responsibility on the
conflict detection. Wrapping the main transaction of labyrinth in
the C-def blockdefconflict(NONE) disables all conflicts types,
so that transactions are exclusively used for its ability toroll-
back. Indeed, the “undo” capability of transactions is actually what
makes them beneficial for implementing this program, as deadlock
avoidance techniques would be required in a lock-based approach.
Detecting conflicts manually in labyrinth is so straight-forward
that is in fact already implemented in the benchmark, in order to
support early release. The programexplicitly checks for conflicts
when it revalidates (re-reads) the points along the found path be-
fore adding it to the global grid, to make sure that none of them has
been marked as full by other concurrent transaction. If a full point
is found along the path, a programmer-triggered abort is issued;
otherwise, the point is marked as full. To ensure correctness, this
check-and-update must be performed atomically, either by using a
compare-and-swap instruction, or even by using the C-def block
defconflict(ALL) inside the loop of the addPath function.

4.3 Avoiding Starving-Writer Problems: vacation

The vacation benchmark can also benefit from a relaxed conflict
definition. This application implements an on-line transaction pro-
cessing system similar in design to SPECjbb2000. The database is
implemented as a set of trees that keep track of customers andtheir
reservations for various travel items. Client threads perform a num-
ber of sessions that interact with database in three types ofsessions:
reservations, cancellations, and updates. Each session isenclosed
in a coarse-grain transaction to ensure validity of the database. The
main transaction of vacation, as shown in Figure 4, has two phases:
First, the items solicited by the client are searched in the database.
Then, if the queries returned some matching results, a reservation
is made each matching type of item.

When this benchmark is executed in a system with eager conflict
detection, those transactions that attempt to update the database ta-
bles by adding or removing new items (car, flights, etc.), maysuffer
a pathological interaction commonly referred asstarving writer[1]:
They may find very difficult to acquire exclusive ownership over
those cache lines that are heavily accessed by other reader transac-
tions that only query the table. Even if the priority scheme dictates
the abort of any concurrent query, by the time its rollback com-
pletes other query could have loaded the conflicting line, impeding
any forward progress on the writer side.

Grid global;

void client_run(...)

...
atomic {

defconflict(!WR) {
for item in requested items do {

query database and record matches
}

}

if matched then make reservation
}

}
}

Figure 4. Pseudo-code of the main transaction in vacation with
software defined conflicts.

Table 1. System parameters.
MESI Directory-based CMP

Core Settings
Cores 2 to 32, single issue

in-order, non-memory IPC=1
Memory and Directory Settings

L1 I&D caches Private, 32KB, split
2-way, 1-cycle latency

L2 cache Shared, 512KB per tile, unified
4-way, 12 cycle-latency

L2 Directory Bit vector, 6-cycle latency
Memory 4GB, 300-cycle latency

Network Settings
Topology 2D Mesh (4x4)
Link latency 1 cycle
Link bandwidth 40 bytes/cycle

Disabling write-read conflicts. Using C-def blocks as depicted
in Figure 4, a programmer allows writer transactions to proceed
despite the presence of concurrent readers (queries), and resolve
the problem of starving writer. The effect of relaxing the definition
in this way is that the state of the database may change from the
query phase to the reservation phase. However, a transaction never
observes the database in an inconsistent state, because C-def blocks
avoid such transformations of conflicts: If in its attempt tomake a
reservation, a transaction reaccesses data that has changed since the
query phase, it will be forced to abort.

5. Evaluation
In this section, we evaluate the performance of the proposed
programming language construct using an HTM that supports
software-defined conflict detection.

5.1 Simulation Environment

We use a full-system execution-driven simulator based on the Wis-
consin GEMS tool-set [6], in conjunction with Virtutech Simics
[5]. We use the implementation of LogTM-SE [13] and the detailed
timing model for the memory subsystem of GEMS v2.1, with the
Simics in-order processor model. Simics provides functional cor-
rectness for the SPARC ISA and boots an unmodified Solaris 10.
LogTM-SE extends a directory protocol to perform eager conflict
detection, and encodes read and write sets using hash signatures.
LogTM resolves conflicts through stalls, and uses a deadlockavoid-
ance algorithm based on timestamps. We use an ideal book-keeping
scheme to track read and write sets (perfect signatures).

We perform our experiments on a tiled CMP system, as de-
scribed in Figure 4.3. We use 2 to 32-core configurations withpri-
vate L1I and L1D caches and a shared, multibanked L2 cache of
512KB (one L2 slice per tile). The L1 caches maintain inclusion
with the L2. The cores and L2 cache banks are connected through
a 2D mesh network. The private L1 data caches are kept coherent
through an on-chip directory (at L2 cache banks), which maintains
a bit vector of sharers and implements the MESI protocol. We use
three benchmarks extracted from the STAMP suite [2]: labyrinth,
vacation-high and genome. We use the small input sets for thetwo
former applications, and the medium size input for the latter. To
minimize the influence of the operating system and avoid patho-
logical interactions between OS and the transactional application,
we leave one core idle in each experiment and we run n-1 threads
for the experiments in an n-core configuration. We also disable in-
terrupts for the remaining cores and bind each thread to one core.

5.2 Results

The resuls of the evaluation are summarized in Figure 5.2, which
shows the speedup (left side) and the number of aborted trans-
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Figure 5. Speedup and number of aborted transactions.

actions (right side) for each of the three considered benchmarks.
We compare the performance of the baseline LogTM-SE system
(baseplot in the graphs) against the same HTM system extended
to support software-defined conflicts (noWARplot). For the consid-
ered benchmarks, the definition was relaxed by disabling write-read
conflicts as discussed in Section 4.

For genome, disabling write-read conflicts for the two trans-
actions that perform insertions in a list completely eliminates the
aborts suffered by these two transactions. A significant portion of
the total number of aborts suffered for configurations of 7 ormore
threads correspond to one of these transactions. These aborts are
caused by concurrent insertions in the same table (dynamic in-
stances of the same static transaction competing for the list). As
mentioned earlier, relaxing the definition for this list insert oper-
ation acts as a straight-forward implementation of early release,
achieved by simply adding a single line of code. For 15 threads,
the number of aborts is reduced from almost 2000 in the baseline
system (baseplot) to less than 100 (noWARplot). The effect on
the execution time is not as impressive (since this phase of inser-
tions only spans a small amount of the total execution time),though
we can see how it improves the scalalabilty (up to 15 threads). For
larger configurations, the contention experienced by other“not re-
laxed” transactions increases the number of aborts and degrades the
overall performance in both cases.

Regarding labyrinth, as explained in Section 4, the base system
(without ER nor C-def blocks) performs very poorly, as only one

of the transactions is able to update the global grid at a time. Even
worse, with configurations of 7 or more threads, the benchmark
struggles to make forward progress and the execution time sky-
rockets, because the contention for the global grid is so high that
the highest priority transaction cannot add its path until all other
threads have aborted several times and are backing off. Thiscauses
the starvation of the writer for long periods and quasi-livelock sce-
nario. By disabling WAR conflicts, on the other hand, transactions
are allowed to add paths to the grid while other transactionskeep
calculating their route, which results in a scalable behaviour up to
31 threads and a speedup of 4 (noWARplot). To provide a fair com-
parison, we also evaluate an ideal implementation of early release
(useERplot), since the benchmark is designed to use this program-
ming construct. Note that early release is simulated by removing
line addresses from the perfect signature that represents the transac-
tion’s read set, and could not be feasible if true hash signatures were
employed. We can observe in Figure 5.2 that using C-def blocks to
disable WAR conflicts emulates the functionality of an idealearly
release (useERplot), in both number of aborts and execution time.

As for vacation-high, we observe how the performance scales
very well up until 15 threads for both configurations, because of a
very low or inexistent number of aborts. For the 31-thread exper-
iment, the number aborts in the base case goes up by a factor of
20, and this is reflected on a performance degradation that leads
to worse execution time than for 15 threads. The aborts mostly
occur when a transaction attempts to add or remove items from
the database (several red-black trees). The situation is aggravated
by the starving writer pathology: The “updater” needs to perform
some updates (adjust colours, rebalance, etc.) in a data structure
which is heavily accessed by many reader transactions (queries).
When the updater becomes the highest priority, all cyclic conflicts
result in the abort of the readers, hence the sudden increasein the
number of aborts (the vast majority are reservation queries). How-
ever, their constant retries not only are fruitless but alsoprevent the
writer from acquiring exclusive ownership and write the required
cache lines, and this pathological interaction only ends when their
backoff period grows long enough to give way to the writer. Onthe
other hand, the version with software-defined conflicts manages to
keep the aborts within reasonable bound and allows the benchmark
to scale up to 31 threads. The temporary relaxation of write-read
conflicts in the noWAR case allows the writer to proceed in the
presence of readers, solving the starving writer scenario,and dra-
matically reduces the number of aborts.

6. Conclusions
In this paper, we have given the concept of conflict definitionan
interesting twist, transforming it from its fixed nature to avari-
able, software-controllable definition. We have introduced conflict-
defined blocks, a new programming construct that enables thepro-
grammer to alter the definition throughout the execution of atrans-
action. C-def blocks are used to relax the conditions for signalling a
conflict in those cases where relaxing the isolation guarantees does
not threaten correctness, in order to eliminate conflicts that are not
essential to the execution.

We have presented several examples of its application on com-
mon scenarios and well-known transactional benchmarks. Wehave
described a straightforward implementation of this programming
construct on top of an eager HTM system. Finally, we have eval-
uated the proposed hardware/software scheme on top of a popular
HTM system such as LogTM-SE using real applications, and we
have demonstrated that software-defined conflicts can significantly
reduce the number of aborts in the selected applications, obtaining
more performance out of coarse-grained transactions.
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