A massively parallel framework using P systems
and GPUs

Jose M. Cecilia, Ginés D. Guerrero, Miguel A. Martinez—del-Amor, Ignacio Pérez—Hurtado,
José M. Garcia Mario J. Pérez—Jiménez
Grupo de Arquitectura y Computacion Paralela Research Group on Natural Computing
Dpto. Ingenieria y Tecnologia de Computadores Dpt. of Computer Science and Atrtificial Intelligence
Universidad de Murcia University of Sevilla
Campus de Espinardo, 30100 Murcia, Spain Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
Email: {chema, gines.guerrero, jmgarp@ditec.um.es Email: {mdelamor, perezh, marpe@us.es

Abstract—Since CUDA programing model appeared on the There are different models of P systems that have been
general purpose computations, the developers can extractlla jnvestigated in this area [9], and they are theoreticalbigieed
the power contained in GPUs (Graphics Processing Unit) acss 4, gove diverse problems. In this work, we deal with P system

many computational domains. Among these domains, P systems ble of tructi tial K
or membrane systems provide a high level computational mod- capable of constructing an exponential workspace (expdess

eling framework that allows, in theory, to obtain polynomial by the number of membranes and objects) in polynomial

time solutions to NP-complete problems by trading time for time. They are based on the model of P systems with active
space, and also to model biological phenomena in the area ofmembranes and membrane division, that abstracts the way of
computational systems biology. P systems are massively el obtaining new membranes through the processnibsis It

distributed devices and their computation can be divided intwo . . .
levels of parallelism: membranes, that can be expressed asobks has been successfully used to design (uniform) solutions to

in CUDA programming model; and objects, that can be express¢ Well-known NP-complete problems, for example SAT [9] and

as threads in CUDA programming model. In this paper, we Subset Surproblems, using the massively parallelism among
present our initial ideas of developing a simulator for the ¢ass of membranes and objects to study all the possible instances of
recognizer P systems with active membranes by using the CUDA a NP-complete problem in parallel.

programing model to exploit the massively parallel nature é) . . .
those systems at maximum. Experimental results of a prelinmary Up to now, it has not been possible to have implementations

version of our simulator on a Tesla C1060 GPU show a 60X of neitherin vivo norin vitro of P systems, so the manipulation
speed-up compared to the sequential code. and analysis of these devices is performed by simulations on

conventional computers. However, sequential implemgmtat
like showed in [7][9] have very low performance, so the urder
Conventional computerglectronic devices based on sili-lying architecture used to simulate P systems should géit pro
con) have increased their performance since the early dayfstheir parallel nature to accelerate the simulations.hiis t
of computing, but this trend is limited by physical lawssense, several authors have implemented parallel simsilato
Although many real-life problems can be solved in reasamalibr transition P systems on clusters [10], and many others
time, other relevant problems need an exponential amounthzfve designed P systems hardware implementations [12][11]
resources (time or space) to be solvdiiP-problems belong In this work, we introduce a solution based on the GPU
to the last class, which are hard computational probleml suarchitecture to simulate P systems due to its massively- chip
as SAT, K-closure and Network reliability. Therefore, iesgs level parallelism.
reasonable looking for new computation paradigms that ean b In this paper, we present a simulator for recognizer P sys-
implemented in non-electronic devicdsnconventional Com- tems with active membranes using CUDA. CUDA programing
puting to go beyond the limits of conventional computing. model presents two levels of parallelism. The first one appea
Membrane computing (or cellular computing) is an emergt block-level whereas the second one is presented at the
ing branch within Natural Computing that was introduced bthread-level. We identify those levels of parallelism imsic
Gh. Paun in [6]. The main idea is to consider biochemicah CUDA with the two levels of parallelism that P Systems
processes taking place inside living cells from a compaoteti naturally have by its definition: among membranes and among
point of view, in a way that gives us a new non-deterministisbjects within membranes. We test this simulator using a
model of computation by using cellular machines. family of P systems that solve the N-Queens problem [13],
The devices of this model are calléd systemsand they obtaining up to 60X of speed-up compared to the sequential
consist of a set o§yntacticcomponents: a cell-likemembrane version of this simulator.
structure multisets of objectassociated to each membrane, The rest of the paper is structured as follows. In Section
andrules executed in a synchronous non-deterministic max- we outline P systems with active membranes. Section 3
mally parallel manner. introduces key points of CUDA used in our implementations

I. INTRODUCTION

and the GPU features used for this work. Section 4 explaim$ich communicates with device side (GPU side) through PCI
the design of the simulator, and finally, the paper ends wilxpress x16 bus. The SM is the processing unit and it acts
some conclusions and ideas about future work. both as unified graphics and computing multiprocessor.\Ever

SM contains eight SPs arithmetic cores, a set of 16384 32-bit
registers, 16-Kbyte read/write on-chip shared memoryhhat

P systems consist of a set syntacticcomponents: a cell- very low access latency, and also access to device or global
like membrane structurgit is a hierarchical rooted tree of memory.
compartments that delimiegions where the root is called A SM is a hardware device specifically designed with
skin), multiset of objects(corresponding to chemical sub-multithreaded capabilities. It manages and executes up to
stances present inside the compartments (membranes) af024 threads in hardware with zero scheduling overhead Eac
cell), andrules (corresponding to chemical reactions that caihread has its own thread execution state and can execute an
take place inside the cell) executed in a synchronous naneependent code path. The SMs execute threads in a Single-
deterministic maximally parallel manner. Instruction Multiple-Thread (SIMT) fashion (see [2][1]).

The semanticsof P systems are defined through a non- To develop parallel applications on the GPU we use C
deterministic synchronous model. A computation of a P systeand C++ programing language along with CUDA extensions
is made by steps calledonfigurations(which identifies an (Compute Unified Device Architecture)[15]. In the CUDA par-
instantaneous state of the system: the family of multisedfiel programing [14], an application consists of a seqiaént
and the membrane structure), assuming a global clock tidae fostcode) that may execute parallel programs known
synchronizes the execution. askernelson a paralledevice The host program executes on

The computation starts always with anitial configuration the CPU and the kernels execute on the GPU.
of the system, where the input data of a problem is encodedA kernel is a SPMD (Single Program, Multiple Data)
Thetransitionfrom one configuration to the next is performe@¢omputation executed by large number of threads running in
by applying rules to the objects placed inside the regions. #rallel. The programmer organizes these threads intalari
computation of the system is a tree of configurations, whigRread blocksA thread block in CUDA is a set of threads that
is made by transitions until reachinghalting configuration execute the same program (kernel) and cooperate to obtain a
where no more rules can be applied. The result of a haltigsult through barrier synchronization and a per-blocketha
computation is usually defined through the multiset assedia memory space, private to that block.
with a specific output membrane, or teavironmentwhich The programmer declares the number of threads block per
is the space out of the skin. grid and also the number of threads per thread block. On one

In the P systems with active membranes model, eveRynd, blocks in a Grid are declared in one or two dimensions,
elementary membrane is able to divide itself by reproducipgd all of them have their own and unique identifier. Simylarl
its content into a new membrane. Specifically, this model jie threads in a block can be declared in one, two or three
a construct of the fornl = (O, H, y, w1, ..., wm, R), Where gimensions having their own and unique identifier too. On the
m > 1 is the initial degree of the system) is the alphabet other hand, the maximum number of threads in a block is
of objects I is a finite set oflabels for membranesy. is 512 Using a combination dhread id and block id, threads

a membrane structure (a rooted tree), consistingnahem- can access to different data addresses and also to select the
branes injectively labeled with elements@f w:,...,w, are program code that they run.

strings overO, describing themultisets of objectplaced in
the m regions ofy; and R is a finite set ofrules where each |\ g/MULATING P SYSTEMS WITH ACTIVE MEMBRANES
rule is one of the following types=volution rules Division
rules Dissolution rulesand Communication rule§Send-out In the design of the simulator, we have identified each
or Send-in. See [8] for details. membrane as a thread block where each thread represents
P systems can be used for addressing the efficient resolutisn object of the alphabed. It presents a strong restriction
of decision problems. This kind of problems require eithdrecause a membrane would have only 512 objects which is
a yesor no answer. In this sense, we considecognizer not enough to solve many problems. Therefore, if the number
P systemsas P systems with external output (the results of objects is bigger than 512, the objects are distributehiy
halting computations are encoded in the environment) sugmong 256 threads that is our best empirically block size.
that theyesor no answer is sent in a halting configuration. The simulator, which is based on the presented in [7], is
executed into two stageselection stagandexecution stage
The selection stage consists of the search for the rules to
In this section, we briefly introduce the NVIDIA Teslabe executed in each membrane. Téhecution stageonsists
C1060 GPU that we use in this work, and also the CUDA papf the execution of the rules previously selected. Thessfor
allel programing model presented in [2][1]. The Tesla C1060 presents a need of global synchronization among each
GPU which is based on scalable processor array that has p#@se. The input data for the selection stage consists of the
streaming-processor (SP) cores organized as 30 streamilng rdescription of the membranes with their multisets (striogsr
tiprocessor (SMs). Applications start at host side (CPW)sidthe working alphabe®, labels associated with the membrane

II. P SYSTEMS WITHACTIVE MEMBRANES

Ill. PARALLEL COMPUTING ONGPUs

in H, etc...) and the set of ruleB to be selected. The outputyond. The newest clusters of GPUs provide a higher massively
data of this stage is the set of selected rules per membrangarallel environment, so we will attempt to scale to those
The execution stage applies the rules previously selectgdtems to obtain better performance in our simulated codes
on the selection stage, and the membranes can vary includamgl also more memory space for our simulations.
new objects, dissolving membranes, dividing membranes, et
obtaining a new configuration of the simulated P system. This
new configuration (stored in device memory) would be the The first three authors acknowledge the support of the
input data for the next step of selection stage. Therefois, i Project from the Fundacion Séneca (Agencia Regional de
an iterative process until a halting configuration is redche Ciencia y Tecnologia, Region de Murcia) under grant
We develop both stages of the simulation on the GP@P001/CS/2007, and also by the Spanish MEC and Euro-
to avoid data transfers through PCI-Express bus in eve?gan Commission FEDER under grants “Consolider Ingenio-
simulation step, and also to increase the performance of #¢l0 CSD2006-00046* and “TIN2006-15516-C04-03". The
execution stage. We use different CUB@rnelsto implement last three authors acknowledge the support of the project
this simulator. TIN2006-13425 of the Ministerio de Educacion y Ciencia
The selection stage is implemented as a CU@#fnel Each Of Spain, cofinanced by FEDER funds, and the support of
thread block runs in parallel looking for the set of rulestthdhe “Proyecto de Excelencia con Investigador de Reconocida
has to select, and each individual thread is responsible #ia” of the Junta de Andalucia under grant P08—TIC04200
identifying if there are some rules associated with the atfge
that it represents. Moreover, it also includes the exeoutio , _ _
the evolution rules. It is due to two main reasons: the eiaiut [1] i‘efghnO’VT"gr“SP’u'rDC'eI'[“AEbSﬁ'Ve';' O%’Q’g‘e‘:gf:)“drp'\géeHgéﬁh;ar;mggfﬁ_
rules do not implies communication among membranes, and ics hardware. Computer Graphics Forum, 26, 1 (2007), pplB8—
they are executed in a maximal manner. Finally, the selecti] E. Lindholm, J. Nickolls, S. Oberman, J. Montrym. NVIDIAesla: A

kernel has to finish to obtain global synchronization betwee “”iﬁgg graphics and computing architecture. IEEE Micro, 2§2008),
pp. 39-55.

the selection stage and the execution stage. [3] N. Satish, M. Harris, M. Garland. Designing Efficient 8og Algorithms
However, the rest of the rules (not evolution) only can be for Manycore GPUs. In Proceedings of the 23rd IEEE Inteomati

executed one per membrane, and they entail communicatfl nParallel and Distributed Processing Symposium, May 2009.

ACKNOWLEDGMENTS

REFERENCES

. . S. Ryoo, C. Rodrigues, S. Baghsorkhi, S. Stone, D. Kirk,rité¢i Hwu.
among them. Therefore, we design the execution of those ruleé optimization principles and application performance estibn of a mul-

as different CUDA kernels, one kernel per each kind of rule tithreaded GPU using CUDA. Proceedings of the 13th ACM SIBRL

(send-in communication, send-out communication, dig&miu Symps?ss'gm on Principles and Practice of Parallel Prograigm(2008),
o o ') X pp. 73-82.

and division), giving a result of thexecution stage\WWe use [5] S. Ryoo, C.I. Rodrigues, S.S. Stone, J.A. Stratton, Zai@ Ueng,

different kernels for the execution stage because, otlsefwi S.S. Baghsorkhi, W.W. Hwu. Program optimization carving ®&PU

we should implement a bigger kernel with branches to idyenti{ computing. J. Parallel Distrib. Comput., 68, 10 (2008), HBE9-1401.

. ; . 6] G. Paun. Computing with membranes. Journal of Compatketr System
each kind of rule to be applied, and this model decreases thesciences, 61, 1 (2000), pp. 108-143, and Turku Center for pDten

performance of our application. Science-TUCS Report No 208.)
[7] M. Garcia-Quismondo, R. Gutiérrez-Escudero, M.A.rit&ez-del-Amor,
V. CONCLUSION E. Orejuela-Pinedo, |. Pérez-Hurtado. P-Lingua 2.0: Aveafe frame-

work for cell-like P systems. Int. J. of Computers, Commatians and
In this paper, we present a massively parallel framework Control, Vol. IV (2009), 3, pp. 234-243.

; ; ; G. Paun. Membrane Computing: An Introduction. Spring2002).
using GPUs and a class of recognizer P systems with act G, Ciobanu, M.J. Pérez—Jiménez, G. Paun, editors, iéations of

membranes We ShOW that GPUS are We” SUIted to S|mu|ate membrane Computing_ Natural Computmg Series‘ Sprmgmq)

membrane systems due to the double parallel nature that thigg] G. Ciobanu, Gd. Wenyuan. P systems running ot? a clustemutgrsj
; e In C. Martin-Vide, G. Mauri, G. Paun, G. Rozenberg, A. S eds.

systems present by t.helr definition. . Workshop on Membrane Computing, vol. 2933 (2004), pp. 129-1

On one hand, using the power that provides GPUs {0 L. Fernandez, V.J. Martinez, F. Arroyo, L.F. Mingo.hardware circuit

simulate P systems with active membranes is a new conceptfor selecting active rules in transition P systems. Proogsdof the

in the development of applications for membrane computing. i?vggf:nlﬂfsrgitggst'i %y?;%%sgyrzfg Symbolic and Numerggoritims

On the other hand, P systems are an alternative approachyp v. Nguyen, D. Kearney, G. Gioiosa. An algorithm for ndeterministic

extract all performance available on GPUs due to its pdralle object distribution in P systems and its implementation ardware,
nature Membrane Computing, 9th International Workshop (2009f 3354.

. . . . [13] M.A. Gutiérrez—Naranjo, M.A. Martinez—del-Amor, Pérez—Hurtado,
This simulator is limited by the available resources on “w.J. perez—Jiménez. Solving thé — Queens Puzzle with P systems,

the GPU as well as the CPU. They limit the size of the Proceedings of the 7th Brainstorming Week on Membrane Ctingu

; _ ; vol. 1 (2009), 199 - 210, in press.
instances ofNP-complete problems whose solutions can b 4] NVIDIA CUDA Programming Guide 2.0, (2008) htp:

successfully simulated. In the following versions, we Will ~//developer.download.nvidia.com/compute/cud@ffocs/NVIDIA_
reduce the memory requirements to handle bigger instancesCUDA_ProgrammingGuide 2.0.pdf

of NP—compIete problems Besides. we will study the squti0[|1|5] NVIDIA CUDA. World Wide Web electronic publication: ww.nvidia.
. ' T com/cuda
of specific problems, and also other kind of P systems.
Although the massively parallel environment that provides
GPUs are good enough for the simulator, we need to go be-

