
A massively parallel framework using P systems
and GPUs

Jose M. Cecilia, Ginés D. Guerrero,
José M. Garcı́a

Grupo de Arquitectura y Computación Paralela
Dpto. Ingenierı́a y Tecnologı́a de Computadores

Universidad de Murcia
Campus de Espinardo, 30100 Murcia, Spain

Email: {chema, gines.guerrero, jmgarcia}@ditec.um.es

Miguel A. Martı́nez–del–Amor, Ignacio Pérez–Hurtado,
Mario J. Pérez–Jiménez

Research Group on Natural Computing
Dpt. of Computer Science and Artificial Intelligence

University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

Email: {mdelamor, perezh, marper}@us.es

Abstract—Since CUDA programing model appeared on the
general purpose computations, the developers can extract all
the power contained in GPUs (Graphics Processing Unit) across
many computational domains. Among these domains, P systems
or membrane systems provide a high level computational mod-
eling framework that allows, in theory, to obtain polynomial
time solutions to NP-complete problems by trading time for
space, and also to model biological phenomena in the area of
computational systems biology. P systems are massively parallel
distributed devices and their computation can be divided intwo
levels of parallelism: membranes, that can be expressed as blocks
in CUDA programming model; and objects, that can be expressed
as threads in CUDA programming model. In this paper, we
present our initial ideas of developing a simulator for the class of
recognizer P systems with active membranes by using the CUDA
programing model to exploit the massively parallel nature of
those systems at maximum. Experimental results of a preliminary
version of our simulator on a Tesla C1060 GPU show a 60X of
speed-up compared to the sequential code.

I. I NTRODUCTION

Conventional computers(electronic devices based on sili-
con) have increased their performance since the early days
of computing, but this trend is limited by physical laws.
Although many real-life problems can be solved in reasonable
time, other relevant problems need an exponential amount of
resources (time or space) to be solved.NP-problems belong
to the last class, which are hard computational problems such
as SAT, K-closure and Network reliability. Therefore, it seems
reasonable looking for new computation paradigms that can be
implemented in non-electronic devices (Unconventional Com-
puting) to go beyond the limits of conventional computing.

Membrane computing (or cellular computing) is an emerg-
ing branch within Natural Computing that was introduced by
Gh. Păun in [6]. The main idea is to consider biochemical
processes taking place inside living cells from a computational
point of view, in a way that gives us a new non-deterministic
model of computation by using cellular machines.

The devices of this model are calledP systems, and they
consist of a set ofsyntacticcomponents: a cell-likemembrane
structure, multisets of objectsassociated to each membrane,
and rules executed in a synchronous non-deterministic maxi-
mally parallel manner.

There are different models of P systems that have been
investigated in this area [9], and they are theoretically designed
to solve diverse problems. In this work, we deal with P systems
capable of constructing an exponential workspace (expressed
by the number of membranes and objects) in polynomial
time. They are based on the model of P systems with active
membranes and membrane division, that abstracts the way of
obtaining new membranes through the process ofmitosis. It
has been successfully used to design (uniform) solutions to
well-knownNP-complete problems, for example SAT [9] and
Subset Sumproblems, using the massively parallelism among
membranes and objects to study all the possible instances of
a NP-complete problem in parallel.

Up to now, it has not been possible to have implementations
neitherin vivo nor in vitro of P systems, so the manipulation
and analysis of these devices is performed by simulations on
conventional computers. However, sequential implementations
like showed in [7][9] have very low performance, so the under-
lying architecture used to simulate P systems should get profit
of their parallel nature to accelerate the simulations. In this
sense, several authors have implemented parallel simulators
for transition P systems on clusters [10], and many others
have designed P systems hardware implementations [12][11].
In this work, we introduce a solution based on the GPU
architecture to simulate P systems due to its massively chip-
level parallelism.

In this paper, we present a simulator for recognizer P sys-
tems with active membranes using CUDA. CUDA programing
model presents two levels of parallelism. The first one appears
at block-level whereas the second one is presented at the
thread-level. We identify those levels of parallelism intrinsic
on CUDA with the two levels of parallelism that P Systems
naturally have by its definition: among membranes and among
objects within membranes. We test this simulator using a
family of P systems that solve the N-Queens problem [13],
obtaining up to 60X of speed-up compared to the sequential
version of this simulator.

The rest of the paper is structured as follows. In Section
2 we outline P systems with active membranes. Section 3
introduces key points of CUDA used in our implementations



and the GPU features used for this work. Section 4 explains
the design of the simulator, and finally, the paper ends with
some conclusions and ideas about future work.

II. P SYSTEMS WITH ACTIVE MEMBRANES

P systems consist of a set ofsyntacticcomponents: a cell-
like membrane structure(it is a hierarchical rooted tree of
compartments that delimitregions, where the root is called
skin), multiset of objects(corresponding to chemical sub-
stances present inside the compartments (membranes) of a
cell), andrules (corresponding to chemical reactions that can
take place inside the cell) executed in a synchronous non-
deterministic maximally parallel manner.

The semanticsof P systems are defined through a non-
deterministic synchronous model. A computation of a P system
is made by steps calledconfigurations(which identifies an
instantaneous state of the system: the family of multisets
and the membrane structure), assuming a global clock that
synchronizes the execution.

The computation starts always with aninitial configuration
of the system, where the input data of a problem is encoded.
The transition from one configuration to the next is performed
by applying rules to the objects placed inside the regions. A
computation of the system is a tree of configurations, which
is made by transitions until reaching ahalting configuration,
where no more rules can be applied. The result of a halting
computation is usually defined through the multiset associated
with a specific output membrane, or theenvironment, which
is the space out of the skin.

In the P systems with active membranes model, every
elementary membrane is able to divide itself by reproducing
its content into a new membrane. Specifically, this model is
a construct of the formΠ = (O, H, µ, ω1, . . . , ωm, R), where
m ≥ 1 is the initial degree of the system;O is the alphabet
of objects, H is a finite set oflabels for membranes;µ is
a membrane structure (a rooted tree), consisting ofm mem-
branes injectively labeled with elements ofH , ω1, . . . , ωm are
strings overO, describing themultisets of objectsplaced in
the m regions ofµ; andR is a finite set ofrules, where each
rule is one of the following types:Evolution rules, Division
rules, Dissolution rulesand Communication rules(Send-out
or Send-in). See [8] for details.

P systems can be used for addressing the efficient resolution
of decision problems. This kind of problems require either
a yes or no answer. In this sense, we considerrecognizer
P systemsas P systems with external output (the results of
halting computations are encoded in the environment) such
that theyesor no answer is sent in a halting configuration.

III. PARALLEL COMPUTING ON GPUS

In this section, we briefly introduce the NVIDIA Tesla
C1060 GPU that we use in this work, and also the CUDA par-
allel programing model presented in [2][1]. The Tesla C1060
GPU which is based on scalable processor array that has 240
streaming-processor (SP) cores organized as 30 streaming mul-
tiprocessor (SMs). Applications start at host side (CPU side)

which communicates with device side (GPU side) through PCI
Express x16 bus. The SM is the processing unit and it acts
both as unified graphics and computing multiprocessor. Every
SM contains eight SPs arithmetic cores, a set of 16384 32-bit
registers, 16-Kbyte read/write on-chip shared memory thathas
very low access latency, and also access to device or global
memory.

A SM is a hardware device specifically designed with
multithreaded capabilities. It manages and executes up to
1024 threads in hardware with zero scheduling overhead. Each
thread has its own thread execution state and can execute an
independent code path. The SMs execute threads in a Single-
Instruction Multiple-Thread (SIMT) fashion (see [2][1]).

To develop parallel applications on the GPU we use C
and C++ programing language along with CUDA extensions
(Compute Unified Device Architecture)[15]. In the CUDA par-
allel programing [14], an application consists of a sequential
code (host code) that may execute parallel programs known
askernelson a paralleldevice. The host program executes on
the CPU and the kernels execute on the GPU.

A kernel is a SPMD (Single Program, Multiple Data)
computation executed by large number of threads running in
parallel. The programmer organizes these threads into a grid of
thread blocks. A thread block in CUDA is a set of threads that
execute the same program (kernel) and cooperate to obtain a
result through barrier synchronization and a per-block shared
memory space, private to that block.

The programmer declares the number of threads block per
grid and also the number of threads per thread block. On one
hand, blocks in a Grid are declared in one or two dimensions,
and all of them have their own and unique identifier. Similarly,
the threads in a block can be declared in one, two or three
dimensions having their own and unique identifier too. On the
other hand, the maximum number of threads in a block is
512. Using a combination ofthread id and block id, threads
can access to different data addresses and also to select the
program code that they run.

IV. SIMULATING P SYSTEMS WITH ACTIVE MEMBRANES

In the design of the simulator, we have identified each
membrane as a thread block where each thread represents
an object of the alphabetO. It presents a strong restriction
because a membrane would have only 512 objects which is
not enough to solve many problems. Therefore, if the number
of objects is bigger than 512, the objects are distributed equally
among 256 threads that is our best empirically block size.

The simulator, which is based on the presented in [7], is
executed into two stages:selection stageandexecution stage.
The selection stage consists of the search for the rules to
be executed in each membrane. Theexecution stageconsists
of the execution of the rules previously selected. Therefore,
it presents a need of global synchronization among each
phase. The input data for the selection stage consists of the
description of the membranes with their multisets (stringsover
the working alphabetO, labels associated with the membrane



in H , etc...) and the set of rulesR to be selected. The output
data of this stage is the set of selected rules per membrane.

The execution stage applies the rules previously selected
on the selection stage, and the membranes can vary including
new objects, dissolving membranes, dividing membranes, etc,
obtaining a new configuration of the simulated P system. This
new configuration (stored in device memory) would be the
input data for the next step of selection stage. Therefore, it is
an iterative process until a halting configuration is reached.

We develop both stages of the simulation on the GPU
to avoid data transfers through PCI-Express bus in every
simulation step, and also to increase the performance of the
execution stage. We use different CUDAkernelsto implement
this simulator.

The selection stage is implemented as a CUDAkernel. Each
thread block runs in parallel looking for the set of rules that
has to select, and each individual thread is responsible for
identifying if there are some rules associated with the object(s)
that it represents. Moreover, it also includes the execution of
the evolution rules. It is due to two main reasons: the evolution
rules do not implies communication among membranes, and
they are executed in a maximal manner. Finally, the selection
kernel has to finish to obtain global synchronization between
the selection stage and the execution stage.

However, the rest of the rules (not evolution) only can be
executed one per membrane, and they entail communication
among them. Therefore, we design the execution of those rules
as different CUDA kernels, one kernel per each kind of rule
(send-in communication, send-out communication, dissolution
and division), giving a result of theexecution stage. We use
different kernels for the execution stage because, otherwise,
we should implement a bigger kernel with branches to identify
each kind of rule to be applied, and this model decreases the
performance of our application.

V. CONCLUSION

In this paper, we present a massively parallel framework
using GPUs and a class of recognizer P systems with active
membranes. We show that GPUs are well suited to simulate
membrane systems due to the double parallel nature that these
systems present by their definition.

On one hand, using the power that provides GPUs to
simulate P systems with active membranes is a new concept
in the development of applications for membrane computing.
On the other hand, P systems are an alternative approach to
extract all performance available on GPUs due to its parallel
nature.

This simulator is limited by the available resources on
the GPU as well as the CPU. They limit the size of the
instances ofNP-complete problems whose solutions can be
successfully simulated. In the following versions, we will
reduce the memory requirements to handle bigger instances
of NP-complete problems. Besides, we will study the solution
of specific problems, and also other kind of P systems.

Although the massively parallel environment that provides
GPUs are good enough for the simulator, we need to go be-

yond. The newest clusters of GPUs provide a higher massively
parallel environment, so we will attempt to scale to those
systems to obtain better performance in our simulated codes
and also more memory space for our simulations.

ACKNOWLEDGMENTS

The first three authors acknowledge the support of the
project from the Fundación Séneca (Agencia Regional de
Ciencia y Tecnologı́a, Región de Murcia) under grant
00001/CS/2007, and also by the Spanish MEC and Euro-
pean Commission FEDER under grants “Consolider Ingenio-
2010 CSD2006-00046“ and “TIN2006-15516-C04-03“. The
last three authors acknowledge the support of the project
TIN2006–13425 of the Ministerio de Educación y Ciencia
of Spain, cofinanced by FEDER funds, and the support of
the “Proyecto de Excelencia con Investigador de Reconocida
Valı́a” of the Junta de Andalucı́a under grant P08–TIC04200.

REFERENCES

[1] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger, A.E.
Lefohn, T.J. Purcell. A survey of general–purpose computation on graph-
ics hardware. Computer Graphics Forum, 26, 1 (2007), pp. 80–113.

[2] E. Lindholm, J. Nickolls, S. Oberman, J. Montrym. NVIDIATesla: A
unified graphics and computing architecture. IEEE Micro, 28, 2 (2008),
pp. 39–55.

[3] N. Satish, M. Harris, M. Garland. Designing Efficient Sorting Algorithms
for Manycore GPUs. In Proceedings of the 23rd IEEE International
Parallel and Distributed Processing Symposium, May 2009.

[4] S. Ryoo, C. Rodrigues, S. Baghsorkhi, S. Stone, D. Kirk, W. mei Hwu.
Optimization principles and application performance evaluation of a mul-
tithreaded GPU using CUDA. Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, (2008),
pp. 73–82.

[5] S. Ryoo, C.I. Rodrigues, S.S. Stone, J.A. Stratton, Sain-Zee Ueng,
S.S. Baghsorkhi, W.W. Hwu. Program optimization carving for GPU
computing. J. Parallel Distrib. Comput., 68, 10 (2008), pp.1389–1401.

[6] G. Păun. Computing with membranes. Journal of Computerand System
Sciences, 61, 1 (2000), pp. 108–143, and Turku Center for Computer
Science-TUCS Report No 208.

[7] M. Garcı́a-Quismondo, R. Gutiérrez-Escudero, M.A. Martı́nez-del-Amor,
E. Orejuela-Pinedo, I. Pérez-Hurtado. P-Lingua 2.0: A software frame-
work for cell–like P systems. Int. J. of Computers, Communications and
Control, Vol. IV (2009), 3, pp. 234-243.

[8] G. Păun. Membrane Computing: An Introduction. Springer, (2002).
[9] G. Ciobanu, M.J. Pérez–Jiménez, G. Paun, editors. Applications of

membrane computing. Natural Computing Series, Springer, (2006).
[10] G. Ciobanu, G. Wenyuan. P systems running on a cluster ofcomputers.

In C. Martin-Vide, G. Mauri, G. Pãun, G. Rozenberg, A. Salomaa (eds.)
Workshop on Membrane Computing, vol. 2933 (2004), pp. 123–139.

[11] L. Fernández, V.J. Martı́nez, F. Arroyo, L.F. Mingo. Ahardware circuit
for selecting active rules in transition P systems. Proceedings of the
Seventh International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing (2005), 415.

[12] V. Nguyen, D. Kearney, G. Gioiosa. An algorithm for non-deterministic
object distribution in P systems and its implementation in hardware,
Membrane Computing, 9th International Workshop (2009), 325 - 354.

[13] M.A. Gutiérrez–Naranjo, M.A. Martı́nez–del–Amor, I. Pérez–Hurtado,
M.J. Pérez–Jiménez. Solving theN − Queens Puzzle with P systems,
Proceedings of the 7th Brainstorming Week on Membrane Computing,
vol. I (2009), 199 - 210, in press.

[14] NVIDIA CUDA Programming Guide 2.0, (2008): http:
//developer.download.nvidia.com/compute/cuda/20/docs/NVIDIA
CUDA ProgrammingGuide 2.0.pdf

[15] NVIDIA CUDA. World Wide Web electronic publication: www.nvidia.
com/cuda


