
On the Evaluation of Dense Chip-Multiprocessor
Architectures

Francisco J. Villa, Manuel E. Acacio, José M. García
Departamento de Ingeniería y Tecnología de Computadores

University of Murcia, 30080 Murcia (Spain)
Email: {fj.villa,meacacio,jmgarcia}@ditec.um.es

Abstract— Chip-multiprocessors (CMPs) have been revealed
as the most promising way of making efficient use of current
improvements in integration scale. Nowadays, commercial CMP
releases integrate at most 8 processor cores onto the chip.
However, 16 or more processor cores are expected to be offered
in near future Dense-CMP (D-CMP) systems. In this way, these
architectures impose new design restrictions, and some topics,
such as the cache-coherence problem, must be reviewed.

In this paper we present an exhaustive performance evaluation
of two recently proposed D-CMP architectures, making special
emphasis on the solution to the cache-coherence problem that
each one of them introduces. The Shared Bus Fabric architecture
(SBF) features a snoop cache-coherence protocol and is based
on a high-performance bus fabric interconnection network. The
second architecture follows a directory-based approach and
integrates a bi-dimensional mesh as the interconnection network.
Our results show that the performance achieved by the SBF
architecture is hard-limited by the bandwidth restrictions of the
bus fabric. On the other hand, the directory-based architecture
outperforms the SBF one, but presents some performance in-
efficiencies due to the additional indirection that the directory
structure stored in the L2 cache level introduces.

I. INTRODUCTION

Recent advances in integration scale have enabled chip-
multiprocessor architectures (or CMPs), where multiple pro-
cessor cores, as well as some other structures such as the
cache hierarchy and the interconnection network, are placed
on a single die [1], [2]. These architectures provide higher
performance than huge monolithic superscalar processors, and
at the same time, they simplify the process of designing
and verifying the architecture. Besides, chip-multiprocessor
architectures are specially suited for the embedded computing
domain, as these architectures provide the computational con-
currency required to handle real-world events in real time, so
that most microprocessors vendors are turning their attention
to CMP architectures [3].

Some recent commercial small-scale chip-multiprocessor
releases [4], [5] integrate at most 8 processor cores. However,
these implementations do not match with future dense-CMPs
(or D-CMPs), in which 16 processor cores or more are
expected to be integrated on a single chip [6]. Unfortunately,
D-CMPs impose new restrictions (physical space limitations,
latencies on the critical path are even more crucial, new
architectural bottlenecks) that are not found in current chip-
multiprocessors, and thus, it is necessary to evaluate the
problems that arise when designing such architectures.

CPU CPU CPU

L1 cache L1 cache L1 cache

L2 cache
Multibanked

main memory
Interleaved

1 N2

Bank 1 Bank 2 Bank 3 Bank M

Bank MBank 3Bank 2Bank 1

Interconnection Network

2 N1

Fig. 1. Anatomy of a typical CMP architecture.

One of the main issues to be assessed in D-CMPs is
the problem of cache-coherence when parallel workloads are
executed. This represents a well-known problem in traditional
multiprocessors, and a large body of literature dealing with
it can be found. However, the particular characteristics of D-
CMPs enforce researchers to review the classical solutions to
the cache-coherence problem in order to adapt them to this
new design space.

Most of the state-of-the-art CMPs implement the architec-
ture shown in Figure 1. In this architecture the communication
is based on a bus, each core has a private L1 cache and all
the cores share the L2 cache, so that it is necessary to specify
a coherence solution to maintain the cache coherence at the
first level caches.

One possibility for avoiding the cache coherence problem
in this kind of architectures consists in using the L1 caches
to store only private data, while shared data is only cached
at the second level cache, which is shared among all the
processor cores. In this way, there are not private copies of
the shared data, so no coherence protocol is needed. Although
this solution is very simple and easily implementable, it is
however expected to perform poorly when compared to snoop-
based cache coherence implementations.

This fact is corroborated from the results presented in
Figure 2. In this Figure we compare the solution that
does not use the L1 caches to store shared data (Bus-
WithoutCoherenceProtocol, or Bus-WCP), an implementation
featuring a simple split-transaction bus in which requests and
responses use the same physical interconnection and that mod-
els a MOESI-like cache-coherence protocol (Bus), and finally,

OCEAN RADIX UNSTRUCT WATER-NSQ WATER-SPBARNES FFT

Application

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1
N

or
m

al
iz

ed
 e

xe
cu

tio
n

tim
e Bus-WCP

Bus
Potential

Fig. 2. Normalized execution time for several snoop-based cache-coherence
implementations.

an idealistic architecture that behaves like a bus-snoop based
implementation from a logical point of view, but includes a
2D-mesh point-to-point interconnection network (Potential).
The Potential architecture, which is not implementable, gives
a theoretical performance limit for these proposals that im-
plement a cache-coherence mechanism. All the implementa-
tions assume 16 processor cores and an architecture like the
one shown in Figure 1. The execution time is normalized
with respect to Bus-WCP. More details about the evaluation
methodology that we have used can be found in Section III.

As we can see, the Bus-WCP implementation is outper-
formed by a simple bus-based cache-coherent architecture, so
that it becomes mandatory to implement a cache coherence
protocol in this kind of architecture if high-performance is
the goal. At the same time, as the Potential architecture
shows, there is much room for improvement when considering
the implementation of the cache-coherence protocol, so that
researchers are expected to provide novel solutions that take
into consideration the particularities of D-CMP systems.

Recently, Kumar et al. have proposed a CMP architecture
that implements a snoop-based protocol on a high-performance
Shared Bus Fabric (SBF) interconnection network [7]. This
interconnection network comprises four separate pipelined
buses used for sending/receiving requests/replies, inserting the
requests in the snoop queue of each processor and collecting
the snoop responses for all the processors. This architecture,
which combines a snoop-based cache-coherence protocol with
a complex shared bus fabric, appears as a reasonable high-
performance solution to the problem of cache-coherence in
D-CMPs.

Alternative solutions to the one previously described are
those based on the Non-Uniform Cache Architecture (NUCA)
model [8]. This technique allows that those cache banks that
are nearer to one processor have lower access latencies than
those that are far away. Two architectures based on this kind
of cache organization have been proposed in [9] and [10]
respectively. Both implementations are based on a point-to-
point interconnection network and a directory cache-coherence
protocol embedded in the L2 cache.

These two families of architectures (SBF and NUCA-based
implementations) constitute the most recent high-performance
proposals dealing with the problem of cache-coherence in
dense-CMPs. This paper evaluates and compares the advan-
tages and drawbacks of these two architectures using a detailed
performance simulator and parallel scientific workloads. The
main contributions of the paper are the following:

• A detailed performance evaluation of two recently pro-
posed Dense-CMP architectures, making emphasis on the
cache-coherence protocols implemented by each one and
the implications of these protocols in the results. To
the best of our knowledge, this is the first comparison
between these two alternative organizations.

• Identification of the main architectural bottlenecks for
these two architectures. The performance achieved by
the SBF architecture is hard-limited by the bandwidth
restrictions of the bus fabric, while the directory-based
implementations present some inefficiencies related to the
additional indirection that this structure introduces.

The rest of the paper is organized as follows. Section II
describes the D-CMP architectures that have been evaluated.
In Section III, we present a detailed performance evaluation
of the architectures. Section IV summarizes the related work.
Finally, Section V outlines the main conclusions of this work
and points out some future ways.

II. ARCHITECTURE OF FUTURE D-CMPS: SBF VS. NUCA

In this Section, we describe the two architectures that have
been recently proposed for organizing Dense-CMP designs and
that we have evaluated in this work. In both cases, we consider
a CMP composed of 16 out-of-order processor cores, a first
level of private caches, a second level of shared, multibanked
cache and an interconnection network connecting the two level
of caches.

A. A SBF-based CMP architecture

The first architecture evaluated features a snoop-based
MOESI-like cache-coherence protocol based on a shared bus
fabric (SBF) similar to the one presented in [7], although in
the referred paper the authors assume private L2 caches and
the shared bus fabric connects the L2 caches with the higher
level of the memory hierarchy.

The SBF was originally proposed as a high-speed link in
order to communicate data between processors, caches, IO
and memory within a CMP system and it is the on-chip
equivalent to the bus employed in snoop-based shared memory
multiprocessors. As we can see in Figure 3, the SBF comprises
four different, pipelined buses:

• Address Bus (AB): when the requester is granted access
to the bus, it inserts the corresponding request in this bus.

• Snoop Bus (SB): the requests put in the AB are taken off
the end of the address bus and inserted in a snoop queue
connected to this bus.

• Response Bus (RB): each snooping node places its re-
sponse to the snooped request in this bidirectional bus.
The response logic placed at the end of the bus is

P2P
LINK

REMOTE
SBF

RESPONSE
LOGIC

ARBITER
DATA

ADDRESS
ARBITER

REQUESTER

AB

SB

RB

DB

Fig. 3. The shared bus fabric implemented.

responsible for collecting all the responses and generating
a broadcast message identifying the action that each
structure must take.

• Data Bus (DB): the data is sent over this bidirectional
bus to the requester.

When there are several bus fabrics in the system (for
example, when the number of cores is greater than 8, as it
is the case in this paper), they are connected by means of a
point-to-point link. This link is able to transfer the three types
of transactions (request, response and data) and is terminated
with multiple queues at each end, as shown in Figure 3. These
queues are arbitrated (together with the local ones) in order to
grant access to each bus. We refer the interested reader to [7]
for a detailed description of the SBF proposal.

B. CMP design Implementing the NUCA Model

The second dense-CMP architecture that we have evaluated
is similar to those proposed in [9], [10] and features a point-to-
point 2D-mesh interconnection network. In order to maintain
coherence at the first level caches, a directory-based protocol
is used. The directory structure is integrated into the chip and
located at the same level as the L2 cache banks. The directory
is implemented using a full-map bit-vector scheme and only
keeps track of the lines stored at the L2 cache (the inclusion
property is maintained between the two levels of cache, so
the information about the L1 local copies is precise at every
moment). When the directory receives a data request from
the L1 caches, it decides if the request must be satisfied by
another L1 cache, one of the L2 cache banks or main memory.
If the request is an upgrade, the directory sends invalidation
messages to other L1 caches that have a copy of the requested
block. When a line is replaced at the L2 cache, the directory
also sends invalidation messages to all the L1 caches sharing
the evicted line to ensure the inclusion property. Finally, MESI
states are used in the L2 caches.

This directory-based architecture has a layout similar to the
one proposed by Beckmann and Wood in [9] (see Figure
4). The total number of L2 cache banks is sixteen. We
have seen in our simulations that a lower number of banks
hurts performance, while a higher number does not provide
noteworthy benefits. In order to reduce the distance between
the cores and the L2 cache banks, cache banks in the proposed

layout are placed in the center of the chip, with the processor
cores around them. Once again, we have evaluated other
possible layouts, but the one that we have chosen presents
the lowest network latencies, and consequently, shows the best
performance numbers.

L2
BANK

L2
BANK

L2
BANK

L2
BANK

L2
BANK

L2
BANK

L2
BANK

L2
BANK

L2
BANK

L2
BANK

L2
BANK

L2
BANK

L2
BANK

L2
BANK

L2
BANK

L2
BANK

L1$ L1$ L1$ L1$

L1$

L1$

L1$

L1$

L1$L1$L1$L1$

L1$

L1$

L1$

L1$

CORE CORE CORE CORE

CORE

CORE

CORE

CORE

CORECORECORECORE

CORE

CORE

CORE

CORE

Fig. 4. Layout for a D-CMP based on a 2-D mesh.

The network implemented is a 2-dimensional bi-directional
mesh including separate networks for requests and replies.
The system implements pipelined switches, and hence the flit
delay of multiple flits can be incurred in a pipelined way. The
network routes packets using dimension-ordered routing, and
each switch provides wormwhole routing.

III. EXPERIMENTAL METHODOLOGY AND RESULTS

A. Simulation Environment

In this section, we present a detailed performance evaluation
of the D-CMP architectures described in the previous Section.
In all the configurations, the processor model that has been
simulated is similar to the MIPS R10000 processor [11],
with an issue width of 4 instructions and a reorder buffer of
64 entries. The memory consistency model is an optimized
implementation of the sequential consistency memory model
that includes load speculation and allows stores to graduate
before completion.

We have extended the Rice Simulator for ILP Multiproces-
sors (RSIM) [12] in order to model the D-CMP architectures
evaluated [13]. We compare the two architectures described
in the previous Section with an ideal (but unimplementable)
architecture that behaves like a bus-based, snoop-coherent D-
CMP from a logical point of view, but features a 2D mesh
interconnection network instead of a bus. Thus, the Potential
architecture features the characteristics of snoop-based cache-
coherence (protocol simplicity, lower overhead) but at the
same time takes advantage of the bandwidth provided by a
point-to-point interconnection network. In Table I we can see
the system parameters used in this work.

Table II describes the benchmarks that we have used in our
experiments. This set of parallel scientific applications covers
a variety of computation and sharing patterns. BARNES-
HUT, FFT, OCEAN, RADIX, WATER-NSQ and WATER-SP
belong to the SPLASH-2 benchmark suite [14]. BARNES-
HUT application simulates the interaction of a system of
bodies in three dimensions over a number of time steps,

TABLE I

SYSTEM CONFIGURATION.

Base Configuration
Number of cores 16
Clock frequency 2 Ghz

L1 size 64KB
L1 associativity 4-way

L1 latency 1 cycle tags + 1 cycle data
L2 size 4MB (total size)

Number of L2 banks 16 (256KB per bank)
L2 associativity 8-way

L2 latency 6 cycles tags + 9 cycles data
Line size 32 bytes

Memory latency 200 cycles
Shared Bus Fabric

Arbitration 2 cycles
Bandwidth 4 GBytes

2D-Mesh
Size 6x6

Arbitration 2 cycles
Link Bandwidth 4 GBytes

TABLE II

APPLICATIONS AND INPUT SIZES USED IN THIS WORK.

Application Input size

BARNES-HUT 4096 bodies, 4 time steps
FFT 64K complex doubles

OCEAN 130x130 ocean
RADIX 512K keys, 1024 radix

UNSTRUCTURED Mesh.2K, 5 time steps
WATER-NSQ 512 molecules, 4 time steps
WATER-SP 512 molecules, 4 time steps

using the Barnes-Hut hierarchical N-body method. The FFT
kernel is a complex 1-D version of the radix-

√
n six-step

FFT algorithm, which is optimized to minimize interprocessor
communication. The data set consists of the n complex data
points to be transformed, and another n complex data points
referred to as the roots of unity. The OCEAN application stud-
ies large-scale ocean movements based on eddy and boundary
currents. The RADIX program sorts a series of integers,
called keys, using the popular radix sorting method. WATER-
NSQ performs an N-body molecular dynamics simulation of
the forces and potentials in a system of water molecules.
WATER-SP solves the same problem as WATER-NSQ, but
uses a more efficient algorithm for large numbers of molecules.
Finally, UNSTRUCTURED is a computational fluid dynamics
application [15]. The application sizes have been chosen taking
into account the recommendations of [14] as well as the
number of cores and the L1 cache size in our architecture.
We have tried to maintain the L1 cache hit rates higher than
90% when possible.

B. Experimental Results

The first performance metric that we present is the execution
time (see Figure 5(a)). The results are normalized with respect
to SBF. As we can see, for all the applications (with the ex-
ception of WATER-NSQ and WATER-SP) the directory based
architecture (from now on, Directory) clearly outperforms the
SBF implementation. All the architectures perform similarly
in the case of WATER-NSQ. When comparing Directory and
Potential both architectures present very similar results, with

the exceptions of UNSTRUCT and WATER-SP (the approxi-
mate differences are 20% and 10% respectively). These results
reveal the directory-based architecture as a very competitive
choice when designing a high-performance D-CMP, although
there is still room for improvement in this configuration.

Figures 5(b), 5(c) and 5(d) show the average miss latency
expressed in processor cycles for read, write and read-modify-
write operations respectively. For read misses, the results
maintain the same tendency than in the case of the execution
time. However, the reductions for the Directory architecture
are much more impressive, reaching a factor of 7 in OCEAN.
Again, the directory-based approach performs worse than the
snoop-based one for WATER-SP.

For write misses, the SBF architecture presents shorter
latencies for three of the applications (BARNES-HUT, UN-
STRUCT and WATER-SP), and the benefits of the Directory
architecture are less pronounced than the obtained in read
misses. For write operations, the directory must invalidate
the local copies of the line stored in some of the private
caches when the line is in Shared state, and wait for the
acknowledgment replies of each sharer, so this kind of miss
requires more indirection to be completed than in the case
of a snoop-based protocol. The invalidation process is more
efficient in the SBF architecture, as the L1 cache controllers
invalidate the shared line as soon as they observe the request
in the Snoop Bus and the miss requires a single access to
the L2 cache in order to be satisfied. The same reasoning is
valid for read-modify-write operations, although in this case
the Directory architecture only presents shorter latencies for
UNSTRUCT. The codes of FFT and RADIX do not contain
read-modify-write operations.

Finally, in Figure 6 we can see the average miss latency
from another perspective. Misses are split into four categories
in terms of which memory structure provides data [13]. In
$-to-$ misses, the line is in a single cache, or the line is in
several caches and one of them has the line in Owned state
(only for snoop-based implementations). If no L1 cache can
provide the line, and the L2 cache has a valid copy of it, we
categorize the miss as a Hit L2 miss. When the only valid copy
is in main memory, the miss is named Mem miss. Finally, Inv
misses appear when the faulting cache has a valid copy of the
line in Shared state but permission for writing is wanted.

For these four categories, we distinguish three latency
components, corresponding to the cycles spent at the L1 cache
controller (including the time spent until the request is inserted
in the network and the time spent processing the corresponding
reply), the shared interconnection network (including the time
spent at the different queues and buses as well as the time
waiting for the response on the response bus in the case of
the SBF) and those spent retrieving data (Tcontroller, Tnet and
Tmem respectively). Miss latency has an additional component
when the directory is used, corresponding to the time spent at
this structure for processing the request (Tdir).

Figure 6(a) shows that the main bottleneck of the SBF
architecture is the network. The time spent at this structure
highly dominates the L1 miss latency for $-to-$, Hit L2 and

OCEAN RADIX UNSTRUCT WATER-NSQ WATER-SPBARNES FFT

Application

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1,1

1,2

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

SBF
Directory
Potential

(a) Normalized execution time

OCEAN RADIX UNSTRUCT WATER-NSQ WATER-SPBARNES FFT

Application

0

50

100

150

200

250

300

350

400

450

500

A
ve

ra
ge

 r
ea

d
m

is
s

la
te

nc
y

SBF
Directory
Potential

675 1018

(b) Average read miss latency.

OCEAN RADIX UNSTRUCT WATER-NSQ WATER-SPBARNES FFT

Application

0

50

100

150

200

250

300

350

400

450

500

550

A
ve

ra
ge

 w
ri

te
 m

is
s

la
te

nc
y

SBF
Directory
Potential

(c) Average write miss latency.

OCEAN RADIX UNSTRUCT WATER-NSQ WATER-SPBARNES FFT

Application

0

50

100

150

200

250

300

350

400

450

500

550

A
ve

ra
ge

 r
m

w
 m

is
s

la
te

nc
y

SBF
Directory
Potential

(d) Average rmw miss latency.

Fig. 5. Performance results for the D-CMP architectures evaluated.

Mem misses, so we can conclude that a shared bus fabric like
the one evaluated in this work is not able to process efficiently
the memory traffic that will be generated in 16-way D-CMP
architectures.

When comparing the SBF latencies with the Directory
ones, we see once again how Directory presents shorter miss
latencies than SBF, except in the case of Inv misses and
for WATER-NSQ and WATER-SP, as in these applications
the SBF interconnection does not become saturated. For Inv
misses, the directory must invalidate the local copies at the
L1 private caches and wait for the positive replies to the
invalidation requests from the sharers, which implies much
more indirection than in the case of the SBF architecture. We
can also see that $-to-$ miss latency is higher than Hit L2
miss latency for the Directory architecture. In this case, the
directory protocol also introduces additional indirection for
providing data.

These two kind of misses hurt the performance obtained
with the Directory architecture, and present the greatest differ-
ence when comparing the results with those obtained with the
Potential architecture. We are currently working on optimizing
these inefficiencies.

Finally, in order to provide sufficient insight into the trade-

offs with respect to various design paramateres, we have
performed some experiments using different L1 cache sizes
(ranging from 16 KB to 128 KB). We have obtained similar re-
sults to those presented in this work, although the performance
gap decreases with L1 cache sizes of 128 KB. However, we
think that this is a side effect of the small working sets that
the applications that we have used present, so we think that
the L1 cache size is not a key paramater for this evaluation.

Another parameter that can affect the results is the number
of cores. When the architectures integrate 4 processor cores,
both implementations present similar results, as the Shared
Bus Fabric does not get saturated, so the SBF architecture
appears as a high-performance alternative for small-scale chip-
multiprocessors.

IV. RELATED WORK

One of the papers that most directly deals with the cache-
coherence problem in CMPs is [16]. In this paper, the authors
propose a hierarchical protocol for multiple-CMP systems that
separates the intra-CMP coherence protocol from the inter-
CMP protocol and is based on the token coherence protocol
[17]. However, their design space differs substantially from
those ones evaluated in this paper, as the authors consider
CMPs composed of four processor cores.

B
A

R
N

E
S

FF
T

O
C

E
A

N
R

A
D

IX
U

N
ST

R
U

C
T

W
A

T
E

R
-N

SQ
W

A
T

E
R

-S
P

B
A

R
N

E
S

FF
T

O
C

E
A

N
R

A
D

IX
U

N
ST

R
U

C
T

W
A

T
E

R
-N

SQ
W

A
T

E
R

-S
P

B
A

R
N

E
S

FF
T

O
C

E
A

N
R

A
D

IX
U

N
ST

R
U

C
T

W
A

T
E

R
-N

SQ
W

A
T

E
R

-S
P

B
A

R
N

E
S

FF
T

O
C

E
A

N
R

A
D

IX
U

N
ST

R
U

C
T

W
A

T
E

R
-N

SQ
W

A
T

E
R

-S
P

0

100

200

300

400

500

600

700

800

900

1000
L

at
en

cy
 (

cy
cl

es
)

T_controller
T_net
T_mem

$-to-$ Hit L2 Mem Inv
2604

2285

(a) SBF

B
A

R
N

E
S

FF
T

O
C

E
A

N
R

A
D

IX
U

N
ST

R
U

C
T

W
A

T
E

R
-N

SQ
W

A
T

E
R

-S
P

B
A

R
N

E
S

FF
T

O
C

E
A

N
R

A
D

IX
U

N
ST

R
U

C
T

W
A

T
E

R
-N

SQ
W

A
T

E
R

-S
P

B
A

R
N

E
S

FF
T

O
C

E
A

N
R

A
D

IX
U

N
ST

R
U

C
T

W
A

T
E

R
-N

SQ
W

A
T

E
R

-S
P

B
A

R
N

E
S

FF
T

O
C

E
A

N
R

A
D

IX
U

N
ST

R
U

C
T

W
A

T
E

R
-N

SQ
W

A
T

E
R

-S
P

0

50

100

150

200

250

300

350

400

450

L
at

en
cy

 (
cy

cl
es

)

T_controller
T_net
T_dir
T_mem

$-to-$ Hit L2 Mem Inv

(b) Directory
B

A
R

N
E

S
FF

T
O

C
E

A
N

R
A

D
IX

U
N

ST
R

U
C

T
W

A
T

E
R

-N
SQ

W
A

T
E

R
-S

P

B
A

R
N

E
S

FF
T

O
C

E
A

N
R

A
D

IX
U

N
ST

R
U

C
T

W
A

T
E

R
-N

SQ
W

A
T

E
R

-S
P

B
A

R
N

E
S

FF
T

O
C

E
A

N
R

A
D

IX
U

N
ST

R
U

C
T

W
A

T
E

R
-N

SQ
W

A
T

E
R

-S
P

B
A

R
N

E
S

FF
T

O
C

E
A

N
R

A
D

IX
U

N
ST

R
U

C
T

W
A

T
E

R
-N

SQ
W

A
T

E
R

-S
P

0

50

100

150

200

250

300

350

400

450

L
at

en
cy

 (
cy

cl
es

)

T_controller
T_net
T_mem

$-to-$ Hit L2 Mem Inv

(c) Potential

Fig. 6. Average latency for $-to-$, Hit L2, Mem and Inv misses.

The Piranha CMP [1] was one of the first CMP proposals
integrating 8 cores onto the chip. To maintain intra-chip
coherence, they propose a mechanism similar to a full-map
centralized directory-based coherence protocol. The L2 cache
controllers are responsible for enforcing coherence, so that
each controller has complete and exact information about the
on-chip cached copies for the subset of lines that map to it,
as in the directory-based architecture we have evaluated.

Huh et al. [10] propose an organization for the on-chip
memory subsystem of a CMP composed of 16 processors.
The L2 cache is organized as a non-uniform cache architecture
(NUCA) array. They use a switched network and a directory
protocol, so the architecture they propose is very similar to
the one we have evaluated, with some differences in the
organization of the second level cache.

There are some other recent works in the literature dealing
with the performance of the memory hierarchy in CMP archi-
tectures. Liu et al. [18] study several L2 cache organizations
in order to increase the utilization (and in last term, the
performance of the memory hierarchy) of this structure. They
propose a mechanism that dynamically assigns L2 splits to
each processor. In this way, they obtain fair use of the L2
cache, taking into account the demands of each processor at
every moment. However, they do not consider other possible

bottlenecks, such as the presence of the shared bus. As in the
previous work, they simulate a CMP composed of 8 cores.

In [19], the authors consider tiled CMPs where each tile
contains a slice of the total on-chip L2 cache storage and tiles
are connected by an on-chip mesh network. They propose a
hybrid cache management policy which combines the advan-
tages of both private and shared L2 schemes.

In [20], the authors propose a central coherence unit and a
new cache coherence protocol in order to reduce shared-bus
transaction time. They evaluate several configurations with a
variable number of processors, ranging from 2 to 8. However,
the integration scale and memory subsystem latencies assumed
in the paper differ highly from those found nowadays, so their
results are not comparable with ours.

Finally, some other authors have studied the memory hi-
erarchy when combining chip-multiprocessing with specu-
lative multithreading, although most of them focus on the
support for thread-level memory speculation [21], [22], [23].
Among them, Yanagawa et al. [24] perform a complexity
analysis of a cache controller designed by extending a MSI
controller to support thread-level memory speculation. They
use a directory-based mechanism to maintain coherence, and
find that the main component of memory latency is the delay
incurred when accessing the directory.

V. CONCLUSIONS

This paper presents an exhaustive performance evaluation of
two recent proposals for the organization of high-performance
dense-CMP architectures, making special emphasis on the
influence that the cache-coherence protocol has on perfor-
mance. Simulation results show that a D-CMP implementation
based on a bi-dimensional mesh interconnection network and
a directory-based cache-coherence protocol outperforms an
architecture featuring a shared bus fabric and a MOESI-like
snoop protocol.

The study also identifies the structural bottlenecks of these
two architectures. In the SBF implementation, the performance
achieved is hard-limited by the buses. Even although four
buses conform the SBF, it becomes saturated when 16 proces-
sor cores are connected, increasing the latency of the misses
found at the L1 private caches.

In the case of the directory-based architecture, the inter-
connection network tolerates the coherence traffic originated
in this kind of architecture. However, the indirection incurred
when accessing the directory structure increases the overall
latency for $-to-$ and Invalidation misses. We have seen that
there is still room for improvement in this kind of architecture
by reducing the latency for these two types of misses, as the
results obtained for the Potential architecture demonstrate.

As part of our future work, we are currently developing
prediction-based cache-coherence protocols to avoid the ac-
cesses to the directory information for cache-to-cache trans-
actions and invalidation misses, which will bring therefore
performance results closer to those of the Potential architec-
ture.

ACKNOWLEDGMENTS

This work has been supported by the Spanish Ministry of
Educación y Ciencia and the European Union (Feder Funds)
under grant TIC2003-08154-C06-03.

REFERENCES

[1] L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer,
B. Sano, S. Smith, R. Stets, and B. Verghese, “Piranha: A Scalable
Architecture Based on Single-Chip Multiprocessing,” in Proc. of 27th
Int’l Symp. on Computer Architecture, June 2000, pp. 282–293.

[2] L. Hammond, B. A. Hubbert, M. Siu, M. K. Prabhu, M. Chen, and
K. Olukotun, “The Stanford Hydra CMP,” IEEE Micro, vol. 20, no. 2,
pp. 71–84, March 2000.

[3] D. Geer, “Chip Makers Turn to Multicore Processors,” IEEE Computer,
vol. 38, no. 5, pp. 11–13, May 2005.

[4] R. Kalla, B. Sinharoy, and J. M. Tendler, “IBM Power5 Chip: A Dual-
Core Multithreaded Processor,” IEEE Micro, vol. 24, no. 2, pp. 40–47,
March-April 2004.

[5] J. M. Tendler, S. Dodson, S. Field, and H. L. B. Sinharoy, “POWER4
System Architecture,” IBM Server Group, Tech. Rep., 2001.

[6] K. Krewell, “Sun’s Niagara pours on the cores,” Microprocessor Report,
vol. 18, no. 9, pp. 11–13, September 2004.

[7] R. Kumar, V. Zyuban, and D. M. Tullsen, “Interconnections in Multi-
core Architectures: Understanding Mechanisms, Overheads and Scal-
ing,” in Proc. of 32nd Int’l Symp. on Computer Architecture, June 2005.

[8] C. Kim, D. Burger, and S. W. Keckler, “An Adaptive, Non-Uniform
Cache Structure for Wire-Dominated On-Chip Caches,” in Proc. of 10th
Int’l Conf. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), October 2002, pp. 211–222.

[9] B. Beckmann and D. Wood, “Managing Wire Delay in Large Chip-
Multiprocessor Caches,” in Proc. of 37th Int’l Symp. on Microarchitec-
ture, December 2004, pp. 319–330.

[10] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keckler, “A
NUCA Substrate for Flexible CMP Cache Sharing,” in Proc. of 10th
Int’l Conf. on Supercomputing, June 2005, pp. 31–40.

[11] K. C. Yeager, “The MIPS R10000 Superscalar Processor,” IEEE Micro,
vol. 16, no. 2, pp. 28–40, March-April 1996.

[12] C. J. Hughes, V. S. P. Pai, P. Ranganathan, and S. V. Adve, “RSIM:
Simulating Shared-Memory Multiprocessors with ILP Proccesors,” IEEE
Computer, vol. 35, no. 2, pp. 68–76, February 2002.

[13] F. J. Villa, M. E. Acacio, and J. M. García, “Memory Subsystem
Characterization in a 16-core Snoop-Based Chip-Multiprocessor Ar-
chitecture,” in 2005 Int’l Conf. on High-Performance Computing and
Communications, September 2005.

[14] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and Methodological Consider-
ations,” in Proc. of 22nd Int’l Symp. on Computer Architecture, June
1995, pp. 24–36.

[15] S. S. Mukherjee, S. D. Sharma, M. D. Hill, J. R. Larus, A. Rogers, and
L. Saltz, “Efficient Support for Irregular Applications on Distributed-
Memory Machines,” in Proc. of 5th Int’l Symp. on Principles and
Practice of Parallel Programming, July 1995, pp. 68–79.

[16] M. R. Marty, J. D. Bingham, M. D. Hill, A. J. Hu, M. M. K. Martin,
and D. A. Wood, “Improving Multiple-CMP Systems Using Token
Coherence,” in Proc. of 11th Int’l Symp. on High-Performance Computer
Architecture, February 2005.

[17] M. M. K. Martin, M. D. Hill, and D. A. Wood, “Token Coherence:
Decoupling Performance and Correctness,” in Proc. of 30th Int’l Symp.
on Computer Architecture, June 2003, pp. 182–193.

[18] C. Liu, A. Sivasubramaniam, and M. Kandemir, “Organizing the Last
Line of Defense before Hitting the Memory Wall for CMPs,” in Proc. of
10th Int’l Symp. on High Performance Computer Architecture, February
2004, pp. 176–185.

[19] M. Zhang and K. Asanovic, “Victim Replication: Maximizing Capacity
while Hiding Wire Delay in Tiled Chip Multiprocessors,” in Proc. of
32nd Int’l Symp. on Computer Architecture, June 2005.

[20] M. Takahasi, H. Takano, E. Kaneko, and S. Suzuki, “A Shared-bus
Control Mechanism and a Cache Coherence Protocol for a High-
performance On-chip Multiprocessor,” in Proc. of 2nd Int’l Conference
on High-Performance Computer Architecture, February 1996, pp. 314–
322.

[21] L. Hammond, M. Willey, and K. Olukotun, “Data Speculation Support
for a Chip Multiprocessor,” in Proc. of 8th Int’l Symp. on Architectural
Support for Parallel Languages and Operating Systems, October 1998,
pp. 58–69.

[22] V. Krishnan and J. Torrellas, “A Chip-Multiprocessor Architecture with
Speculative Multithreading,” IEEE Transactions On Computers, vol. 48,
no. 9, pp. 866–880, September 1999.

[23] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry, “A Scalable
Approach to Thread-Level Speculation,” in Proc. of 27th Int’l Symp. on
Computer Architecture, June 2000, pp. 1–12.

[24] Y. Yanagawa, L. D. Hung, C. Iwama, N. D. Barli, S. Sakai, and
H. Tanaka, “Complexity Analysis of A Cache Controller for Speculative
Multithreading Chip Multiprocessors,” in Proc. of 10th Int’l Conference
on High Performance Computing, December 2003, pp. 393–404.

