
Traditional versus Next-Generation Journaling File Systems:
a Performance Comparison Approach

�

Juan Piernas – Universidad de Murcia
Toni Cortes – Universitat Politècnica de Catalunya

José M. Garcı́a – Universidad de Murcia

Abstract

DualFS is a next-generation journaling file system which
has the same consistency guaranties as traditional journal-
ing file systems but better performance. This paper sum-
marizes the main features of DualFS, introduces three new
enhancements which significantly improve DualFS perfor-
mance during normal operation, and presents different ex-
perimental results which compare DualFS and other tradi-
tional file systems, namely, Ext2, Ext3, XFS, JFS, and Reis-
erFS. The experiments carried out cover a wide range of
cases, from microbenchmarks to macrobenchmarks, from
desktop to server workloads. As we will see, these exper-
iments not only show that DualFS has the lowest I/O time
in general, but also that it can remarkably boost the overall
system performance for many workloads (up to 98%).

1 Introduction

High-performance computing environments rely on several
hardware and software elements to fulfill their jobs. Al-
though some environments require specialized elements,
many of them use off-the-shelf elements which must have
a good performance in order to accomplish computing jobs
as quickly as possible.

A key element in these environments is the file system.
File systems provide a friendly means to store final and par-
tial results, from which it is even possible to resume a failed
job because of a system crash, program error, or whatever
other fail. Some computing jobs require a fast file system,
others a quickly-recoverable file system, and other jobs re-
quire both features.

DualFS [16] is a new concept of journaling file system
which is aimed at providing both good performance and
fast consistency recovery. DualFS, like other file systems
[5, 7, 8, 18, 24, 28], uses a meta-data log approach for

�
This work has been supported by the Spanish Ministry of Science and

Technology and the European Union (FEDER funds) under the TIC2000-
1151-C07-03 and TIC2001-0995-C02-01 CICYT grants.

fast consistency recovery, but from a quite different point of
view. Our new file system separates data blocks and meta-
data blocks completely, and manages them in very different
ways. Data blocks are placed on the data device (a disk
partition) whereas meta-data blocks are placed on the meta-
data device (another partition in the same disk). In order to
guarantee a fast consistency recovery after a system crash,
the meta-data device is treated as a log-structured file sys-
tem [18], whereas the data device is divided into groups
in order to organize data blocks (like other file systems do
[4, 8, 13, 24, 27]).

Although the separation between data and meta-data is
not a new idea [1, 15], this paper introduces a new version
of DualFS which proves, for the first time, that that sepa-
ration can significantly improve file systems’ performance
without requiring several storage devices, unlike previous
proposals.

The new version of DualFS has several important im-
provements with respect to the previous one [16]. First of
all, DualFS has been ported to the 2.4.19 Linux kernel. Sec-
ondly, we have greatly changed the implementation and re-
moved some important bottlenecks. And finally, we have
added three new enhancements which take advantage of the
special structure of DualFS, and significantly increase its
performance. These enhancements are: meta-data prefetch-
ing, on-line meta-data relocation, and directory affinity.

The resultant file system has been compared with Ext2
[4], Ext3 [27], XFS [22, 24], JFS [8], and ReiserFS [25],
through an extensive set of benchmarks, and the experimen-
tal results achieved not only show that DualFS is the best
file system in general, but also that it can remarkably boost
the overall system performance in many cases.

The rest of this paper is organized as follows. Section 2
summarizes the main features of DualFS, and introduces
the three new enhancements. In Section 3, we describe
our benchmarking experiments, whose results are shown in
Section 4. We conclude in Section 5.

1

2 DualFS

In this section we summarize the main features of DualFS,
and describe the three enhancements that we added to the
new version of DualFS analyzed in this paper.

2.1 Design and Implementation

The key idea of our new file system is to manage data and
meta-data in completely different ways, giving a special
treatment to meta-data [16]. Meta-data blocks are located
on the meta-data device, whereas data blocks are located on
the data device (see Figure 1).

Note that just separating meta-data blocks from data
blocks is not a new idea. However, we will show that
that separation, along with a special meta-data manage-
ment, can significantly improve performance without re-
quiring extra hardware (previous proposals of separation of
data and meta-data, such as the multi-structured file sys-
tem [15], and the interposed request routing [1], use several
storage devices). In our experiments, the data device and
the meta-data device will be two adjacent partitions on the
same disk. This is equivalent to having a single partition
with two areas: one for data blocks and another for meta-
data blocks.

Data Device

Data blocks of regular files are on the data device, where
they are treated as many Unix file systems do. The data de-
vice only has data blocks, and uses the concept of group of
data blocks (similar to the cylinder group concept) in order
to organize data blocks (see Figure 1). Grouping is per-
formed in a per directory basis, i.e., data blocks of regular
files in the same directory are in the same group (or in near
groups if the corresponding group is full).

From the file-system point of view, data blocks are not
important for consistency, so they are not written syn-
chronously and do not receive any special treatment, as
meta-data does [8, 20, 24, 28]. However, they must be taken
into account for security reasons. When a new data block
is added to a file, DualFS writes it to disk before writing
its related meta-data blocks. Missing out this requirement
would not actually damage the consistency, but it could po-
tentially lead to a file containing a previous file’s contents
after crash recovery, which is a security risk.

Meta-data Device

Meta-data blocks are in the meta-data device which is orga-
nized as a log-structured file system (see Figure 1). It is im-
portant to clarify that as meta-data we understand all these

items: i-nodes, indirect blocks, directory “data” blocks,
and symbolic link “data” blocks. Obviously, bitmaps, su-
perblock copies, etc., are also meta-data elements.

Our implementation of log-structured file system for
meta-data is based on the BSD-LFS one [19]. However,
it is important to note that, unlike BSD-LFS, our log does
not contain data blocks, only meta-data ones. Another dif-
ference is the IFile. Our IFile implementation has two
additional elements which manage the data device: the
data-block group descriptor table, and the data-block group
bitmap table. The former basically has a free data-block
count and an i-node count per group, while the latter indi-
cates which blocks are free and which are busy, in every
group.

DualFS writes dirty meta-data blocks to the log every
five seconds and, like other journaling systems, it uses the
log after a system crash to recover the file system consis-
tency quickly from the last checkpoint (checkpointing is
performed every sixty seconds). Note, however, that one
of the main differences between DualFS and current jour-
naling file systems [5, 24, 28] is the fact that DualFS only
has to write one copy of every meta-data block. This copy
is written in the log, which is used by DualFS both to read
and write meta-data blocks. In this way, DualFS avoids a
time-expensive extra copy of meta-data blocks. Further-
more, since meta-data blocks are written only once and
in big chunks in the log, the average write request size is
greater in DualFS than in other file systems where meta-
data blocks are spread. This causes less write requests and,
hence, a greater write performance [16].

Finally, it is important to note that our file system is con-
sidered consistent when information about meta-data is cor-
rect. Like other approaches (JFS [8], SoftUpdates [14],
XFS [24], and VxFS [28]), DualFS allows some loss of data
in the event of a system crash.

Cleaner

Since our meta-data device is a log-structured file system,
we need a segment cleaner for it. Our cleaner is started
in two cases: (a) every 5 seconds, if the number of clean
segments drops below a specific threshold, and (b) when
we need a new clean segment, and all segments are dirty.

At the moment our attention is not on the cleaner, so
we have implemented a simple one, based on Rosenblum’s
cleaner [18]. Despite its simplicity, this cleaner has a very
small impact on DualFS performance [16].

2.2 Enhancements

Reading a regular file in DualFS is inefficient because data
blocks and their related meta-data blocks are a long way

2

GROUP 2GROUP 1 GROUP N−3 GROUP N−1GROUP N−2GROUP 0 SEGMENT 0 SEGMENT K−1SEGMENT 1

Writes in the log

DATA DEVICE META−DATA DEVICE

Superblock

DISK

Superblock

Figure 1: DualFS overview. Arrows are pointers stored in segments of the meta-data device. These pointers are numbers of blocks in
both the data device (data blocks) and the meta-data device (meta-data blocks).

from each other, and many long seeks are required.
In this section we present a solution to that prob-

lem, meta-data prefetching, a mechanism to improve that
prefetching, on-line meta-data relocation, and a third mech-
anism to improve the overall performance of data opera-
tions, directory affinity.

Meta-data Prefetching

A solution to the read problem in DualFS is meta-data
prefetching. If we are able to read a lot of meta-data blocks
of a file in a single disk I/O operation, then disk heads will
stay in the data zone for a long time. This will eliminate
almost all the long seeks between the data device and the
meta-data device, and it will produce bigger data read re-
quests.

The meta-data prefetching implemented in DualFS is
very simple: when a meta-data block is required, DualFS
reads a group of consecutive meta-data blocks from disk,
where the meta-data block required is. Prefetching is not
performed when the meta-data block requested is already
in memory. The idea is not to force an unnecessary disk I/O
request, but to take advantage of a compulsory disk-head
movement to the meta-data zone when a meta-data block
must be read, and to prefetch some meta-data blocks then.
Since all meta-data blocks prefetched are consecutive, we
also take advantage of the built-in cache of the disk drive.

But, in order to be efficient, our simple prefetching re-
quires some kind of meta-data locality. The DualFS meta-
data device is a log where meta-data blocks are sequentially
written in chunks called “partial segments”. All meta-data
blocks in a partial segment have been created or modified at
the same time. Hence, some kind of relationship between
them is expected. Moreover, many relationships between
meta-data blocks are due to those meta-data blocks belong-
ing to the same file (e.g., indirect blocks). This kind of tem-
poral and spatial meta-data locality presents in the DualFS

log is which makes our prefetching highly efficient.
Once we have decided when to prefetch, the next step is

to decide which and how many meta-data blocks must be
prefetched. This decision depends on the meta-data layout
in the DualFS log, and this layout, in turn, depends on the
meta-data write order.

In DualFS, meta-data blocks belonging to the same file
are written to the log in the following order: “data” blocks
(of directories and symbolic links), simple indirect blocks,
double indirect blocks, and triple indirect blocks. Further-
more, “data” blocks are written in inverse logical order.
Files are also written in inverse order: first, the last modi-
fied (or created) file, and last, the first modified (or created)
file. Note that the important fact is not that the logical order
is “inverse”; which is important is the fact that the logical
order is “known”.

Taking into account all the above, we can see that the
greater part of the prefetched meta-data blocks must be just
before the required meta-data block. However, since some
files can be read in an order slightly different to the one in
which they were written, we must also prefetch some meta-
data blocks which are located after the requested meta-data
block.

Finally, note that, unlike other prefetching methods [10,
11], DualFS prefetching is I/O-time efficient, that is, it does
not cause extra I/O requests which can in turn cause long
seeks. Also note that our simple prefetching mechanism
works because it takes advantage of the unique features of
our meta-data device.

On-line Meta-data Relocation

The meta-data prefetching efficiency may deteriorate due to
several reasons:

� files are read in an order which is very different from
the order in which they were written.

3

� the read pattern can change over the course of the time.

� file-system aging.

An inefficient prefetching increases the number of meta-
data read requests and, hence, the number of disk-head
movements between the data zone and the meta-data zone.
Moreover, it can become counterproductive because it can
fill the buffer cache up with useless meta-data blocks. In
order to avoid prefetching degradation (and to improve its
performance in some cases), we have implemented an on-
line meta-data relocation mechanism in DualFS which in-
creases temporal and spatial meta-data locality.

The meta-data relocation works as follows: when a meta-
data element (i-node, indirect block, directory block, etc.)
is read, it is written in the log like any other just modified
meta-data element. Note that it does not matter if the meta-
data element was already in memory when it was read or if
it was read from disk.

Meta-data relocation is mainly performed in two cases:

� when reading a regular file (its indirect blocks are re-
located).

� when reading a directory (its “data” and indirect
blocks are relocated).

This constant relocation adds more meta-data writes.
However, meta-data writes are very efficient in DualFS be-
cause they are performed sequentially and in big chunks.
Therefore, it is expected that this relocation, even when very
aggressive, does not increase the total I/O time significantly.

Since a file is usually read in its entirety [2], the meta-
data relocation puts together all meta-data blocks of the file.
The next time the file is read, all its meta-data blocks will
be together, and the prefetching will be very efficient.

The meta-data relocation also puts together the meta-data
blocks of different files read at the same time (i.e., the meta-
data blocks of a directory and its regular files). If those
files are also read later at the same time, and even in the
same order, the prefetching will work very well. This as-
sumption in the read order is made by many prefetching
techniques [10, 11]. It is important to note that our meta-
data relocation exposes the relationships between files by
writing together the meta-data blocks of the files which are
read at the same time. Unlike other prefetching techniques
[10, 11], this relationship is permanently recorded on disk,
and it can be exploited by our prefetching mechanism after
a system restart.

This kind of on-line meta-data relocation is in a sense
similar to the work proposed by Jeanna N. Matthews et al.
[12]. They take advantage of cached data in order to reduce
cleaning costs. We write recently read and, hence, cached

meta-data blocks to the log in order to improve meta-data
locality and prefetching. They also propose a dynamic re-
organization of data blocks to improve read performance.
However, that reorganization is not an on-line one, and it is
more complex than ours.

Finally, we must explain an implicit meta-data relocation
which we have not mentioned yet. When a file is read, the
access time field in its i-node must be updated. If several
files are read at the same time, their i-nodes will also be
updated at the same time, and written together in the log. In
this way, when an i-node is read later, the other i-nodes in
the same block will also be read. This implicit prefetching
is very important since it exploits the temporal locality in
the log, and can potentially reduce file open latencies, and
the overall I/O time. Note that this i-node relocation always
takes place, without an explicit meta-data relocation, except
when the file system is read-only mounted.

This implicit meta-data relocation can have an effect sim-
ilar to that achieved by the embedded i-nodes proposed by
Ganger and Kaashoek [6]. In their proposal, i-nodes of files
in the same directory are put together and stored inside the
directory itself. Note, however, that they exploit the spa-
tial locality, whereas we exploit both spatial and temporal
localities.

Directory Affinity

In DualFS, like in Ext2 and Ext3, when a new directory is
created it is assigned a data-block group in the data device.
Data blocks of the regular files created in that directory are
put in the group assigned to the directory. DualFS specifi-
cally selects the emptiest data-block group for the new di-
rectory.

Note that, when creating a directory tree, DualFS has to
select a new group every time a directory is created. This
can cause a change of group and, hence, a large seek. How-
ever, the new group for the new directory may be only
slightly better than that of the parent directory. A better
option is to remain in the parent directory’s group, and to
change only when the new group is good enough, according
to a specific threshold (for example, we can change to the
new group if it has

�
% more free data blocks than the par-

ent directory’s group). The latter is called directory affinity
in DualFS, and can greatly improve DualFS performance,
even for a threshold as little as 10%.

Directory affinity in DualFS is somewhat similar to the
“directory affinity” concept used by Anderson et al. [1],
but with some important differences. For example, their
directory affinity is a probability (the probability that a new
directory is placed on the same server as its parent) whereas
it is a threshold in our case.

4

3 Experimental Methodology

This section describes how we have evaluated the new ver-
sion of DualFS. We have used both microbenchmarks and
macrobenchmarks for different configurations, using the
Linux kernel 2.4.19. We have compared DualFS against
Ext2 [4], the default file system in Linux, and four jour-
naling file systems: Ext3 [27], XFS [22, 24], JFS [8], and
ReiserFS [25].

Ext2 is not a journaling file system, but it has been in-
cluded because it is a widely-used and well-understood file
system. Ext2 is an FFS-like file system [13] which does not
write modified meta-data elements synchronously. Instead,
it marks a meta-data element to be written in 5 seconds.
Furthermore, meta-data elements involved in a file system
operation are modified, and marked to be written, in a spe-
cific order (although this order is not compulsory, and de-
pends on the disk scheduler). In this way, Ext2 can almost
always recover its consistency after a system crash, without
significantly damaging the performance.

Ext3 is a journaling file system derived from Ext2 which
provides different consistency levels through mount op-
tions. In our tests, the mount option used has been “-o
data=ordered”, which provides Ext3 with a behavior
similar to that of DualFS. With this option, Ext3 only jour-
nals meta-data changes, but flushes data updates to disk be-
fore any transactions commit.

Based on SGI’s Irix XFS file system technology, XFS is
a journaling file system which supports meta-data journal-
ing. XFS uses allocation groups and extent-based alloca-
tions to improve locality of data on disk. This results in im-
proved performance, particularly for large sequential trans-
fers. Performance features include asynchronous write-
ahead logging (similar to Ext3 with data=writeback),
balanced binary trees for most file-system meta-data, de-
layed allocation, and dynamic disk i-node allocation.

IBM’s JFS originated on AIX, and from there was ported
to Linux. JFS is also a journaling file system which supports
meta-data logging. Its technical features include extent-
based storage allocation, dynamic disk i-node allocation,
asynchronous write-ahead logging, and sparse and dense
file support.

ReiserFS is a journaling file system which is specially
intended to improve performance of small files, to use disk
space more efficiently, and to speed up operations on di-
rectories with thousands of files. Like other journaling file
systems, ReiserFS only journals meta-data. In our tests,
the mount option used has been “-o notail” which no-
tably improves ReiserFS performance at the expense of bet-
ter disk-space use.

Bryant et al. [3] compared the above five file systems

using several benchmarks on three different systems, rang-
ing in size from a single-user workstation to a 28-processor
ccNUMA machine. However, there are some important dif-
ferences between their work and ours. Firstly, we evaluate a
next-generation journaling file system (DualFS). Secondly,
we report results for some industry-standard benchmarks
(SpecWeb99, and TPC-C). Thirdly, we use microbench-
marks which are able to clearly expose performance differ-
ences between file systems (in their single-user workstation
system, for example, only one benchmark was able to show
performance differences). And finally, we also report I/O
time at disk level (this time is very important because re-
flects the behavior of every file system as seen by the disk
drive).

3.1 Microbenchmarks

Microbenchmarks are intended to discover strengths and
weaknesses of every file system. We have designed seven
benchmarks:

read-meta (r-m) find files larger than 2 KB in a directory
tree.

read-data-meta (r-dm) read all the regular files in a direc-
tory tree.

write-meta (w-m) untar an archive which contains a direc-
tory tree with empty files.

write-data-meta (w-dm) the same as w-m, but with non-
empty files.

read-write-meta (rw-m) copy a directory tree with empty
files.

read-write-data-meta (rw-dm) the same as rw-m, but
with non-empty files.

delete (del) delete a directory tree.

In all cases, the directory tree has 4 subdirectories, each
with a copy of a clean Linux 2.4.19 source tree. In the
“write-meta” and “read-write-meta” benchmarks, we have
truncated to zero all regular files in the directory tree. In
the “write-meta” and “write-data-meta” tests, the untarred
archive is in a file system which is not being analyzed.

All tests have been run 5 times for 1 and 4 processes.
When there are 4 processes, each works on its own Linux
source tree copy.

5

3.2 Macrobenchmarks

Next, we list the benchmarks we have performed to study
the viability of our proposal. Note that we have chosen en-
vironments that are currently representative.

Kernel Compilation for 1 Process (KC-1P) resolve de-
pendencies (make dep) and compile the Linux kernel
2.4.19, given a common configuration. Kernel and
modules compilation phases are made for 1 process
(make bzImage, and make modules).

Kernel Compilation for 4 Processes (KC-4P) the same
as before, but just for 4 processes (make -j4 bzImage,
and make -j4 modules).

SpecWeb99 (SW99) the SPECweb99 benchmark [23].
We have used two machines: a server, with the file sys-
tem to be analyzed, and a client. Network is a FastEth-
ernet LAN.

PostMark (PM) the PostMark benchmark, which was de-
signed by Jeffrey Katcher to model the workload seen
by Internet Service Providers under heavy load [9].
We have run our experiments using version 1.5 of the
benchmark. In our case, the benchmark initially cre-
ates 150,000 files with a size range of 512 bytes to
16 KB, spread across 150 subdirectories. Then, it per-
forms 20,000 transactions with no bias toward any par-
ticular transaction type, and with a transaction block of
512 bytes.

TPCC-UVA (TPC-C) an implementation of the TPC-C
benchmark [26]. Due to system limitations, we have
only used 3 warehouses. The benchmark is run with
an initial 30 minutes warm-up stage, and a subsequent
measure time of 2 hours.

3.3 Tested Configurations

All benchmarks have been run for the six configurations
showed below. Mount options have been selected following
recommendations by Bryant et al. [3]:

Ext2 Ext2 without any special mount option.

Ext3 Ext3 with “-o data=ordered” mount option.

XFS XFS with “-o logbufs=8,osyncisdsync”
mount options.

JFS JFS without any special mount option.

ReiserFS ReiserFS with “-o notail” mount option.

Linux Platform
Processor Two 450 Mhz Pentium III
Memory 256 MB, PC100 SDRAM

Disk One 4 GB IDE 5,400 RPM Seagate ST-
34310A.
One 4GB SCSI 10,000 RPM FUJITSU
MAC3045SC.
SCSI disk: Operating system, swap and
trace log.
IDE disk: test disk

OS Linux 2.4.19

Table 1: System Under Test

DualFS DualFS with meta-data prefetching, on-line meta-
data relocation, and directory affinity.

Versions of Ext2, Ext3, and ReiserFS are those found in
a standard Linux kernel 2.4.19. XFS version is 1.1, and JFS
version is 1.1.1.

All but DualFS are on one IDE disk with only one parti-
tion, and their logical block size is 4 KB. DualFS is also on
one IDE disk, but with two adjacent partitions. The meta-
data device is always on the outer partition, given that this
partition is faster than the inner one [30], and its size is 10%
of the total disk space. The inner partition is the data device.
Both the data and the meta-data devices also have a logical
block size of 4 KB.

Finally, DualFS has a prefetching size of 16 blocks, and
a directory affinity of 10% (that is, a new-created directory
is assigned the best group, instead of its parent directory’s
group, if the best group has, at least, 10% more free data
blocks). Since the logical block size is 4 KB, the prefetch-
ing size is equal to 64 KB, precisely the biggest disk I/O
transfer size used by default by Linux.

3.4 System Under Test

All tests are done in the same machine. The configuration
is shown in Table 1.

In order to trace disk I/O activity, we have instrumented
the operating system (Linux 2.4.19) to record when a re-
quest starts and finishes. The messages generated by our
trace system are logged in an SCSI disk which is not used
for evaluation purposes.

Messages are printed using the kernel function printk.
This function writes messages in a circular buffer in main
memory, so the delay inserted by our trace system is small
(� 1%), especially if compared to the time required to per-
form a disk access. Later, these messages are read through
the /proc/kmsg interface, and then written to the SCSI
disk in big chunks. In order to avoid the loss of messages

6

(last messages can overwrite the older ones), we have in-
creased the circular buffer size from 16 KB to 1 MB, and
we have given maximum priority to all processes involved
in the trace system.

4 Experimental Results

In order to better understand the different file systems, we
show two performance results for each file system in each
benchmark:

� Disk I/O time: the total time taken for all disk I/O op-
erations.

� Performance: the performance achieved by the file
system in the benchmark.

The performance result is the application time except for
the SpecWeb99 and TPC-C benchmarks. Since these mac-
robenchmarks take a fixed time specified by the benchmark
itself, we will use the benchmark metrics (number of simul-
taneous connections for SpecWeb99, and tpmC for TPC-C)
as throughput measurements.

We could give the application time only, but given that
some macrobenchmarks (e.g, compilation) are CPU-bound
in our system, we find I/O time more useful in those cases.
The total I/O time can give us an idea of to what extent the
storage system can be loaded. A file system that loads a disk
less than other file systems makes it possible to increase
the number of applications which perform disk operations
concurrently.

Figures below show the confidence intervals for the mean
as error bars, for a 95% confidence level calculated using
a Student’s-T statistic. The number inside each bar is the
height of the bar, which is a value normalized with respect
to Ext2. For Ext2 the height is always 1, so we have written
the absolute value for Ext2 inside each Ext2 bar, which is
useful for comparison purposes between figures.

The DualFS version evaluated in this section includes the
three enhancements described previously. However, you
can look at our previous work [17] if you want to know
the impact of each enhancement (except directory affinity)
on DualFS performance.

Finally, it is important to note that all benchmarks have
been run with a cold file system cache (the computer is
restarted after every test run).

4.1 Microbenchmarks

Figures 2 and 3 show the microbenchmarks’ results. A
quick review shows that DualFS has the lowest disk I/O
times and application times in general, in both write and

read operations, and that JFS has the worst performance.
Only ReiserFS is clearly better than DualFS in the write-
data-meta benchmark, and it is even better when there are
four processes. However, ReiserFS performance is very
poor in the read-data-meta case. This is a serious problem
for ReiserFS given that reads are a more frequent operation
than writes [2, 29]. In order to understand these results, we
must explain some ReiserFS features.

ReiserFS does not use the block group or cylinder group
concepts like the other file systems (Ext2, Ext3, XFS, JFS,
and DualFS). Instead, ReiserFS uses an allocation algo-
rithm which allocates blocks almost sequentially when the
file system is empty. This allocation starts at the beginning
of the file system, after the last block of the meta-data log.
Since many blocks are allocated sequentially, they are also
written sequentially. The other file systems, however, have
data blocks spread across different groups which take up the
entire file system, so writes are not as efficient as in Reis-
erFS. This explains the good performance of ReiserFS in
the write-data-meta test.

The above also explains why ReiserFS is not so bad in the
read-data-meta test when there are four processes. Since
the directory tree read by the processes is small, and it is
created in an empty file system, all its blocks are together
at the beginning of the file system. This makes processes’
read requests to cause small seeks when processes read the
directory tree. The same does not occur in the other file
systems, where the four processes cause long seeks because
they read blocks which are in different groups spread across
the entire disk.

Another interesting point in the write-data-meta bench-
mark is the performance of ReiserFS and DualFS with re-
spect to Ext2. Although the disk I/O times of both file sys-
tems are much better than that of Ext2, the application times
are not so good. This indicates that Ext2 achieves a better
overlap between I/O and CPU operations because it neither
has a journal nor forces a meta-data write order.

It is specially remarkable the good performance of Du-
alFS in the read-data-meta benchmark, where DualFS is up
to 35% faster than ReiserFS. When compared with previ-
ous versions of DualFS [16], we can see that this perfor-
mance is mainly provided by the the meta-data prefetching
and directory affinity mechanisms, which respectively re-
duce the number of long seeks between data and meta-data
partitions, and between data-block groups within the data
partition.

In all the metadata-only benchmarks but write-meta, the
distinguished winners (regarding the application time) are
ReiserFS and DualFS. And they are the absolute winners
taking into account the disk I/O time. Also note that DualFS
is the best when the number of processes is four.

7

1 PROCESS

2.
44

1.
01

1.
29

1.
02 1.

13

1.
06

1.
94

1.
07

1.
58

1.
46

1.
06

2.
15

0.
85

1.
36

1.
20

2.
14

1.
05

0.
89

0.
83

1.
80

74
.5

8
se

c

25
3.

07
 s

ec

30
3.

1
se

c

5.
35

 s
ec

46
.2

8
se

c

81
.7

4
se

c

67
.1

3
se

c

4.
36

5.
10

1.
49

1.
16

0.
65

4.
70

8.
44

4.
81

0.
28

0.
26

0.
17 0.
20

0.
30

0.
20

0
0.

5
1

1.
5

2
2.

5
3

w-dm r-dm rw-dm w-m r-m rw-m del

benchmark

N
o

rm
al

iz
ed

 A
p

p
lic

at
io

n
 T

im
e

Ext2
Ext3
XFS
JFS
ReiserFS
DualFS

17
.8

9

4 PROCESSES

2.
37

1.
00 1.

15

1.
01

1.
49

1.
01

1.
85

1.
05 1.

18

1.
54

3.
10

1.
82

3.
95

0.
63

1.
13

1.
03

0.
99

0.
78

0.
77

2.
06

91
.1

2
se

c

66
.1

1
se

c

54
.0

3
se

c

3.
68

 s
ec

64
0.

70
 s

ec

53
5.

20
 s

ec

72
.9

7
se

c

0.
951.

10

0.
65

5.
01

0.
200.

30

0.
16

2.
89

0.
11

0.
30

0.
12

0
0.

5
1

1.
5

2
2.

5
3

w-dm r-dm rw-dm w-m r-m rw-m del

benchmark

N
o

rm
al

iz
ed

 A
p

p
lic

at
io

n
 T

im
e

Ext2
Ext3
XFS
JFS
ReiserFS
DualFS

6.
13

7.
99

40
.7

3

12
.4

0

Figure 2: Microbenchmarks results (application time).

The problem of the write-meta benchmark is that it is
CPU-bound because all modified meta-data blocks fit in
main memory. In this benchmark, Ext2 is very efficient
whereas the journaling file systems are big consumers of

CPU time in general. Even then, DualFS is the best of the
five. Regarding the disk I/O time, ReiserFS and DualFS are
the best, as expected, because they write meta-data blocks
to disk sequentially.

8

1 PROCESS

1.
81

1.
01

1.
25

1.
09

1.
01 1.
06

1.
02

1.
54

1.
07

1.
49

0.
50

1.
76

4.
88

4.
16

0.
95

1.
96

4.
81

0.
54

1.
57

1.
09

0.
73

0.
76

0.
70 66

.6
8

se
c

84
.3

6
se

c

47
.8

6
se

c

22
.3

6
se

c

28
7.

49
 s

ec

15
0.

54
 s

ec

95
.9

3
se

c 1.
40

0.
941.

11

6.
67

0.
15

0.
05

0.
06

0.
04 0.

11

0.
10

0.
07

0.
05

0
0.

5
1

1.
5

2
2.

5
3

w-dm r-dm rw-dm w-m r-m rw-m del

Benchmark

N
o

m
ar

liz
ed

 I/
O

 T
im

e

Ext2
Ext3
XFS
JFS
ReiserFS
DualFS

4 PROCESSES

1.
69

1.
00 1.

14 1.
24

1.
01 1.

17

1.
02

1.
35

1.
05 1.

18

0.
62

1.
56

3.
15

1.
72

3.
61

3.
82

0.
47

1.
14

1.
02

0.
73

0.
77

0.
76 94

.9
4

se
c

92
.1

1
se

c

56
.9

9
se

c

22
.9

4
se

c

64
3.

95
 s

ec

52
5.

22
 s

ec

10
7.

32
 s

ec

0.
84

1.
30

0.
92

6.
55

8.
69

0.
17

0.
080.
11

0.
05 0.

10

0.
09

0.
08

0.
05

0
0.

5
1

1.
5

2
2.

5
3

w-dm r-dm rw-dm w-m r-m rw-m del

Benchmark

N
o

rm
al

iz
ed

 I/
O

 T
im

e

Ext2
Ext3
XFS
JFS
ReiserFS
DualFS

Figure 3: Microbenchmarks results (disk I/O time).

In the read-meta case, ReiserFS and DualFS have the
best performance because they read meta-data blocks which
are very close. Ext2, Ext3, XFS, and JFS, however, have
meta-data blocks spread across the storage device, which

causes long disk-head movements. Note that the DualFS
performance is even better when there are four processes.

This increase in DualFS performance, when the number
of processes goes from one to four, is due to the meta-data

9

I/O Time (seconds)
File System 1 process 4 processes Increase (%)

Ext2 47.86 (0.35) 56.99 (1.13) 19.08
Ext3 48.45 (0.29) 57.59 (0.35) 18.86
XFS 24.00 (0.66) 35.13 (1.15) 46.38
JFS 45.49 (0.46) 98.10 (0.44) 115.65
ReiserFS 7.02 (1.44) 9.77 (2.32) 39.17
DualFS 5.46 (2.00) 5.90 (3.33) 8.06

Table 2: Results of the r-m test. The value in parenthesis is the
confidence interval given as percentage of the mean.

prefetching. Indeed, prefetching makes DualFS scalable
with the number of processes. Table 2 shows the I/O time
for the six file systems studied, and for one and four pro-
cesses. Whereas Ext2, Ext3, XFS, JFS, and ReiserFS sig-
nificantly increase the total I/O time when the number of
processes goes from one to four, DualFS increases the I/O
time slightly.

For one process, the high meta-data locality in the Du-
alFS log and the implicit prefetching performed by the disk
drive (through the read-ahead mechanism) make the dif-
ference between DualFS, and Ext2, Ext3, JFS, and XFS.
ReiserFS also takes advantage of the same disk read-ahead
mechanism. However, that implicit prefetching performed
by the disk drive is less effective if the number of processes
is two or greater. When there are four processes, the disk
heads constantly go from track to track because each pro-
cess works with a different area of the meta-data device.
When the disk drive reads a new track, the previous read
track is evicted from the built-in disk cache, and its meta-
data blocks are discarded before being requested by the pro-
cess which caused the read of the track.

The explicit prefetching performed by DualFS solves the
above problem by copying meta-data blocks from the built-
in disk cache to the buffer cache in main memory before be-
ing evicted. Meta-data blocks can stay in the buffer cache
for a long time, whereas meta-data blocks in the built-in
cache will be evicted soon, when the disk drive reads an-
other track.

Another remarkable point in the read-meta benchmark is
the XFS performance. Although XFS has meta-data blocks
spread across the storage device like Ext2 and Ext3, its per-
formance is much better. We have analyzed XFS disk I/O
traces and we have found out that XFS does not update the
“atime” of directories by default (we have not specified any
“noatime” or “nodiratime” mount options for any file sys-
tem). The lack of meta-data writes in XFS reduces the total
I/O time because there are fewer disk operations, and be-
cause the average time of the read requests is smaller. JFS
does not update the “atime” of directories either, but that

does not significantly reduce its I/O time.

In the last benchmark, del, the XFS behavior is odd again.
For one process, it has a very bad performance. However,
the performance improves when there are four processes.
The other file systems have the behavior we expect.

Finally, note the great performance of DualFS in the
read-data-meta, and read-meta benchmarks despite the on-
line meta-data relocation.

4.2 Macrobenchmarks

Results of macrobenchmarks are showed in Figure 4. Since
benchmark metrics are different, we have showed the rela-
tive application performance with respect to Ext2 for every
file system.

As we can see, the only I/O-bound benchmark is Post-
Mark (that is, benchmark results agree with I/O time re-
sults). The other four benchmarks are CPU-bound in our
system, and all file systems consequently have a similar
performance. Nevertheless, DualFS is usually a little bet-
ter than the other file systems. The reason to include these
CPU-bound benchmarks is that they are very common for
system evaluations.

From the disk I/O time point of view, DualFS has the
best throughput. Only XFS is better than DualFS in the
SpecWeb99 and TPC-C benchmarks. However, we must
respectively take into account that XFS does not update the
access time of directory i-nodes, and nor does it meet the
TPC-C benchmark requirements (specifically, it does not
meet the response time constraints for new-order and order-
status transactions).

In order to explain this superiority of DualFS over the
other file systems, we have analyzed the disk I/O traces ob-
tained, and we have found out that performance differences
between file systems are mainly due to writes. There are a
lot of write operations in these tests, and DualFS is the file
system which better carries out them. For JFS, however,
these performance differences are also due to reads, which
take longer than in the other file systems.

Internet System Providers should pay special attention
to the results achieved by DualFS in the PostMark bench-
mark. In this test, DualFS achieves 60% more transactions
per second than Ext2 and Ext3, twice as many transactions
per second as ReiserFS, almost three times as many transac-
tions per second as XFS, and four as many transactions per
second as JFS. Although there are specific file systems for
Internet workloads [21], note that these results are achieved
by a general-purpose file system, DualFS, which is intended
for a variety of workloads.

10

-1
.0

0

-0
.1

3

-0
.7

3

-1
.1

1-0
.8

0

-2
.2

2

-3
.1

8

-8
.4

6

-1
.8

7

-3
.6

9

0.
030.
12

1.
75

0.
00

3.
44

-6
9.

89

0.
28

-1
.6

7

-1
.4

7

0.
20

-1
9.

29

1.
59

40
.7

4

0.
00

-6
-4

-2
0

2
4

6

KC-1P KC-4P PM SW99 TPC-C

Benchmark

Im
p

ro
ve

m
en

t
o

n
 E

xt
2

(%
)

Ext3
XFS
JFS
ReiserFS
DualFS

-1
29

.0
1

PM

1.
18

1.
07

0.
96

1.
38

1.
15

0.
89

0.
88

1.
69

0.
37

0.
93

2.
05 2.

18 2.
32

2.
16

1.
231.

43

0.
91

1.
18

3.
41

1.
02

0.
68

0.
72

0.
56

0.
46

0.
98

54
.9

8
se

c

87
.8

6
se

c

92
6.

83
 s

ec

12
4.

92
 s

ec

41
55

.0
5

se
c

0
0.

5
1

1.
5

2
2.

5
3

3.
5

4

KC-1P KC-4P PM SW99 TPC-C

Benchmark

N
o

m
ar

liz
ed

 I/
O

 T
im

e

Ext2

Ext3

XFS

JFS

ReiserFS

DualFS

Figure 4: Macrobenchmark results. The first figure shows the application throughput improvement achieved by each file system with
respect to Ext2. The second figure shows the disk I/O time normalized with respect to Ext2. In the TPC-C benchmark, Ext3 and XFS
bars are striped because they do not meet TPC-C benchmark requirements.

5 Conclusions

Improving file system performance is important for a
wide variety of systems, from general purpose systems to
more specialized high-performance systems. Many high-

performance systems, for example, rely on off-the-shelf file
systems to store final and partial results, and to resume
failed computation.

In this paper we have introduced a new version of DualFS
which proves, for the first time, that a new journaling file-

11

system design based on data and meta-data separation, and
special meta-data management, is not only possible but also
desirable.

Through an extensive set of micro- and macrobench-
marks, we have evaluated six different journaling and non-
journaling file systems (Ext2, Ext3, XFS, JFS, ReiserFS,
and DualFS), and the experimental results obtained not only
have shown that DualFS has the lowest I/O time in general,
but also that it can significantly boost the overall file system
performance for many workloads (up to 98%).

We feel, however, that the new design of DualFS allows
further improvements which can increase DualFS perfor-
mance even more. Currently, we are working on extracting
read access pattern information from meta-data blocks writ-
ten by the relocation mechanism in order to prefetch entire
regular files.

Availability

For more information about DualFS, please visit the Web
site at:
http://www.ditec.um.es/˜piernas/dualfs.

References
[1] ANDERSON, D. C., CHASE, J. S., AND VAHDAT, A. M.

Interposed request routing for scalable network storage. In
Proc. of the Fourth USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI) (Oct. 2000), 259–
272.

[2] BAKER, M. G., HARTMAN, J. H., KUPFER, M. D.,
SHIRRIFF, K. W., AND OUSTERHOUT, J. K. Measurements
of a distributed file system. In Proc. of 13th ACM Symposium
on Operating Systems Principles (1991), 198–212.

[3] BRYANT, R., FORESTER, R., AND HAWKES, J. Filesystem
performance and scalability in linux 2.4.17. In Proc. of the
FREENIX Track: 2002 USENIX Annual Technical Confer-
ence (June 2002), 259–274.

[4] CARD, R., TS’O, T., AND TWEEDIE, S. Design and imple-
mentation of the second extended filesystem. In Proc. of the
First Dutch International Symposium on Linux (December
1994).

[5] CHUTANI, S., ANDERSON, O. T., KAZAR, M. L., LEV-
ERETT, B. W., MASON, W. A., AND SIDEBOTHAM, R.
The Episode file system. In Proc. of the Winter 1992 USE-
NIX Conference: San Francisco, California, USA (January
1992), 43–60.

[6] GANGER, G. R., AND KAASHOEK, M. F. Embedded in-
odes and explicit grouping: Exploiting disk bandwidth for
small files. In Proc. of the USENIX Annual Technical Con-
ference, Anaheim, California USA (January 1997), 1–17.

[7] HAGMANN, R. Reimplementing the cedar file system using
logging and group commit. In Proc. of the 11th ACM Sym-
posium on Operating Systems Principles (November 1987),
155–162.

[8] JFS for Linux. http://oss.software.ibm.com/jfs, 2003.

[9] KATCHER, J. PostMark: A new file system benchmark.
Technical Report TR3022. Network Appliance Inc. (october
1997).

[10] KROEGER, T. M., AND LONG, D. D. E. Design and imple-
mentation of a predictive file prefetching algorithm. In Proc.
of the 2001 USENIX Annual Technical Conference: Boston,
Massachusetts, USA (June 2001), 319–328.

[11] LEI, H., AND DUCHAMP, D. An analytical approach to
file prefetching. In Proc. of 1997 USENIX Annual Technical
Conference (1997), 275–288.

[12] MATTHEWS, J. N., ROSELLI, D., COSTELLO, A. M.,
WANG, R. Y., AND ANDERSON, T. E. Improving the per-
formance of log-structured file systems with adaptive meth-
ods. In Proc. of the ACM SOSP Conference (October 1997),
238–251.

[13] MCKUSICK, M., JOY, M., LEFFLER, S., AND FABRY, R. A
fast file system for UNIX. ACM Transactions on Computer
Systems 2, 3 (Aug. 1984), 181–197.

[14] MCKUSICK, M. K., AND GANGER, G. R. Soft updates: A
technique for eliminating most synchronous writes in the fast
filesystem. In Proc. of the 1999 USENIX Annual Technical
Conference: Monterey, California, USA (June 1999), 1–17.

[15] MULLER, K., AND PASQUALE, J. A high performance
multi-structured file system design. In Proc. of 13th ACM
Symposium on Operating Systems Principles (Oct. 1991),
56–67.

[16] PIERNAS, J., CORTES, T., AND GARCÍA, J. M. DualFS: a
new journaling file system without meta-data duplication. In
Proc. of the 16th Annual ACM International Conference on
Supercomputing (June 2002), 137–146.

[17] PIERNAS, J., CORTES, T., AND GARCÍA, J. M. Improving
the performance of new-generation journaling file systems
through meta-data prefetching and on-line relocation. Tech-
nical Report UM-DITEC-2003-5 (Sept. 2002).

[18] ROSENBLUM, M., AND OUSTERHOUT, J. The design and
implementation of a log-structured file system. ACM Trans-
actions on Computer Systems 10, 1 (Feb. 1992), 26–52.

[19] SELTZER, M., BOSTIC, K., MCKUSICK, M. K., AND

STAELIN, C. An implementation of a log-structured file sys-
tem for UNIX. In Proc. of the Winter 1993 USENIX Confer-
ence: San Diego, California, USA (January 1993), 307–326.

[20] SELTZER, M. I., GANGER, G. R., MCKUSICK, M. K.,
SMITH, K. A., SOULES, C. A. N., AND STEIN, C. A. Jour-
naling versus soft updates: Asynchronous meta-data protec-
tion in file systems. In Proc. of the 2000 USENIX Annual
Technical Conference: San Diego, California, USA (June
2000).

12

[21] SHRIVER, E., GABBER, E., HUANG, L., AND STEIN, C.
Storage management for web proxies. In Proc. of the 2001
USENIX Annual Technical Conference, Boston, MA (June
2001), 203–216.

[22] Linux XFS. http://linux-xfs.sgi.com/projects/xfs, 2003.

[23] SPECweb99 Benchmark. http://www.spec.org, 1999.

[24] SWEENEY, A., DOUCETTE, D., HU, W., ANDERSON, C.,
NISHIMOTO, M., AND PECK, G. Scalability in the XFS
file system. In Proc. of the USENIX 1996 Annual Technical
Conference: San Diego, California, USA (January 1996), 1–
14.

[25] ReiserFS. http://www.namesys.com, 2003.

[26] TPCC-UVA. http://www.infor.uva.es/˜diego/tpcc.html,
2003.

[27] TWEEDIE, S. Journaling the Linux ext2fs filesystem. In
LinuxExpo’98 (1998).

[28] Veritas Software. The VERITAS File System (VxFS).
http://www.veritas.com/products, 1995.

[29] VOGELS, W. File system usage in Windows NT 4.0. ACM
SIGOPS Operating Systems Review 34, 5 (December 1999),
93–109.

[30] WANG, J., AND HU, Y. PROFS–performance-oriented data
reorganization for log-structured file system on multi-zone
disks. In Proc. of the The Ninth International Symposium
on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS), Cincinnati, OH,
USA (August 2001), 285–293.

13

