Q2

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO.X, XXXXX2014

|CCI: In-Cache Coherence Information
Antonio Garcia-Guirado, Ricardo Fernandez-Pascual, and José M. Garcia

Abstract—In this paper we introduce ICCI, a new cache organization that leverages shared cache resources and flat coherence
protocols to provide inexpensive hardware cache coherence for large core counts (e.g., 512), achieving execution times close to a non-
scalable sparse directory while noticeably reducing the energy consumption of the memory system. Very simple changes in the system
with respect to traditional bit-vector directories are enough to implement ICCI. Moreover, ICCI does not introduce any storage overhead
with respect to a broadcast-based protocol, yet it provides large storage space for coherence information. ICCI makes smarter use of
cache resources by dynamically allowing last-level cache entries to store blocks or sharing codes. This way, just the minimum number
of directory entries required at runtime are allocated. Besides, ICClI suffers a negligible amount of directory-induced invalidations.
Results for a 512-core CMP show that ICCI reduces the energy consumption of the memory system by up to 48 percent compared to a
tag-embedded directory, up to 15 percent compared to a sparse directory, and up to 8 percent compared to the state-of-the-art
Scalable Coherence Directory which ICCI also outperforms in execution time. In addition, ICCI can be used in combination with
elaborated sharing codes to apply it to extremely large core counts. We also show analytically that ICCI’s dynamic allocation of entries
makes it a suitable candidate to store coherence information efficiently for very large core counts (e.g., over 200K cores), based on the

observation that data sharing makes fewer directory entries necessary per core as core count increases.

Index Terms—Cache coherence, cache organization, scalability, multi-core, energy-efficiency

1 INTRODUCTION

CACHE coherence enables simple shared-memory pro-
gramming models that facilitate writing efficient paral-
lel applications. During the next years, hardware coherence
will remain desirable for developing new non-structured
parallel programs as well as for running legacy applications
[1]. Chips designed for market segments ranging from high-
performance computing to cloud computing will benefit
from a coherent shared-memory model. To allow this, it is
needed to integrate a scalable hardware cache coherence
mechanism onto these future chips. A recent commercial
example is the new SGI UV2 [2] machine developed by Sili-
con Graphics.

Scaling coherent cache hierarchies for the envisioned
chip multiprocessors (CMPs) that integrate large numbers
of cores (e.g., hundreds or thousands) is problematic. The
lack of scalability of existing coherence mechanisms in
terms of area, traffic and energy-efficiency, as well as the
introduction of spurious coherence invalidations of active
cache lines [3] (L1 cache line invalidations performed on
directory evictions to maintain coherence), may limit the
applicability of cache coherence to future CMPs.

e A. Garcia-Guirado is with the Departamento de Ingenieria y Tecnologia de
Computadores, Universidad de Murcia, Murcia, Spain, and Intel Barce-
lona Research Center, Intel Labs, Universitat Politecnica de Catalunya,
Barcelona, Spain.

E-mail: toni@ditec.um.es, antoniox.garcia.guirado@intel.com.

e R. Ferndndez-Pascual and J.M. Garcia are with the Departamento de
Ingenieria y Tecnologia de Computadores, Universidad de Murcia,
Murcia, Spain. E-mail: {rfernandez, jmgarciaj@ditec.um.es.

Manuscript received 20 Feb. 2013; revised 21 Dec. 2013; accepted 30 Jan.
2014; date of publication xx xxx; date of current version xx xx xXxxx.
Recommended for acceptance by R. Gupta.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TC.2014.2308185

Large systems typically use directory-based cache coher-
ence protocols [4]. The directory keeps information about
which cores are using each cache line, enabling efficient
point-to-point coherency traffic that uses scalable networks,
such as meshes or tori, at the expense of using extra mem-
ory to store the sharing information.

Unfortunately, designing a scalable directory for large
core counts is not easy, especially if the directory stores
exact sharing information, which is necessary for minimiz-
ing network traffic. The directory organization has to deal
with two extreme cases that may arise during the execution
of programs. These are the following;:

e All blocks in the private caches are private to the
cores (no additional sharers exist for any of the
blocks). This determines the maximum number of
entries that will ever be used in the directory at once,
one per private-cache entry. We define the coverage
of a directory as the percentage ratio of the number
of directory entries to the number of private-cache
entries. The worst case that the directory must cover
to offer good performance is equivalent to a 100 per-
cent coverage (one directory entry per private-cache
entry).

e A block is shared by all cores. This determines the
size of each entry, which must have enough room to
store all the sharers of the block (i.e., all cores). Usu-
ally, a full-map bit-vector is used, containing 1 bit to
indicate the presence (or absence) of a copy of the
block in each of the private caches [3], [5], [6], [7].

Handling both extreme cases makes directories become

eventually unaffordable as the number of nodes increases,
with both a high number of entries and a large size for each
entry (1 bit per core), resulting in a per-tile area overhead
proportional to the number of cores.

0018-9340 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

To make things worse, the set-associative arrays used to
store the directory suffer from address conflicts that cause
directory-induced invalidations in the private caches [3]. To
reduce the amount of conflicts and invalidations, the direc-
tory must be overprovisioned (with a coverage over 100 per-
cent), containing many more entries than those necessary
for the worst case scenario [8].

A number of proposals try to reduce the size of the
directory’s exact sharing code and the frequency of
directory-induced invalidations. These usually imply an
increase in the complexity, latency and energy consump-
tion of the directory circuitry and the cache coherence
protocol. For instance, hierarchical directories [1] have
been proposed as a scalable alternative to flat directories.
By distributing the sharing information in several levels,
their per-core overhead is proportional to the k-th root
of the number of cores (where k is the number of levels
of the hierarchy). However, the complex management of
the distributed sharing information makes these proto-
cols difficult and costly to validate and implement in
real systems.

Inexact sharing codes are another way of reducing the
directory overhead [7], [9], [10], [11]. However, code inexac-
titude causes superfluous coherence actions, increasing
network traffic and execution time and compromising
scalability.

In this paper we tackle the area scalability problems of
directories from a novel perspective. We address an ineffi-
ciency that consists of the use of a fixed-size dedicated
structure for the directory, typically made up of set-associa-
tive arrays which need to be oversized to cover even worst-
case scenarios. We show that such structure is unnecessary
when scaling up the number of cores, and it is actually
harmful in a number of ways, as it introduces unaffordable
area overhead and causes a high number of directory-
induced invalidations. We discuss a novel way to store
directory entries that we call in-cache coherence informa-
tion (ICCI). ICCI uses storage structures already present in
the chip (the last level cache (LLC)) to dynamically store
directory entries with fine granularity, allocating just the
strictly necessary number of these. ICCI is based on the fol-
lowing observation: as the number of cores rises, the num-
ber of directory entries required per-core does not increase,
because the number of private-cache entries to track per
core remains constant and, at the same time, data sharing
implies that a single directory entry can track an increased
number of private-cache entries (one per sharer, with poten-
tially as many sharers as cores). This means that fewer and
fewer directory entries per-core will be in effective use.
Hence, dynamically allocating only the necessary entries,
like ICCI does, results in scalable directory storage
overhead.

The overhead of ICCI remains within acceptable limits
for proper multi-core scalability regarding area, latency
and energy. ICCI is orthogonal to the sharing code used (it
is not our purpose to develop any new sharing codes). In
our analysis, we will use full-map sharing codes for core
counts up to 512, and a hierarchical code for larger core
counts up to 256 K. The nature of coherence information
makes ICCI very suitable to easily store it, rivaling in area
with other scalable schemes (e.g., SCI [12], hierarchical

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO.X, XXXXX 2014

protocols [1] or duplicate-tag directories [13]) without
incurring their associated problems (e.g., slow invalida-
tions, complexity, power-consuming lookups) and provid-
ing some particular advantages, such as suffering a
negligible amount of directory-induced invalidations.

ICCI provides dynamic directory coverage, which never
rises over 100 percent and can be as low as 0 percent
depending on runtime workload characteristics. We have
studied the range of coverages resulting from different
application characteristics and it can be concluded that,
under reasonable circumstances, the total amount of storage
used for storing coherence dynamically is within scalable
limits.

The rest of this paper is organized as follows: Section 2
gives the necessary background for ICCI Section 3
describes ICCI. Section 4 compares a possible implementa-
tion of ICCI against both traditional and novel directory
schemes from performance and energy-consumption points
of view. Section 5 provides an analytical study of the storage
overhead introduced by ICCI and its scalability in compari-
son to other coherence schemes. A survey of other alterna-
tive directory schemes can be found in Section 6. Finally,
our conclusions are presented in Section 7.

2 BACKGROUND

Chip multiprocessors containing several processing cores
are the reigning architecture nowadays [8], [14], [15], [16],
[17]. They are expected to remain so for the foreseeable
future, integrating more cores to make cost-effective use of
the extra transistors provided by shrinking feature sizes.
CMPs usually employ a tiled design with NUCA caches
[18], distributing the storage capacity across the chip, each
tile containing a core and its associated bank of the shared
NUCA last level cache. Through this paper we assume a
cache hierarchy composed by a shared LLC and private L1
caches, without loss of generality. The cache coherence pro-
tocols discussed in this paper maintain coherence among
the private L1 caches, and use exact sharing information
stored on-chip unless otherwise noted. A scalable network
(typically a mesh) connects all the cores. Next, we describe
some cache coherence schemes necessary for understanding
ICCL

2.1 Inclusive Cache with Tag-Embedded Sharing
Information

Inclusive cache hierarchies, in which each level of the
hierarchy contains all the blocks stored in the levels
closer to the cores, provide a natural directory when
sharing codes are co-located with the LLC tags [5], [6].
However, this option gets less interesting as the number
of cores grows. Embedding the sharing code in the tags
makes the entry size increase linearly with the number of
cores. With 512 cores and a full-map bit-vector, the size
of the sharing bit-vector would match the size of its asso-
ciated 64-byte cache line, and the total LLC area would
almost double. This is an unaffordable overhead, and for
this reason tag-embedded sharing information remains
used only for low core counts. Some recent Intel micro-
architectures use this scheme to keep coherence among
four private L2 caches, being the L3 cache shared and

GARCIA-GUIRADO ET AL.: ICCI: IN-CACHE COHERENCE INFORMATION

inclusive, with its tags containing core valid bits (CVB) to
indicate which core private caches contain copies of the
block [19].

In general, if the total number of entries in the LLC is ¢
times larger than in all the private caches combined (e.g., ¢
is equal to 8 in Intel’s Ivy Bridge [19]), a tag-embedded
directory can potentially track ¢ x n times as many sharers
as there are single entries in the private caches, where n is
the number of cores. This is an exorbitant capacity com-
pared to the real usage of these resources.

2.2 Sparse Directory

Sparse directories [7] are caches that store sharing codes
(instead of memory blocks) to track all the contents of the
private caches. Since the L1 entries to track are much fewer
than the LLC entries, the utilization of tag-embedded direc-
tories is low (i.e., most directory entries track no sharers),
and the sparse directory takes advantage of this fact to
reduce the coherence information overhead by storing a
smaller number of sharing codes separately from the LLC.
The sparse directory is typically banked and distributed fol-
lowing the same pattern as the NUCA LLC.

Sparse directories also enable non-inclusive and exclu-
sive caches naturally. Blocks stored in the L1 caches are
tracked by the sparse directory, and they do not need to
be stored in the LLC, leaving room for extra blocks com-
pared to inclusive caches. If a block can be stored in the
LLC while copies in the private caches exist (tracked by
the sparse directory), the cache hierarchy is said to be
non-inclusive. If the block can be on either the LLC or the
sparse directory, but not both, the cache hierarchy is
exclusive. Exclusive and non-inclusive caches provide a
more efficient use of LLC resources, at the cost of intro-
ducing extra three-hop L1 misses (those in which, in
addition to the request and response messages, a third
message is needed to reach the L1 cache supplying the
block), and performing data transmissions on clean L1
writebacks (when no copy of the block exists in the LLC,
which is always the case in purely exclusive caches and
can be the case for blocks in exclusive state in non-inclu-
sive caches). The number of three-hop misses and data
transmission on L1 writebacks in non-inclusive caches
depends on the particular allocation (and bypass) policies
used by the LLC to optimize the LLC-capacity/latency/
bandwidth features of the design in question (examples
are allocation upon an LLC miss, upon an L1 eviction or
upon L1 sharing).

Directory-induced invalidations are another serious
problem in sparse directories. Because directory-induced
invalidations affect blocks actively used by the cores, they
generate extra L1 cache misses with negative effects on
performance. To reduce the number of such invalidations,
overprovisioned sparse directories are used, and 200 per-
cent coverages are not uncommon [8]—meaning that the
sparse directory has twice as many entries as all the L1
caches that it tracks combined.

Even though smaller than a tag-embedded directory, a
sparse directory has room for tracking {5 x n times the total
number of entries in the private caches, where c is the cover-
age (e.g., 200 percent) and n is the number of cores. Most of

this space, whose per-code size grows proportional to the
core count, will be always unused.

2.3 Scalable Coherence Directory (SCD)
To date, the Scalable Coherence Directory [20] is arguably
one of the most promising directory schemes for support-
ing coherence for high core counts (see Section 6 for other
recent proposals). SCD is capable of storing exact sharing
information in hierarchical entries within a single cache.
This way, SCD has the same scalability properties as hierar-
chical protocols. SCD’s per-core storage overhead is pro-
portional to the k-th root of the number of cores, with k
being the number of levels of the hierarchy, fixed at design
time. The strong point of SCD is that a flat directory can be
used instead of a hierarchical one, because all sharing infor-
mation of a memory block can be found in the same direc-
tory cache. A flat directory is much simpler, easier to
implement, and even to formally prove correct, than a hier-
archical directory.

The smart sharing information encoding of SCD enables
a memory block shared by few cores to use just one direc-
tory entry. Additional entries are allocated as the number of
sharers increases, creating a tree structure, with entries
pointing to child-entries containing further sharers.

The storage of sharing codes in multiple entries makes
SCD’s lookup mechanism more complex. Multiple lookups
are needed to retrieve all the SCD cache entries containing
the sharing information of highly shared blocks. On such a
common event as a block invalidation, this multiple-lookup
process is carried out to retrieve the sharers to be invali-

dated. In general, up to) lookups are necessary

k n

to read all the entries of a k-level hierarchy, assuming n
cores. For instance, a 512-core two-level hierarchy requires
23 sequential lookups in the same SCD cache, in the critical
path of the invalidation process. Additional hierarchy levels
reduce SCD’s entry size but increase the number of lookups.
SCD'’s entries for a nine-level 512-core hierarchy require just
a 2-bit vector, but 511 of these entries make up the hierar-
chy. Reading so many entries sequentially for an invalida-

tion is not affordable.

As long as the lookup latency overlaps with others, it
should not affect performance. Prior work tested SCD with
an unicast network, and the results showed that the look-up
latency for a 1,024-core two-level hierarchy was overshad-
owed by unicast message sending. However, unicast is very
inefficient when sending messages to large core counts.
Mechanisms such as multicast or cruise-missile invalidates
[13] are interesting then, as suggested by SCD’s authors, for
both the sending of requests and the recollection of
responses, to improve the performance and energy effi-
ciency of the system. When using these mechanisms, the
effect of the look-up latency on the execution time would
become more important.

To reduce the number directory-induced invalidations,
SCD relies on the high-associative properties of ZCaches
[21]. ZCaches provide high associativity by considering

(2)
GetS/fwdGet,addSharer
GetX/fwdGet,invL1,storeOwner

(1) GetS,GetX/

mData,storeOwner,sData (3) owrepl_s/sOwReq

(4) ack/
storeOwner

(9) repl/invL1,wb

(5) nack_s/
rSh,sOwReq

(8) GetS,GetX/
sData,storeOwner

(7) owrepl_ns/stData

(10) repl/wb (6) nack_ns/stData

Fig. 1. ICCI's state diagram for the LLC.

many replacement candidates on evictions. This allows SCD
to outperform traditional hierarchical protocols in which
directory-induced invalidations are more frequent. Further
details on SCD can be found in [20].

3 ICCI: IN-CACHE COHERENCE INFORMATION

ICCI is a new cache organization that provides natural sup-
port for storing cache coherence information. This support
is derived from a novel usage of LLC entries to store either
a cache line or sharing information about the copies of a
memory block stored in the L1 caches.

The LLC is dynamically filled with cache lines and shar-
ing codes, taking up just the strictly necessary number of
entries for storing cache coherence information. A flat cache
coherence protocol can be used to maintain coherence. No
specific sharing code or inclusion properties of the cache
hierarchy are enforced by ICCI. We use a full-map bit vector
along most of this paper to make use of the large storage
capabilities of ICCI, but other sharing codes can be used.
More efficient compressed codes for larger core counts can
be enabled by the large size of cache lines (or several LLC
entries may be combined to create even larger composable
codes, similarly to SCD).

To understand ICCI, it is illustrative to compare it with
tag-embedded directories. We can think of it this way: ICCI
moves the tag-embedded sharing code from the tag into the
data field of the cache entry. The tag no longer needs to
grow in size, while the data field has plenty of space to store
large sharing codes (e.g., 512 bits with 64-byte cache lines).
Because a cache entry cannot store a memory block when
the data field is occupied by the sharing code, the system
must be adapted to work with this kind of cache organiza-
tion. In the most straightforward implementation, ICCI
could work along with an exclusive cache hierarchy just by
applying minor modifications to the LLC management.
Section 3.1 explains that implementation of ICCI in detail.

ICCI provides a huge directory compared to sparse
directories. However overprovisioned, a reasonably sized
sparse directory will always be smaller than the LLC, which
means that directory-induced invalidations will be much
less frequent in ICCI.

In addition, contrary to tag-embedded information and
sparse directories, ICCI introduces no dedicated structures
and no fixed directory overhead. Traditional directory
schemes are designed to cover worst-case scenarios in both
terms of number of entries and entry size, which makes

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO.X, XXXXX 2014

states events actions

np: block not present
d: directory info present,

GetS: a core’s load request
GetX: a core’s write request
owrepl_ns: replacement from L1
(no additional sharers exist)
owrepl_s: replacement from L1
(additional sharers exist)
repl: LLC block replacement
nack_ns: L1 cannot accept
ownership (no more sharers)
nack_s: L1 cannot accept
ownership (sharers exist)
ack: L1 accepted ownership

mData: get data from main memory
storeOwner: store owner in the
directory information
sData: send data to requesting core
fwdGet: forward request to owner
addSharer: store new sharer
in the directory information
invL1: invalidate L1 copies
sOwReq: send request for a sharer

block in L1 cache(s)
b: block in LLC only
db: seeking new owner

to accept ownership
rSh: remove stale sharer
stData: store data in the LLC
whb: send data to main memory

them scale poorly. The fundamental idea behind ICCI is
that the storage of directory information can be performed
more efficiently (and more simply) if, rather than using a
dedicated structure, the system takes up just the minimum
amount of entries required from the LLC. As the number of
cores increases, the number of directory entries really
needed per core typically decreases (Section 5.1), making
ICCI's approach scalable.

To conclude with the description of ICCI, we must note
that the characteristics of ICCI can be seen from two com-
plementary points of view, depending on how resources are
assigned:

e Assuming a fixed LLC capacity. Contrary to tag-
embedded or sparse directories, which in this case
introduce large overheads for storing the sharing
codes, ICCI introduces no extra overhead on the stor-
age capacity of the chip.

e Assuming a fixed amount of resources that are
shared between cache blocks and coherence informa-
tion. In traditional schemes, these resources are split
statically between the LLC and the structures storing
coherence information at design time, resulting in a
smaller LLC (and increasingly smaller as the number
of cores rises). This is not the case in ICCI, where the
LLC will be assigned all the resources and they will
be used dynamically to store either data or coherence
information. ICCI will adapt at runtime to the char-
acteristics of the applications running, changing the
percentage of the resources used for sharing infor-
mation depending on the sharing patterns of the
workload at each moment.

In both cases, the most appropriate scheme will be
determined by the most efficient global usage of resources.
We use the first point of view for the detailed evaluation
of an implementation of ICCI against other proposals in
Section 4. In Section 5, we use the second point of view to
analytically show ICCI’'s favorable scalability properties
compared to other coherence schemes, depending on the
particular characteristics of the running applications.

3.1 ICCILLC Management

Fig. 1 shows the state diagram for the LLC operation in a
possible implementation of ICCI (assuming an exclusive
cache hierarchy). An ordinary MOESI cache coherence pro-
tocol is assumed (others are possible). The states shown in
the diagram correspond to the possible configurations of a

GARCIA-GUIRADO ET AL.: ICCI: IN-CACHE COHERENCE INFORMATION

TABLE 1
Comparative of Directory Schemes

Directory Features

Influence in the complexity of

Type Dedicated per-tile Looku, Directory-induced :
P overhegd lalenq[/) invaligations Coherence protocol Cache design
Tag-embedded Flat O(n) o(T) Low Low Low
Sparse directory Flat O(n) o(1) Medium Low Low
Hierarchical | Hierarchical O({/n) O(logn) High High Low
SCD Flat O(¥n) O(%ﬁ) Low Low High (hierarchy on ZCache)
SCI List-based O(logn) O(n) Medium Medium Low
Pointer Tree Tree-based O(logn) O(logn) High High Low
ICCI-full-map Flat none o(l) Low Low Low

block in the LLC: not present (np state), directory informa-
tion stored in the LLC (d state), and block stored in the LLC
(b state). These states are codified in the tag array of the
LLC. Next, we give an explanation of these states.

When a block is fetched from main memory, an LLC
entry is allocated for the sharing code (d state), and the block
is only stored in the requesting core’s L1 cache, which
becomes the block owner (1). Other cores can get a shared
copy of the block by sending a request to the LLC, which
forwards the request to the owner L1 cache (2), which
answers with the shared copy.

Only the owner core writes back the block data to the
LLC upon eviction, while other cores’ shared copies can be
optionally replaced silently. When the owner replaces the
block, the LLC asks another sharer (if any exists) to accept
the ownership (3/4). Other sharers are known to the LLC
thanks to the sharing code stored in the LLC. However, if a
sharer has silently replaced its shared copy of the block, it
will reject the ownership. In such a case, the LLC removes
the former sharer from the sharing code and probes another
sharer (5). This process is out of the critical path of L1 cache
misses. If there are no sharers left, the sharing code stored
in the LLC entry is not necessary anymore, and the evicted
memory block reuses that LLC entry (6/7), transitioning
from d to b state. Reusing the LLC entry also prevents LLC
evictions upon L1 cache replacements.

When a core requests a block stored in the LLC, the block
is sent to the requesting core (in exclusive state), and the
LLC entry that contained the block is reused to store the
newly generated sharing code (8), transitioning from b to d
state. Again, the entry reuse mechanism prevents any LLC
evictions. This reuse is important, since directory entry evic-
tions are the cause of directory-induced invalidations.

In this implementation of ICCI, only main memory
accesses (due to LLC misses, which are hopefully infre-
quent) cause LLC evictions of either a directory entry (9) or
a block (10) in order to allocate a directory entry for the
newly fetched block.

ICCI's LLC uses an ordinary pseudo-LRU replacement
policy. LLC blocks never get their pseudo-LRU information
updated in ICCI, because LLC accesses cause blocks to be
substituted by directory entries (8). Only entries containing
directory information have their pseudo-LRU information
updated. Hence, data blocks are commonly evicted from
the LLC before directory entries naturally. In addition, shar-
ing codes are not evicted as long as there are candidate
blocks for eviction. This makes ICCI work implicitly as the
mechanisms proposed by Jaleel et al. [22] to bridge the per-
formance gap between inclusive and non-inclusive caches,
which in practice are meant to reduce directory-induced
invalidations.

Alternatively to the operation just explained, the LLC
could store both a memory block and its directory informa-
tion in different cache lines (ways) of the same LLC set to
enable non-inclusive or inclusive caches with ICCI. The
changes required in the cache array and controller to carry
out the management necessary for this are comparable in
complexity to the management of a tag-embedded directory
or the dedicated structure of sparse directories.

3.2 Contextualizing ICCI’s Directory Scheme

Table 1 compares ICCI with other shared-memory organiza-
tions based on cache coherence directory protocols, show-
ing that ICCI has the best features among them. Especially
important is ICCI's ability to store directory information
with no dedicated area overhead, unlike the rest of schemes.
Also, ICCI's negligible number of directory-induced inva-
lidations contrasts with most schemes, that at some degree
suffer performance degradation due to these invalidations.
Other good features of ICCI are the use of a simple flat pro-
tocol and ordinary caches, as well as its constant lookup
latency, especially if compared with the closest alternative,
SCD.

Finally, note the differences between ICCI and an appar-
ently similar published proposal: AMD Magny-Cours’
cache coherence [8]. When operating in non-coherent mode,
the Magny-Cours uses all the ways of the cache to store
blocks. When operating in coherent mode, the Magny-
Cours allocates some ways of all cache sets to work as an
ordinary directory cache. This is different from ICCI
because while the Magny-Cours reserves resources to create
a separate directory cache, ICCI selectively uses the mini-
mum number of LLC entries possible to store sharing
information.

3.2.1

ICCI incurs a negligible amount of directory-induced inva-

Directory-Induced Invalidations

lidations. In ICCI, the eviction of directory entries from the
LLC, causing L1 cache invalidations, is a rare phenomenon
due to the much larger size of the LLC compared to the
tracked L1 caches and the fact that data blocks are evicted
from the LLC before directory entries. For instance, ICCI
working on an LLC with eight times as many entries as the
aggregate L1 caches works logically as an 800 percent cover-
age directory cache. Applying the analytic model proposed
by Sanchez et al. [20] to ICCI, the maximum probability of

evicting a cache entry with sharing information upon an
sizer
sizep o

LLC insertion is ()#HCLLC - Assuming the previous

SeieTeIsieTeeTeIIe e e e el
[

: [Lus|[L1Ds @

[

{ L2$ Bank

{ network
[interface
: L2$ Bank

[

i [L11s][L1Ds @

[

Fig. 2. 512-Core CMP. Two tiles (each containing a core, private L1
caches and a shared L2 cache bank) share each router of the 16 x 16
mesh network.

ratio between LLC and private caches and 8-way associativ-
ity in the LLC, the eviction probability is 6 x 108 for ICCL
As a comparison, SCD using overprovisioned 110 percent
coverage 64-replacement-candidate ZCaches has a much
larger 1072 eviction probability, which is considered negligi-
ble by SCD’s authors. Moreover, ICCI’s eviction probability
is applicable only upon memory accesses, because it is then
that LLC insertions take place (see how entry reuse works
in Section 3.1), while for SCD evictions take place upon
more frequent LLC accesses (SCD entries are allocated for
the directory information of the LLC blocks accessed by the
cores, causing evictions). Note that one of the main contri-
butions of SCD is its ability to bound the eviction probabil-
ity by means of controlled overprovisioning thanks to
ZCache’s high associativity. We have shown that ICCI can
do as good a job with no need for the (overprovisioned)
complex ZCache-based SCD cache.

4 EVALUATION

We used a simulator based on Pin [23] and GEMS [24] to
perform the tests shown in this section. The chip compo-
nents of GEMS were attached to a Pin tool to enable fast
simulation of large numbers of cores. The methodology
explained by Monchiero et al. [25] was used to obtain per-
formance numbers.

4.1 Parameter Settings

We simulated a 512-core CMP (shown in Fig. 2) running at
2 GHz with a shared eight-way associative L2 cache based
on a NUCA design (one 10-cycle access latency 256 KB L2
bank per core, 128 MB total) on a mesh network (every two
tiles share a router), and four-way associative 16 KB data
and instruction L1 caches (1-cycle access latency). The cache
block size is 64 bytes. We call the capacity ratio between the
shared cache and the aggregate private caches as the S/P
ratio. The S/P ratio of our simulations was 8x. For main
memory we assumed DDR4 technology [26], [27].

For reference, the cache sizes were set to those of Intel’s
SCC [14], which was designed to scale out to hundreds of
cores. Intel’s SCC measures 567 mm? at 45 nm with a 125 W
TDP. Our assumed 512-core could be realized in 585 mm? at
14 nm with similar power consumption.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO.X, XXXXX 2014

TABLE 2
Simulated Machine

Processors
LT Cache

512 x86 cores @ 2 GHz, 2-ways, in-order

Split I&D. Size: 16 KB, 4-ways, 64 bytes/block
Access latency: 1 cycle

MOESI coherence protocol

Size: 256/128/64 KB per bank (NUCA)

16-ways, 64 bytes/block

Access latency: 10 cycles

Directory cache lookup: 2 cycles, SCD cache lookup:
1 cycle

16 GB DDR4 DRAM

16 3D-stacked memory controllers

2 GHz, 2D mesh: 16xT16. Express ITinks every 4
routers

16 byte links

Latency: 1 cycle/link, 3 cycles/express-link

4-cycle pipelined routers

Flit Size: 16 bytes

Control/Data packet size: 8/72 bytes (1/5 flits)

L2 Cache

RAM

Interconnection - Mesh

For energy calculations, we used McPAT [28] assuming a
22 nm process and scaled the resulting figures down to
14 nm. Simulations were configured with the values gener-
ated by McPAT. Table 2 summarizes the characteristics of
the simulated machine.

We evaluated four different schemes. Two of them are
common area-consuming (non-scalable) directory coher-
ence schemes to use as baselines: a tag-embedded directory
(TAG) and a 200 percent coverage sparse directory
(SPARSE). The other two are the scalable directory coher-
ence proposals we intended to compare: a 110 percent cov-
erage SCD and ICCI assuming an exclusive cache hierarchy.
Table 3 shows the simulated directory schemes and the
overhead of their associated extra resources. Note that due
to the difficulty in simulating and implementing arbitrary
cache sizes (i.e., sizes not power of 2), we did not fix the
overall amount of area resources and derive the sizes of the
LLC and directory storage. Instead, we fixed the LLC size
and added the extra resources needed by each directory
scheme. Notice that ICCI is the only alternative that requires
no additional hardware resources, while the tag-embedded
directory requires the most extra resources.

The 110 percent coverage SCD uses 52-replacement-can-
didate ZCaches. We used ordinary 200 and 110 percent cov-
erages for the sparse directory and SCD to reduce directory-
induced invalidations to a negligible number [8], [20]. The
sparse directory needs a higher coverage to achieve a simi-
lar number of directory-induced invalidations to SCD, as
SCD takes advantage of the higher associativity of ZCaches.
The tag-embedded directory uses an inclusive cache hierar-
chy, while the sparse directory cache and SCD allow for a
non-inclusive hierarchy. The implementation of ICCI used
is the one described in Section 3.1. Both TAG and ICCI
implement a suitable LLC replacement algorithm to mini-
mize the performance loss of inclusive caches with respect
to non-inclusive caches [22]. Evictions of shared blocks are
notified to the directory in SPARSE and SCD to prevent
stale sharers from polluting the directory caches and gener-
ating a large number of directory-induced invalidations

TABLE 3
Directory Size Requirements for the Schemes Tested
S/P ratio | Embedded-tags 200%-COVerage - 110g; ooverage SCD 1CCI
~lags gparse directory o g
8x 729% 200% 5% 0%
4 364% 200% 15% 0%
2x 182% 200% 15% 0%

Size is given as a percentage of the aggregate capacity of the tracked
caches, assuming a 512-core CMP and 64-byte lines.

GARCIA-GUIRADO ET AL.: ICCI: IN-CACHE COHERENCE INFORMATION

TABLE 4
SPLASH-2 Program Sizes

Original problem size
(maximum 64 cores)

Scaled problem size

Benchmark (512 cores)

Barnes 16K particles 256K particles
Ocean_cp 258%258 grid 20482048 grid
Ocean_ncp 258x258 grid 2048x2048 grid
Volrend ROTATE_STEPS=4 ROTATE_STEPS=100
Water_ns 512 molecules 8K molecules
Water_s 512 molecules 32K molecules
Cholesky tk29.0 tk29.0
FFT 64K points 1M points
LU_cb 512x512 matrix 2048 %2048 matrix
LU_ncb 512%512 matrix 2048 <2048 matrix
Radix 256K integers 64M integers

that would harm performance noticeably, as our observa-
tions confirmed.

To understand the results of the evaluation, the differen-
ces between the cache hierarchies used must be taken into
account. The implementation of ICCI incurs the most three-
hop misses (as many as an ordinary exclusive cache),
because the memory blocks that are already present in the
L1 caches are not stored in the LLC. Also, clean blocks
evicted from L1 caches are written back to the LLC (transi-
tions 6 and 7 in Fig. 1), like in the non-inclusive cache
(SPARSE and SCD), in which we do not store blocks in
the LLC while exclusively owned by an L1 cache to increase
the LLC effective capacity. Finally, in practice, regarding
the number of memory accesses this implementation of
ICCI works as an inclusive cache with the same LLC size
(TAG), because blocks in L1 caches require an LLC entry for
the sharing code, while the non-inclusive cache provides a
higher effective total cache capacity for the same LLC size
(thanks to storing the directory separately in additional area
resources). Remember that ICCI can be implemented along
with a non-inclusive cache at the cost of some extra com-
plexity, resulting in different tradeoffs.

This implementation of ICCI removes the need to access
a directory cache in addition to the L2 tags. Note that the
directory cache causes extra energy consumption if accessed
in parallel to the LLC or extra latency if accessed sequen-
tially after the LLC. We have considered parallel accesses to
maximize performance.

We ran benchmarks from the SPLASH-2 suite appro-
priately scaled up for 512 cores, making them able to
stress the 128 MB LLC. Table 4 compares the original
SPLASH-2 input sizes recommended for up to 64 cores
and the scaled-up input sizes used in our experiments for
512 cores. In Section 4.3.1, we also show results for the
PARSEC 3.0 benchmarks.

We considered the use of unicast or multicast networks
in the simulated 512-core chip. Our preliminary results
showed that unicast communication causes performance to
drop in all benchmarks compared to using efficient one-to-
many and many-to-one communication, as noted by Ma
et al. [29]. Seven out of 11 evaluated benchmarks increased
their execution by 50 percent at least when using unicast
communication. The least affected benchmark was FFT,
which still showed a 5 percent increase in execution time.
The main cause is the slow invalidation of highly shared
blocks, which becomes a bottleneck and increases the pres-
sure on the network creating hot spots. While multicast can
gracefully deal with invalidations to many cores, which are
especially important for efficient thread synchronization
(e.g., barriers and locks), unicast requires the origin of

invalidations to send up to 511 unicast messages and pro-
cess up to 511 response messages, becoming a fatal bottle-
neck for performance, as evidenced by our results. For its
superior performance, we chose a network with efficient
multicast request sending and response collection to evalu-
ate the four directory schemes [29].

4.2 Results for 8 x S/P Ratio in SPLASH-2
4.2.1 Execution Time

The top graph of Fig. 3 shows the execution time of the
SPLASH-2 benchmarks. The results are normalized to ICCL
The central graph of the figure gives insight into how time
is spent on L1 cache misses, showing the main differences
between the four evaluated directory organizations.

In general, ICCI works similarly to the slower cache
hierarchy in each benchmark: inclusive (TAG) or non-
inclusive (SPARSE). ICCI suffers as many extra memory
accesses as the inclusive cache used by TAG (because ICCI
uses the least resources, see Table 3), increasing execution
time in Ocean, FFT and Radix. ICCI suffers even more extra
three-hop accesses than the non-inclusive hierarchy used
by SPARSE, increasing the execution time of Barnes, Vol-
rend and Water. Volrend is the best benchmark for TAG,
with 7 and 8 percent faster execution than SPARSE and
ICCI at an 8 x S/P ratio, due to the difference in number of
three-hop misses. At an 8x S/P ratio, ICCI performs less
than 2 percent worse than the fastest coherence scheme in
eight out of 11 benchmarks.

As for SCD, it performs similar to SPARSE since both use
a non-inclusive hierarchy. This is an advantage over ICCI
when memory accesses make up most of the execution
time, like in Radix, as SPARSE and SCD reduce the LLC
miss rate compared to TAG and ICCL

SCD’s weak point is the multiple sequential directory
lookups required to reconstruct the sharing vector that take
place in the critical path of cache misses. The effect of these
accesses is especially harmful when they take place in criti-
cal events such as barriers or contended locks, affecting the
performance of many cores, increasing the inefficiency of
thread synchronization. This makes SCD results deviate
from those of SPARSE in several benchmarks. This is the
case in Ocean, Volrend and LU, in which SCD shows
degraded performance, with up to a 10 percent slowdown
in Volrend compared to ICCI.

In broad terms, both ICCI and SCD perform reasonably
close to the non-scalable tag-embedded directory and sparse
directory, with the performance differences just described.
Their worse performance in some cases can be justified
because they use far fewer resources than the non-scalable
organizations (see Table 3). SCD’s degraded performance in
some benchmarks (ICCI beats SCD in eight out of 11 bench-
marks) as well as ICCI’s simplicity and smaller area are the
main arguments in favor of ICCI in this comparison.

These results also suggest that the cache hierarchy used
with ICCI does not affect execution time very negatively
compared to other hierarchies, obtaining better results than
other scalable alternatives like SCD. We went into detail to
investigate why this is so, and summarize our findings next.

First, in ICCI as well as in inclusive caches (TAG), most
of the LLC resources are used to store memory blocks not

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO.X, XXXXX 2014

|

-

execution time (% of ICCI)
-
o
=

w oo
SR o
VL

ASUYAS

Ho o w » ©»
B YoQ a a a
0P o o S} ©

FSIYAS
1001
VL
ASIYAS
aos
I001
VL
ASYYAS
1001
OVl
ASUVAS
1001
1001

Barnes Ocean_cp Ocean_ncp Volrend Water_ns

Main Memory EEEEE LLC + directory mEmmm

VL
OVl

HooH HOoH H00H R ©oH a0 H
»Y9oq ®WAQ »UAO T aa TAaa »mnaaoa
apoUa HPpoUao bOpoo » O Q POO 0pYQ
[BooH o H R B W B oW
& 4 71 21 & @

1 1 1 & S 5]

Water_s Cholesky FFT LU_cb LU_nch Radix

network D

Ll cache miss latency (% of ICCI)

HoOoH Hood Soos Sood S0oH HOooH HoOH HSoOooH SH0ooo S6os H500H
PUOQ PMOOQ PUWOQ BPWOQ PTWOQ PWOQ PYOQ PWOO PVOQ BUWAOQ BT OQ
Gpoao GpUa GPpUQ QEPUA GPUQ HpUa GPpUQ GOEpoa LEPUO0 QPUAa OpPUQ
]]] A oA oA] oo]] oA
& i I o o & & i I o 7
= = = & =} 5l = 5l = & =}
Barnes Ocean_cp Ocean_ncp Volrend Water_ns Water_s Cholesky FFT LU_cb LU_ncb Radix
dirs L2s w22z L1s Bxd RAM BN network 1 dir Do L2 == L1 —

energy consumption (% of ICCI)

aos
1001
O¥L
aSYVdS

©
I
=
I
@
=

Barnes

Ocean_cp Ocean_ncp

O¥L
ISAVAS

1%
IS
=
5
@
5l

Water_s Cholesky

Fig. 3. Results for 8x S/P ratio in SPLASH-2. From top to bottom: execution time, average L1 cache miss latency and energy consumption.

present in the L1 caches. In general, the total amount of L1
cache entries is much smaller than that of LLC entries, hence
only a small percentage of the LLC is used for blocks pres-
ent in the L1 caches (or for sharing information in ICCI). In
addition, the least re-referenced blocks of the exclusive LLC
are the ones not present in the inclusive LLC, and these
cause few extra memory accesses. Hence, the LLC miss ratio
increase is small. Table 5 compares the LLC miss rate of the
exclusive cache used with ICCI and the non-inclusive cache
used with SCD. In general, some benchmarks have a work-
ing set that fits in both the non-inclusive LLC and ICCI,
both yielding the same miss rate (Volrend, Water, LU).
Some benchmarks have large working sets and the miss
rate of ICCI is higher. The rest of results agree with the com-
monly accepted empirical observation that LLC miss rate is
approximately inversely proportional to the square root of
the effective size of the LLC cache [30].

In addition, prior work showed that the performance gap
between inclusive and non-inclusive caches is caused by
inappropriate LLC replacement-information in inclusive

caches, rather than by the difference in effective LLC capac-
ity, and appropriate replacement policies can bridge that
gap almost completely [22]. ICCI was designed in such a
way that an appropriate update mechanism is part of its
operation (as was shown in Section 3.1).

Second, most three-hop misses are caused by accesses to
blocks currently owned by L1 caches, and take place also in
the non-inclusive caches. As a result, the difference in the
amount of three-hop misses between ICCI and the non-
inclusive caches is small, as the results in Table 6 show.
When three-hop misses are abundant, the performance of
the non-inclusive caches and ICCI can degrade compared to
the inclusive one (TAG). This becomes evident in Barnes
and Volrend when comparing the execution time and L1
miss latency shown in Fig. 3.

Third, ICCI reduces the amount of data writebacks com-
pared to the non-inclusive caches, as can be seen in Table 7.
The explanation to this lies in ICCI’s replacement mecha-
nism, which transfers the ownership to another sharer upon
an owner replacement. This means that data is not written

TABLE 5
LLC Miss Rate for SPLASH-2
8x S/P ratio 4x S/P ratio 2x S/P ratio

Benchmark | SCD (non-Inclusive) ICCI (exclusive) Increase | SCD (non-Inclusive) ICCI (exclusive) Increase | SCD (non-Inclusive) ICCI (exclusive) Increase
Barnes 3.3% 3.4% 3.8% 4.1% 4.2% 4% 52% 5.5% 4.1%
Ocean_cp 35.3% 35.8% 1.5% 49.6% 51.7% 4.1% 66% 70.3% 6.6%
Ocean_ncp 30.9% 31.6% 2.4% 43% 45% 4.8% 52.4% 55.9% 6.6%
Volrend 0% 0% 0% 0% 0% 0% 0% 0% 0%
Water_ns 10.5% 10.5% 0.5% 10.9% 11% 0.7% 11% 11.2% 1.2%
Water_s 0.6% 0.6% 0% 0.6% 0.6% 0% 0.6% 0.6% 0%
Cholesky 16% 16% 0.3% 18.4% 18.6% 1.1% 19.6% 20.4% 3.8%
FFT 25.3% 25.4% 0.5% 28.7% 29.1% 1.5% 50.6% 52.5% 3.9%
LU_cb 0.9% 0.9% 0% 0.9% 0.9% 0% 2.3% 2.4% 3.3%
LU_ncb 0.1% 0.1% 0% 0.5% 0.5% 0% 0.8% 0.8% 2%
Radix 31.1% 31.7% 1,8% 41.8% 43.7% 4.6% 54.7% 59.9% 9.4%

For TAG (inclusive) and SPARSE, it is approximately equal to ICCI and SCD, respectively.

GARCIA-GUIRADO ET AL.: ICCI: IN-CACHE COHERENCE INFORMATION

TABLE 6
Three-Hop Misses for SPLASH-2 as a Percentage
of All L1 Cache Misses

Benchmark Non-Inclusive ICCI (exclusive) Increase
Barnes 59.1% 66.2% 11.9%
Ocean_cp 2.4% 2.5% 4.8%
Ocean_ncp 2.8% 3.5% 26.3%
Volrend 75.5% 89.9% 19.2%
‘Water_ns 71.5% 83.6% 16.8%
Water_s 26.4% 35.2% 33.3%
Cholesky 31.4% 34.4% 9.5%
FFT 0.3% 0.3% 0.4%
LU_cb 47.6% 51.2% 7.7%
LU_ncb 8.5% 9.8% 15.3%
Radix 0.5% 0.6% 13%

back as long as there are sharers remaining in the chip. We
found that ICCI generates traffic closer to the inclusive
cache in this regard.

4.2.2 Energy Consumption

The bottom graph of Fig. 3 breaks down the energy con-
sumption of the memory system (including the intercon-
nection network) normalized to ICCI. Static and dynamic
energy consumption is taken into account for the caches,
network-on-chip and RAM. Cache energy is broken
down into static and dynamic energy to analyze the
detailed effects of the directory area overhead, while
RAM and network energy are not broken down for
clarity.

These results show the inefficiency of embedded-tag
directories and sparse directory caches. TAG approximately
doubles the static energy of the LLC compared to ICCI, due
to the directory information that is as large as the associated
LLC block. The L2 cache dynamic energy of TAG also
increases due to the larger tags, raising its total energy con-
sumption even more. This results in increases in the overall
energy of the memory system of up to 48 percent with
respect to ICCI. SPARSE reduces the static energy compared
to TAG thanks to the smaller area overhead of the directory
cache. However, SPARSE still increases energy consump-
tion in general when compared to ICCI, and does so by up
to 15 percent in Volrend. SCD reduces the static energy fur-
ther compared to SPARSE, but its area overhead still makes
it more energy consuming than ICCL

TABLE 7
Percentage of L1 Evictions That Cause a Data
Writeback in SPLASH-2

Benchmark Non-Inclusive ICCI (exclusive) Decrease
Barnes 40.8% 33.8% 17.3%
Ocean_cp 97.6% 97.4% 0.2%
Ocean_ncp 97.1% 96.4% 0.8%
Volrend 24.5% 9.9% 59.2%
Water_ns 28.4% 16.4% 42.4%
Water_s 74.4% 65.2% 12.3%
Cholesky 68.9% 65.7% 4.6%
FFT 99.6% 99.6% 0%
LU_cb 52.3% 48.7% 7%
LU_ncb 90.4% 89.1% 1.5%
Radix 99.5% 99.4% 0.1%

ICCI is the least energy consuming alternative at an 8x
S/P ratio, outperforming SCD in most benchmarks, and
doing so clearly on those with moderate RAM usage. ICCI's
lower execution time when SCD suffers from directory seri-
alization causes the largest energy differences. This is spe-
cially noticeable in Volrend, where ICCI reduces energy by
8 percent compared to SCD. ICCI consumes as much RAM
energy as TAG, which is more than SPARSE and SCD, but
the absence of area overhead clearly makes up for the
increased RAM energy consumption. ICCI never consumes
more energy than SCD at this S/P ratio.

4.3 Results for Lower S/P Ratios in SPLASH-2
To explore the effects of ICCI’s increased pressure on the
LLC for different S/P ratios, we simulated two smaller LLC
sizes, maintaining the L1 cache size. In particular, we tested
per-core L2 cache sizes of 128 KB (S/P ratio of 4x) and 64
KB (S/P ratio of 2x). For these ratios, the overhead of the
coherence schemes tested can be found in Table 3. As a com-
parison, Intel’s Sandy/Ivy Bridge microarchitectures have
an inclusive shared L3 cache (8MB total) and private non-
inclusive L2 and L1 caches (256 KB plus 32+32 KB per core,
with four cores), resulting in an S/P ratio that varies from
8x to around 6.4x, depending on the degree of inclusivity
at runtime between L2 and L1 caches. Note that a ratio of
2x should be rare and it is included just as a worst case sce-
nario for this implementation of ICCI.

Results for 2x S/P ratio are shown in Fig. 4. They are in
line with the results for the 8x S/P ratio previously

110
108

106

104
102

100

96
94

90

execution time (% of ICCI)

Ho v
B oQa
o po

ISIYAS
1001

Barnes Ocean_cp Ocean_ncp

dirs mm— L2S

energy consumption (% of ICCI)

ISYVAS
ASAVAS

Barnes Ocean_cp Ocean_ncp

-
=
[}

Water_s

w ©
iRl
= o
I
@
5l

Cholesky

Fig. 4. Results for 2x S/P ratio in SPLASH-2. From top to bottom: execution time and energy consumption.

10

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO.X, XXXXX 2014

execution time (% of ICCI)

blacksch. bodytrack canneal
dirs . L2S

RAM BN network C——1

dir E=== L1 e

energy consumption (% of ICCI)

fluidanim. freqmine raytrace streamclust. swaptions x264

Fig. 5. Results for 8x S/P ratio and PARSEC 3.0. From top to bottom: execution time and energy consumption.

discussed, and they also show the increased effect in LLC
pressure of TAG and ICCI. The worst benchmark for ICCI
(and TAG) is Radix, which executes 6 percent more slowly
than with SPARSE and SCD at a 2x S/P ratio, due to extra
memory misses.

Table 5 shows that, as the S/P ratio decreases, the miss
ratio difference increases between the non-inclusive caches
(SPARSE and SCD) and ICCI, as expected. But even with a
2x S/P ratio, the largest miss ratio increase is 9.4 percent in
Radix. Those benchmarks with the largest increases are
those in which the inclusive cache performs worse, with
ICCI also suffering from higher LLC miss ratios.

In terms of energy, as the S/P ratio goes down, ICCI
struggles to keep up in memory demanding benchmarks,
with a clear 7 percent energy increase over SCD in Radix at
a ratio of 2x as the worst result for ICCI. Nevertheless, even
with a 2x S/P ratio, ICCI reduces energy consumption in
six out of 11 benchmarks compared to SCD. These results
for such an unusually small S/P ratio and RAM demanding
benchmarks show that ICCI makes a good job in containing
energy consumption in very adverse conditions. Also,
SPARSE power consumption gets closer to TAG as the S/P
ratio goes down due to the shrinking difference in overhead
between both schemes.

4.3.1 Results for PARSEC Benchmarks

As said before, even though ICCI is not tied to a particular
inclusivity policy in the cache hierarchy, exclusive caches
were chosen to exemplify an implementation of ICCI
because they seem the most natural match for ICCI. Any
other cache hierarchy, such as non-inclusive or inclusive,
could be used along with ICCI to trade off between three-
hop misses and memory accesses, but the analysis of such
implementations is left for future work.

In this section, we evaluate the directory schemes with
the PARSEC 3.0 benchmark suite. This suite presents signifi-
cantly more data sharing than SPLASH-2, resulting in more
three-hop misses in exclusive cache hierarchies like the one
used along with ICCI in this article, possibly degrading per-
formance compared to non-exclusive hierarchies. For these

experiments, due to limitations in the available input data
sets of the PARSEC benchmarks, we had to limit the config-
uration setting for these programs to 64 threads with the
SIMLARGE input size, even though we simulate a 512-core
chip, which means that only 64 cores in the chip do useful
work.

We observed that, in our machine configuration, the per-
centage of L1 cache misses that are three-hop misses
increases over 40 percent on average in PARSEC as com-
pared to SPLASH (although the benchmark with the most
three-hop misses is Water_ns from SPLASH-2). Also, when
compared to the non-inclusive cache hierarchy used along
with SPARSE and SCD, the average increase of three-hop
misses caused by the exclusive hierarchy used in this ICCI
implementation (measured in percentage points) almost
doubles in PARSEC.

Fig. 5 shows the execution time and energy consumption
results of these experiments. In general, we can see that our
previous findings also hold for this scenario, suggesting
that the increase in three-hop misses does not degrade per-
formance excessively. It is important to note that the effect
of three-hop misses is reduced in this scenario due to the
smaller number of retransmissions required by the mes-
sages involved because of the limited number of threads
used, which are placed closer together. As in the previous
sets of experiments, ICCI does not need the energy con-
sumed by the extra resources required by other schemes,
while providing similar execution times.

Table 8 shows the storage overhead due to directory
information measured for these benchmarks with ICCI, as
the average of samples taken every million instructions,
measured for those 64 cores doing useful work. These low

TABLE 8
Size of the Directory Information Stored in the LLC in ICCI
Normalized to L1 Capacity, for the PARSEC 3.0 Benchmarks

Benchmark Directory size =~ Benchmark Directory size
Blackscholes 2.1% Fluidanimate 2.7%
Bodytrack 2.5% Freqmine 2.3%
Canneal 2.7% Raytrace 2.9%
Dedup 2.3% Streamcluster 1.3%
Facesim 22% Swaptions 2.4%
Ferret 1.7% x264 1.1%

GARCIA-GUIRADO ET AL.: ICCI: IN-CACHE COHERENCE INFORMATION

values are a result of the amount of shared data, which we
have measured to be noticeably higher in PARSEC than in
SPLASH, and the number of sharers per shared block. The
average resource consumption of ICCI for directory entries
(around 2 percent) is far lower than that of the dedicated
resources used by TAG (729 percent), SPARSE (200 percent)
or SCD (15 percent), showing that it makes a more efficient
usage of on-chip storage resources.

Another important result follows from these experi-
ments: when a subset of the cores (or even a single core)
uses all the LLC resources, the entries used by ICCI for
directory information are just those required for the private
caches actually in use, which contrasts with TAG, SPARSE
and SCD, where the directory needs to be sized statically
for the worst case, i.e., assuming that the all the cores are
doing useful work.

These results suggest that an exclusive implementation
of ICCI with the same amount of resources and the same
cache coherence protocol as the other directory schemes
would not have significant problems due to any increases in
three-hop misses, and would use far less resources for direc-
tory information, resulting in a noticeably larger effective
LLC capacity.

5 EXPLORATORY ANALYSIS OF ICCI’S RESOURCE
USAGE

The efficiency in the usage of resources by different direc-
tory schemes can be directly compared by measuring the
storage resources taken up by each of them, in a way that
the variations in the rest of the storage-dependent character-
istics of the memory organization are eliminated (e.g., LLC
miss rate, three-hop misses). For instance, separate directo-
ries (such as SPARSE) take up a part of the resources, at
design time, reducing the available space for the LLC. In
contrast, ICCI takes up entries from the LLC on demand.
The scheme using the least resources for directory informa-
tion in practice will be the most beneficial from a point of
view of storage, as in the end it will leave more resources
available for other elements of the chip.

To do this, first we need to distinguish between two
types of directory coverage. We define the term effective cov-
erage as the percentage ratio of the minimum number of
directory entries required for tracking all the data in the pri-
vate caches to the total number of tracked private-cache
entries (e.g., a 100 percent effective coverage means that
each private-cache entry requires one directory entry, and a
50 percent effective coverage means that, on average, every
two private-cache entries contain the same block and are
tracked by the same directory entry, hence requiring half as
many directory entries as a 100 percent coverage). By defini-
tion, the effective coverage can never rise over 100 percent.
On the other hand, we define the physical coverage of a direc-
tory as the ratio of the number of entries allocated for stor-
ing sharing information to the number of private-cache
entries, whether the directory entries are currently in use or
empty. The physical coverage of separate directories typi-
cally rises over 100 percent, like in 200 percent coverage
sparse directories [8].

The flexible allocation of entries in ICCI makes its physi-
cal coverage dynamically match the effective coverage at all

11

times. For instance, if all blocks are widely shared by all the
cores of a 512-core chip, ICCI’s physical coverage becomes
just =5 of its physical coverage when all blocks are private.
This also implies that the resources taken up by ICCI to
store directory information vary dynamically. In other
words, ICCI resizes the directory at runtime to match the
minimum necessary coverage required by the current work-
load, while the rest of resources are used to store data
blocks. This is not possible in separate directories such as
SPARSE or SCD, where the physical coverage is fixed at
design time, sizing the directory to fit every possible worst-
case scenario. Fixed-size directories result in large amounts
of resources assigned to a directory that will rarely be
highly used at runtime, when effective coverages over
100 percent can never take place, and (much) smaller effec-
tive coverages often take place, especially as core count
rises. In these rigid schemes, varying effective coverages
simply translate into varying occupation rates of the fixed-
size directory (i.e., the amount of directory entries that actu-
ally store sharing information). And despite whether the
entries of the directory store sharing information or not at
runtime, they cannot be used for other purposes (to our
knowledge, no proposals do such thing yet), ending up
wasted. Maybe the biggest contrast is that, while in ICCI the
physical coverage never rises over 100 percent, in fixed-size
directories physical coverage never goes under 100 percent
(and a 100 percent coverage directory is optimistically small
and will in all probability yield bad performance due to con-
flicts that cause directory-induced invalidations).

On the other hand, it can be argued that ICCI wastes
more space inside each directory entry compared to
SPARSE. This is especially true for low core counts, when
an LLC entry is obviously much bigger than a sharing vec-
tor (more on this and how to fix it in Section 5.2). First, this
is not a particular problem of ICCL. In SPARSE, space is also
wasted inside entries (e.g., if a large full-map bit-vector
stores just one sharer, when a pointer would suffice). ICCI
just accentuates this for low core counts, which does not
imply that ICCI performs badly with small core counts. In
fact, additional detailed simulations show that ICCI rou-
tinely outperforms a 200 percent coverage sparse directory
even for just 16 cores in both execution time and energy con-
sumption (even though the sparse directory uses extra
resources for the separated directory). This is so thanks to
ICCI’s better directory-specific features such as lower num-
ber of directory-induced invalidations. Second, ICCI and
SPARSE become more and more similar in entry size as the
core count rises and the sharing code size approaches the
LLC entry size.

Orthogonally to the detailed simulation perspective pro-
vided earlier, in this section we perform a wide exploratory
survey of possible runtime characteristics to evaluate the
real performance of ICCI in terms of area (i.e., the number
of entries dynamically taken up for directory information),
and we base our final assessments on typical effective cover-
ages found in the literature. We carry out a theoretical anal-
ysis of the characteristics of ICCI, focusing on a system with
a fixed amount of storage resources and evaluating the dis-
tribution of these resources between data and sharing infor-
mation by a number of coherence schemes, with special
emphasis on their scalability when scaling out CMPs to

12

100%

T
2 copies —+—
4 copies —>—
8 copies —*—
16 copies —8—
512 copies —e—

60% M

effective coverage

B M
o |

0 20 40 60 80 100
percentage of private blocks

Fig. 6. Effective coverage depending on memory block sharing
characteristics.

large core counts. The particular results will be very depen-
dent on effective coverages and directory entry size.

This analysis only takes into account the area overhead of
the evaluated directories. It does not measure other charac-
teristics of the directory scheme such as energy consump-
tion (e.g., huge in duplicated-tag directories for large core
counts), latency (e.g., huge in SCI to go through the list of
sharers upon invalidations), or other performance consider-
ations (e.g., directory-induced invalidations, in whose pre-
vention ICCI easily beats the rest). As ICCI forces no
particular sharing code, we use a full-map bit-vector in the
analysis for small core counts (up to 512 cores), and more
elaborate sharing codes, in particular SCD’s hierarchical
code, for very large core counts (up to 256K cores).

After this evaluation, we conclude that ICCI has good
scalability properties in terms of area compared to other
schemes. With feasible small coverages, ICCI's directory
storage space is comparable to schemes such as SCI or
duplicate-tag directories. In addition, in the worst case sce-
nario for ICCI, when the effective coverage is 100 percent, it
is still much more area-efficient than SPARSE for large core
counts, using the same full-map bit-vector sharing code.
Also, we will explore ways to turn this worst-case scenario
into a best-case scenario (with potentially 0 percent area
overhead) thanks to ICCI's dynamic coverage that can
leverage complementary coherence mechanisms.

5.1 Effective Coverage Analysis in Typical
Scenarios

Effective coverages are completely workload-dependent,
and they vary with the number of unique memory
blocks stored in the private caches of the chip. Each of
these memory blocks requires (at least) one directory
entry to track all the copies of the block stored in the pri-
vate caches (it might require more entries in composable
schemes such as SCI). In general, the instantaneous effec-
tive coverage in a CMP can be characterized by means of
the percentage of blocks that are private (only one copy
of the block exists in the private caches), and the average
number of copies of each of the remaining (shared)
blocks (which by definition will be two or more). The
higher the percentage of shared blocks and number of
copies, the smaller the effective coverage. Smaller

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO.X, XXXXX 2014

100%

T
2 copies —+—

4 copies —>—

8 copies —*—
16 copies —8—
512 copies —e—

60%

\

effective coverage

40%

20%

0%

Y

L
80 100

o
oL
S

percentage of private blocks

Fig. 7. Effective coverage depending on private-cache block sharing
characteristics.

coverages will benefit ICCI, as its storage overhead is
proportional to the effective coverage.

When calculating effective coverages, it is important to
distinguish between memory blocks (of which several cop-
ies may exist) and private-cache blocks (several of which
may be copies of the same memory block). This differentia-
tion results in two possible methodologies when character-
izing the private/shared block percentages, depending on
whether the percentages refer to memory blocks or to pri-
vate-cache blocks. Figs. 6 and 7 show the effective coverages
resulting when using each of these two alternative method-
ologies, respectively, for varying average number of copies
for shared blocks. Even though the usual way to calculate
these percentages is by considering memory blocks [3], [31],
[32], [33], [34], [35], we also show the calculations when con-
sidering private-cache blocks for completeness and to avoid
ambiguity, as our graphical analysis (using conservative
sharing values) will provide similar insights regardless of
the methodology used.

To illustrate the differences between these methodolo-
gies, consider that, when counting private-cache blocks,
each shared block is counted repeatedly, once for each copy
of the block. With this methodology, the same runtime sce-
nario would yield much smaller percentages of private
blocks than if counting memory blocks (where shared
blocks are counted just once), altering many of the values
reported in the literature. Conversely, the same percentage
of private blocks has different meanings depending on the
methodology used. When counting private-cache blocks,
having 90 percent of private blocks involve an effective cov-
erage over 90 percent. This is not the case when counting
memory blocks, as the remaining 10 percent of shared
blocks may have many copies, resulting in a very small
effective coverage. Take a combination of 90 percent of pri-
vate blocks and 16 copies for shared blocks. When consider-
ing private-cache blocks, the effective coverage is over
90 percent. When considering memory blocks, the effective
coverage is under 40 percent. Even though using the same
percentages and number of copies, the two methodologies
result in two very different execution scenarios.

It is generally agreed that, especially in scientific appli-
cations, just a small percentage of memory blocks are
shared, part of which are typically widely shared. For
many workloads, it has been empirically observed that a

GARCIA-GUIRADO ET AL.: ICCI: IN-CACHE COHERENCE INFORMATION

majority of memory blocks are private to particular cores,
with typical percentages ranging between 70 and 100 per-
cent [36], [37], [38], [39]. It has also been reported that on
average just around 16 percent of the memory blocks
stored in private caches are shared in the PARSEC bench-
mark suite [40]. Nevertheless, applications exist with a
myriad of footprints, including high percentages of shared
blocks. It is also widely agreed that this is typically the case
of commercial workloads (in contrast to scientific work-
loads), as reflected by the following percentages of shared
memory blocks that have been reported for some commer-
cial workloads: 49 percent [34], 34 percent [33], 50 percent
[39], 58 percent [41] in apache; 49 percent [34], 48 percent
[39], 62 percent [41] in oltp; 29 percent [34], 38 percent [33]
in zeus.

In addition, effective coverages around 40-60 percent are
commonly reported in the literature [3], [20] for scientific
applications, some of them as low as 20 percent [20]. These
small coverages have been leveraged by the use of complex
hashing functions to reduce the amount of directory-
induced invalidations with low physical coverages (close to
or as low as 100 percent) [3], [20]. The combination of typical
percentages (private block percentages over 70 percent and
effective coverages between 40-60 percent) results in the
highlighted rectangle on Fig. 6. We can see in the figure that
those typical percentages are compatible with many possi-
ble values of average number of copies for shared blocks.
As a curiosity, note that these typical private block percen-
tages (over 70 percent) and effective coverages (many under
70 percent) do not match with the values in Fig. 7 calculated
counting private-cache blocks (i.e., the highlighted rectangle
is empty). If the same execution scenarios of the highlighted
rectangle of Fig. 6 were plotted in Fig. 7, the percentage of
private blocks would be obviously smaller, as pointed out
earlier.

In general, as the core count rises, more opportunities for
(wide) sharing arise [42]. This observation has been taken
into account in several recent works that evaluate the effects
of data sharing in multiprocessor design [43], [44]. In partic-
ular, as data sharing rises along with core count, it has
increasingly critical impact on the miss rate differences
between private caches that replicate shared data and
shared caches that only store one copy of each memory
block. Likewise, increases in data sharing make effective
coverages decrease notably, as one directory entry is
enough to track all the copies of a memory block. Notice
that no sharing is possible in a chip containing a single core,
which would always present a 100 percent effective cover-
age; for two cores, sharing may exist and as a result the
effective coverage can range between 50 and 100 percent; as
soon as we move up to 16 cores or 64 cores, effective cover-
ages can be as low as 6.3 and 1.6 percent, respectively. Note
in Fig. 6 that, even assuming that 70-90 percent of blocks are
private, if shared blocks have 16 copies on average, the
effective coverage already ranges between 20 and 40 per-
cent. If private data is less than 70 percent (as is typical in
commercial workloads) or if the average number of copies
of shared blocks is higher (which can be common in any
parallel application with high levels of sharing), the effec-
tive coverage will be much lower. With such small effective
coverages, ICCI will take up very little per-core storage

13

worst case (e.g., multiprogrammed) ---&--
minimum coverage ---&---
Oh optimistic model —e—
conservatively high coverage for large core counts v
empirical effective coverages @

120%

100%

®
g
53

N
2
*

effective coverage
@
3
B3
¥ o ® 000 OO
L1 | N X]

N
S
53

o
53

o
IS

number of cores

Fig. 8. Survey of effective coverages.

space, while the overhead of separate directories is insensi-
tive to any of these circumstances.

In fact, even small numbers of widely shared blocks
result in low effective coverages. One of the elements that
can reduce effective coverages notably is program code
widely shared in parallel applications. In Fig. 6 we show,
just as a very optimistic reference, the coverage required
when shared data is widely shared by 512 cores on average.
In this case, even with 90 percent of blocks being private,
the effective coverage is just 1.9 percent.

In Fig. 8, we show a survey of effective coverages, includ-
ing a considerable amount of empirical effective coverages
found in the literature. In this figure, we show in semi-loga-
rithmic scale the highest possible coverage (i.e., 100 percent,
one directory entry per private-cache entry), that remains
constant regardless of core count. We also show the mini-
mum possible coverage, which takes place when each direc-
tory entry tracks as many sharers as there are cores in the
chip (e.g., under 1 percent for 128 cores, with each directory
entry tracking 128 sharers). In addition, the following rele-
vant information is plotted:

e Optimistic coverages. Oh et al. [45] explore the opti-
mal area breakdown between caches and cores for
CMPs. In their analytical model, they optimistically
assume that half of the cores share every memory
block on average, based on their experience. In this
model, the effective coverage at 512 cores would be
just 0.4 percent. With this value, ICCI would take
up just one-twelfth as much area as a duplicate-tag
directory. In fact, ICCI would take up less area
than duplicate-tag directories with just 40 cores.
Even though possible (and confirmed by some
empirical values, as we will see next), we consider
this model too optimistic to be considered of gen-
eral applicability.

e Empirical coverages. We have reviewed the literature
and collected data from previous studies where the
necessary information to calculate effective cover-
ages was available [3], [31], [32], [33], [34], [35]. All
these data (61 values in total) are plotted in Fig. 8,
showing the effective coverages observed in a wide
range of scientific and commercial workloads, from
8 to 64 cores. For eight cores, effective coverages
near 100 percent are common. Nevertheless, effective

14

coverages as low as 25 percent have been reported
[32] with just eight cores. Note that this value is sur-
prisingly close to the minimum possible effective
coverage for eight cores, 12.5 percent, and matches
the optimistic analytical model of Oh et al. [45] previ-
ously discussed. As the core count increases, a
decreasing trend can be observed, with effective cov-
erages down to 3 percent for 64 cores. Oh [31] pro-
vides empirical data on data sharing in the PARSEC
benchmark suite. This data indicates that, for 64
cores, the highest effective coverage in these bench-
marks is below 16 percent. Note that some empirical
effective coverages are even smaller than the values
predicted by Oh'’s optimistic model.

o Conservative estimated coverages. Rather than optimis-
tically evaluating ICCI, we assume conservatively
high effective coverages to compare ICCI against
other directory schemes, in order to prevent an over-
estimation of its low-overhead features. We consider
reasonable that typical effective coverages for paral-
lel applications running on hundreds of cores can go
up to 25 percent (even with hundreds of potential
sharers). This is a conservative value taking into
account that the empirical results previously dis-
cussed suggest smaller coverages and the fact that
effective coverages for such core counts can poten-
tially be well under 1 percent. In addition, we must
never lose sight of multiprogramming and virtuali-
zation, which may potentially raise effective cover-
ages up to 100 percent, regardless of the core count,
by running independent applications in all cores
(Section 5.2).

Separate directories, whose sizes are fixed at design
time, cannot take advantage of small effective coverages.
They would just result in many unused directory entries.
An option would be to reduce the physical coverage of
these directories at design time, counting on the preva-
lence of small effective coverages. However, this would
be a very risky practice, as applications with memory
footprints dominated by private data would raise the
effective coverage over the directory physical coverage,
incurring huge amounts of directory-induced invalida-
tions, and performance would drop dramatically. Even in
applications with low effective coverages, specific phases
of execution may raise the effective coverage temporarily
and ruin performance. On the other hand, ICCI suffers
none of these problems. Should the effective coverage go
up, even to its highest (100 percent), ICCI would seam-
lessly allocate as many directory entries as necessary.
Should the effective coverage be very low, ICCI would
just take up the minimum required amount of directory
entries and let almost all the storage resources be used for
storing data.

5.2 Boosting the Scalability of ICCI

ICCI’s overhead will typically be small for parallel applica-
tions with low effective coverages. However, scenarios such
as multiprogrammed or virtualized workloads, in which
independent applications run in different cores with poten-
tially no data sharing at all, can make effective coverages be

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO.X, XXXXX 2014

close to 100 percent. These represent ICCI's worst-case
scenario.

We can use complementary techniques to improve the
situation on these worst-case scenarios. Mechanisms that
detect different kinds of memory blocks (e.g., private or
shared) at runtime have been proposed with a number of
purposes [36], [46], [47]. In particular, it is interesting to con-
sider a mechanism that aims at reducing directory-induced
invalidations on sparse directories recently proposed by
Cuesta et al. [36]. These invalidations are not an issue in
ICCI, but the same mechanism is very suitable for increas-
ing ICCI efficiency in a completely different way.

First, we explain what the basics of this mechanism are.
At a memory-page granularity, blocks are initially consid-
ered to be private to the core that first accesses them. The
identifier of the accessing core and the private status of the
page are stored in the page table of the process. No informa-
tion for the blocks of private pages is stored in the directory.
When another core attempts an access to a block belonging
to a private page, it first receives the page table entry for the
memory page (to carry out the virtual-to-physical address
translation for the block) that also contains the private status
of the page. This means that copies of blocks of that page
may exist in the private-cache of the previous core, but no
directory information exists for them. This triggers a proce-
dure that creates directory entries for the former private
blocks, which become shared, and retrieves the memory
block from the private cache of the previous core if neces-
sary. The page table entry is modified to indicate the new
(shared) status of the page. This proposal has been reported
to attain an average effectiveness over 75 percent, which
means that it is able to deactivate the use of directory entries
for more than 75 percent of private blocks. The remaining
private blocks (less than 25 percent) belong to shared pages,
and the page-level mechanism is unable to detect them. The
effect of this mechanism was referred to as deactivating
coherence for private blocks.

Originally, this mechanism was used to alleviate the
pressure on sparse directories by reducing the number of
blocks contending for the entries of the directory. This, in
turn, reduced the amount of conflicts and evictions in the
directory, preventing directory-induced invalidations and
increasing system performance drastically.

Nothing prevents this mechanism from being directly
applicable in combination with ICCI. Our observation is
that, when coherence is deactivated for private blocks in a
system implementing ICCI, no directory entries are allo-
cated for them in the LLC. In contrast to sparse directories,
where coherence deactivation just causes entries to be
unused in the fixed-size directory, in ICCI this causes LLC
entries to be used by data blocks instead of sharing codes.
In both cases, the principle is the same: the effective cover-
age goes down; however, the side-effects are very different.
Note that this mechanism will also reduce the effective cov-
erages of parallel applications.

With this mechanism, the worst scenario for ICCI, 100
percent effective coverage, becomes a potentially perfect
scenario. For instance, if many different single-threaded
applications are running on the CMP, with all their memory
pages being private (with a different table page per pro-
cess), this mechanism should easily deactivate coherence

GARCIA-GUIRADO ET AL.: ICCI: IN-CACHE COHERENCE INFORMATION

100%

T
2 copies —+—
4 copies —>—
8 copies —*—
16 copies —8—
512 copies —e—

60% [B

effective coverage

. " =
0 20 40 60 80 100
percentage of private blocks

Fig. 9. Effective coverages with 75 percent effectiveness private-block
coherence deactivation. Considering memory blocks.

for all private-cache blocks, and ICCI’s dynamic allocation
of directory entries would not allocate any LLC entries for
directory information (instead of one entry per private-
cache block), introducing no area overhead for coherence in
practice (except for shared OS data and code). To our
knowledge, no other coherence scheme has such storage
adaptability to runtime characteristics.

Figs. 9 and 10 show the effective coverages resulting
when applying this mechanism, assuming an effectiveness
of 75 percent (smaller than the reported average effective-
ness for the mechanism). Note how, for common percen-
tages of private blocks (over 70 percent), the required
coverage is always under 40 percent in the worst case (just
two copies per shared block), and can be easily under 20 per-
cent as soon as shared memory blocks have more than four
copies on average. The typical cases that were highlighted
in a rectangle in Fig. 6 always result in effective coverages
equal to or below 25 percent after deactivating coherence
for private blocks with 75 percent effectiveness. These
results lead us to assume 25 percent again as a conserva-
tively high upper bound for effective coverages with large
core counts (the same percentage assumed for parallel
applications in Section 5.1). We also choose this value
because it corresponds to four copies per shared block
regardless of the amount of private blocks and the method-
ology used to count blocks (see the flat line of Figs. 9 and
10) at 25 percent effective coverage, which is a conservative
scenario for large core counts. In conclusion, the possibility
of deactivating coherence for private data makes the scal-
ability of ICCI benefit from low effective coverages regard-
less of the private/shared footprint of the particular
workload in execution.

As discussed for wide data sharing scenarios, separate
directories could be scaled down to physical coverages
under 100 percent, in the hope that the coherence-deactiva-
tion mechanism will always attain low effective coverages.
However, this mechanism does not give any guarantees on
the deactivation of coherence for a single block (Figs. 6 and
7 still represent the case in which the mechanism has an
effectiveness of 0 percent in addition to the case in which
the mechanism is not used). As explained previously, using
low physical coverages in the fixed-size directory would be
very risky (and very-low ones, matching expected effective

15

100%

T
2 copies —+—

4 copies —>—

8 copies —*—
16 copies —8—
512 copies —e—

@
2
53

N
2
*

effective coverage

20%

0%

. . . .
0 20 40 60 80 100
percentage of private blocks

Fig. 10. Effective coverages with 75 percent effectiveness private-block
coherence deactivation. Considering private-cache blocks.

coverages under 25 percent, are out of the question). On the
other hand, ICCI dynamically benefits from low effective
coverages at runtime, potentially requiring 0 percent of stor-
age resources for cache coherence.

The only advantage remaining in favor of using a fixed-
size directory is their smaller entry size for low core counts.
This may make ICCI take up more storage resources even
when benefiting from small effective coverages. However,
as the core count rises and sharing code size approaches
LLC entry size, fixed-size directories lose this advantage
and fail as a scalable scheme, while effective coverages go
down benefiting ICCI’s scalability.

Once sharing code size surpasses LLC entry size, com-
posable sharing codes (similar to SCD) specific for ICCI can
be used, with the possibility to store many sharers and point
to other entries that make up the sharing code at the same
time thanks to the large LLC entry size. We find this possi-
bility especially appealing. For instance, SCD’s two-level
hierarchy for 1,024 cores can be built with just three LLC
entries in ICCI, instead of the original 33 SCD cache entries.
This means a much higher entry-efficiency and faster look-
ups than in SCD. 512-bit LLC entries can support a hypo-
thetical two-level ICCI-SCD coherent system containing
256K cores, with no dedicated storage overhead for coher-
ence. In addition, 512-bit entries can store up to 28 pointers
(to any of the 256K cores), before needing to use multiple
entries, ensuring a high entry-efficiency. Note that when
several LLC entries are needed for tracking one memory
block, many private-cache blocks share each of these entries,
resulting in a reduction of the effective coverage. Increasing
the cache line size to 128 bytes would potentially enable
cache coherence for a 1IM-core machine. Also, the number
of levels in the hierarchy can be increased to support more
cores. In addition, ICCI's large directory (with potential
effective coverage equal to the percentage ratio of the num-
ber of LLC entries to the number of private-cache entries)
prevents conflicts and directory-induced invalidations natu-
rally, removing altogether the need to use ZCaches to simu-
late large associativity in small coverage directories.

In addition, techniques similar to Amoeba Caches [48]
can be used to enable different entry sizes in the LLC, to
accommodate (small) directory entries and (large) cache
entries. However, as the sharing code size approaches the

16

100%-coverage sparse —+—
200%-coverage sparse —*—
coverage sparse —*—

400%-
ICCI 100% eff.cov. (worst case) ---&--
ICCI 50% eff.cov. --

P

SCI

200%-coverage hierarchy -- - - -

duplicate-tag directory

ICCI-AMOEBA 50% eff.cov. ---®--

ICCl conservative estimation

X

N
<
*

/

100%

®
3
*

N IS
3 S
B B3
\\
.

.
.
.
L}
.
.
)
.
.
.
«

per tile directory information overhead normalized to L1 size
@
3
K3

0% 1 L L
21632 64 128 256 512
number of cores

Fig. 11. Cache coherence storage overhead of several schemes

depending on core count (from 2 to 512 cores).

LLC entry size, this results in an unnecessary complication.
Nevertheless, taking this path one step further may be inter-
esting, as different sharing codes could be used to minimize
the total space taken up by coherence information in ICCI
(e.g., pointers for few sharers or a bit vector relative to an
area for a block shared in that area of the chip).

5.3 ICCI Compared to Other Coherence Schemes
After the discussion on typical coverages, now we can put
ICCI’s storage overhead into perspective with other coher-
ence schemes. Fig. 11 shows the overhead of several
proposals, ranging from 2 to 512 cores. The overhead
introduced by these coherence schemes is measured as
the percentage of storage space used for coherence infor-
mation relative to the aggregate private-cache capacity.
This figure shows sparse directories of several coverages
(solid lines), ICCI for several effective coverages, a hierar-
chical directory (with two levels of sharing information
and a 200 percent coverage in each level), SCI and a dupli-
cate-tag directory. We assume an SCI version adapted to
CMPs, in which a 200 percent coverage directory cache
storing pointers is NUCA-distributed and each L1 cache
entry contains two pointers to create the double-linked
list characteristic of SCIL. In this figure, ICCI uses the
same encoding for sharers as the sparse directory (full-
map bit-vector).

The characteristics of ICCI are a bit unusual. Its overhead
depends on effective coverage rather than on core count. It
remains constant for a given effective coverage because the
number and size of the LLC entries used as directory entries
is the same regardless of the number of cores. In addition,
the entry size of the LLC is the same as the size of a private-
cache entry, making the overhead of ICCI on private-cache
capacity approximately equal to the value of the effective
coverage. For instance, the worst-case effective coverage of
100 percent, with one LLC entry tracking each private-cache
block, results in (approximately) 100 percent storage over-
head on L1 cache capacity regardless of the number of cores.
The only difference introduced by changing the core count
is that, as the core count and the number of banks in a
NUCA cache increase, more address bits are used to select
the home LLC bank, and the number of remaining bits used
in the tags of the LLC goes down. This is such a subtle

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO.X, XXXXX 2014

difference that its impact on the overhead of ICCI cannot be
appreciated in the graph.

Note that, contrary to traditional directories, ICCI will
typically take up less storage per tile for directory informa-
tion as core count increases. Higher core counts can poten-
tially experience higher data sharing, generating smaller
effective coverages and making the area overhead of ICCI
go down as the core count goes up.

The shadowed area of Fig. 11 represents the expected
range of overheads for ICCI, assuming the conservatively
high upper bound for effective coverages for large core
counts (25 percent) that was calculated in Sections 5.1 and
5.2. Also, an estimated overhead for ICCI in combination
with Amoeba Caches is shown, for a 50 percent effective
coverage, which beats the sparse directory even with small
core counts. However, the higher the core count, the less
savings this alternative provides and the less sense it makes
to use it.

Several facts stand out in this graph:

e A 200 percent coverage sparse directory uses twice
as many resources as ICCI in its worst-case scenario
(i.e., 100 percent effective coverage) for 512 cores.
ICCI’s area overhead for typical effective coverages
range between 12.5 and 0 percent that of the sparse
directory. The sparse directory uses more resources
than ICCI with 25 percent effective coverage as soon
as the core count rises over 50 cores, and its overhead
keeps rising with core count while in ICCI it goes
down as more cores increase data sharing.

e The 100 percent coverage sparse directory uses as
many resources as ICCI’s worst-case with 512 cores
and four times as many as ICCI with 25 percent
effective coverage. In addition, a sparse directory
with just 100 percent coverage would produce unac-
ceptably large numbers of directory-induced invalid-
ations due to conflicts.

e ICCI provides reasonable overhead for up to 512
cores based on expected effective coverages, without
dramatic changes and without the complexity of
more intricate alternatives such as hierarchical proto-
cols. Note that with just 64 cores and a 25 percent
effective coverage, ICCI already takes fewer resour-
ces than the hierarchical directory.

e ICCI has lower overhead than SCI when the effective
coverage is below 16 percent and lower than dupli-
cate-tag directories when the effective coverage is
below 5 percent. Some empirical effective coverages
observed are under these values, even for low core
counts (see Section 5.1).

Fig. 12 shows the storage overhead on the L1 caches for
core counts between 512 and 256 K, in semi-logarithmic
scale. In this case, ICCI uses the same composable codifi-
cation as SCD. When ICCI uses composable sharing codes
(taking up several entries when many sharers exist, like in
SCD), the relation between effective coverage and over-
head may vary ever so slightly (because the one-to-one
relationship between directory entries and memory blocks
is broken), although they remain roughly equivalent. Nev-
ertheless, this has no effect on the fixed coverages shown
in the figures (in which each LLC entry used for directory

GARCIA-GUIRADO ET AL.: ICCI: IN-CACHE COHERENCE INFORMATION

110%-coverage SCD —+— 200%-coverage hierarchy ————
ICCI 100% eff.cov. (worst-case) ---&--- duplicate-tag directory -+
ICCI 50% e".csogi SO ICCI-AMOEBA 50% eff.cov. ---®---

- ICCI conservative estimation

120%

100%

@
3
B

per tile directory information overhead normalized to L1 size

L L L L L L L L
512 1024 2048 4096 8192 16384 32768 65536 131072 262144

number of cores

Fig. 12. Cache coherence storage overhead of several schemes
depending on core count (from 512 to 256K cores).

tracks one or two private-cache blocks) and on the conser-
vative upper bound for effective coverages. In this case,
sparse directories are not shown, as their overhead is well
out the charts (e.g., over 50,000 percent for 256K cores in a
200 percent coverage sparse directory).

Interesting results are the following;:

e SCD goes over 100 percent overhead eventually,
while ICCI with SCD'’s sharing code remains under
25 percent. In addition, ICCI does not require the use
of ZCaches, as explained in Section 5.2.

e Again, due to the particular characteristics of ICCI, it
has lower overhead than SCI when the effective cov-
erage is below 16 percent and lower overhead than
duplicate-tag directories when the effective coverage
is below 5 percent.

As the size of the sharing code approaches the LLC entry
size with increasing core counts, ICCI has obviously supe-
rior scalability properties than a separate directory using
the same sharing code (e.g., full-map in a sparse directory
for up to 512 cores and a composable hierarchical code like
SCD’s for up to 256K cores).

5.4 Discussion on ICCI’s Restrictions

Among the main drawbacks of ICCI, ICCI results inconve-
nient when different treatment is required for the structures
storing data and directory information. An example of this
is if we want to apply compression techniques to the LLC
but not to the directory, or conversely. On the other hand,
the usage of a single structure may simplify the application
of such techniques globally to data and directory and avoid
hardware replication, although the different nature of direc-
tory entries and memory blocks may reduce the effective-
ness of techniques such as compression.

The fact that the entry size of the directory is constrained
to that of an LLC data line can also be seen as a restriction,
especially for chips containing only a few cores, because in
that case smaller entries would be preferable. However, this
problem disappears in practice as we move to large core
counts, which precisely is the scenario whose problems
ICCI aims at solving. ICCI also requires the use of either
inexact of composable sharing codes for very large numbers
of cores, whose management is more complicated, but this

17

is also the case for any other directory-based coherence
scheme.

Finally, when working in combination with non-inclu-
sive or inclusive cache hierarchies, ICCI would require a
slightly more complex cache able to deal with two simulta-
neous tag hits (as both a memory block and its associated
directory entry could be stored in the LLC, in different
ways of the same set) and to serialize the processing of both
read blocks in the particular order desired. Nevertheless,
such LCC cache is easily realizable and its effective capacity
with ICCI, for the same global amount of resources than in
other directory schemes, would be higher thanks to ICCI's
dynamic coverage that prevents the existence of unused
directory entries, as discussed in Section 5. When an exclu-
sive hierarchy is chosen instead, like in the example imple-
mentation of ICCI evaluated in Section 4, such hierarchy
may cause many three-hop cache misses that in some sce-
narios may degrade performance (this happens with ICCI
or any other directory scheme), but our results suggest that
this can still be a good design.

6 RELATED WORK

Novel coherence schemes appear periodically in the litera-
ture, and the complexity of the most recent ones shows that
it is becoming increasingly difficult to improve the scalabil-
ity of cache coherence.

For instance, the Tagless Coherence Directory (TL) [49]
uses multiple-hash bloom filters to store directory informa-
tion. In essence, TL works as an inexact duplicate-tag direc-
tory (inexactitude due to bloom filter aliasing, which creates
spurious invalidation messages). Ideally, TL has constant
per-core overhead. In practice, the bloom filter size has to be
increased with the core count to prevent excessive levels of
aliasing, in a trade-off between extra network traffic and
area overhead. In addition, although more energy-efficient
than a duplicate-tag directory, TL is less energy-efficient
than ICCIL In ICCI, an LLC lookup is enough to find the
block or the sharing vector. TL requires an additional direc-
tory lookup whose energy consumption is proportional to
the number of cores. In our 512-core CMP, a TL access
requires looking up 512 multiple-hash bloom filters in paral-
lel to generate the 512-bit sharing vector. Overall, TL intro-
duces the difficulty of managing bloom filters in hardware,
extra resources for the directory, and the inefficiency of spu-
rious invalidation messages compared to ICCI.

SPACE [50] is based on the observation that many cache
blocks have the same or similar sharing patterns. SPACE
stores these sharing patterns in a table. The directory cache
stores pointers to positions of the pattern table, one pointer
per tracked block, with many directory entries pointing to
the same patterns. As long as the pointer directory cache
dominates the overhead, SPACE can scale up gracefully
with core count. However, as the number of cores grows,
the pattern table starts to dominate (note that the table is
distributed and patterns need be repeated at every tile)
resulting in a per-core overhead proportional to the number
of cores. SPACE assumes that few different sharing patterns
exist at any given time, hence a small sharing pattern table
is needed, resulting in a smaller overhead than an ordinary
sparse directory in any case. However, as the number of

18

cores grows, the number of possible sharing patterns
increases exponentially; hence, the possibilities of pattern
repetition diminish. SPACE also introduces the complexity
of managing the sharing pattern table, which requires non-
trivial actions such as pattern coalescing. ICCI suffers none
of these problems.

SPATL [51] combines both the Tagless Coherence Direc-
tory and SPACE, storing the pointers to the sharing pattern
table inexactly in bloom filters, reducing the overhead fur-
ther at the cost of the aggregate complexity of both pro-
posals. Unfortunately, for large core counts, SPATL faces
the same scalability problems as SPACE due to the size of
the pattern table.

The Cuckoo Directory [3] uses a different hash function
per directory way so as to prevent directory conflicts. This
reduces the need for overprovisioning cache directories, but
does not change their per-core overhead growth.

The SGI UV2 [2] uses directory-based cache coherence to
maintain 512-processor-socket coherent domains. The full
directory is stored in DRAM, typically consuming approxi-
mately 3 percent of the 64 TB memory space, and an on-
chip directory cache allows for fast access to information
about reused addresses. Similarly, WayPoint [52] uses
small, low-associativity directory caches. Evicted directory
entries are inserted in main memory to prevent costly direc-
tory-induced invalidations. ICCI allows for 512-processor
coherence domains without the need for the slow-access
DRAM directory nor the directory cache used by the SGI
UV2 and WayPoint.

The idea of using cache entries to store information
other than memory blocks has already been used by
other proposals like DeNovo [53], in which cache coher-
ence is simplified by assuming some properties in the
software, and cache entries store the identity of the
owner L1 caches. Nevertheless, ICCI’s idea of providing
scalable ordinary hardware cache coherence by leverag-
ing the use of the minimum amount of LLC entries to
store regular sharing information is different to any pre-
vious approaches.

We have already discussed the Scalable Coherence Direc-
tory [20] and used it to compare ICCI effectiveness.

7 CONCLUSION

In this paper, we have introduced ICCI, a new cache organi-
zation that leverages shared cache resources and flat coher-
ence protocols to provide inexpensive hardware cache
coherence for large core counts (e.g., 512), without degrad-
ing the performance and energy consumption of the system
as other proposals do (e.g., coarse bit vectors, SCI) and with-
out the need of complex cache structures (like SCD’s
ZCaches). Simple changes in the system are needed to
implement ICCI with respect to a traditional full-map direc-
tory. ICCI does not introduce any dedicated storage over-
head, yet it provides large storage space for coherence
information. ICCI takes up entries of the LLC as directory
entries. ICCI incurs a negligible number of directory-
induced invalidations and outperforms complex state-of-
the-art proposals such as SCD, especially in terms of energy.
Moreover, ICCI can be used in combination with more elab-
orated sharing codes to apply it to extremely large core

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO.X, XXXXX 2014

counts. By combining ICCI and SCD, we can provide hard-
ware cache coherence for massively parallel machines at no
extra chip area cost. This can be done by storing SCD’s hier-
archical entries in the LLC and using ICCI'’s operation. ICCI
removes the need to orchestrate two different array struc-
tures for data and directory information and the use of com-
plex coherence protocols (e.g., hierarchical, list based or tree
based).

We have carried out an analytical survey of the character-
istics of workloads, concluding that low effective coverages
typical at runtime ensure high scalability for ICCI in terms
of storage taken up for directory information in the LLC. In
the presence of data sharing, effective coverages typically
below 25 percent make ICCI take up few directory entries
and add little overhead. In the absence of data sharing,
deactivating coherence for private blocks also enables low
effective coverages (typically under 25 percent), making
ICCI take up few directory entries under any circumstances.
In comparison, a fixed-size directory always takes up the
same amount of entries, determined at design time to fit
worst-case scenarios, and leaves them unused if there is
wide data sharing or if coherence for private blocks is
deactivated.

ICCI’s logical directory size (number of sets and associa-
tivity) is huge compared to dedicated storage directories.
Directory-induced invalidations are never an issue in ICCL
This prevents the need for complex caches (e.g., ZCaches)
or hash procedures (e.g., Cuckoo hashing) to emulate large
associativity in small fixed-coverage separate directories to
prevent directory-induced invalidations.

Finally, contrary to any other directory scheme, ICCI’s
usage of resources for directory information typically
decreases as the number of cores rises, because more oppor-
tunities for data sharing appear, reducing the effective cov-
erage and the number of allocated directory entries. In
addition, reported effective coverages make ICCI take up
less area for directory information than SCI or duplicate-tag
directories with as few as 64 cores.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their thorough work in revising this paper. Their
insights enabled them to unveil some of the features of ICCI
whose description and analysis make up an important part
of the paper. This work was supported by the Spanish MEC
and European Commission FEDER funds under grants
“TIN2009-14475-C04-02” and “TIN2012-31345". A. Garcia-
Guirado was supported by a research grant from the Span-
ish MEC under the FPU National Plan (AP2008-04387).

REFERENCES

[1] M.M.K. Martin et al., “Why On-Chip Cache Coherence Is Here to
Stay,” Comm. ACM, vol. 55, no. 7, pp. 78-89, July 2012.

[2] G. Thorson et al., “SGI UV2: A Fused Computation and Data
Analysis Machine,” Proc. Int’l Conf. High Performance Computing,
Networking, Storage and Analysis (SC), pp. 1-9, 2012.

[3] M. Ferdman et al., “Cuckoo Directory: A Scalable Directory for
Many-Core Systems,” Proc. 17th IEEE Int’l Symp. High Performance
Computer Architecture (HPCA), pp. 169-180, 2011.

[4] L. Censier et al., “A New Solution to Coherence Problems in Mul-
ticache Systems,” IEEE Trans. Computers, vol. C-27, no. 12,
pp- 1112-1118, Dec. 1978.

GARCIA-GUIRADO ET AL.: ICCI: IN-CACHE COHERENCE INFORMATION

[5]

(6]

(7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

J.L. Baer et al., “On the Inclusion Properties for Multi-Level Cache
Hierarchies,” Proc. 15th Ann. Int’l Symp. Computer Architecture
(ISCA), pp. 73-80, 1988.

M. Chaudhuri et al, “Introducing Hierarchy-Awareness in
Replacement and Bypass Algorithms for Last-Level Caches,”
Proc. 21st Int’l Conf. Parallel Architectures and Compilation Techni-
ques (PACT), pp. 293-304, 2012.

A. Gupta et al., “Reducing Memory and Traffic Requirements for
Scalable Directory-Based Cache Coherence Schemes,” Proc. Int’l
Conf. Parallel Processing (ICPP), pp. 312-321, 1990.

P. Conway et al., “Cache Hierarchy and Memory Subsystem of the
AMD Opteron Processor,” IEEE Micro, vol. 30, no. 2, pp. 16-29,
Mar./Apr. 2010.

A. Agarwal et al., “An Evaluation of Directory Schemes for Cache
Coherence,” Proc. 15th Ann. Int'l Symp. Computer Architecture
(ISCA), pp- 280-298, 1988.

J. Laudon et al., “The SGI Origin: A ccNUMA Highly Scalable
Server,” Proc. 24th Ann. Int'l Symp. Computer Architecture (ISCA),
pp- 241-251, 1997.

M.E. Acacio et al, “A Two-Level Directory Architecture for
Highly Scalable cc-NUMA Multiprocessors,” IEEE Trans. Parallel
and Distributed Systems (TPDS), vol. 16, pp. 67-79, Nov. 2005.

D.V. James et al., “Distributed-Directory Scheme: Scalable Coher-
ent Interface,” Computer, vol. 23, no. 6, pp. 74-77, June 1990.

L.A. Barroso et al., “Piranha: A Scalable Architecture Based on
Single-Chip Multiprocessing,” Proc. 27th Ann. Int'l Symp. Com-
puter Architecture (ISCA), pp. 282-293, 2000.

J. Held et al., “Introducing the Single-Chip Cloud Computer,”
Intel White Paper, 2010.

T. Piazza et al., “Technology Insight: Intel Next Generation Micro-
architecture Code Name Haswell,” Proc Intel Developer Forum,
Sept. 2012.

T. Fischer et al., “Design Solutions for the Bulldozer 32nm SOI 2-
Core Processor Module in an 8-Core CPU,” IEEE Int’l Solid-State
Circuits Conf. Digest of Technical Papers (ISSCC), pp. 78-80, 2011.

C. Ramey, “TILE-Gx100 ManyCore Processor: Acceleration Inter-
faces and Architecture,” Proc. Hot Chips, Aug. 2011.

C. Kim et al.,, “An Adaptive, Non-Uniform Cache Structure for
Wire-Delay Dominated On-Chip Caches,” Proc. 10th Int’l Conf.
Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS), pp. 211-222, 2002.

D. Molka et al,, “Memory Performance and Cache Coherency
Effects on an Intel Nehalem Multiprocessor System,” Proc. 18th
Int’l Conf. Parallel Architectures and Compilation Techniques (PACT),
pp.- 261-270, 2009.

D. Sanchez et al., “SCD: A Scalable Coherence Directory with
Flexible Sharer Set Encoding,” Proc. 18th IEEE Int'l Symp. High-
Performance Computer Architecture (HPCA), pp. 129-140, 2012.

D. Sanchez et al, “The Zcache: Decoupling Ways and
Associativity,” Proc. 43rd Ann. IEEEJACM Int’l Symp. Microarchi-
tecture (MICRO), pp. 187-198, 2010.

A. Jaleel et al., “Achieving Non-Inclusive Cache Performance with
Inclusive Caches: Temporal Locality Aware (TLA) Cache Manage-
ment Policies,” Proc. 43rd Ann. IEEEJACM Int’l Symp. Microarchi-
tecture (MICRO), pp. 151-162, 2010.

C.-K. Luk et al.,, “Pin: Building Customized Program Analysis
tools with Dynamic Instrumentation,” Proc. ACM SIGPLAN Conf.
Programming Language Design and Implementation (PLDI), pp. 190-
200, 2005.

M.M.K. Martin et al., “Multifacet’'s General Execution-Driven
Multiprocessor Simulator (GEMS) Toolset,” SIGARCH Computer
Architecture News, vol. 33, no. 4, pp. 92-99, 2005.

M. Monchiero et al.,, “How to Simulate 1000 Cores,” SIGARCH
Computer Architecture News, vol. 37, no. 2, pp. 10-19, July 2009.

K. Sohn et al., “A 1.2V 30nm 3.2Gb/s/pin 4Gb DDR4 SDRAM
with Dual-Error Detection and PVT-Tolerant Data-Fetch Scheme,”
IEEE Int’l Solid-State Circuits Conf. (ISSCC), pp. 38-40, 2012.

T. Legler, “Choosing the DRAM with Complex System Consider-
ations,” Proc. Embedded Systems Conf., Mar. 2012.

S. Li et al,, “McPAT: An Integrated Power, Area, and Timing
Modeling Framework for Multicore and Manycore
Architectures,” Proc. 42nd Ann. IEEE/ACM Int’l Symp. Microarchi-
tecture (MICRO), pp. 469-480, 2009.

S. Ma et al.,, “Supporting Efficient Collective Communication in
NoCs,” Proc. IEEE 18th Int’l Symp. High-Performance Computer
Architecture (HPCA), pp. 1-12, 2012.

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

19

A. Hartstein et al., “Cache Miss Behavior: Is It v/2,” Proc. Third
Conf. Computing Frontiers (CF), pp. 313-320, 2006.

T.C. Oh, “Analytical Models for Chip Multiprocessor Memory
Hierarchy Design and Management,” PhD dissertation, Univ. of
Pittsburgh, 2010.

N. Agarwal et al., “In-Network Coherence Filtering: Snoopy
Coherence without Broadcasts,” Proc. 42nd Ann. IEEE/ACM Int’l
Symp. Microarchitecture (MICRO), pp. 232-243, 2009.

Z.Guz et al., “Nahalal: Memory Organization for Chip Multiproc-
essors,” technical report, Dept. of Electrical Eng., Technion-IIT,
2006.

B.M. Beckmann et al., “ASR: Adaptive Selective Replication for
CMP Caches,” Proc. 39th Ann. IEEE/ACM Int’l Symp. Microarchitec-
ture (MICRO), pp. 443-454, 2006.

N.D. Enright Jerger et al., “Virtual Tree Coherence: Leveraging
Regions and In-Network Multicast Trees for Scalable Cache
Coherence,” Proc. 41st IEEEJACM Int’l Symp. Microarchitecture
(MICRO), pp. 35-46, 2008.

B. Cuesta et al., “Increasing the Effectiveness of Directory Caches
by Deactivating Coherence for Private Memory Blocks,” Proc. 38th
Ann. Int'l Symp. Computer Architecture (ISCA), pp. 93-104, 2011.
S.H. Pugsley et al., “SWEL: Hardware Cache Coherence Protocols
to Map Shared Data onto Shared Caches,” Proc. 19th Int’l Conf.
Parallel Architectures and Compilation Techniques (PACT), pp. 465-
476, 2010.

Z.Guz et al., “Utilizing Shared Data in Chip Multiprocessors with
the Nahalal Architecture,” Proc. 20th Ann. Symp. Parallelism in
Algorithms and Architectures (SPAA), pp. 1-10, 2008.

B.M. Beckmann et al., “Managing Wire Delay in Large Chip-Mul-
tiprocessor Caches,” Proc. 37th Int'l Symp. Microarchitecture
(MICRO), pp. 319-330, 2004.

B.M. Rogers et al., “Scaling the Bandwidth Wall: Challenges in
and Avenues for CMP Scaling,” Proc. 36th Ann. Int’l Symp. Com-
puter Architecture (ISCA), pp. 371-382, 2009.

M.M. Martin et al., “Using Destination-Set Prediction to Improve
the Latency/Bandwidth Tradeoff in Shared-Memory Multiproc-
essors,” Proc. 30th Ann. Int'l Symp. Computer Architecture (ISCA),
pp- 206-217.

G. Kurian et al.,, “ATAC: A 1000-Core Cache-Coherent Proces-
sor with On-Chip Optical Network,” Proc. 19th Int’l Conf. Par-
allel Architectures and Compilation Techniques (PACT), pp. 477-
488, 2010.

A. Krishna et al., “Data Sharing in Multi-Threaded Applications
and Its Impact on Chip Design,” Proc. IEEE Int’l Symp. Performance
Analysis of Systems and Software (ISPASS), pp. 125-134, 2012.

E.Z. Zhang et al., “Does Cache Sharing on Modern CMP Matter to
the Performance of Contemporary Multithreaded Programs,”
ACM SIGPLAN Notices, vol. 45, no. 5, pp. 203-212, 2010.

T. Oh et al., “An Analytical Model to Study Optimal Area Break-
down between Cores and Caches in a Chip Multiprocessor,” Proc.
IEEE CS Ann. Symp. VLSI (ISVLSI), pp. 181-186, 2009.

Y. Li et al., “Practically Private: Enabling High Performance CMPs
through Compiler-Assisted Data Classification,” Proc. 21st Int’l
Conf. Parallel Architectures and Compilation Techniques (PACT),
pp- 231-240, 2012.

N. Hardavellas et al.,, “Reactive NUCA: Near-Optimal Block
Placement and Replication in Distributed Caches,” Proc. 36th Ann.
Int’l Symp. Computer Architecture (ISCA), pp. 184-195, 2009.

S. Kumar et al., “Amoeba-Cache: Adaptive Blocks for Eliminating
Waste in the Memory Hierarchy,” Proc. 45th Ann. IEEEJACM Int’l
Symp. Microarchitecture (MICRO), pp. 376-388, 2012.

J. Zebchuk et al., “A Tagless Coherence Directory,” Proc. 42nd
Ann. IEEEJACM Int’l Symp. Microarchitecture (MICRO), pp. 423-
434, 2009.

H. Zhao et al., “SPACE: Sharing Pattern-Based Directory Coher-
ence for Multicore Scalability,” Proc. 19th Int'l Conf. Parallel Archi-
tectures and Compilation Techniques (PACT), pp. 135-146, 2010.

H. Zhao et al, “SPATL: Honey, I Shrunk the Coherence
Directory,” Proc. 2011 Int’l Conf. Parallel Architectures and Compila-
tion Techniques (PACT), pp. 33-44, 2011.

J.H. Kelm et al., “WAYPOINT: Scaling Coherence to Thousand-
Core Architectures,” Proc. 19th Int’l Conf. Parallel Architectures and
Compilation Techniques (PACT), pp. 99-110, 2010.

B. Choi et al., “DeNovo: Rethinking the Memory Hierarchy for
Disciplined Parallelism,” Proc. Int’l Conf. Parallel Architectures and
Compilation Techniques (PACT), pp. 155-166, 2011.

20

Antonio Garcia-Guirado received the BSc and
MSc degrees (with honors) in computer science
and engineering from the University of Murcia,
Spain, in 2008 and 2009, respectively, where he
is currently working toward the PhD degree in
computer science. He works as a research scien-
tist at Intel Labs, Universitat Politecnica de Cata-
lunya, Barcelona, Spain. His research interests
include cache coherence and memory consis-
tency, cache organizations, virtualization, and
interconnection networks.

Ricardo Fernandez-Pascual received the MS
and PhD degrees in computer science from the
Universidad de Murcia, Spain, in 2004 and 2009,
respectively. In 2004, he joined the Computer
Engineering Department as a PhD student with a
fellowship from the regional government. In
2006, he joined the Computer Engineering
Department of the Universidad de Murcia where
he is currently an associate professor. His
research interests include general computer
architecture, fault tolerance, memory hierarchies

for chip multiprocessors, and performance simulation.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO.X, XXXXX 2014

José M. Garcia received the MS degree in elec-
trical engineering and the PhD degree in com-
puter engineering, both from the Technical
University of Valencia. He is currently a professor
of computer architecture at the Department of
Computer Engineering in the University of Mur-
cia, Spain, and also the head of the Research
Group on Parallel Computer Architecture. He
specializes in computer architecture, parallel
processing, and interconnection networks. His
current research interests include the design of
power-efficient heterogeneous systems, and the development of data-
intensive applications for those systems. He has published more than
140 refereed papers in different journals and conferences in these fields.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

Queries to the Author

Q1. Index terms were given in the LaTeX source file but missing in the input pdf. Source file has been followed.
Please check.
Q2. Please check whether the affiliations of the authors are okay as set.

