
Efficient Eager Management of Conflicts
for Scalable Hardware Transactional Memory

Rubén Titos-Gil, Member, IEEE, Manuel E. Acacio, Member, IEEE, and

José M. Garcı́a, Member, IEEE

Abstract—The efficient management of conflicts among concurrent transactions constitutes a key aspect that hardware transactional

memory (HTM) systems must achieve. Scalable HTM proposals so far inherit the cache-based style of conflict detection typically found

in bus-based systems, largely unaware of the interactions between transactions and directory coherence. In this paper, we

demonstrate that the traditional approach of detecting conflicts at the private cache levels is inefficient when used in the context of a

directory protocol. We find that the use of the directory as a mere router of coherence requests restricts the throughput of conflict

detection, and show how it becomes a bottleneck under high contention. This paper proposes a scheme for conflict detection that

decouples conflict detection from cache coherence in order to overcome pathological situations that degrade the performance of an

eager HTM system. Our scheme places bookkeeping metadata at the directory, introducing it as a separate hardware module that

leaves the coherence protocol unmodified. In comparison to a state-of-the-art eager HTM system, our design handles contention more

efficiently, minimizes the performance degradation of false positives for signatures of similar hardware cost, and reduces the network

traffic generated.

Index Terms—Parallel programming, multicore architectures, cache coherence protocols, transactional memory, conflict detection

Ç

1 INTRODUCTION

THE rise of multicores has brought the problem of
concurrent programming to the forefront of computing

research, presenting both immense opportunities and
enormous challenges. Traditional multithreaded program-
ming models use low-level primitives such as locks to
guarantee mutual exclusion and protect shared data. The
tradeoff between programming ease and performance
imposed by locks remains one of the key challenges to
programmers and computer architects of the multicore era.
Transactional Memory (TM) [11], [12] has been proposed as
a conceptually simpler programming model that can help
boost developer productivity by eliminating the complex
task of reasoning about the intricacies of fine-grained
locking. By using transactions, programmers need not
reason about the safety of interleavings or the possibility of
deadlocks to write correct code. The underlying TM system
attempts to make best use of available concurrency in the
application while guaranteeing the properties of atomicity
and isolation.

Hardware TM (HTM) systems propose architectural
extensions to support TM and leverage existing architectural
features like caches and coherence protocols to achieve high
performance. The efficient management of conflicts among

concurrent transactions is a key aspect, and its policy
constitutes a major design dimension of the TM system.
The choice of one or other policy—eager or lazy—has broad
implications in both performance and implementation costs
of adding TM support.

The check for conflicts can be done on each individual
memory request [16], [27] or it can be deferred until the end
of the transaction [6], [9]. Though the latter approach opens
up more opportunities for parallelism, the efficient imple-
mentation of lazy commits is far from straightforward [7],
[17], [19], [24]. A more evolutionary step toward the
adoption of hardware support for TM is to detect and
resolve conflicts eagerly. The strategy of booking resources a
priori both greatly simplifies commits and leaves the cache
controller largely unmodified. Though this makes eager
systems inherently less efficient at exploiting parallelism
than their lazy opponents, their lower implementation
complexity still makes eager solutions an appealing choice.

One common aspect of all eager HTMs proposed so far
is that they store the transactional bookkeeping information
in structures that are private to the processor running the
transaction. The transactional metadata is kept in places
that are directly accessible to the private cache controller,
which is conveniently modified to use it for detecting data
races. This placement makes the most sense when private
caches are able to snoop on every memory reference that
takes place across the system, as it naturally happens in
bus-based systems [10]. Despite the substantially different
scenario found in systems with unordered, point-to-point
interconnects—such as tiled CMPs—eager conflict detec-
tion schemes for directory-based HTMs have so far
implicitly inherited the same style of cache-level conflict
detection [16], [27].

However, the particular characteristics of directory
coherence have not been thoroughly analyzed in the context

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 1, JANUARY 2013 59

. R. Titos-Gil is with the Department of Computer Science and Engineering,
Chalmers University of Technology, Rännvägen 6, 41296 Göteborg,
Sweden. E-mail: ruben.titos@chalmers.se.

. M.E. Acacio and J.M. Garcı́a are with the Departamento de Ingenierı́a y
Tecnologı́a. de Computadores, Facultad de Informatica, Universidad de
Murcia, Campus de Espinardo, 30100 Murcia, Spain.
E-mail: {meacacio, jmgarcia}@ditec.um.es.

Manuscript received 25 Oct. 2011; revised 7 Mar. 2012; accepted 8 Mar.
2012; published online 13 Mar. 2012.
Recommended for acceptance by D. Kaeli.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2011-10-0788.
Digital Object Identifier no. 10.1109/TPDS.2012.103.

1045-9219/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

of an HTM design. In fact, the literature has not yet
addressed a major source of inefficiency that arises as a
consequence of the directory’s obliviousness to transactions.
Using the directory as a mere router that simply forwards
messages to the appropriate destinations, has the implicit
effect of restricting the throughput of conflict detection to the
pace at which the directory can process coherence requests.
This means that an HTM system can only resolve conflicts as
fast as its directory can process the coherence requests that
originate such races. Since the directory acts as the serial-
ization point for the requests to a memory location, it cannot
process new requests until it receives confirmation that the
previous one has completed. Although this limitation in
concurrency affects directory coherency in general, the
situation is aggravated to the point of pathological perfor-
mance when transactions are introduced.

In this work, we propose a novel approach to eager HTM
design that extends the directory logic in order to provide
fast and efficient conflict management and transactional
bookkeeping in tiled CMP architectures. Where previous
proposals had combined these two related but distinct roles
[16], [27], we propose to decouple conflict detection from
cache coherence at the directory level, in order to overcome
situations that degrade the performance of an eager HTM
system. We demonstrate that traditional cache-based conflict
detection introduces several sources of inefficiency when
used in the context of a directory protocol, and show how
under situations of high contention the directory becomes a
bottleneck for the conflict detection mechanism. We
propose an alternative solution, a directory-based scheme,
which places transactional bookkeeping at the directory. By
comparing our proposal with an HTM system such as
LogTM-SE [27], we observe several advantages.

The main contribution of our design is that it substantially
increases the conflict resolution throughput of directory-
based HTMs, greatly improving the ability of eager systems
to cope with contention. The detection of conflicts is
accelerated—as our scheme detects conflicts in one hop
instead of two—and the number of messages generated for
the task is reduced—which is particularly important if the
resolution is a simple stall-and-retry approach. While detect-
ing sooner does not imply that dependent transactions will
serialize quicker, our design dispatches conflicting requests
without forwarding additional coherence messages, and
thus without blocking the directory. This enables faster
reaction to high-contention scenarios in which the same line
is accessed by several conflicting transactions, and it has the
potential to avoid many aborts and improve performance.

As a second contribution, our proposal stores the
transactional bookkeeping information more efficiently,
reducing the amount of false positives and consequent
performance degradation, when compared to signature-
based HTM schemes. We find that having each tile track its
transactional addresses is not an efficient global encoding, as
transactions often access the same shared data and thus keep
redundant metadata on their read and write sets, which in
turn may increase false positives when Bloom filters are used
for bookkeeping. In contrast, our scheme extends the role of
the directory not only to map addresses with cache
residence, but also with transactional ownership. In addi-
tion, the new functionality is introduced as a separate

hardware module that acts as a directory-level conflict
controller that works independently from the coherence
controller, thus leaving the coherence protocol unmodified.

A first approximation to the advantages offered by
directory-based conflict detection in distributed shared-
memory multiprocessors was presented in [23]. Here, we
extend that work with the following contributions:

. We have modified the design to reduce the overhead
of the directory metadata. Transaction serial numbers
are no longer used to maintain the correspondence
between each block and its owner transaction(s).

. We have also introduced a conflict signature that acts
as a filter for noncontended addresses, in order to
decrease the traffic due to metadata propagation.

. The design has been evaluated more comprehen-
sively, with the inclusion of additional benchmarks
from STAMP, and the comparison against new
configurations with both perfect and real signatures.

2 MOTIVATION

In this section, we discuss a number of reasons that support
our claim that the directory is a well-suited location for the
detection of transactional conflicts in HTM systems that
detect and resolve conflicts eagerly.

2.1 Decoupling Conflict Detection from Coherence

Maintaining coherence means guaranteeing that all proces-
sors see the writes to a given location as having happened
in the same order. In a bus-based system, all accesses to any
location are serialized by the order in which requests
appear on the bus. In a distributed system with coherent
caching, it is the directory that acts as the serialization point
for all the requests to the same memory location, since all
relevant operations first come to the home tile. A common
solution to ensure serialization to a location while keeping
the complexity of the protocol low is to use additional
directory states called busy or transient states [8].

When a line is in a busy coherence state, subsequent
requests that target the same block must wait until an unblock
message is received from the last requestor, indicating the
(perhaps unsuccessful) completion of the previous coher-
ence transaction. Only when the line returns to a base state is
the next queued request considered. The result of this
serialization is that coherence requests targeted to the same
line can pile up in the input buffers of the directory controller
when a cache line experiences high contention. The situation
is much worse in the context of transactions, because the
directory ignores whether a given request is conflicting, and
is unaware of the priority scheme used by transactions.
Oblivious to the status of the transactions running on a given
moment, the directory attends messages in a first-in-first-out
(FIFO) basis. As a consequence, undesired scenarios may
arise during high contention: low priority requests are
serviced while high priority ones are sitting at the input
buffers, when indeed the former do not produce in any
useful work since their transactions will probably end up
aborting as a result of the conflict. The scenario is depicted in
the left part of Fig. 1. The figure shows a transactional
interleaving in which four transactions access the same cache

60 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 1, JANUARY 2013

line, which are initially in the read set of transactions
running in processors P0 and P1, whose caches have shared
copies of the line. We can see how a nonconflicting shared
request from P3 must wait for other conflicting requests that
arrived earlier at the directory, delaying unnecessarily the
commit of the reader transaction. Furthermore, the direc-
tory’s obliviousness to time stamps makes the high-priority
request from P0 wait for a lower priority request from P2,
which does not succeed in acquiring exclusive ownership.

In contrast to the behavior of the cache-based approach to
conflict detection shown in left part of Fig. 1, the directory
could handle contention more efficiently, provided it had
information about the transaction’s time stamp and read and
write sets. In the right part of Fig. 1, we see how a directory-
based scheme of conflict detection serializes more quickly
the same transactional interleaving described earlier. In this
other case, the directory detects the conflict itself using its
own bookkeeping metadata, and thus does not need to
forward requests to the private caches that have a copy of the
line. As a result, the line does not need to go into a busy state
and nonconflicting or high-priority requests can be dis-
patched without having to wait for the completion of
coherence requests known not to make any useful work.

As a quantiative measure of how much this pathology can
deteriorate performance, we take the benchmark raytrace
from the SPLASH-2 suite [25] and run a transactified version
of it (locks replaced with transactions) on the baseline
LogTM system described in Section 5. In raytrace, threads
synchronize when obtaining a global ray identifier. For the
teapot input, the highly contended cache line that contains
this rid variable is responsible for more than 100.000 aborted
transactions, versus 30.000 that committed successfully. This
pathology results in almost 2� slowdown with respect to the
lock-based code.

2.2 Reducing Traffic Generated during Stalls

Eager systems generally attempt to resolve conflicts using a
requester stalls policy [4], [16], [27]. The simplest way to

implement this policy is simply to retry the conflicting
coherence request a few cycles after the nack response has
arrived. From the perspective of the processor, the conflict-
ing memory access appears as a long-latency miss that takes
hundreds of cycles to be serviced. The conflicting coherence
request is retried until it succeeds in bringing the data with
the right permissions, or until the deadlock detection
mechanism indicates the possibility of a cyclic dependency.

The straightforward nack-and-retry scheme of the popular
LogTM design [16], [27] has the advantage of its simplicity,
but results in a substantial amount of network messages
generated when we consider the entire length of the stall,
specially if the nacker is a long-running transaction. In
general, detecting a conflict typically takes 2þ 2n messages,
where n is the number of bits set in the bit-vector kept at the
directory (number of sharers). Fig. 2(left) illustrates all
network messages generated on a write-read conflict when
a cache-based style of conflict detection is employed. The
tiles with a shared copy of the line are shown in gray, a
dotted line indicates the home tile and a bold black line the
requester. A dotted arrow differentiates the final unblock
message from the initial request. On the right side of Fig. 2
we show how by detecting conflicts at the directory, the
requester transaction can observe the conflict after only two
messages, independently of the number of sharers.

2.3 Reducing False Positives of Signatures

One of the main advantages of eager-eager systems is their
ability to accommodate transactions with large footprints.
The versioning hardware takes care of logging the old
contents of the line before it is speculatively modified “in
place.” Therefore, evictions of both clean and dirty transac-
tional data from the private cache are tolerated, provided
that the cache controller can detect conflicts on spilled lines.
The scheme to summarize overflowed addresses can vary
from a single bit [16] to hash signatures [6], [18], [27].
Unfortunately, these Bloom filters are susceptible to false
conflicts that arise as a consequence of their conservative
encoding of addresses.

While signatures can be designed to minimize aliasing
[20], [21], [22], [28], an inherent limitation of cache-based
conflicting detection is that the bookkeeping metadata is
always recorded on a per-core basis. Using a data structure
simile and observing the transactional metadata from a
global perspective, the typical organization resembles an
array of n hash-tables, where n is the number of cores.
Since the data accessed inside transactions is often shared,
we can expect the elements (addresses) found in different
hash-tables to overlap to a certain extent. Given such

TITOS-GIL ET AL.: EFFICIENT EAGER MANAGEMENT OF CONFLICTS FOR SCALABLE HARDWARE TRANSACTIONAL MEMORY 61

Fig. 1. Cache-based versus directory-based detection.

Fig. 2. Messages generated on a write-read conflict in cache-based
versus directory-based conflict detection.

locality, for coarse grain transactions the number of
accessed addresses is often larger than the number of cores
in the system, suggesting a more efficient encoding of the
metadata that could avoid having the same element
repeated across different sets. Instead, one hash table could
track the union of all addresses, each one mapped to a bit-
vector that indicates which cores are transactional accessors
of the address.

The aforementioned idea of tracking metadata on a per-
address basis can be naturally applied at the directory level.
The directory already acts as a hash table that maps
addresses to presence bit-vectors; extending it to track
transactional ownership is straightforward. The extra over-
head of having a transactional directory (TXDIR) is low: A
small cache per directory bank is generally sufficient to
contain all the lines accessed inside transactions which are
mapped to that bank.

2.4 Avoiding Broadcast upon Off-Chip Misses

An unbounded design like LogTM-SE [27] is able to tolerate
the loss of the directory information, by further extending
the protocol with broadcast filter check messages to private
(L1) caches on every shared level (L2) miss, and use the
responses to conservatively rebuild the directory informa-
tion. However, the approach adopted by LogTM-SE
burdens each and every L2 miss with a broadcast of filter
check messages in order to maintain transactional isolation
at all times, increasing network traffic in all cases. The
reason for such broadcast is that the bookkeeping informa-
tion required to detect conflicts is solely kept at the private
cache level. A directory-based scheme can easily avoid this
broadcast by having each tile keep summarized information
about its overflowed lines. L2 misses are not a frequent
event, and thus L2 evictions of transactional data are an
even more uncommon situation—at least in the context of a
CMP with a large, shared level L2 cache—which can be
handled with simple solutions.

3 BACKGROUND AND RELATED WORK

The early HTM proposal from Herlihy et al. [12] added a
separate cache to track the transaction’s read and write sets.
When TM was revived a decade later by Stanford’s TCC
system [10], transactional bookkeeping was accomplished by
augmenting the existing private caches with transactional
status bits associated to each entry. For bus-based systems
like TCC, integrating the conflict detection logic into the
cache controller is undoubtedly the most natural and
straightforward solution because all cache controllers are
able to snoop all potentially conflicting memory references
issued by remote transactions. In such context, a straightfor-
ward solution to conflict detection is to incorporate the
transactional status bits (SR and SM bits) along with the
coherence state—as part of the cache line metadata—and
modify the state machine to interpret those bits as well and
take suitable actions when a conflict is detected. This is a
rather simple change in the internals of the coherence
controller, and is enough to detect conflicts on a best effort
HTM design which does not allow evictions.

A simple yet conservative solution upon spills of
transactional data are to enforce transaction serialization,
letting the overflowed transaction write its results directly to
shared memory [10]. Nonetheless, transactions of larger

footprints can be accommodated without resorting to global
serialization if the system is capable of keeping track of
overflowed addresses, even if it does it in a summarized
way. Replacements of read-set data can be tolerated
regardless of the version management policy used, whereas
speculatively written lines can only be spilled to the shared
levels of the memory hierarchy if the system logs values
before they are speculatively written [16], [27]. To retain
isolation on overflowed lines, cache controllers need a way
of determining if an address whose tag is not found in cache
indeed belongs to the read and write sets of its transaction.
The solution can range from a single overflow bit [16], to an
overflow signature [18] or a permissions-only cache [2].

A different solution is to remove the transactional status
bits from caches and only use signatures for transactional
bookkeeping [6], [27]. A key disadvantage of hash-signatures
is the possibility of false positives. Addresses that do not
belong to the read and write set of the transaction may be
considered as such due to aliasing, and false conflicts are
then signaled when none exists, causing unnecessary
performance degradation. This poses a dangerous situation
if the ratio of false positives becomes significant as the
transaction footprint grows, as it may discourage program-
mers from using coarse grain synchronization, somehow
jeopardizing one of the main goals of TM.

Other eager conflict detection systems use memory-side
conflict detection [1], [3] to allow transactions of an arbitrary
size, yet they require extensive modifications to the memory
interface or incur in significant space overheads when
tracking metadata across all memory.

4 DIRECTORY-BASED CONFLICT DETECTION

In this section, we describe how the directory is augmented
with several components in order to support the directory-
level conflict detection introduced in the previous sections.

4.1 Transactional Status

Using the directory to check for conflicts over lines that
remain cached by transactional owners does not necessarily
need any more information about a block than what is
already stored in its directory entry. For example, let W be a
transactional writer that locally caches a block B with
exclusive ownership, and let R be a reader that tries to
acquire nonexclusive ownership of B. When R’s read request
arrives at the directory, the standard protocol dictates that
the request must be forwarded to W, which would then
detect the conflict. However, if the directory only knew that
W is executing a transaction, forwarding the request to W
would be unnecessary; the directory itself could conserva-
tively detect a conflict on B and directly send a nack response
to R. A simplistic solution is to extend the directory with a
transactional status register that records which cores are
executing a transaction at the moment. This register could
be kept updated by sending explicit messages to all
directories at transaction begin and commit/abort, and
waiting for the corresponding acknowledgement before
resuming the execution. Other schemes that avoid stalling
the execution of the transaction and reduce the number of
contacted directories are discussed later in this section.
For now, let us assume the simplistic solution based on
transaction begin/end reports.

62 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 1, JANUARY 2013

Once the directory knows which cores are executing
transactions in a given moment, it can start detecting
conflicts on their behalf. Again, the simplest solution would
be to perform the logical AND of the transaction status
register and the presence bit-vector of the requested line, and
interpret the result as the current transactional accessors of
the line. Obviously, this would conservatively consider as
transactional all privately cached lines, and while it would
suffice to provide correct transactional semantics, it would
result in a tremendous amount of false conflicts. Hence, the
directory needs some sort of transactional bookkeeping to
distinguish between cache residence and transactional own-
ership, in order to detect conflicts more accurately.

4.2 Transactional Metadata

Transactional metadata is kept at the directory by means
of a small, set-associative cache that we call the transac-
tional directory. Just like the regular directory tracks cache
residence, the TXDIR tracks transactional ownership. The
TXDIR is accessed in parallel with the L2 directory, and
the outputs from both structures are provided to the
module that contains the conflict detection logic. This
organization of the directory, including the newly added
components, is shown in Fig. 3.

The internal organization of the TXDIR is detailed in Fig. 4.
We can observe how it combines a cache-like structure that
maintains precise metadata for a limited number of lines,
with a set of small signatures (one per core) which
conservatively encode those transactional addresses that do
not fit in the aforementioned buffer. Along with the
TxAccessors bit-vector, each entry includes an additional
TxWriter bit indicating if the line has been written (not shown
in the figure, for clarity); this bit is only meaningful when
only one transactional accessor exists. On each incoming
request that arrives at the directory, the TXDIR cache is
accessed. If a tag hit is found, the transactional accessors and
writer status are taken from the entry. Otherwise, the result of
the parallel signature check is selected.

The TXDIR cache has a special feature: It is augmented
with circuitry for flush-clearing the TxAccessors at the
granularity of bits. Individual bits can be flush-cleared in
a single cycle by enabling the corresponding clear signals,
which are controlled by the conflict detection logic. The
TXDIR is implemented in a similar way to the L1-cache tag
array of traditional HTM systems which use transactional
status bits (SR and SM) for bookkeeping. The extra circuitry

required for flush-clearing each bit is very modest: for each
bit, an extra transistor connected to the corresponding clear
signal is added. In comparison to the augmented L1 cache
tag entries commonly found in HTM systems, the TXDIR
simply extends the number of bits from 2 to n, and the
number of clear signals from 1 to n (for an n-way CMP).

A small number of entries per TXDIR suffices to precisely
track the accessors for a large number of transactional lines,
as the combined entries of all TXDIRs are available to any
transaction. For a 16-core tiled CMP design, we find that an
8-way set associative TXDIR with eight sets per L2 bank
suffices to keep accurate transactional metadata in the
common case. Under this configuration, the aggregation of
all 64-entry TXDIRs is capable of bookkeeping up to 1,024
different transactional addresses before resorting to a
conservative scheme based on signatures. If a fine-grain L2
bank mapping policy is used—i.e., consecutive line ad-
dresses are mapped to subsequent L2 banks—the read and
write sets of the transaction are evenly distributed across all
directories, thus minimizing the frequency of metadata
overflows at the TXDIR. Though not shown in Fig. 4, a victim
buffer can be optionally incorporated to the TXDIR cache to
reduce the overflows due to its limited associativity.

An inherent advantage of the directory-based book-
keeping is that, even when the limited capacity or
associativity of the TXDIR requires the use of signatures to
track transactional accessors, some false positives can be
identified and properly ignored: The use of sticky states at
the directory ensures that every transactional accessor is
marked as a holder of the line in the presence bit-vector.
Thus, the opposite scenario—transactional accessor not in
sharers—is clearly the result of address aliasing and can be
ignored. For this reason, a set of small, per-core signatures
(64 bits each, 1 Kbit overall) suffices to support conflict
detection over an unbounded number of lines without
introducing frequent false positives.

4.3 Conflict Detection Logic

As shown in Fig. 3, the module that performs the conflict
detection takes as inputs two bit-vectors—transactional
accessors and sharers—the coherence state, the event—type

TITOS-GIL ET AL.: EFFICIENT EAGER MANAGEMENT OF CONFLICTS FOR SCALABLE HARDWARE TRANSACTIONAL MEMORY 63

Fig. 3. Block diagram of the new directory organization.

Fig. 4. Transactional directory internals.

of request- and the identity of the requestor. Its main output
is a no-conflict signal, which is in turn connected to the enable
input of the coherence controller module. This signal is
usually asserted, allowing the coherence controller to
operate as usual. When a conflict is detected, the coherence
controller is disabled so that the line’s state and sharers
remain unchanged, while the actions taken by the directory
are directly controlled by the conflict detection module. Its
simple logic is specified in Algorithm 1.

Algorithm 1. Conflict Detection Logic

conflict false

if TxAccessors 6¼ fRequestorg AND TxAccessors 6¼ fg then

if Event ¼Write then

if State ¼M then

conflict true

else

if PriorityðRequestorÞ < HighPrioðTxAccessorsÞ
then

conflict true

end if

end if

else

if Event ¼ Read then

if StateðAddressÞ ¼M AND TxWriter then

conflict true

end if

end if

end if

end if

The conflict controller only attempts to detect a conflict if
the line has at least one transactional accessor different from
the requestor. In that case, a conflict is signaled if a write
request finds a line that is exclusively owned by another
transaction (write-write or write-read conflict), as dictated
by the M coherence state. In any other state, a conflict is
immediately detected if the requestor does not have higher
priority than the current transactional accessors. If it does,
the directory omits the detection of the conflict and forwards
invalidations to the sharers of the line, in order to support a
hybrid resolution policy [4], similarly to the baseline eager-
eager system evaluated throughout this thesis. Finally,
shared requests cause a conflict if they find the line held in
exclusive ownership whose writer status indicates that the
only transactional accessor is indeed a write transaction
(read-write conflict). It should be noted that this detection
logic is able to process conflicting requests to lines in busy
states, effectively decoupling conflict detection from coher-
ence maintenance.

4.4 Propagation of Transactional Metadata

The fundamental drawback of detecting conflicts at the
directory is that not all memory references within a
transaction must go through directory, but only those that
result in cache misses. Because the notification of a
transactional load or store hit to the directory cannot
happen instantly, conflicts still need to be temporarily
detected at the cache level until the directory has knowledge
of the transactional access and can take over the task. Thus,

transactional loads and stores that hit in the private cache
must notify the directory in order to update the TXDIR
metadata. This communication takes place asynchronous-
ly—off the critical path of the memory reference—by means
of a special write-back message we call txaccess. Note that
this new type of message is not part of the protocol and thus
does not participate in the coherence mechanisms. Txaccess
messages simply update the metadata kept at the directory,
adding the sender as a transactional accessor and appro-
priately setting the writer status bit (a write flag distin-
guishes the type of access). For memory references that do
go through directory, the TXDIR must be updated after the
miss has been successfully solved. In this case, the txaccess is
piggybacked as a couple of flags in the final unblock.

Since propagation of transactional metadata happens
asynchronously, caches must be able to detect conflicts in
those cases when a request reaches the directory before it
has been informed about a transactional hit at the L1 cache
level. Once the directory receives the corresponding txaccess
report it resumes the task of conflict detection, and the
offended caches no longer observe conflicting traffic. We
discuss several alternatives for dealing with such racing
requests in a later section.

4.5 Awareness to Priority and Deadlock Detection

Eager HTM systems that rely on a pure requester stalls policy
are susceptible to a pathology known as starving writer [4].
A priority scheme is required to support the aforemen-
tioned hybrid resolution policy, which resolves write-read
conflicts in favor of the requester when the writer has
higher priority than all readers. Time stamps transported in
all coherence requests for deadlock avoidance [16] are now
also leveraged to support such hybrid policy at the
directory, which must keep a time stamp table and constantly
update it by snooping incoming requests.

Thanks to this time stamp table, the conservative dead-
lock avoidance mechanism commonly employed by eager
systems [16], [27] can be kept unmodified. Negative
acknowledgement messages are sent from the directory on
behalf of the eldest accessor of the line—including its time
stamp in the response—so that caches are oblivious to the
fact that most of the nack responses they receive are in fact
sent by the directory, and not by other caches. This allows the
resolution scheme at the caches to remain unchanged: A
transaction aborts if it is nacked by an older transaction and it
has its possible-cycle bit asserted. This bit gets set when a
transaction nacks a request from an older transaction.
Because caches no longer nack forwarded requests, the
possible-cycle bit is set upon reception of a new txnacked
message: To emulate the original behavior, the directory
sends a txnacked message to the eldest transactional accessor
when an even older requestor gets nacked on its behalf.

4.6 Clearing Transactional Metadata

Transaction begin is implicitly communicated to each
directory bank on the first access to a line mapped to the
bank, via txaccess (L1 hit) or a coherence request (L1 miss).
Each directory bank snoops these messages and updates its
transactional status register and time stamp table when it
detects that a core has entered transactional mode.
Coherence request messages are guaranteed to arrive in

64 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 1, JANUARY 2013

order, as guaranteed by an in-order processor model.
Txaccess messages that arrive out of order (e.g., that belong
to the previous transaction) are detected by observing their
time stamp and properly discarded.

On the other hand, when a transaction ends—whether it is
or not successfully—the transactional metadata kept for it at
the directory must be cleared in order to release isolation
over the lines in the read and write set. To this end, we
introduce a second protocol-independent message called
txend, sent by cores both at transaction commit or after the
rollback has completed. When a txend message from core k
reaches the directory, flush-clears the kth bit TxAccessors of
each entry in the TXDIR cache. The writer status flag of the
entry is also conditionally cleared (if the kth bit is set). The
transactional status bit and overflow signature associated
with the core are also cleared. Not all directory banks need to
be informed about the end of the transaction, but only those
whose mapped addresses were part of the finished transac-
tion. Thus, for every memory reference performed during
the transaction, each core records the directory bank that the
address is mapped to. This bit-vector of txaccessed directories
is then used at commit/abort time to selectively issue txend
messages. The core can continue its execution without delay,
as txend messages do not need acknowledgement because
they carry the transaction’s time stamp, which is used in
conjunction with the internal time stamp table kept at the
directory to handle cases in which txend or txaccess messages
arrive out of order.

4.7 Dealing with Races

While a txaccess message traverses the network toward the
directory after a cache hit, the core must be able to detect
conflicts on forwarded requests that reached the home tile
before the txaccess. Several solutions are possible to handle
conflict detection in these races. The most straightforward
approach is to maintain the typical transactional status bits
in cache, which are used to detect conflicts on such races, as
well as to identify those lines whose transactional status has
been already reported to the directory—avoiding repeated
txaccess messages on subsequent hits. For simplicity, this is
the approach we use in our design, but other solutions are
possible too, since the directory already keeps accurate
information about the read and write sets, and therefore it is
not necessary to have such precise—redundant—metadata
at the cache level at all times. In this case, replacement of
transactional lines in S state cannot be silent, as conflicts
could go undetected if the L1 cache loses the transactional
metadata before the corresponding txaccess reaches the
directory. Hence, transactional S replacements are treated
much like M replacements, by sending a write-back
message that updates the TXDIR metadata, and waiting
for the ack to arrive back to the L1 cache before finally
deallocating the line.

One way to detect conflicts at the cache level without
having to add bits to the private caches, is to use a small
summary signature that encodes both read and write sets, and
then modify the conflict logic so that the signature is only
checked if there is a potential race, i.e., a txaccess message on-
the-fly whose destination is the same directory bank that
forwarded this request. Thus, the txaccessed directories bit-
vector acts as a first filter to distinguish nonconflicting from

potentially conflicting requests. More accurate ways of
filtering the check of the signature require some kind of
txaccess acknowledgement scheme from the directory, which
could be easily accomplished by means of serial numbers
that are piggybacked in existing messages.

Another method consists in maintaining a separate
txaddress buffer with the most recently accessed addresses of
the transaction. This scheme decouples transactional book-
keeping from caches at the cost of increasing the amount of
network messages, as now txaccess messages need to be
acknowledged before an address can be deallocated from the
buffer. Addresses can be buffered indefinitely in order to
avoid redundant communications with the directory. How-
ever, the buffer should be drained after a certain occupancy
threshold in order to leave room for new addresses.
Performance can suffer if at some point the buffer fills up
completely, since the processor will stall on the next memory
reference that results in a cache hit until space becomes
available, or else violations of isolation would be risked.

4.8 Reducing Metadata Propagation

Obviously, reporting every cache hit to the directory is an
expensive solution in terms of its traffic demands. However,
the performance benefits of directory-based conflict detec-
tion only apply to contended lines. Hence, it makes more
sense to propagate only those accesses to lines that have seen
conflicts in the past. We optionally introduce a conflict
signature which is updated every time a cache sends or
receives a nack message for an address, and checked to
determine if a txaccess message needs to be sent. A txaccess is
sent only for L1 hits to lines whose transactional status is not
yet set, whose address also belongs to the conflict signature.
Because the fraction of lines that experience contention is
usually small in comparison with the size of the transactional
set, a small signature should suffice to filter out most of the
traffic that propagates metadata from the caches to the
directory. This optimization does not affect correctness, and
the filter is periodically cleared (i.e., in barriers). This trades
off some performance for reduced traffic, when conflicts are
forgotten and accesses to contended data are not immedi-
ately reported to the directory.

It is important to note that neither the conflict signature
nor the queuing of txaccess messages lay on the critical path of
a cache hit. The L1 cache does not need to wait for the result
of the signature check to service the data, and so the memory
access can indeed complete before the message is enqueued,
if the signature check signals a positive. The introduction of
the conflict signature is thus an optimization which does not
impact L1 hit latency. Similarly, txaccess messages are not
strictly necessary to maintain correctness and can be safely
dropped if need be.

4.9 Design Scalability

As the number of tiles in the CMP increases, the size of the
proposed per-bank TXDIR could be proportionally reduced
while maintaining accurate bookkeeping metadata over a
constant number of lines which suffices in the common case,
even for most coarse-grain transactions. As for the overflow
signatures, several tiles could be grouped to share one
signature in order to keep the area of this array constant
when scaling up the system. Since L2 transactional spills

TITOS-GIL ET AL.: EFFICIENT EAGER MANAGEMENT OF CONFLICTS FOR SCALABLE HARDWARE TRANSACTIONAL MEMORY 65

would be an even rarer event in larger chips, the number of
false positives would still remain low. The extra latency due
to extra hops does not substantially affect messages for
metadata propagation since they are asynchronous. The
number of txend messages does increase proportionally to
the number of tiles, despite being sent only to those directory
banks whose data were accessed. Their overhead may
become significant in large chips for workloads with large
transactions and high contention, though this problem could
be alleviated using multicast messages [13].

5 METHODOLOGY AND EVALUATION

In this section, we evaluate the proposed scheme of directory-
based conflict detection, comparing it against several
pertinent HTM design points.

5.1 Experimental Setup

We use a full-system execution-driven simulator based on
the Wisconsin GEMS tool-set (v2.1) [15], in conjunction with
Wind River Simics [14]. We use the detailed timing model
for the memory subsystem provided by GEMS, with the
Simics in-order processor model. Simics provides functional
simulation of the SPARC-V9 ISA and boots an unmodified
Solaris 10 operating system. Table 1 lists all HTM config-
urations evaluated in this paper. LogTM-SE [27] acts as the
eager-eager (EE) HTM system of reference, and all other
HTM configurations are derived from it. The EE_base
configuration employs perfect signatures at the private
cache level, and uses a hybrid resolution policy to avert
the starving writer pathology [4]. Experiments were per-
formed on a 16-core tiled CMP system, described in Table 2,
with private L1 caches and a shared, multibanked L2 cache.
For each workload-configuration pair we gathered average
statistics over 10 randomized runs.

The EE_pred augments this baseline with a 256-bit, 256-
entry write-set predictor, in order to also target the dueling
upgrades pathology [4], by selectively requesting exclusive
permission for predicted loads. Our configuration is similar
to Bobba’s EEHP system, except for one detail: In our case,
the block is not added to the transaction’s write set until it is
indeed written, as we observed that doing so consistently
results in worse relative performance than if only added to
the read set, for the benchmarks here considered.

We also evaluate the EE_base system using parallel
Bloom signatures. All three signature configurations con-
sidered use four hashes. We consider both bit-selection and
high-quality H3 functions, with sizes of 2-4 Kbits.

As for our design, we consider two systems. On the one
hand, DirCD_Magic acts as an upper bound of the
performance achievable by a directory-based conflict detec-
tion scheme. It is a modified version of the ideal EE_base

(perfect signatures) in which the directory has instant access
to any read or write signature across the chip—without
involving any message—and directly nacks conflicting
requests, while magically informing the nackers about the
conflict—to maintain deadlock detection.

On the other hand, DirCD_TxDir64 is a detailed imple-
mentation of the scheme described in previous section,
which uses a TXDIR of finite size to perform transactional
bookkeeping at the directory, and extends the protocol with
txaccess, txend, and txnacked messages to propagate metadata,
communicate transaction commit/abort and detect dead-
locks, respectively. The specific parameters of this config-
uration are shown in Table 2. In order to provide a fair
comparison in terms of network traffic, in the DirCD_
TxDir64 system we adapted the amount of cycles that a
processor stalls after detecting a conflict—before retrying the
request—so that both EE_base and our design have similar
intervals of retry, i.e., result in a similar number of reissued
requests on a stall of the same length. While EE_base retries
after only three cycles, DirCD waits longer (50 cycles) before
reissuing the conflicting memory request, because it inher-
ently detects conflicts quicker. This implementation of
DirCD extends each L1 cache entry with a single transac-
tional bit, used to detect conflicts on racing requests, as well
as to decide if a txaccess message needs to be sent to directory.
When this tx bit is asserted, the coherence state conserva-
tively determines if the line belongs to the read set (S or E
states) or write set (M state). As for the ability to tolerate L2
evictions of transactional data, we model a single overflow
bit-vector (one bit per core) on each tile. Nonetheless, we
have not experienced any such events in our experiments,
mainly due to the L2 cache’s fairly large size and
associativity of the CMP modeled throughout the thesis
(512 MB per tile, 8-way associative).

Workloads. STAMP workloads were chosen as they are
among the most representative TM benchmarks available so
far, and exhibit a fair diversity in behavior. The parameters
for applications have been taken from [5] and are shown in
Table 3. We changed one of genome’s compile-time
parameters in order to use a larger chunk size in the first

66 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 1, JANUARY 2013

TABLE 1
HTM Configurations Evaluated

TABLE 2
System Parameters

step of the algorithm. We have increased chunk_step1 from
its default value of 12 in the release of STAMP, to 36, so as to
stress the bookkeeping mechanism of the evaluated HTM
systems with transactions of a larger footprint. Yen adopts
similar strategies when evaluating signatures [26]. Further-
more, we excluded labyrinth because it requires support for
the early release construct in order to benefit from parallel
execution: Removing addresses from read sets is not
possible in systems that use real signatures, including our
DirCD scheme, and thus the utility of labyrinth in this
evaluation is limited. To make up for the loss benchmark,
we modified the input parameters of vacation, as shown in
Table 3, to create a new configuration, vacation-vhigh, which
exhibits very high levels of contention on transactions of a
fairly large footprint. Very high contention levels in vacation
are achieved by reducing the initial size of the database as
well as the percentages of queried relations and user (read-
only) transactions.

5.2 Performance Analysis

5.2.1 Idealized Systems

Fig. 5 shows the potential performance gains of a directory-
based scheme to conflict detection (DirCD), relative to the

cache-based approach traditionally used by EE systems. In
comparison to EE_base, it shows how the “magic” DirCD
system greatly reduces the execution time of highly
contended applications such as intruder and vacation-vhigh,
in percentages that vary from 22 percent in vacation-vhigh to
roughly 50 percent in intruder+. This confirms that the
directory indeed creates a bottleneck in the conflict manage-
ment mechanism in situations of high contention affecting a
few cache lines. DirCD_Magic anticipates the performance
gains that can be expected if detection is decoupled from
coherence, i.e., if it can be carried out without the need of
request forwarding—thus without transitioning to the line to
a busy state.

Fig. 6 presents a breakdown of transactional cycles for the
EE_base system, compared to the realistic implementation of
DirCD analyzed in the next section. The total transactional
time corresponds the sum of tx-useful and tx-aborted
components of Fig. 5. The figure divides transactional cycles
into tx-hit (nonmemory or L1 hits) and cycles waiting for a
memory request to complete—excluding retried requests,
which are accounted as stall time in Fig. 5. Memory access
time is in turn further broken into the time the request was
queued at the directory due to busy states (tx-busy-dir), and
actual miss time (tx-load-miss or tx-store-miss), which reflects
the compulsory time taken by messages to travel across the
interconnect, L2 cache access time, etc. The figure demon-
strates how the reductions achieved by DirCD in the tx-
useful and tx-aborted components of intruder and vacation-
vhigh are due to the removal of the bottleneck formed at the
directory in the baseline system, which limits its ability of
resolving conflicts during contention.

Intruder. Both DirCD and EE_Base systems suffer the
aforementioned pathology of dueling upgrades that leads to
many aborts, shown in Table 4. The improvement of DirCD
with respect to the EE_Base is not so much due to the
reduction in the number of aborts—aborts of transaction
with TID0 go down by 40 to 60 percent, as we can see in
Table 4—as it is due to the higher throughput of detected
conflicts achieved by DirCD. TID0 corresponds to a queue
pop operation that first reads and then writes a highly
contended line. The detection at the directory allows the

TITOS-GIL ET AL.: EFFICIENT EAGER MANAGEMENT OF CONFLICTS FOR SCALABLE HARDWARE TRANSACTIONAL MEMORY 67

TABLE 3
Benchmarks and Inputs Used in the Simulations

Fig. 5. Relative performance of “magic” directory-based versus ideal
cache-based conflict detection.

Fig. 6. Transactional cycle breakdown in baseline versus directory-
based schemes.

highest priority writer to proceed quickly—since its write
request is processed immediately when it arrives at the
directory, as it demonstrated Fig. 6—causing the abort of
the lower priority readers (upgraders). The fact that lower
priority conflicting transactions are aborted much faster in
DirCD is reflected in the radical decrease of the tx-aborted
component seen in Fig. 5 when compared to EE_Base; the
total number of aborts also decreases and accounts for the
shrinkage of the backoff component too. In comparison to
EE_Pred, the write-set predictor successfully averts the
dueling upgrades and almost completely removes all TID0
aborts by directly requesting the line for exclusive access, as
shown in Table 4. TID0 transactions serialize one after
another without incurring in the huge number of aborts seen
in the other two systems. However, the predictor does not
represent a generalizable solution. For the small input of this
benchmark, we see how the total number of aborts is
decreased by around 1K, in spite of a reduction in TID0
aborts of almost 6K; for the medium input, despite removing
110K TID0 aborts, the total number of aborts goes up by 18K.
This indicates that the write set predictor penalizes transac-
tional execution of other transactions of the program, mainly
due to the combination with a hybrid resolution policy:
more write requests means more (often unnecessary) aborts
of concurrent readers.

Vacation-vhigh. This benchmark corroborates our ob-
servation that the performance improvements seen in DirCD
do not stem exclusively from a reduction in the number of
aborts, but rather from a reduction in the amount of cycles
that transactions waste while waiting for a conflicting
request to be processed at the directory, as shown in Fig. 6.
In both traditional EE systems, the directory spends most of
its time in a busy state while messages are forwarded to the
possible transactional owners of the line, which are
responsible for the conflict check. In DirCD, the directory
spends much less time in busy states and thus can attend and
respond to messages immediately, which in turn is trans-
lated in faster resolution of the conflict.

Other benchmarks. DirCD and EE_Base perform com-
parably for applications whose transactions are either long
running or not heavily contended. In these cases, there is no
performance advantage in detecting the conflict sooner,
since the resolution consists in stalling the requester the
majority of the times. In regards to EE_Pred, we observe that
the effect of mispredicted upgrades becomes very acute for

benchmarks with large transaction footprints like yada and
genome, which experience severe performance drops that
vary from around 2� slowdowns in the case of yada, up to 5-
6 times slower in the case of genome. We can see in Table 4
how TID0 is the transaction responsible for the pathological
behavior of the write-set predictor in genome, which is
precisely the transaction with the largest read and write sets.

5.2.2 Realistic Systems

Fig. 7 shows the relative performance of our detailed
implementation of DirCD that uses a transactional directory,
compared to an EE system that uses Bloom signatures whose
total size is comparable to the overhead of the structures
introduced by our scheme. Fig. 8 presents performance
numbers for four EE systems that use real Bloom filters to
track transactional read and write sets. The results shown in

68 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 1, JANUARY 2013

Fig. 7. Relative performance of realistic directory-based versus cache-
based conflict detection.

Fig. 8. Performance effects of false positives.

TABLE 4
Number of Aborts for the Systems in Fig. 5

both figures are normalized with respect to the EE_Base
configuration. We can see in Fig. 7 how DirCD excels for
applications with high contention like intruder and vacation-
vhigh, for the reasons discussed earlier. Furthermore, DirCD
closely tracks the performance of the EE system with perfect
signatures for workloads with large transactions like
genome and yada. This reveals that the number of false
conflicts that arise in DirCD is very low, in spite of its
finite capacity to precisely track transactional metadata.
This is due to its ability to identify and ignore false positives
signaled by the TXDIR overflow signatures, by performing a
logical and between the result of the signature check and the
corresponding bit in sharers.

DirCD consistently performs equally or better than the
H3_2048 configuration, which uses a total of 4 Kbits to hash-
encode both transactional sets (2,048 bits each signature).
As it can be derived from Table 2, our detailed DirCD
implementation spends a bit less than 5 Kbits: 3 Kbits
(including tags and “data”) in the TXDIR and associated
victim cache, an extra 1 Kbit for the 16 overflow signatures of
64 bits, the 256-bit conflict signature, and an additional
512 bits for the transactional flag kept per L1 cache entry
(although these bits are only maintained for dealing with
races as well as reducing redundant metadata propagation).
We choose to compare DirCD against the H3 scheme of
encoding, as it is more efficient than bit-selection for same-
sized signatures [22], as demonstrated by Fig. 8. For a similar
metadata storage capacity of less than 5 Kbits per tile, our
scheme keeps the number of false positives to a minimum,
demonstrating that storing transactional accessors on a per-
address basis at the shared cache level is a more efficient
encoding of transactional sets than tracking addresses on a
per-core basis using signatures. Using parallel H3 filters, it is
necessary to increase their joint size to 8 Kbits in order to
avoid most false positives that arise in benchmarks with
large-sized transactions like genome or yada, though it
would still be of no help for highly contended benchmarks
like intruder or vacation-vhigh. Considering that TM does
not discourage programmers from using coarse grain
transactions, the efficient encoding of transactional ad-
dresses is an important point in HTM design that is met by
our proposed bookkeeping scheme.

5.3 Traffic Considerations

Fig. 9 plots the network traffic results for the baseline EE
system and our detailed DirCD model. It shows both
network message counts generated by each system—broken
down according to message type—as well as the flit count.
Both measures are normalized to the data obtained for
EE_base. As we can observe in the average plots, DirCD
generates between 25 and 35 percent less traffic (flits) than the
baseline system. The first relevant difference shown by the
breakdown is how DirCD completely eliminates filter check
messages broadcast on every L2 miss, as discussed in the
motivation section. On average, filter checks approximately
account for 15 percent of all network messages generated,
although they reach over 30 percent for workloads with large
working sets like both original configurations of vacation.
The number of acks messages is also severely reduced in
DirCD, since each filter check is responded with an ack.

Another difference is the removal of virtually all unblock-
cancel messages, as the vast majority of the conflicts are

detected at the directory, which does not forward requests
that are known to be conflicting and thus does not enter a
busy state. Formidable reductions in the amount of invalida-
tion messages achieved by DirCD indicate that write-read
conflicts are solved with a single nack message, avoiding
both the invs and the corresponding ack/nack responses, as
described in Fig. 2. For contended workloads with long-
running transactions like genome and yada, both invs as well
as requests forwarded to exclusive owners are significantly
reduced, which gives an idea of how DirCD allows the
simple stall-and-retry resolution policy of the baseline
system, at a much lower cost in terms of the network traffic
generated by retries. The number of requests, data, unblock
and nack messages stays more or less constant across all
benchmarks, for both systems.

DirCD achieves the above reductions in the network
traffic associated with conflict detection at the cost of
introducing new messages that do not exist in the baseline
system. Their main purpose is to propagate (via txaccess
messages) or clear (via txend messages) the metadata kept at
the directory. The number of txend and txaccess messages
depends on the total number of transactions attempted as
well as the transaction footprint (number of L2 banks
accessed). Therefore, they grow proportionally to the level
of contention, and much faster if contention affects large
transactions. This explains why it is responsible for around
20 percent of all messages in intruder (small transactions),
while it can reach almost 30 percent for vacation-vhigh
(larger data set). For workloads with few large transactions
with moderate contention like yada, the number of txend and
txaccess messages is almost negligible. In all other bench-
marks, they account for less than 5 percent of all messages,
due to the filtering effect of the conflict signature used at the
private cache level to avoid sending txaccess messages for
lines that have not seen conflicts recently. The role of conflict
signature explains the low number of txaccess messages in
low contended benchmarks like vacation-low and vacation-
high, in spite of their large transaction size. For the same
reason, both ssca2 inputs should show much larger counts of

TITOS-GIL ET AL.: EFFICIENT EAGER MANAGEMENT OF CONFLICTS FOR SCALABLE HARDWARE TRANSACTIONAL MEMORY 69

Fig. 9. Network message breakdown and network flits.

txend as a result of the huge number of noncontended
transactions executed, but the conflict signature avoids them
by filtering out most or all txaccess messages that would have
been sent to the directory otherwise.

In summary, despite the newly added messages, the
significant reductions in other types of messages associated
with conflict detection still tips the scale in favor of DirCD
across all evaluated workloads, confirming that the extra
cost of detecting conflicts at the directory does not only pay
off in terms of performance, but it is also more efficient on its
use of the interconnect. While we do not investigate it in this
paper, a hybrid approach could further improve the
efficiency of this design by adapting to the level of contention
seen in the application, in order to switch off the metadata
propagation and thus remove txend and txaccess messages
altogether when there is no benefit in detecting conflicts at
the directory level.

6 CONCLUDING REMARKS

In this paper, we have presented a new approach to conflict
detection targeted to eager TM systems which make use of a
distributed directory to maintain coherence over a point-to-
point network, as it is the case of a tiled CMP architecture.
We have demonstrated that in traditional approaches, the
directory becomes a bottleneck in situations of high conten-
tion by limiting the throughput of the conflict management
mechanism. To this end, we have proposed a design that
decouples conflict detection from cache coherence in order to
overcome pathological situations that degrade the perfor-
mance of an eager HTM system, enabling quicker reaction
to high-contention scenarios. Our experimental evaluation
has shown that our technique deals with contention more
efficiently, leading not only to fewer aborted transactions,
but most importantly to a lower overall latency of contended
memory accesses within transactions. Our experiments have
shown average reductions in execution time of 6 to 10 percent
with respect to a LogTM-SE system with ideal signatures,
while simultaneously decreasing its use of the network by
30 percent on average. In particular, we have observed
performance gains of up to 45 percent for those workloads
that suffer very high contention over a small number of lines.
We have also compared our work to systems that use
signatures of equivalent hardware cost at the cache level, and
found that our scheme reduces the performance degradation
caused by false positives. Our bookkeeping scheme le-
verages the inherent characteristics of the directory to
globally encode all transactional sets by associating ad-
dresses to transactional accessors, instead of redundantly
tracking addresses in each core, and enables the elimination
of some false transactional accessors using the directory
information itself. In summary, we claim that this extension
in the role of the directory is a natural step in its
responsibilities within a cache coherent HTM system.

REFERENCES

[1] C.S. Ananian, K. Asanovic, B.C. Kuszmaul, C.E. Leiserson, and S.
Lie, “Unbounded Transactional Memory,” Proc. 11th Symp. High-
Performance Computer Architecture, pp. 316-327, 2005.

[2] C. Blundell, J. Devietti, E. Christopher Lewis, and M. Martin,
“Making the Fast Case Common and the Uncommon Case Simple
in Unbounded Transactional Memory,” Proc. 34th Int’l Symp.
Computer Architecture, pp. 24-34, 2007.

[3] J. Bobba, N. Goyal, M.D. Hill, M.M. Swift, and D.A. Wood, “Token
TM: Efficient Execution of Large Transactions with Hardware
Transactional Memory,” Proc. 35th Int’l Symp. Computer Architec-
ture, pp. 81-91, 2008.

[4] J. Bobba, K.E. Moore, L. Yen, H. Volos, M.D. Hill, M.M. Swift, and
D.A. Wood, “Performance Pathologies in Hardware Transactional
Memory,” Proc. 34th Int’l Symp. Computer Architecture, pp. 81-91,
2007.

[5] C.C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP:
Stanford Transactional Applications for Multi-Processing,” Proc.
IEEE Int’l Symp. Workload Characterization, pp. 35-46, 2008.

[6] L. Ceze, J. Tuck, C. Cascaval, and J. Torrellas, “Bulk Disambigua-
tion of Speculative Threads in Multiprocessors,” Proc. 33rd Int’l
Symp. Computer Architecture, pp. 227-238, 2006.

[7] H. Chafi, J. Casper, B.D. Carlstrom, A. McDonald, C.C. Minh, W.
Baek, C. Kozyrakis, and K. Olukotun, “A Scalable, Non-Blocking
Approach to Transactional Memory,” Proc. 13th Symp. High-
Performance Computer Architecture, pp. 97-108, 2007.

[8] D.E. Culler, J.P. Singh, and A. Gupta, Parallel Computer Architecture:
A Hardware/Software Approach. Morgan Kaufmann Publishers, 1999.

[9] L. Hammond, B.D. Carlstrom, V. Wong, M. Chen, C. Kozyrakis,
and K. Olukotun, “Transactional Coherence and Consistency:
Simplifying Parallel Hardware and Software,” IEEE Micro, vol. 24,
no. 6, pp. 92-103, Nov./Dec. 2004.

[10] L. Hammond, V. Wong, M. Chen, B.D. Carlstrom, J.D. Davis, B.
Hertzberg, M.K. Prabhu, H. Wijaya, C. Kozyrakis, and K.
Olukotun, “Transactional Memory Coherence and Consistency,”
Proc. 31st Int’l Symp. Computer Architecture, pp. 102-113, 2004.

[11] T. Harris, J.R. Larus, and R. Rajwar, Transactional Memory, second
ed. Morgan & Claypool, 2010.

[12] M. Herlihy, J. Eliot, and B. Moss, “Transactional Memory:
Architectural Support for Lock-Free Data Structures,” Proc. 20th
Int’l Symp. Computer Architecture, pp. 289-300, 1993.

[13] S. Ma, N.E. Jerger, and Z. Wang, “Supporting Efficient Collective
Communication in NoCs,” Proc. 18th Symp. High-Performance
Computer Architecture, 2012.

[14] P.S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G.
Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and B. Werner,
“Simics: A Full System Simulation Platform,” Computer, vol. 35,
no. 2, pp. 50-58, Feb. 2002.

[15] M.M.K. Martin, D.J. Sorin, B.M. Beckmann, M.R. Marty, M. Xu,
A.R. Alameldeen, K.E. Moore, M.D. Hill, and D.A. Wood,
“Multifacet’s General Execution-Driven Multiprocessor Simulator
(GEMS) Toolset,” Computer Architecture News, vol. 33, pp. 92-99,
2005.

[16] K.E. Moore, J. Bobba, M.J. Moravan, M.D. Hill, and D.A. Wood,
“LogTM: Log-Based Transactional Memory,” Proc. 12th Symp.
High-Performance Computer Architecture, pp. 254-265, 2006.

[17] A. Negi, R. Titos-Gil, M.E. Acacio, J.M. Garcia, and P. Stenstrom,
“�-TM: Pessimistic Invalidation for Scalable Lazy Hardware
Transactional Memory,” Proc. 18th Symp. High-Performance Com-
puter Architecture, 2012.

[18] A. Negi, M.M. Waliullah, and P. Stenstrom, “LV�: A Low
Complexity Lazy Versioning HTM Infrastructure,” Proc. Int’l
Conf. Embedded Computer Systems: Architectures, Modeling, and
Simulation (IC-SAMOS ’10), pp. 231-240, 2010.

[19] S.H. Pugsley, M. Awasthi, N. Madan, N. Muralimanohar, and R.
Balasubramonian, “Scalable and Reliable Communication for
Hardware Transactional Memory,” Proc. 17th Int’l Conf. Parallel
Architectures and Compilation Techniques, pp. 144-154, 2008.

[20] R. Quislant, E. Gutierrez, and O. Plata, “Improving Signatures by
Locality Exploitation for Transactional Memory,” Proc. 18th Int’l
Conf. Parallel Architectures and Compilation Techniques, pp. 303-312,
2009.

[21] R. Quislant, E. Gutierrez, and O. Plata, “Multiset Signatures for
Transactional Memory,” Proc. 25th Int’l Conf. Supercomputing,
pp. 43-52, 2011.

[22] D. Sanchez, L. Yen, M.D. Hill, and K. Sankaralingam, “Imple-
menting Signatures for Transactional Memory,” Proc. 40th Int’l
Symp. Microarchitecture, pp. 123-133, 2007.

[23] R. Titos-Gil, M.E. Acacio, and J.M. Garcı́a, “Directory-Based
Conflict Detection in Hardware Transactional Memory,” Proc. 15th
Int’l Conf High-Performance Computing, pp. 541-554, 2008.

[24] S. Tomic, C. Perfumo, C. Kulkarni, A. Armejach, A. Cristal, O.
Unsal, T. Harris, and M. Valero, “EazyHTM: Eager-Lazy Hard-
ware Transactional Memory,” Proc. 42nd Int’l Symp. Microarchi-
tecture, pp. 145-155, 2009.

70 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 1, JANUARY 2013

[25] S.C. Woo, M. Ohara, E. Torrie, J. Pal Singh, and A. Gupta, “The
SPLASH-2 Programs: Characterization and Methodological Con-
siderations,” Proc. 22nd Int’l Symp. Computer Architecture, pp. 24-
36, 1995.

[26] L. Yen, “Signatures in Transactional Memory Systems,” PhD
thesis, CS Dept., Univ. of Wisconsin-Madison, 2009.

[27] L. Yen, J. Bobba, M.R. Marty, K.E. Moore, H. Volos, M.D. Hill,
M.M. Swift, and D.A. Wood, “LogTM-SE: Decoupling Hardware
Transactional Memory from Caches,” Proc. 13th Symp. High-
Performance Computer Architecture, pp. 261-272, 2007.

[28] L. Yen, S.C. Draper, and M.D. Hill, “Notary: Hardware Techni-
ques to Enhance Signatures,” Proc. 41st Int’l Symp. Microarchitec-
ture, pp. 234-245, 2008.

Rubén Titos-Gil received the MS and PhD
degrees in computer science from the Universi-
dad de Murcia, Spain, in 2006 and 2011,
respectively. He is currently a postdoctoral
research associate at the Chalmers University
of Technology, Sweden. His research interests
lay on the fields of parallel computer architecture
and programming models, including synchroni-
zation, coherence protocols, and memory sys-
tems. He was a Spanish MEC-FPU Fellowship

recipient from 2007 to 2011. He is a member of the IEEE.

Manuel E. Acacio received the MS degree in
computer science. He joined the Computer
Engineering Department (DiTEC) in 1998 after
receiving the MS degree. He successfully
defended the PhD degree in March 2003. He
started as a teaching assistant, at the time he
began his work on his PhD thesis. He is an
associate professor of computer architecture
and technology at the University of Murcia,
Spain. Before, in the summer of 2002, he

worked as a summer intern at IBM TJ Watson, Yorktown Heights, NY.
After that, he became an assistant professor in 2004, and subsequently,
an associate professor in 2008. Currently, he leads the Computer
Architecture & Parallel Systems (CAPS) research group at the
University of Murcia, which is a part of the ACCA group. He has
published several papers in top conferences such as HPCA, IPDPS,
ICS, DSN, PACT or SC, and renown journals such as IEEE
Transactions on Parallel and Distributed Systems (TPDS) and IEEE
Transactions on Computers (TC). Recently, he has got the best paper
award in the architectures track at the 25th IEEE International Parallel
and Distributed Processing Symposium (IPDPS 2011). As well, he has
served as a committee member of important conferences, ICPP and
IPDPS among others, and is currently an associate editor of IEEE
Transactions on Parallel and Distributed Systems (TPDS). His research
interests are focused on the architecture of multiprocessor systems.
More specifically, he is actively working on prediction and speculation in
multiprocessor memory systems, synchronization in CMPs, power-
aware cache-coherence protocols for CMPs, fault tolerance, and
hardware transactional memory systems. He is a member of the IEEE.

José M. Garcı́a received the MS degree in
electrical engineering and the PhD degree in
computer engineering both from the Technical
University of Valencia in 1987 and 1991,
respectively. He is a professor of computer
architecture at the Department of Computer
Engineering, and also the head of the Parallel
Computer Architecture Research Group. He is
currently serving as a dean of the School of
Computer Science at the University of Murcia,

Spain. He has developed several courses on Computer Structure,
Peripheral Devices, Computer Architecture, Parallel Computer Archi-
tecture, and Multicomputer Design. He specializes in computer
architecture, parallel processing and interconnection networks. His
current research interests lie in high-performance power-efficiency
coherence protocols for Chip Multiprocessors (CMPs) and shared-
memory multiprocessor systems, high-speed interconnection networks,
and the use of GPUs for general-purpose applications such as
bioinformatics and biomedical apps. He has published more than 150
refereed papers in different journals and conferences in these fields.
He is a member of HiPEAC, the European Network of Excellence on
High Performance and Embedded Architecture and Compilation. He is
also member of several international associations such as the IEEE
and the ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

TITOS-GIL ET AL.: EFFICIENT EAGER MANAGEMENT OF CONFLICTS FOR SCALABLE HARDWARE TRANSACTIONAL MEMORY 71

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

