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Abstract—Hardware Transactional Memory (HTM) designs are very sensitive to the manner in which speculative updates from
transactions are handled in the system. This study highlights how the lack of effective techniques for store management results in
a quick degradation in the performance of eager HTM systems with increasing contention and, thus, lends credence to the belief that
eager designs do not perform as well as their lazy counterparts when conflicts abound. In this work we present two simple ways
to improve handling of speculative stores – a way to effectively manage lines that exhibit migratory sharing and a way to hide store
latency, particularly for those stores that target contended cache lines owned by other concurrent transactions. These two mechanisms
yield substantial improvements in execution time when running applications with high contention, allowing eager designs to exceed the
performance of lazy ones. Interestingly, the benefits that accrue from these enhancements can be at par with those achieved using
more complex system-wide HTM techniques. Coupled with the fact that eager designs are easier to integrate into cache coherent
architectures than lazy ones, we claim that with judicious management of stores they represent a more compelling design alternative.

Index Terms—Parallel programming, multicore architectures, transactional memory.
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1 INTRODUCTION

Hardware Transactional Memory (HTM) [10] is a tech-
nique that aims to improve the performance-complexity
trade-off involved in parallel programming. It provides
conceptually simple atomicity semantics to program-
mers, whereas the burden of implementing this abstrac-
tion in a safe and efficient manner falls on the hardware
designer. The industry has recognized the benefits of
this approach and the ideas have been implemented in
silicon – like IBM BlueGene/Q [18] – or incorporated in
architectural specifications – like Intel TSX [4] –, with
actual products due to hit the market soon.

Most HTM designs rely upon containment, in some
fashion, of updates made in a transaction. Speculative
updates can be confined to thread-local structures like
private caches [9]. Such versioning of possible future
values is termed lazy, where the defining characteristic
is that exclusive ownership over speculatively targeted
locations is acquired only after a transaction’s execution
is guaranteed to succeed. Alternatively, updates can be
made in-place, which implies early acquisition of written
locations, when protocols exist to ensure their isolation
and restoration of a consistent state when data-races
need resolution. Such a mechanism is termed eager and
is utilized by designs like LogTM [15], [25]. A closely
related design choice is that of conflict resolution. Eager

• R. Titos-Gil, A. Negi and P. Stenstrom are with the Department
of Computer Science and Engineering, Chalmers University of Tech-
nology, S-41296, Gothenburg, Sweden. E-mail: {ruben.titos, negi,
per.stenstrom}@chalmers.se

• M. Acacio and J. Garcı́a are with the Departamento de Ingenierı́a y
Tecnologı́a de Computadores, Universidad de Murcia, E-30100, Murcia,
Spain. E-mail: {meacacio,jmgarcia}@ditec.um.es

versioning of updates necessitates eager resolution of
conflicts – races must be detected and resolved when
an in-place shared memory update is attempted. Lazy
versioning, however, allows conflict resolution to be de-
ferred until a transaction tries to commit, thus enabling
reader-writer concurrency. This choice of policies has a
significant impact on the complexity of HTM designs.
Though resolving conflicts a priori makes eager systems
inherently less efficient at exploiting parallelism, their
natural fit onto a cache-coherent CMP substrate makes
eager HTM solutions an appealing choice.

Transactions can be limiters of application scalability,
making it crucial for an HTM system to execute them fast
and with a high commit rate. While eager HTM designs
naturally achieve the latter goal in low contention, their
performance may suffer in highly contended situations if
stores are not efficiently managed. Speeding up transac-
tions by hiding store miss latency becomes important to
improve overall concurrency, as it narrows the window
of time in which such transactions persist and can cause
conflicts. In fact, TM workloads may contain coarse-
grained transactions with many more stores than typical
fine-grained critical sections associated with locks. To
this respect, store buffers are commonly employed to
hide the latency involved in performing stores in the
cache hierarchy. Transactions present an opportunity
where greater freedom in the order in which stores are
completed from the store buffer permits optimizations
that improve eager HTM performance. Furthermore,
certain store misses due to insufficient coherence per-
missions, i.e. stores that target a line privately cached in
shared state (termed upgrade misses [1]), can be avoided
if cache lines that exhibit migratory sharing patterns [5],
[23] (migratory lines) are properly managed.
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In this paper, we extend the exploration of transac-
tional store management presented in our previous work
[16]. However, our primary focus now is on eager HTM
designs. We show that by allowing execution to proceed
beyond conflicting stores (by buffering such stores in
dedicated structures), performance can be improved in
scenarios where eager HTMs have traditionally fared
worse than their lazy counterparts. Improving the man-
ner in which lines with strong read-modify-write behav-
ior in transactions are managed also results in major
scalability enhancements for applications with small,
high-contention transactions. We summarize the novel
contributions of this work in the following list:

• An accurate mechanism to dynamically detect and
manage migratory lines and prevent aborts in high
contention scenarios.

• A novel technique that reduces contention and net-
work traffic by buffering stores to conflicting lines
until commit time.

• A commit-timestamp based scheme for prioritiza-
tion of transactions that are ready to commit.

• An exhaustive evaluation of these techniques
against traditional eager HTMs and an idealized
lazy HTM design, which does not only show con-
vincing performance improvements but also higher
efficiency in the utilisation of common resources.

The rest of this paper is organized as follows. Section 2
presents the motivation for this study. Section 3 explains
how simple enhancements can be incorporated into a
well-known eager HTM design. Section 4 describes the
experimental methodology adopted to evaluate the tech-
niques, and Section 5 presents our results and analyses.
Section 6 puts our work here in perspective of other prior
work, and Section 7 summarizes the paper.

2 MOTIVATION

Two concurrent transactions conflict when accesses from
each target the same memory location and at least one of
the accesses is a write. Therefore, effective management
of transactional stores by the underlying HTM system is
key to effectively extracting available parallelism in TM
workloads, particularly of those stores that target con-
tended cache lines. In this section we motivate our study
by presenting real examples of how poor management
of stores can lead to substantial performance losses.

2.1 Migratory lines

Transactions in several common usage scenarios exhibit
read-modify-write (RMW) behavior for certain memory
locations. Fine grain critical sections that fetch and up-
date a shared counter or modify a pointer at the head
of a data structure are typical examples of this situation.
When contention is observed in an application with this
kind of transactions, a handful of these migratory cache
lines are often the source of most conflicts. Transactions
in this case simply serve as a mutex that synchronizes

accesses to a shared variable, so that once a thread has
loaded the value (fetched the cache line), it remains
isolated until the thread completes the modify and write
steps atomically. Since there is no available parallelism
when concurrent transactions access a migratory line,
optimistic concurrency is not benefitial as it may lead
to negative interference amongst threads. Without any
optimization, TM overheads can quickly add up due to
unnecessary aborts (of transactions that are able to read
the line before they see a write) and delayed processing
of requests at the directory, since it must process a much
larger number of requests than in the optimized case.

Some compiler optimizations may request for exclu-
sive ownership at read events if a location is assured
to be written subsequently [22]. However, it is not pos-
sible to do so in all such cases. Moreover, reads and
writes to different variables present on the same cache
line may escape this optimization. Moreover, contention
characteristics may show dependency on the dataset
and, therefore, be difficult to ascertain at compile time.

Hardware predictors can be employed to detect mi-
gratory lines [11] and avoid the dueling upgrades that
arise when concurrent transactions read, modify and
write the same line. Prior work on HTM [2] attempts
to provide a solution to this problem by using write-
set predictors, storing a certain number of cache line
addresses that have seen read-modify-write behavior.
However, our analysis indicates that this mechanism
still leaves a lot of room for improvement. Despite
write predictors, sudden drops in scalability are seen in
benchmarks with short RMW transactions, largely due to
a marked increase in the number of aborts. More details
about such analysis can be found in Section 2.1 of the
supplemental material, which contains a case study for
the STAMP benchmark intruder [3]. We will show later
how appropriate tracking and management of migratory
lines significantly improves the scalability of intruder.

2.2 Store misses and conflicting writes

Prior work on eager HTM systems [15], [25] has in-
variably handled store misses by stalling execution at
the core until the write performs in the private cache.
Unlike eager systems, lazy designs in the literature [2]
hide write miss latency by modeling a private per-
processor store buffer. Modeling store management in
such opposite ways for eager and lazy HTM may lead
to unfair performance comparisons, since in-place ver-
sioning does not preclude the use of store buffers to
hide miss latencies until writes perform in the cache
hierarchy. Their effect can be particularly visible in
workloads with large transactions (many stores) or high
contention. Our analysis on workloads composed by
coarse grain transactions reveals that indeed store misses
are responsible for a significant portion of the time spent
in active transactional execution. Our analysis in Section
2.2 of the supplemental material quantitatively shows
that write misses account for an important fraction of
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the transactional cycles in several STAMP benchmarks.
Thus, the performance implications of store buffering
must not be neglected when comparing against lazy de-
signs, particularly if we consider workloads that spend
most time in transactions that update a large number of
cache lines, like yada.

Conflicting stores in eager systems have also been
typically handled by stalling execution at the core while
the conflicting condition persists. This can be done via
special notifications from a conflicting remote transaction
or through repeated retries of the conflicting request.
With store buffering, the processor can continue ex-
ecution past a conflicting update, a feature typically
found in lazy HTM designs. The presence of a buffer-
ing/forwarding mechanism for conflicting stores makes
eager designs capable of sidestepping false write-after-
read and write-after-write dependencies and enables
more concurrency, improving performance in scenarios
where conflicts dissipate without resulting in aborts.

3 EFFICIENT MANAGEMENT OF STORES IN
EAGER HTM SYSTEMS

As stated earlier, this paper attempts to improve man-
agement of transactional stores by targeting two aspects
of such accesses – namely, latency and migratory behav-
ior. The design changes required to support each of these
are detailed in the following subsections.

3.1 Hiding latency
Structural optimizations such as store buffers are com-
monly used to hide write miss latencies. In the context of
eager HTM systems, it is possible to completely overlap
write miss latency as long as the transaction has useful
execution to perform on the core. Buffered writes are
released in a controlled manner into the private cache, so
that in-place updates to shared memory are attempted
in a non-blocking manner while the core continues to
run ahead. Logging of old values in the undo-log as
necessitated by eager versioning is also taken out of
the critical path. Thus, transactional updates never stall
execution on the core. Write misses to non-contended
data only penalize execution if they happen rather close
to end of the transaction, in which case the core needs
to stall until all pending updates complete.

Strong atomicity and isolation guarantees provided
by HTM allow writes emanating from a transaction
to complete in any order without affecting the con-
sistent view of memory provided by the parallel ar-
chitecture. In spite of this opportunity, prior research
on eager HTM usually resorts to completing writes in-
order, resulting in a stall when a request for exclusive
ownership encounters a conflict. However, the presence
of a buffering/forwarding mechanism opens up more
parallelism to be exploited, since conflicting stores now
do not block completion of other memory accesses. One
approach consists in retrying conflicting requests in the
background while execution of the transaction continues.

Fig. 1. Buffering transactional stores.

Instead of retrying conflicting accesses, we propose
a different solution in which such accesses are held
back until commit time. The execution of the transaction
proceeds with loads to conflicting locations being for-
warded data from this buffer. To achieve this we employ
a structure called the Transactional Store Buffer (TSB) to
buffer conflicting stores seen during the execution of a
transaction. The manner in which various components
interact is depicted in Figure 1. The TSB, along with
the traditional store buffer (SB), is able to satisfy local
loads that attempt to read locations targeted by stores
contained in the two buffers. Stores from the core are
buffered in the SB (step 1,2) until they can be issued
into the cache hierarchy for completion (step 3). Store
misses (including stores that target cache lines in the
shared state) in the first level cache (step 4) are injected
into the network for processing at the corresponding L2
directory bank. Entries are moved from SB to TSB when
exclusive requests issued by the cache controller upon
write misses turn out to be conflicting with one or more
concurrent transactions in the system. Remote caches
respond with negative acknowledgments (NACKs) to
the local controller indicating a conflict. In such a case
the store is entered into the TSB (step 5). Such stores
are buffered in the TSB until commit time. Stores can be
retried if the TSB is full. Section 5 recommends suitable
sizing for the SB/TSB pair. On commit, the contents
of the TSB are drained (step 6). Commit is deemed
complete only after all buffered stores are successful.

Eventually, if the transaction reaches the txcommit in-
struction, buffered conflicting accesses are drained from
the TSB into the memory system. These request are given
higher priority, thereby favoring transactions that are
ready to commit. Coherence requests generated at this
point carry a bit indicating its commit status. In this
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Fig. 2. Handling of migratory lines.

way, conflicts between a committer and a non-committer
always favour the former, whereas conflicts between
two committers prioritize the transaction that reached
commit earlier. This is achieved through a commit times-
tamp that is acquired when the tx-commit instruction
is reached, and piggybacked on coherence requests in-
stead of the usual age-based timestamp. Note that the
implementation of this priority scheme leverages all the
timestamp-management hardware and registers already
present in LogTM, and only requires an additional extra
register to maintain the commit timestamp.

3.2 Handling migratory lines
In addition to SR (speculatively read) and SM (spec-
ulatively modified) bits for annotating transactionally
accessed data, we introduce a new metadata bit called
the M-bit for each cache line (M indicates migratory).
The bit is set when a conflict is noticed on a line for
which both SR and SM bits are set. The state of this bit is
conveyed to remote cores when forwarding cache blocks.
The bit is cleared using conditional gang-clear operation
at transaction commit when either SR or SM is set, and
thus remains unchanged when both (or none) of them
are active. Non-transactional stores also result in the M
bit being reset. We decouple transactional metadata from
the cache to permit greater flexibility in its manipulation
through conditional clear logic. Modifying SRAM cells
in the data cache is non-trivial as the technique requires
gang operations (operations that are applied en masse for
all cache blocks) that compute a logic value for the M-bit
based on the state of multiple other metadata bits.

Figure 2 shows how the new cache line annotation
works. Shaded boxes highlight changes on each step.
The sequence (a) shows how the M-bit is set locally

upon noticing a conflict (a-3) on a cache line that has
been both read (a-1) and written (a-2) in the transaction.
After commit (a-4), the M bit indicates that line must
be forwarded to the requesting core in the exclusive
state, even for shared (GETS) coherence requests. The
sequence (b) then shows how the same line is handled
by the new owner (L1Cache-1), after it has obtained
exclusive data –along with the piggybacked M-bit– and
served its load miss (b-1). We see how remote shared
requests to the SR line are now conservatively treated as
conflicting and NACKed (b-2). Thus, transactions that
are likely to write to a line are given a chance to do
so (b-3) with concurrent accesses from other transactions
being disallowed. This is expected to have little negative
impact on overall concurrency since read-modify-write
(RMW) accesses typically offer little parallelism.

Lines detected as migratory may dynamically change
its RMW behaviour throughout the execution of the
application. It is also possible for a contended line to
be mispredicted as migratory, when many readers exist
but only some of them intend to write it. Our scheme
quickly escapes these mispredictions: After nacking a
given number of times the same read request, the owner
is forced to relinquish write permissions, clear the M bit
and provide a shared copy of the line to the reader. The
current retry count for each access is piggybacked in the
coherence request, and checked against a threshold by
the owner of the migratory line. Low threshold values
may cause exclusive ownership to be relinquished before
the write to an actual RMW line takes place, while higher
values increase the stall penalty of mispredictions. In our
experiments, we find that a retry threshold of 4 is a good
tradeoff for accurately detecting mispredictions without
incurring in a significant penalty for concurrent readers.
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TABLE 1
System parameters.

MESI Directory-based CMP
Core Settings

Cores 16, single issue
in-order, non-memory IPC=1

Memory and Directory Settings
L1 I&D caches Private, 32KB, split

4-way, 1-cycle latency
Old Value Buffer 8 cache lines
L2 cache Shared, 512KB per tile, unified

8-way, 12 cycle-latency
L2 Directory Bit vector, 6-cycle latency
Memory 4GB, 300-cycle latency

Network Settings
Topology 2D Mesh
Link latency 1 cycle
Link bandwidth 40 bytes/cycle

TABLE 2
HTM configurations evaluated in Section 5.

Eager
EE base LogTM-SE (GEMS baseline)
EE hwabrt Always abort in hardware (unlimited OVB)
EE swabrt Always trap to software on abort (no OVB)
EE tsb Use Transactional Store Buffer (TSB)
EE migr Use Migratory Pattern Detection (MIGR)
EE tsb migr TSB + MIGR

Lazy
LL ideal Ideal commits + Ideal buffering
LL ideal bufferL1 Ideal commits + Emulate buffering in L1

4 EVALUATION METHODOLOGY

In this section we describe our evaluation methodology,
simulation environment, HTM systems and workloads.

4.1 Experimental Setup

We use a full-system execution-driven simulator based
on the Wisconsin GEMS tool-set [14], in conjunction with
Virtutech Simics [13]. We use the detailed timing model
for the memory subsystem provided by GEMS, with
the Simics in-order processor model. Simics provides
functional simulation of the SPARC ISA and boots an
unmodified Solaris 10. We perform our experiments on
a 16-core tiled CMP system, as described in Table 1. The
private L1 caches are kept coherent through an on-chip
distributed directory (associated with L2 cache banks),
which maintains a bit-vector of sharers and implements
the MESI protocol. In all our experiments we use an ideal
book-keeping scheme to track both read and write sets
(perfect signatures). For each workload-configuration pair
we gather average statistics over 10 randomized runs.

We present parallel execution time divided into dis-
joint components, each one corresponding to sum of the
cycles spent by each thread in a given state during its
execution. The components are described in the online
supplemental material (Section 4.1). Besides comparing
execution times, we also look at other metrics to estimate
the amount of resources utilized by each design, and by
extension, its energy efficiency.

4.2 HTM Systems
Table 2 summarizes the systems and configurations eval-
uated in Section 5. We have implemented the techniques
of store buffering and detection of migratory lines in the
context of eager HTM systems. We have also developed
an idealized lazy HTM design in order to compare
the improvements achieved by the aforementioned tech-
niques against the best performing lazy counterpart. The
reader is referred to the supplemental material available
online (Section 4.2) for more details about each design.

4.3 Workloads
We have selected seven (out of eight) transactional appli-
cations from the STAMP suite [3]. The application bayes
was excluded since it exhibits unpredictable behaviour
and high variability in its execution time [8]. For kmeans
and vacation, only results for the high contention input
are shown, as these benchmarks exhibit barely no re-
markable performance variations between HTM systems
for both contention configurations. Recommended input
parameters, detailed in [3], were used. Small inputs
sizes were used for all workloads. Medium length runs
(denoted by ’+’) were also included for five applications
that show widely varying characteristics.

5 RESULTS

5.1 Baseline eager vs. ideal lazy systems
Figure 3 shows the relative performance of the baseline
eager (EE) systems available in GEMS, compared to
our lazy design with idealized versioning and commit
schemes. The two leftmost plots in the figure correspond
to two eager configurations which model, respectively,
no rollback penalty (EE hwabort) and a fully software-
handled log unroll (EE swabort). Execution times are nor-
malized to the EE base system (not shown in this figure),
which can only handle aborts with no rollback overhead
if the transaction has written less than 8 cache lines. By
breaking execution time into disjoint components, we
can see how important a role rollback overhead plays
on EE performance, as opposed to lazy systems which
can easily discard the speculative state in a few cycles by
performing conditional gang-invalidation at the private
cache level. We observe in Figure 3 that overall eager
performance is worse than lazy even when rollback
penalty is completely removed from EE systems. This is
particularly noticeable in applications with moderate to
high levels of contention like genome, intruder or yada.
Figure 3 also shows how much performance there is to
gain by speeding up aborts on EE systems. We see that
the extra overhead of handling aborts always in software
(EE swabrt) does not cause a significant slowdown in
most applications, with respect to EE hwabrt. Besides,
the latter system performs comparably to EE base (ref-
erence of the normalization), indicating that an 8-entry
OVB is able to contain all the speculative updates in most
cases. Even in contended workloads formed by large
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Fig. 3. Relative performance of baseline eager vs. ideal lazy systems.

transactions (like yada or labyrinth), rollback penalty
is not that important, as such transaction size in itself
leads to a low overall abort count. Only for benchmarks
with very high contention over many small transactions
(intruder), reducing rollback overhead has a significant
impact. In this case, even a small increase in rollback
latency translates into even more contention (aborts),
since isolation over the contended lines is not released
until the software log unroll has completed. For more
details about the performance differences between EE
and LL systems on each benchmark, we refer the reader
to the supplemental material (Section 5.1).

5.2 Migratory pattern detection

Figure 4 compares the performance achieved by each of
the two techniques described in Section 3, with respect to
our eager baseline. Table 3 shows detailed numbers of
commits and aborts for each atomic block – identified
by its TID. The table compares the EE base system
(columns labelled as Base) against EE tsb migr, which
uses both optimizations (columns labelled as Opt). The
Diff column shows the percentage of reduction in the
number of aborts achieved by the latter with respect to
the former. Bold numbers in this column indicate atomic
blocks that exhibit the migratory pattern.

As we see in Table 3, most STAMP benchmarks
have at least one transaction that performs read-modify-
write (RMW) operations over a shared cached line.
This type of transactions often corresponds to the in-
sertion/extraction of work units from a global pool
(intruder, labyrinth, yada), though in some other cases
it comprises a simple fetch&add operation over a global

scalar value (kmeans, ssca2). Table 3 quantitatively
shows how the optimistic approach to concurrency con-
trol is counterproductive for these RMW transactions
– there is simply no parallelism available to exploit.
By properly managing migratory lines we can elim-
inate well over 90% of the aborts in most cases. In
intruder, frequent RMW accesses to two global queues
force EE base to abort a very large number of TID0 and
TID2 transactions – indeed much larger than the actual
number of commits, which are responsible for the large
txaborted and backoff components seen in Figure 4. In
contrast, the EE migr system quickly detects these lines
that are read, modified and written in each queue pop op-
eration, serializing accesses and thus avoiding between
80 and 100% of the aborts for TID0 and TID2 seen in the
baseline. With this optimization alone, EE migr achieves
speedups of 2,5 and 3,3 for intruder and intruder+,
respectively, relative to EE base. In the rest of the work-
loads, RMW transactions have a much smaller weight in
the total execution time and thus the optimization does
not translate into significant performance gains. In spite
of the reduction in the number of aborts, benchmarks
like kmeans, ssca2 and yada show only marginal gains.
On the other hand, genome and labyrinth present a
slight 1-2% slowdown due to longer stalls seen by reader
transactions that try to fetch lines wrongly predicted as
migratory (i.e. lines that have both M and SR bit sets,
but do not become part of the write set for a long time).

5.3 Transactional store buffering

As depicted by the rightmost plots in Figure 4 (EE tsb),
transactional store buffering improves application per-
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TABLE 3
Average committed and aborted transactions per atomic block, for baseline and optimized eager systems.

TID0 TID1 TID2 TID3 TID4
# Tx Aborts # Tx Aborts # Tx Aborts # Tx Aborts # Tx Aborts

Base Opt Diff Base Opt Diff Base Opt Diff Base Opt Diff Base Opt Diff
genome 1376 623 598 4,0% 241 0 0 - 3615 357 474 -32,9% 241 2 1 65,2% 449 132 116 11,94%
genome+ 2736 538 530 1,4% 481 0 0 - 14911 521 715 -37,2% 481 1 0 66,7% 879 126 130 -3,66%
intruder 3769 14607 10 99,9% 3753 7700 2771 64,0% 3753 7425 507 93,2% - - - - - - - -
intruder+ 18322 109174 21 100,0% 18306 10849 5872 45,9% 18306 13729 2503 81,8% - - - - - - - -
kmeans-h 6144 426 15 96,5% 2046 171 5 97,4% 48 0 0 - - - - - - - - -
labyrinth 112 617 2 99,6% 96 294 229 22,1% 16 2 0,8 60,0% - - - - - - - -
ssca2 16 51 5 89,4% 16 60 22 63,7% 47267 168 185 -10,0% - - - - - - - -
ssca2+ 16 13 6 58,6% 16 51 24 53,3% 93695 126 140 -11,3% - - - - - - - -
vacation-h 3688 116 103 11,9% 204 0 0 - 204 5,1 6 -17,6% - - - - - - - -
vacation-h+ 3688 0,3 4 -1233% 204 0 0 - 204 0 0 - - - - - - - - -
yada 1344 928 52 94,4% 1328 0 0 - 911 2243 1865 16,9% 911 0 0 - 911 335 23 93,19%
yada+ 3180 1988 118 94,0% 3164 0 0 - 2620 3453 2598 24,7% 2620 0 0 - 2620 1055 93 91,18%
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Fig. 4. Relative performance of baseline vs. optimized eager systems.

formance for the vast majority of the benchmarks.

The latency hiding effects of the TSB are most notice-
able in workloads with large, contended transactions like
yada. The main transaction in yada (TID2) writes over 70
different cache lines on average throughout the course
of its execution. There are several reasons behind the
20-25% reduction in the execution time of yada shown
in Figure 4. First, overlapping write misses with com-
putation reduces average transaction duration (note the
considerable shrink in the txuseful component), which in
turn narrows the window of contention and therefore
decreases the number of TID2 aborts, as shown in Ta-
ble 3. Second, by allowing transactions to execute past
conflicting stores, many stalls due to write-after-read
conflicts are avoided (note the reduction in stall useful),
further reducing transaction duration. While these false

dependencies invariably affect EE base, EE tsb is able
to completely sidestep them if the reader transaction
ends (commits or aborts) before the writer reaches com-
mit, effectively allowing reader-writer sharing. If the
writer reaches commit first, then it forces the reader to
abort, since its exclusive requests generated during TSB
drainage are prioritized over non-committing transac-
tions, in order to favour forward progress. Nonetheless,
EE tsb is capable of exploiting more parallelism than
when execution is stalled at the conflicting write.

The ability to run past a contended write may cause
aborts in EE tsb for conflicts which EE base can success-
fully resolve via stalls. We observe in Table 3 how in
genome, ssca2 and vacation, the optimized eager system
increases the number of aborts of transaction TID2, with
respect to the baseline – note that a negative percentage
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of reduction in Diff represents an increase. In spite of
this undesired effect, the benefits of overlapping non-
contended store misses with useful transactional execu-
tion outweigh the extra aborts seen when conflicts ap-
pear. Figure 4 shows overall performance improvements
up to 5% for all three benchmarks. In ssca2, store miss
latency cannot be completely hidden because the commit
instruction in TID2 is often reached before the miss has
been serviced. These cycles spent stalled at commit until
the TSB is fully drained, accounted for as commit cycles
in EE tsb, and are clearly visible in ssca2.

Labyrinth is the only benchmark that suffers a 5%
performance degradation relative to the baseline when
store buffering is introduced. Despite reducing the roll-
backs that its main transaction experiences by 22%,
the txaborted component increases around 6%, while
stall useful is shrunk to a barely noticeable fraction in
comparison to the baseline. In particular, EE tsb suffers
25% more program-triggered aborts during path vali-
dation, which are the most expensive ones since they
take place at the very end of a long running transaction.
The reason behind this undesired effect is related to the
early release of addresses from the read set of TID1 after
snapshot of the global grid is taken at the beginning of
TID1. With buffering, written cache lines targeted during
path validation are not immediately isolated if a conflict
happens, increasing the window of time during which
other reader transactions in their privatization step can
observe almost stale data – free grid points about to be
marked as busy. Because of early release, it is possible
that when the new busy values become globally visible,
some readers do not detect a write-read conflict right
away and instead continue with the routing phase, only
to discover much later that solution found overlaps with
another route already committed into the global grid.
TSB Occupancy. Section 5.3 in the supplemental material
presents qualitative numbers on the maximum utiliza-
tion of the TSB. We find that even transactions with large
footprints often buffer less than 128 bytes on average.

5.4 Comparison against idealized LL systems

Figure 5 shows the relative performance of the EE con-
figuration that uses both transactional store buffering
and migratory pattern detection (EE tsb migr), against
two idealized lazy implementations. Execution times are
normalized to EE base, as in previous plots. An analysis
of the relative efficiency of both eager and lazy de-
signs, which compares the resource utilisation of the two
opposite design alternatives, is available in the online
supplemental material (Section 5.4).

Figure 5 reveals several interesting results that break
with a common perception in the HTM research commu-
nity, which has been typically biased against EE designs
based on their supposedly lower performance [3], [20].
First, we notice that our optimized eager system tracks
and even outperforms an ideal lazy implementation.
While EE and LL performance is similar when using

small inputs, the improvement of eager over lazy be-
comes more significant in larger runs that represent
a better picture of real-world workloads. Indeed, once
these store-related optimizations are in place, the eager
variant also outperforms ideal lazy in highly contended
benchmarks like intruder and yada, workloads in which
lazy policies of versioning and conflict management had
typically exhibited clear advantages over eager ones.
For a more comprehensive analysis of the performance
differences shown in Figure 5, we refer the reader to
Section 5.3 of the supplemental material.
Genome. As we see in Figure 5, the improvement
over the EE base baseline achieved by the optimized
EE system is minimal, for the reasons explained in the
previous subsection. Nonetheless, we notice that while
the fully ideal lazy system outperforms EE by 5-10%,
the differences between EE and LL are less pronounced
(1-5%) if we model the effects of using the L1 cache for
buffering speculative state (LL ideal bufferL1).
Intruder. The optimized eager system achieves reduc-
tions in execution time of 70-75% over the EE baseline,
compared to a more modest 58-64% over the lazy system.
Thanks to the more efficient management of stores, the
scalability of intruder improves dramatically to reach
speedups of over 8,5X for 16 threads, as opposed to
the poor 2,6X speedup over single thread runs of the
baseline. Most of the advantage of eager over lazy in
intruder comes from a significantly lower number of
aborts due to RMW transactions, which in turn translates
into an impressive reduction in the backoff component.
Kmeans, ssca2, vacation. These workloads show less
performance variability, though eager still comes out
slightly ahead of lazy. For kmeans, backoff overhead is
barely visible in EE as a result of a lower number of
aborts than LL. Furthermore, in these three benchmarks
store miss penalty is partially (ssca) or totally (kmeans,
vacation) hidden by the eager system, while in the lazy
case write misses are during commit, when it is too late
to overlap the miss latency with transactional execution
(hence the larger commit component in LL systems).
Labyrinth. The optimizations to the eager baseline do
not have a positive impact, resulting in a slight per-
formance degradation of under 5% over EE base and
8% with respect to LL ideal, for the reasons described
earlier. As we can see in Figure 5, the main reason
for the increase in execution time seen in EE is a sub-
stantial rollback component, which is due to the very
large footprint of its highly contended main transaction
(TID1). As opposed to EE, lazy systems easily discard
speculative state in a few cycles. However, the difference
in execution time with LL ideal bufferL1 is less notable,
as the number of contamination misses is large [16].
yada. The results for this application are also worth
analyzing in more depth. Whereas the EE system only
performs slightly better (5%) than LL for the small input,
the difference becomes significantly more pronounced
(17%) when using medium-sized inputs. As the level of
contention affecting its large transactions decreases, the
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Fig. 5. Relative performance of EE with effective store management vs. two idealized LL configurations.

ability to resolve some read-write conflicts (true depen-
dencies) through stalls rather than aborts becomes more
and more advantageous for the eager design. We see in
Figure 5 how the txaborted component in the EE system
is very small compared to the lazy systems, in part as a
result of its relatively large fraction of stall useful cycles.
As indicated by the backoff component, the number of
lazy aborts is far larger than in the eager system.

6 RELATED WORK

Concepts first described by Herlihy and Moss [10] have
since been leveraged by various HTM policy implemen-
tations. Two main categories classify HTM designs: lazy
and eager. Lazy designs [9], [17], [24] implement buffer-
ing in private caches. Our work in this paper focuses
on eager designs which are characterized by in-place
modification during speculative stores. The first eager
design was introduced by Moore et al. [15]. This was
later followed by several variants that improved upon
various aspects [12], [25]. However, prior work has not
noted the high degree of sensitivity in performance that
eager designs exhibit to variations in the management
of speculative stores. Small changes in handling updates
and conflicting stores can have a large impact on overall
performance. More importantly, simple changes in store
management can potentially yield greater benefits than
using more elaborate schemes proposed in prior studies.

A characterization of STAMP benchmarks [3] showed
eager HTM designs perform poorly under high con-
tention, sometimes being worse off than STM implemen-
tations. Shriraman et al. [20] performed a comparative
study of contention management policies in a hybrid

FlexTM [21] based design. This study claims that lazy
contention management achieves higher performance
than those with eager management. We would like to
emphasize that conflict resolution policy is a factor that
contributes towards overall HTM system performance
but it is not the sole one. Effective management of
speculative updates can tip the scales. In particular,
simple local optimizations can have a large impact on
high-contention performance in eager HTMs.

Sanyal et al. [19] proposed schemes, involving both
paging hardware and the operating system, to man-
age thread-local data separately to ease the burden on
speculative versioning mechanisms. Dahlgren et al. [6]
analyzed the efficacy of write caches in parallel ar-
chitectures supporting relaxed consistency models and
demonstrated major improvements in miss penalties
associated with coherence misses. While the study is not
directly related to TM, the results therein suggest that
transactional semantics permit flexibility in handling
updates issued within atomic code blocks. Dice et al.
[7] mention the use of store buffers to confine trans-
actional updates in the Rock processor which provides
limited support for TM constructs. However, the effects
of buffering speculative stores and its impact of HTM
has been touched upon in few prior studies.

Several prior studies have looked at migratory sharing
optimizations in scenarios other than HTM [5], [11], [23].
These studies inspired write-set prediction in LogTM [2],
[15]. However, as shown in this study, TM performance
is very sensitive to this optimization, as it can hide
available concurrency. Thus, when attempting to exploit
parallelism using an inherently optimisitic approach like
TM, it must be used very selectively. The design pre-
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sented in this paper is able to do so by only applying this
optimization to actually conflicting lines and reverting
to normal behavior once the migratory nature of a cache
block disappears.

7 CONCLUSIONS

In this work we have highlighted the importance of
effective management of speculative updates in eager
hardware transactional memory. Simple optimizations
that can be applied locally are shown to have a large im-
pact on performance of eager designs on high-contention
workloads which, in the past, have been a weak spot
for eager designs. Another important insight that can
be inferred from this study is that when considering
eager HTM designs, these local optimizations might be
as important as system level HTM policy optimizations
that have been the focus of study in most prior work
on the topic. In particular, we have shown that accurate
prediction and management of migratory cache blocks
and avoiding stalls due to conflicting stores using special
buffering can allow eager designs to exceed the perfor-
mance of an idealized lazy design. This insight should be
coupled with the observations that lazy HTMs are harder
to integrate into existing designs and demand higher
power due to more aggressive speculation. Thus, in the
opinion of the authors, eager HTMs represent a more
promising alternative for integration than lazy ones.
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