
Characterization of Conflicts in Log-Based Transactional Memory (LogTM)

J. Rubén Titos, Manuel E. Acacio, José M. Garcı́a
Universidad de Murcia

Dpto. Ingenierı́a y Tecnologı́a de Computadores
Campus de Espinardo, 30100 Murcia, Spain
{rtitos,meacacio,jmgarcia}@ditec.um.es

Abstract

The difficulty of multithreaded programming remains a
major obstacle for programmers to fully exploit multicore
chips. Transactional memory has been proposed as an ab-
straction capable of ameliorating the challenges of tradi-
tional lock-based parallel programming. Hardware trans-
actional memory (HTM) systems implement the necessary
mechanisms to provide transactional semantics efficiently.
In order to keep hardware simple, current HTM designs ap-
ply fixed policies that aim at optimizing the most expected
application behaviour, and many of these proposals explic-
itly assume that commits will be clearly more frequent than
aborts in future transactional workloads.

This paper shows that some applications developed un-
der the TM programming model are by nature prone to ex-
perience many conflicts. As a result, aborted transactions
can get to be common and may seriously hurt performance.
Our characterization, performed with truly transactional
benchmarks on the LogTM system, shows that certain pro-
grams composed by large transactions suffer indeed very
high abort rates. Thus, if TM is to unburden developers
from the programmability-performance trade-off, HTM sys-
tems must obtain good performance levels in the presence
of frequent aborts, requiring more flexible policies of data
versioning as well as more sophisticated recovery schemes.

1 Introduction

Over the past few years, it has become clear that nei-
ther instruction level parallelism nor higher clock frequen-
cies are feasible strategies to further enhance single proces-
sor performance, and even investing the available transistor
budget in larger on-chip caches is reaching the point of di-
minishing return. These have been the pillars that sustained
an extraordinary exponential growth in processor perfor-
mance, achievement that customers are used to experience

one generation of processors after another. For these rea-
sons, we are currently witnessing a fundamental paradigm
shift towards multicore architectures that has broad reper-
cussions at both hardware and software levels. Chip mul-
tiprocessors (CMPs) are becoming ubiquitous and every
manufacturer’s road-map shows that the trend in the near
future will be towards chips with steadily more and more
execution cores.

As CMPs come to be the mainstream, the way software
is developed must be reconsidered if computer systems are
to maintain such high expectations of application perfor-
mance in the near future. Programmers will need to write
concurrent programs that exploit thread-level parallelism
available in applications, in order to use on-chip resources
effectively. However, the practical success of CMP-based
systems is limited by the difficulty of parallel application
development. Writing concurrent programs under conven-
tional programming models is still a fairly complex task that
only experienced developers can tackle, because it poses a
demanding trade-off between performance and correctness.
Extracting fine-grain parallelism is a laborious, time con-
suming and error prone task, whereas programming con-
servatively can shrink development time at the cost of sac-
rificing performance and scalability. Unless other models
are developed that both ease concurrent programming and
allow the system to extract plenty of parallelism, the per-
formance potential of CMPs systems will be bounded to
multiprogrammed workloads and a few server-domain ap-
plications.

To this end, Transactional Memory (TM) has aroused as
a promising approach to ease parallel programming while
still producing efficient multithreaded programs. Under the
TM model, the programmer declares what regions of the
code must appear to execute atomically and in isolation
(critical sections), leaving the burden of how to provide such
properties to the underlying levels. The TM system then ex-
ecutes optimistically transactions, stalling or aborting them
whenever real run-time data conflicts occur amongst con-
current transactions. The TM model replaces explicit syn-

chronization mechanisms like locking, thus getting rid of
problems such as priority inversion or deadlock, and also
simplifying code composability. Summarizing, the TM pro-
gramming model tends to decouple performance pursuit
from programming productivity, and it has the potential to
achieve both goals simultaneously.

Despite being one of TM’s fundamental principle, pro-
gramming ease has been implicitly left outside the scene
of hardware transactional memory (HTM) research. All
current HTM designs use simple recovery mechanisms to
resolve conflicts, and some of them are designed to ac-
celerate commits at the cost of slowing down rollbacks
[1, 11, 2]. These policies behave well for applications that
spend a small portion of their run-time in short transac-
tions that usually experience few aborts. However, when
conflicts become more numerous as transaction size grows,
these optimistic policies may cause aborts to have broad
repercussions on performance. On one hand, it is reason-
able to expect that programmers will make frequent use of
coarse-grain transactions. On the other, compilation tech-
niques find extremely difficult to extract fine-grain paral-
lelism from applications, and so they may also generate
code often composed by coarse-grain tasks wrapped inside
transactions. Both for programmers and compilers, produc-
ing code abundant in long transactions results not only in
a larger amount of wasted work per abort, but also in a
higher probability of abort. These side-effects of coarse-
grain transactional code may cause serious performance
degradation problems for applications with frequent inter-
thread (inter-transaction) communication. In our opinion,
current HTM research has failed so far to produce designs
that open the TM model to the common developer, because
these designs still depend on skilled programmers or ad-
vanced parallelizing compilers to extract fine-grain transac-
tions, in order to achieve good levels of performance.

In this paper, we make two main contributions. First,
by focusing on the importance of dealing efficiently with
aborted transactions, we take a novel perspective on the de-
sign dimensions of a hardware transactional memory sys-
tem (HTM). Unlike most of the related literature, we find
at least dubitable the general assumption that commits will
be much more frequent than aborts in future transactional
workloads. If the TM model is to simplify parallel program-
ming, HTMs should not add more pressure on programmers
(or compilers) than the own task of parallelization strictly
requires. From our point of view, HTMs should be designed
to achieve good performance even in presence of frequent
conflicts and aborts, since these systems will face appli-
cations with a great variability in transaction sizes, thread
communication patterns, etc. In this context, we re-analyze
the influence on abort penalty of data version management,
conflict detection and resolution policies for hardware trans-
actional memory systems.

As a second contribution, this paper tries to quantita-
tively show that aborts will be fairly frequent in some ap-
plications developed with the TM paradigm. We present
the first characterization of conflicts in truly transactional
benchmarks composed by large, coarse-grain transactions.
We perform our evaluation on a popular log-based transac-
tional system (LogTM) [11], using the Stanford Transac-
tional Applications for Multi-Processing (STAMP) [4].

The rest of the paper is organized as follows: Section 2
covers the related work, briefly describing the most relevant
contributions to hardware transactional memory. In Section
3 we discuss the influence on abort penalty of the main de-
sign dimensions –namely, data version management, con-
flict detection and conflict resolution– in a transactional
memory system. In Section 4 we perform a characterization
of conflicts in LogTM using a suite of transactional work-
loads. We end with Section 5, that summarizes the main
conclusions of this study.

2 Related Work

In the early nineties, Herlihy and Moss introduced Trans-
actional Memory (TM) [8] as a hardware alternative to lock-
based synchronization. Their main idea was to generalize
the LL/SC primitives in order to perform atomic accesses
not to one but to several independent memory locations,
thus eliminating the need for protecting critical sections
with lock variables. Almost a decade later, architects be-
gan to recover their interest in transactions at a hardware
level. Rajwar and Goodman’s Transactional Lock Removal
(TLR) [14] was the first to apply the concept of transaction
to the execution of lock-protected critical sections, merg-
ing the idea of Speculative Lock Elision (SLE) [13] with a
timestamp-based conflict resolution scheme. Hammond et
al. present Transactional Coherence and Consistency [7],
a novel coherence and consistency model that uses contin-
uous transactional execution. The novelty of TCC stems
from its all transactions, all the time philosophy, where
transactions are the basic unit of parallel work, synchroniza-
tion, memory coherence and consistency. Later on, several
proposals such as UTM [1] or VTM [15] focus on hardware
schemes that provide virtualization of transactions, i.e., sup-
port for transactions of unlimited duration, size and nesting
depth. However, both of them achieve this goal by introduc-
ing large amounts of complexity in the processor and the
memory subsystem. Moore et al. take a more evolutionary
approach to transactional memory in LogTM [11]. Unlike
TCC, LogTM combines transactional support with a con-
ventional shared memory model, enabling a more gradual
change towards transactional systems. The authors present
a log-based implementation of transactional memory that
makes commits fast by storing old values to a per-thread
log in cacheable virtual memory, and enables conflict de-

tection of evicted blocks through an elegant extension to a
MOESI directory protocol. LogTM has been subsequently
refined to better support nested transactions [12] and to de-
couple transactional support from caches [17]. This latest
improvement, called LogTM-SE (Signature Edition), bor-
rows the idea of using hash signatures to detect conflicting
threads, introduced by Ceze et al. in [5]. LogTM’s approx-
imation of making commits fast has also inspired OneTM
[2], a recent contribution by Blundell et al. that uses a cache
to reduce the frequency with which transactions overflow on
chip resources, and simplifies the way the system handles
overflowed transactions.

3 Influence of HTM design dimensions on
abort penalty

3.1 Data version management

A TM system must satisfy the property of atomicity at
any time: transactions must execute completely, or else not
execute at all. To maintain atomicity, a transactional system
must make the updates performed by a transaction visible
to the rest of the system at once, and therefore it must retain
both new and old values of all modified memory locations
during the entire execution of the transaction. The data ver-
sioning policy dictates how the system handles the simul-
taneous storage of both versions, and it constitutes a major
design point of the system.

TM systems that implement eager version management
copy the old value to a separate data structure (i.e. a trans-
action log) upon each write, and then update the memory
location with the new value. This policy makes commits
fast and it is desirable in those scenarios where conflicts are
rare. However, aborts are slowed down since the structure
that keeps old values must be traversed in order to restore
each memory location with its original content. Examples
of proposed HTMs that use eager data versioning are UTM
[1], LogTM [11] and others based on the latter [12, 17].

TM systems that make use of lazy version management
keep old values in their memory locations until the com-
mit phase, and then overwrite them with the new values,
which are stored somewhere else in the meantime (i.e. in a
speculative buffer). Since the old values stay in place, a sys-
tem with lazy versioning can get rid of an aborted transac-
tion quickly, simply by discarding the new values (flushing
the speculative buffer/cache lines). At the cost of slowing
down commits, this fast-rollback policy alleviates the per-
formance degradation experienced by applications with fre-
quent cyclic conflicts between transactions that lead to high
abort rates. Among the systems that rely on lazy version
management are TCC [6], LTM [1], VTM [15] and Bulk
[5].

Some authors claim that an ideal transactional mem-
ory system should use eager version management [11], an
statement based on the assumption that commits are much
more frequent than aborts. This hypothesis is confirmed
by the results of the same work, whose evaluation was
performed using parallel applications from the SPLASH-
2 suite. These benchmarks have been carefully optimized
over the years to avoid synchronization overhead and ef-
fectively exploit fine-grain parallelism available in the code
[16]. In such parallel codes, replacing lock/unlock by be-
gin transaction/end transaction calls leads to programs that
spend a small amount of their run-time in brief transac-
tions, experience few conflicts and thus infrequent aborts.
In our opinion, this behaviour may not be representative
of future transactional memory workloads at all, because
it goes against one of the main goals of TM –ease parallel
programming by using coarse-grain transactions– or would
not include the transactional code generated by paralleliz-
ing compilers. For this reason, realistic transactional bench-
marks should reflect expected programmer practises such as
the use of conservative synchronization, which leads to ap-
plications that spend almost all their run-time in large trans-
actions. In these circumstances, the frequency of conflicts
and aborts will depend on factors such as programmer’s ex-
pertise and knowledge of the problem, inter-thread commu-
nication patterns, inherent parallelism available in the ap-
plication, etc.

3.2 Granularity of conflict detection

A conflict between two concurrent transactions happens
when a transaction’s write set overlaps other transactions’
read or write set. In other words, a conflict happens when
two simultaneous transactions access the same memory lo-
cation, and at least one of the accesses is a write. To detect
such violations of isolation, an HTM must track the data
both read and written by each transaction. This can be done
at different levels of granularity, commonly either blocks or
words. In the first case, only two bits per block are needed,
but false conflicts may arise when concurrent transactions
access different words of the same block. False conflicts
may have a significant impact in application performance
if they happen frequently enough. Tracking read and write
sets at a word granularity avoids this undesirable effect at
the cost of additional overhead (2w bits per block, assum-
ing w words per block). Although the compiler can prevent
potential false conflicts in some cases, detecting conflicts at
block granularity creates yet another responsibility for the
programmer. The avoidance of these spurious violations is
an additional burden that clearly goes against the principle
of parallel programming ease pursued by TM.

3.3 Conflict Detection and Resolution

Conflict detection strategies vary depending on when a
processor examines the information of its R/W sets. Most
HTM proposed to date implement conflict detection by
extensions to ownership-based cache-coherence protocols
[8, 1, 15, 11, 2]. These systems monitor the cache coher-
ence traffic for the transactional blocks to determine if an-
other processor is performing a conflicting access, accord-
ing to the transaction’s R&W sets. With this eager policy
–sometimes also referred as pessimistic–, conflicts are de-
tected as soon as they happen. As no other transaction can
observe uncommitted state, early detection may improve
performance by resolving some conflicts using stalls rather
than drastic aborts. Eager conflict detection may reduce
the amount of wasted work to be discarded if the transac-
tion must be finally aborted to avoid deadlock. However,
this policy can experience a series of execution patterns that
harm performance –friendly fire, dueling upgrades, futile
stall and starving writer–, as described by Bobba et al. in a
recent paper [3].

Other HTM approaches [7, 5] face this design dimen-
sion with a different policy, called lazy or optimistic con-
flict detection. In these proposals, the check for conflicting
accesses is delayed until transaction commit, and the res-
olution is always based on a committer-wins scheme. The
committer transaction broadcasts its write set to the rest of
the system, so that every other transaction can check against
its R&W sets, and proceed to abort when necessary. A
transaction T that performed a conflicting access early in
its execution does not detect such violation until it receives
the committer transaction’s write set, which may as well
happen when T is close to its end. All the computation car-
ried out between the conflict and its detection must be re-
done, therefore consuming power and network bandwidth.
A favourable side-effect of this policy is that a restarted
transaction may find a significant amount of its data already
in cache, since the previous (unsuccessful) execution acted
as a prefetch mechanism. Anyhow, this policy leads to po-
tentially larger amounts of wasted work than eager conflict
detection, since all conflicts (even non cyclic ones) lead to
aborts. This approach can suffer other undesirable patholo-
gies such as serialized commit, restart convoy or starving
elder, as shown in [3].

Regardless of the detection policy, HTM proposals rely
on discard-everything and restart recovery mechanisms
against violations of isolation. This approach keeps hard-
ware simple and has little effect on performance for appli-
cations composed by short transactions, since aborts do not
happen very often, and when they do, restarting the entire
transaction requires only a small number of instructions to
be re-executed. An ideal recovery mechanism would not
just discard all work done, but instead would maintain as

much of the partial results as possible and only redo those
computations that must use new data versions obtained from
the transaction that won the conflict. This is particularly
beneficial when conflicts that lead to abort are detected at
the end of long transactions, which are likely to be the com-
mon case in future parallel workloads developed with TM
techniques [4]. In such scenario, current conflict resolu-
tion schemes may severely hurt performance, as significant
amounts of valid work is wasted on each abort. Under
the current discard-everything approach, the performance
degradation suffered by transactional applications that ex-
perience high abort rates on large transactions can make
programmers look for finer-grain transactions. The result
is a similar programming effort to fine-grain locking, op-
posite to the very purpose of programming ease sought by
TM.

4 Characterization

In this section, we perform a characterization of con-
flicts under a popular hardware transactional memory sys-
tem such as LogTM [11]. We show that for some TM ap-
plications developed under the paradigm of large transac-
tions, the frequency of aborts is high, thus invalidating the
assumption that commits are clearly the common case in
TM systems. This is the first characterization of conflicts
on a hardware transactional memory system that uses rep-
resentative benchmarks developed from scratch under the
TM paradigm.

4.1 Summary of LogTM

LogTM is a hardware transactional memory system
proposed by the Multifacet group at the University of
Wisconsin-Madison. LogTM implements eager version
management and eager conflict detection. It uses a per-
thread log in cacheable virtual memory, that contains ad-
dress and old values of memory locations modified by the
current transaction. Each cache block is augmented with
two bits (R&W) so that conflicts are detected at a granu-
larity of blocks. It extends a directory protocol in order to
perform fast conflict detection of evicted blocks, by using
sticky states. Transaction nesting is supported by flatten-
ing inner nested transactions into the top-level one. LogTM
detects potential deadlocks using timestamps: A processor
sets a bit if it nacks an older transaction; if in turn it receives
a nack from an older transaction, this represents a potential
cycle and the transaction aborts. The abort traps to a soft-
ware handler, which walks the transaction log and restores
the old values into memory. The system uses randomized
linear backoff to reduce contention after an abort.

Table 1. System parameters.
MESI Directory-based CMP

Core Settings
Cores 16, single issue, in-order, non-memory IPC=1

Memory and Directory Settings
L1 I&D caches Private, 32KB, split, 2-way, 1-cycle latency
L2 cache Shared, 8MB, unified, 4-way, 12 cycle-latency
L2 Directory Full bit vector, 6-cycle latency
Memory 4GB, 300-cycle latency

Network Settings
Topology 2D Mesh (4x4)
Link latency 1 cycle
Link bandwidth 40 bytes/cycle

4.2 Simulation Methodology and Envi-
ronment

We use a full-system execution-driven simulation based
on the Wisconsin GEMS toolset [10], in conjunction with
Virtutech Simics [9]. We use an implementation of the
LogTM protocol and the detailed timing model for the
memory subsystem included in GEMS v2.0, with the Sim-
ics in-order processor model. Simics provides functional
correctness for the SPARC ISA and boots an unmodified
Solaris 10. Two of the main metrics of our characterization
are conflict rate and abort rate, defined as1:

conflict rate =
xacts aborted + xacts conflicted&committed

xacts aborted + xacts committed

abort rate =
xacts aborted

xacts aborted + xacts committed

We perform our characterization on a tiled CMP system,
as described in Table 1. We use a 16-core configuration with
private L1 I& D caches and a shared, multibanked L2 cache
consisting of 16 banks of 512KB each. The L1 caches main-
tain inclusion with the L2. The cores and L2 cache banks
are connected through a 2D mesh network. The private L1
data caches are kept coherent through an on-chip directory
(at L2 cache banks), which maintains a bit vector of sharers
and implements the MESI protocol. Instead of augmenting
each cache block with R&W bits and using an overflow bit,
conflict detection is performed through perfect signatures
–mere lists of addresses read/written by the transaction–,
similar to LogTM-SE [17]. In this way, our characteriza-
tion is isolated from all kinds of false conflicts, either due
to signature’s false positives or to stale sticky states result-
ing from overflowed transactional blocks.

4.3 Transactional Workloads

Up to now, the majority of studies on transactional mem-
ory systems have used in their evaluation parallel applica-
tions from the SPLASH-2 suite [16]. The lack of real trans-
actional workloads parallelized under this model makes
difficult to find a set of benchmarks that acts as a ref-
erence system for the TM research community. So far,

1xacts: transactions

Table 2. Benchmarks and inputs.
Benchmark Input

DELAUNAY Mesh gen3.2, min. angle 30
GENOME 16K segments, gene length 256, segment length 16
KMEANS 20/20 clusters, thres. 0.05, 1000 12-dim points
VACATION 64K entries, 4K tasks, 8 queries, 10 rel, 80 users

BARNES 4096 bodies
CHOLESKY tk14
RAYTRACE teapot

the STAMP suite (Stanford Transactional Applications for
Multi-Processing) [4] is the only available collection of
transactional applications that use coarse-grain transactions
to execute concurrent tasks on irregular data structures such
us graphs or trees. STAMP comprises four benchmarks:
genome, that reconstructs a gene sequence from segments
of a larger gene; kmeans, that clusters objects in k parti-
tions according to certain attributes; and vacation, that im-
plements a travel agency system; and delaunay, that imple-
ments the Delaunay algorithm for mesh generation. To pro-
duce the results of this characterization, we used the same
set of inputs than Cao Minh et al. [4], as shown in Table 2.
We also use a few benchmarks extracted from the SPLASH-
2 suite, in order to compare the behaviour of the LogTM
transactional memory system under substantially different
workloads.

4.4 Results

In this section, we present in a quantitative manner how
certain applications developed under the TM programming
model are prone to experience many conflicts and aborts,
using a log-based HTM system as our evaluation environ-
ment. We start with a brief characterization of the bench-
marks and the transactions they comprise, that will help us
to better interpret the results of our experiments later on.
This is necessary since each workload has its particular fea-
tures that distinguish it from the rest in how it is affected by
conflicts, despite being developed under the same concept
of coarse-grain transactions. We find that the frequency of
conflicts is greatly dependant on the granularity of the trans-
actions. We show the performance implications of such
overhead –stall, backoff and abort– and notice how its ef-
fects are more pronounced in workloads where the trans-
actional code has a significant weight in global execution
time.

The amount of work carried out by a transaction –
quantitatively measured by the size of its read and write
sets– directly affects conflict and abort rates, since the odds
of a conflict with concurrent transactions increase with the
amount of data accessed by the transaction. Figure 1 shows
the average transaction read and write set size of each
benchmark. A more detailed analysis of each benchmark’s
transactions is shown in Table 3 (numbers in bold highlight

Figure 1. Average read and write set sizes in
SPLASH vs. STAMP benchmarks.

Table 3. Characterization of transactions in
STAMP benchmarks: Count, Read and Write
set sizes

Benchmark XID0 XID1 XID2 XID3 XID4
R W # R W # R W # R W # R W

kmeans 1000 6 1 333 1 1 8 2 1 - - - - - -
delaunay 1898 1 0 3101 55 28 1211 8 3 8 1 1 - - -
vacation 3232 92 10 433 24 1 431 72 6 - - - - - -
genome 1024 52 1 241 2 1 3615 14 3 241 3 11 449 5 2

each benchmark’s main transaction). In Table 3 we can see
that both delaunay and vacation have a main transaction per-
forming the bulk of the computation. In delaunay, XID1 not
only has the larger read and write sets but is also the trans-
action executed most times, and the same can be said about
vacation. For both benchmarks, their main transaction has
huge R&W sets compared to kmeans and genome. Only
the first step (transaction) of the algorithm performed by
genome requires a larger read set; its remaining four trans-
actions access a few shared data. As for kmeans, its three
transactions have very small data sets –including the main
one, XID0– compared to vacation and delaunay. These re-
sults anticipate higher conflict and abort rates for delaunay
and vacation than for genome and kmeans, although final
outcome depends on the actual degree of data communica-
tion among threads.

Table 4 presents the first part of the results of this char-
acterization. It shows the total number of conflicts expe-
rienced by each benchmark and splits them according to
the way they are resolved, either by aborting or stalling
the transaction. The column useful stalls shows how many
stalls successfully solved the conflicts (the transaction was
able to reach commit later on). Although eager conflict
detection allows LogTM to deal with some conflicts by

Table 4. Characterization of conflicts accord-
ing to their resolution.

Benchmark total aborted stalled useful % useful % aborted
conflicts stalls stalls

barnes 601 386 215 213 99% 64%
cholesky 123 56 67 67 100% 46%
raytrace 95229 89577 5652 5466 97% 94%
kmeans 218 75 143 137 96% 34%

delaunay 19713 15003 4710 3670 78% 76%
vacation 34355 16886 17469 4104 23% 49%
genome 8459 3403 5056 2904 57% 40%

Table 5. Transactions committed, stalled be-
fore commit and aborted. Retries per trans-
action. Conflict and abort rates.

Benchmark committed stalled bfr aborted retries stalled bfr conflict abort
commit per xact commit rate rate

barnes 17431 542 386 0,02 3,1% 0,05 0,02
cholesky 6573 146 56 0,01 2,2% 0,03 0,01
raytrace 47766 14775 89577 1,88 30,9% 0,76 0,65
kmeans 1349 187 75 0,06 13,9% 0,18 0,05

delaunay 6284 2976 15003 2,39 47,4% 0,84 0,70
vacation 4096 2798 16886 4,12 68,3% 0,94 0,80
genome 5570 1298 3403 0,61 23,3% 0,52 0,38

stalling a transaction rather than aborting it, those bench-
marks composed by large transactions cannot benefit as
much from this conflict resolution scheme. In vacation –the
benchmark with the largest main transaction of all– only
23% of the stalls are useful, in the meaning that they en-
able the transaction to reach commit. This percentage is
somehow higher for genome and delaunay –benchmarks
with relatively large transactions– but is still far from those
obtained for other workloads formed by small transactions
–over 96% in all cases–. In regards to conflicts solved by
aborting, they represent between 40 and 50% of the cases in
most benchmarks, reaching higher percentages for raytrace
and delaunay –94 and 76%, respectively–. In raytrace, two
similar critical regions (transactions) that read and incre-
ment a global variable together account for more than 90%
of the total number of aborts. In delaunay, almost 50% of
the aborts correspond to XID0 –also a short transaction that
pops an element from the front of the worklist– and only
16% to XID1 –its main transaction that performs the cavity
refinement–. In vacation and genome, 98 and 76% of the
aborts are by XID0 –their main transaction–, respectively.
Therefore, we can expect vacation to be the benchmark that
wastes more time doing computations that are discarded af-
terwards, due to the size of its main transaction and the fre-
quent aborts it experiences.

In Table 5 we summarize the main results of our char-
acterization. First, we can observe how barnes and raytrace
execute many more critical regions (transactions) than the

Figure 2. Execution time breakdown.

STAMP benchmarks. As we mentioned earlier in this paper,
this is due to the fine-grain critical regions in the SPLASH-
2 benchmarks, opposed to the programming style promoted
by TM and used to develop STAMP. Second, some bench-
marks have an important percentage of committed transac-
tions that are stalled before reaching their end, like vaca-
tion (68%), delaunay (47%) or raytrace (31%). This also
exhibits the clear relationship between transaction size and
the odds of suffering non-letal conflicts. Conflict rate sum-
marizes the appearance of both recoverable –stalled– and
unrecoverable –aborted– conflicts, indicating the fraction
of transactions that conflicted, out of all started transac-
tions. Column 7 in Table 5 shows that conflicts arise very
frequently in applications such as vacation, delaunay, ray-
trace or genome, with moderate to very high conflict rates
–ranging from 0,52 in genome to 0,94 vacation–. In other
words, these rates reveal that the majority of the transac-
tions in these three benchmarks suffer some kind of conflict
during their execution. Lastly, the abort rates obtained for
these benchmarks are also remarkably high, particularily in
delaunay (0,70) and vacation (0,80), which are precisely the
benchmarks with larger transactions. Therefore, this chara-
terization not only contradicts the assumption that commits
will be much more frequent than aborts, but also points out
the need for better recovery schemes.

The weight of transactions in execution time determines
the influence of aborts on application performance. Despite
the programmer’s ability to extract finer grain transactions,
the nature of the computation ultimately determines how
much synchronization is needed and therefore how much
time must be spent in transactional code. Figure 2 shows the
normalized execution time breakdown for each benchmark,
divided in six components: non transactional, transactional
useful (committed work), transactional wasted (discarded
work), aborting (rolling back transactional state during an
abort), stalled (stalling to resolve a transaction conflict) and
backoff (stalling after an abort to reduce contention). We

Figure 3. On-chip network traffic breakdown.

can see that both barnes and cholesky spend more than 97%
of their cycles in non transactional code, having virtually
no transactional overhead. For raytrace and kmeans more
than 65% is spent in non transactional code, and almost all
the overhead is due to the exponential backoff (20 to 30%).
Note that the numerous aborts of raytrace do not lead to a lot
of wasted cycles, as the transactions are very small. The re-
maining three benchmarks exhibit similar behaviour. Since
they spend most or all of their time inside large, coarse-
grain transactions, the impact of the transaction overhead on
application performance is much higher than in the previous
benchmarks. The high conflict and abort rates of vacation
presented in Table 5 are responsible for a surprisingly low
fraction of useful cycles (10%, including non transactional
execution). Roughly 25% of its cycles are unstalled trans-
actional computation that gets discarded afterwards, upon
abort. In delaunay, however, 30% of its cycles are useful
work and only 10% are wasted work, while genome stays
in-between, with around 15% of each. Stall cycles due to
conflicts account for 30-35% in these three benchmarks,
and backoff cycles are in the 15-35% range. The amount of
wasted work can be represented as well from the perspec-
tive of network traffic. Figure 3 breaks it into three compo-
nents: non transactional traffic, wasted transactional traffic
and useful transactional traffic. As we can see, those bench-
marks with high abort rates not only make a poor use of
their cores but also introduce a lot of useless traffic into the
on-chip interconnection. This may slow down other threads
or applications that find a congested network, and of course
it has dramatic consecuences on power consumption.

5 Conclusions

In this paper, we show that aborted transactions can be
quite frequent for some kinds of future TM applications.
We reanalyzed the HTM design space from a novel perspec-
tive, assuming that aborts could be as common as commits.

We presented the first characterization of conflicts in a log-
based hardware transactional system that uses truly transac-
tional benchmarks composed by large, coarse-grain trans-
actions. Our results show that those applications that spend
most of their time in a few large transactions experience
significant performance degradations due to the high abort
rates. Thus, we argue against commits being always the
common case in future transactional workloads, and point
out that more flexible schemes of data versioning are needed
if HTM systems are to success in environments with a huge
variability of transaction granularity. High abort rates ex-
perienced by some of the evaluated workloads also indi-
cate that HTM research needs to focus on enhanced recov-
ery mechanisms that are capable of obtaining good perfor-
mance levels even in the presence of frequent aborts. Other-
wise, these systems will burden programmers with the same
programmability-performance trade-off that the TM model
tries to free them from.

6 Acknowledgements

This work has been jointly supported by the Span-
ish MEC and European Commission FEDER funds un-
der grants “Consolider Ingenio-2010 CSD2006-00046” and
“TIN2006-15516-C04-03’. Rubén Titos is supported by a
research grant from the Spanish MEC under the FPU na-
tional plan (AP2006-04152).

References

[1] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leis-
erson, and S. Lie. Unbounded transactional memory. In
Proceedings of the 11th International Symposium on High-
Performance Computer Architecture, pages 316–327, Feb
2005.

[2] C. Blundell, J. Devietti, E. C. Lewis, and M. Martin. Making
the fast case common and the uncommon case simple in un-
bounded transactional memory. In Proceedings of the 34st
Annual International Symposium on Computer Architecture,
Jun 2007.

[3] J. Bobba, K. E. Moore, L. Yen, H. Volos, M. D. Hill, M. M.
Swift, and D. A. Wood. Performance pathologies in hard-
ware transactional memory. In Proceedings of the 34rd An-
nual International Symposium on Computer Architecture,
Jun 2007.

[4] C. Cao Minh, M. Trautmann, J. Chung, A. McDonald,
N. Bronson, J. Casper, C. Kozyrakis, and K. Olukotun. An
effective hybrid transactional memory system with strong
isolation guarantees. In Proceedings of the 34th Annual
International Symposium on Computer Architecture, Jun
2007.

[5] L. Ceze, J. Tuck, C. Cascaval, and J. Torrellas. Bulk dis-
ambiguation of speculative threads in multiprocessors. In
Proceedings of the 33rd Annual International Symposium on
Computer Architecture, pages 227–238, June 2006.

[6] L. Hammond, B. D. Carlstrom, V. Wong, M. Chen,
C. Kozyrakis, and K. Olukotun. Transactional coherence
and consistency: Simplifying parallel hardware and soft-
ware. IEEE Micro, 24(6), Nov-Dec 2004.

[7] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom,
J. D. Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya,
C. Kozyrakis, and K. Olukotun. Transactional memory co-
herence and consistency. In Proceedings of the 31st Annual
International Symposium on Computer Architecture, pages
102–113, Jun 2004.

[8] M. Herlihy and E. B. Moss. Transactional memory: Archi-
tectural support for lock-free data structures. In Proceedings
of the 20th Annual International Symposium on Computer
Architecture, pages 289–301, May 1993.

[9] P. S. Magnusson, M. Christensson, J. Eskilson, D. Fors-
gren, G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and
B. Werner. Simics: A full system simulation platform. IEEE
Computer, 35(2):50–58, Feb 2002.

[10] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,
M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and
D. A. Wood. Multifacet’s general execution-driven multi-
processor simulator (gems) toolset. Computer Architecture
News, pages 92–99, September 2005.

[11] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and
D. A. Wood. Logtm: Log-based transactional memory. In
Proceedings of the 12th International Symposium on High-
Performance Computer Architecture, pages 254–265, Feb
2006.

[12] M. J. Moravan, J. Bobba, K. E. Moore, L. Yen, M. D. Hill,
B. Liblit, M. M. Swift, and D. A. Wood. Supporting nested
transactional memory in logtm. In ASPLOS-XII: Proceed-
ings of the 12th international conference on Architectural
support for programming languages and operating systems,
pages 359–370, Oct 2006.

[13] R. Rajwar and J. R. Goodman. Speculative lock elision: En-
abling highly concurrent multithreaded execution. In 34th
International Symposium on Microarchitecture, pages 294–
305, December 2001.

[14] R. Rajwar and J. R. Goodman. Transactional lock-free ex-
ecution of lock-based programs. In 10th Symposium on Ar-
chitectural Support for Programming Languages and Oper-
ating Systems, pages 5–17, October 2002.

[15] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing transactional
memory. In Proceedings of the 32nd Annual International
Symposium on Computer Architecture, pages 494–505, Jun
2005.

[16] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 programs: Characterization and method-
ological considerations. In Proceedings of the 22nd Annual
International Symposium on Computer Architecture, pages
24–36, June 1995.

[17] L. Yen, J. Bobba, M. M. Marty, K. E. Moore, H. Volos,
M. D. Hill, M. M. Swift, and D. A. Wood. Logtm-se: De-
coupling hardware transactional memory from caches. In
Proceedings of the 13th International Symposium on High-
Performance Computer Architecture, pages 261–272, Feb
2007.

