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Abstract

When supported in silicon, transactional memory

(TM) promises to become a fast, simple and scal-

able parallel programming paradigm for future shared

memory multiprocessor systems. Among the multitude

of hardware TM design points and policies that have

been studied so far, lazy conflict resolution designs

often extract the most concurrency, but their inherent

need for lazy versioning requires careful management

of speculative updates. In this paper we study how

coherent buffering, in private caches for example, as

has been proposed in several hardware TM propos-

als, can lead to inefficiencies. We then show how

such inefficiencies can be substantially mitigated by

using complete or partial non-coherent buffering of

speculative writes in dedicated structures or suitably

adapted standard per-core write-buffers. These benefits

are particularly noticeable in scenarios involving large

coarse grained transactions that may write a lot of

non-contended data in addition to actively shared data.

We believe our analysis provides important insights

into some overlooked aspects of TM behaviour and

would prove useful to designers wishing to implement

lazy TM schemes in hardware.

1. Introduction

Transactional memory (TM) [7] enables program-

ming constructs that provide optimistic concurrency

control in multithreaded applications and largely elim-

inate the need for programmers to worry about seman-

tics and safety of locks. Regions of code that rely upon

a consistent view of shared data are enclosed in atomic

blocks (or transactions) that guarantee properties of

atomicity and isolation. By leveraging traditional cache

coherence mechanisms, hardware transactional mem-

ory (HTM) systems can support such constructs effi-

ciently.

Lazy HTM protocols [7] commit updates made to

shared data in a transaction at the end of its execution.

Any concurrent transaction that may have a conflict

(data race) with the committing one is aborted. To do

so while preserving TM semantics requires establish-

ment of a logical global order over all transactions

that commit. Non-concurrent transactions represent the

trivial case. The problem becomes more interesting

and complex when we consider concurrent transactions

attempting to commit simultaneously. A solution in

such a case would be to have a global arbiter allow

one transaction to commit at a time [6], [1]. Another

solution, as presented in [3] allows a greater degree of

parallelism at commit time in multi-banked directory

based distributed shared memory (DSM) architectures.

Both approaches gain exclusive ownership to the entire

write-set of a transaction before its commit can be

considered complete. This results in a burst of coher-

ence activity at commit time, which, as we highlight in

this study, can be reduced significantly through the use

of non-coherent write buffers, i.e. buffers that contain

writes from the processor before these enter the cache

hierarchy. Additionally, such buffers also improve the

cache hit rates during transactional execution in high-

contention scenarios, since aborts would only result

in a buffer flush and not in cache line invalidations.

Although write buffering is commonplace in micro-

processors, its effects on the behaviour of transactions

have not been investigated in depth in HTM literature

so far and, by our estimates, its impact on performance

is large enough to merit a detailed study.

A large fraction of data accessed by a typical

coarse grained transaction is either thread-private or

not actively contended during the lifetime of the trans-

action. Allowing early interaction of writes to such

data with coherence mechanisms results in unnecessary
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pessimistic actions to be taken to ensure no violations

of TM guarantees occur. Write-backs and coherence

state transitions must occur to allow detection of races.

Such transitions are then reverted on commit. In work-

loads with high concurrency and large transactions

such actions are particularly wasteful. On the other

hand, in workloads that exhibit high contention, a large

number of aborts would occur causing updated lines to

be discarded through invalidation. When the transac-

tion re-executes, these lines are bound to be accessed

again, causing expensive misses, lengthened execution

times and exacerbated contention. In summary, coher-

ent buffering in private caches excites what can be

regarded as pathological case for such workloads and,

moreover, amplifies its effect.

In this paper we attempt to quantify the cost of

having coherent buffering for speculative data in lazy

HTMs. We examine, in detail, the behaviour of such

mechanisms in a directory based DSM HTM imple-

mentation. We then show that incorporation of non-

coherent buffers can mitigate this effect, thereby in-

creasing performance and improving other key design

metrics. We believe this study would prove insightful

to designers thinking about implementing lazy HTM

designs in silicon.

2. Related Work

This work is a study of the impact of non-coherent

write buffering in lazy HTM systems. The insights it

encompasses apply to a large body of work done on

the topic. The TCC proposal [5] implements coherent

buffering in a private cache with global commit arbitra-

tion using a bus. A committing transaction writes back

all its speculative updates to the shared memory hierar-

chy. A later proposal [3] provides a commit algorithm

which allows for considerable parallelism in directory

based DSM systems. It works by dividing the directory

into several banks. Transactions can commit in par-

allel if they do not observe directory bank conflicts.

Commit sequence numbers are assigned to prioritize

transactions when such conflicts occur. Tomic et al.

[11] describe an eager conflict detection design that

commits transactions lazily, utilizing directory coher-

ence in MESI based systems with two levels of private

caching. Negi et al. developed a broadcast-based lazy

commit protocol in [10] that eliminates the need for

write-backs or cache-line invalidation messaging at

commit. Sanyal et al. [13] present mechanisms to filter

thread-local variables in lazy HTMs but need support

mechanims in both the core and the operating system.

Moreover, in several workloads separation between

Figure 1: Tiled-CMP architecture used for this study.

contended and non-contended data is not as clean as

that between thread-local and shared data.

One common characteristic in the proposals men-

tioned in this section is that they do not investigate

different speculative buffering mechanisms which, as

we show in this paper, can cause significant variation

in key performance metrics.

3. Buffering speculative updates

in coherent caches

We choose a tiled CMP design as reference because

its modular nature has made it popular in several

commercial many-core designs and the availability of

reliable simulation models [9] makes comparison of

various policies and architectural features less daunt-

ing. The basic architecture comprises several tiles over-

laid over point-to-point interconnects forming a mesh-

based network-on-chip. This arrangement is depicted

in Figure 1. Each tile has a processing core, one level

of private cache, a slice each of the shared inclusive

level 2 cache and the directory and some routing logic.

A MESI protocol utilizes the banked directory to keep

private caches coherent.

To buffer speculative data in private caches, per-

cache line meta-data is augmented with two bits, SR

and SM, which indicate whether a line has been spec-

ulatively read or speculatively modified, respectively.

During the course of execution of a transaction writes

appear as non-invalidating reads to the coherence pro-

tocol. In order to preserve its last globally consistent

value, a dirty (non-speculative) line is written back

to the shared memory hierarchy prior to the first

speculative update to it in a transaction, resulting in

a downgrade of its coherence state from M to S.

Commits imply acquisition of ownership over all lines

with SM set, while aborts imply invalidation of all such

lines.

Let us now consider the case presented in Figure

2. A line that is only written by one transaction (it

is either thread-private or not actively shared in the
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Figure 2: Downgrade miss: Redundant cache-state changes when a transaction eventually commits.

Figure 3: Abort miss: Invalidations that could be avoided with non-coherent buffering.

current phase of the workload) might, in the steady

state, be found with high probability in M state in the

private cache. To preserve the old content of the line in

the absence of non-coherent write buffering, it must be

written back prior to the write, resulting in a transition

to S, as shown in Figure 2 (step 9). On commit we

need to reacquire exclusive ownership to the line.

Since such a line will not have any sharers, this work

(M−→S and S−→M) to ensure no races exist is largely

redundant. We refer to such events where unnecessary

work prolongs the commit phase of a transaction as a

downgrade miss. Coarse grained transactions that have

a relatively large fraction of the write set as private

data (stack, thread-local storage) are expected to show

the most degradation in performance. In Section 5

we examine in detail the impact of downgrade misses

and see that for applications like genome and vacation

(refer to [2]) their elimination results in a significant

contraction of commit delays.

Figure 3 depicts the alternate case. A transaction

speculatively updates a non-contended line present in

its cache and then aborts. As depicted in Figure 3

(step 6), the line would not be found in the private

cache on re-execution as all lines in the write-set have

now been invalidated. We refer to such an event as an

abort miss. Such misses have also been referred to as

contamination misses [12]. Workloads with large write

sets and high contention over small amounts of shared

data would experience the greatest drop in private

cache hit rates. As Section 5 will show, elimination of

such misses using non-coherent buffering results in a

marked overall improvement in private cache hit rates.

Some transactional workloads also suffer from

write-write conflicts. These are not true conflicts (not

data races per se) but need to be resolved in in-

validation based coherence protocols. Consider two

transactions that write (but do not read) to a certain

cache line. When one commits the other needs to be

aborted since the invalidation message only tells us that

the cache line might need merging and that cannot be

handled without making the coherence protocol a lot

more complex.
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4. Use of non-coherent buffers

Private caches are present primarily to keep fre-

quently used data close to the processor core. Their

use in buffering uncommitted data should be made

conservatively. Non-coherent write-buffers can be used

to prevent transactional updates from polluting the

coherent cache hierarchy. The idea can also be ex-

tended to inclusive two-level private caching schemes,

wherein the first level private cache can be made non-

coherent when handling transactional updates.

Non-coherent write buffering can be incorporated

very simply into the design by capturing writes issued

by the processor and then releasing those to the private

cache in a controlled manner. In a lazy HTM, writes

would be captured throughout the execution of a trans-

action or as long as buffer capacity is not exceeded.

On commit, the buffer would be flushed causing all

writes to enter the memory hierarchy as quickly as

possible. On abort, the buffer contents would simply

be discarded. Such a buffer would obviously also

participate in any store forwarding mechanism. In fact,

existing write buffering schemes could be suitably

modified to enable such functionality.

It can be observed quite easily that unnecessary

switches in coherence state and invalidations of aborts

can be completely eliminated if write-sets are fully

contained in write-buffers. Since speculative data can

be recorded in the non-coherent buffer, we can elimi-

nate write-backs and downgrades of M lines to shared

(S) state. On commit, since the line would likely be

present in the cache in the M state, it can simply be

written into the private cache without any coherence

action. An abort results in the speculative contents

inside the write buffer to be discarded. No cache

lines need invalidation and, thus, the transaction on

re-execution would still find such lines in the private

cache.

Another benefit of having non-coherent write buffers

is reduction in the number of write-write conflicts,

which are purely an artifact of using coherence mes-

sages to detect possible modifications to different parts

of the same cache line. The cache, when it does not

buffer any speculative updates, only records the read

set of a transaction. Hence any invalidations resulting

from transaction commits result in aborts only when

there is a possible true data race, i.e. the write set of

the committer conflicts with the read set of the other.

We would like to point out that this does not eliminate

conflicts due to reader-writer false sharing.

5. Methodology and Evaluation

In this section, we evaluate the performance impli-

cations of both coherent and non-coherent approaches

to the buffering of speculative writes in a lazy HTM

systems.

5.1. Experimental Setup

We use a full-system execution-driven simulator

based on the Wisconsin GEMS tool-set [9], in con-

junction with Virtutech Simics [8]. We use the detailed

timing model for the memory subsystem provided by

GEMS, with the Simics in-order processor model. Sim-

ics provides functional simulation of the SPARC ISA

and boots an unmodified Solaris 10. The lazy HTM

system modelled in this evaluation is an extension to

the LL system considered by Bobba et al. [1], available

in the GEMS v2.1 release. While Bobba’s LL system

models a private, per processor infinite write buffer, for

this study we extended the simulator to precisely model

finite buffering for transactional writes. We limited the

capacity of the non-coherent write buffer, so that once

it fills up, transactional stores happen in the private

data cache. Unlike writes to the L1 cache, which need

the line present in cache to be able to complete, writes

to the write buffer proceed even if they encounter a

miss in the L1 cache, when a non-blocking prefetch-

read for the line is sent to the L2 cache in such case.

We modified the replacement policy of the L1 data

cache by giving the highest priority to speculatively

written lines, in order to minimize the number of

transactional overflows when executing large trans-

actions. Nonetheless, we avoid serialization penalty

due to limited buffering capacity when such overflows

happen – as has been done in [1] by Bobba et al.– by

incorporating an unlimited speculative victim buffer.

In our simulations only yada experiences a few such

evictions and a tiny victim buffer with 8 entries proves

sufficient. We use an ideal book-keeping scheme to

track read sets (perfect signatures) even when some

speculatively read lines have been evicted, in an at-

tempt to isolate our study from the effects of false

conflicts arising from non-ideal signature schemes like

bloom filters. A simple commit token algorithm is used

to serialize transaction commits: Transactions arbitrate

for the token using a zero-latency broadcast bus. Once

the token is acquired, a transaction enters the commit

phase and issues coherence requests to gain exclusive

ownership over all lines in its write set.

We perform our experiments on a 16-core tiled CMP

system, as described in Figure 1. We use a 16-core

configuration with private L1I and L1D caches and a
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Table 1: System parameters.

MESI Directory-based CMP

Core Settings

Cores 16, single issue
in-order, non-memory IPC=1

Memory and Directory Settings

L1 I&D caches Private, 32KB, split
4-way, 1-cycle latency

Write Buffer Non-coherent, private, 128 bytes
L2 cache Shared, 512KB per tile, unified

8-way, 12 cycle-latency
L2 Directory Bit vector, 6-cycle latency
Memory 4GB, 300-cycle latency

Network Settings

Topology 2D Mesh
Link latency 1 cycle
Link bandwidth 40 bytes/cycle
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Figure 4: Contention in selected workloads.

shared, multi-banked L2 cache consisting of 16 banks

of 512KB each (one L2 slice per tile). The L1 caches

maintain inclusion with the L2. The cores and L2 cache

banks are connected through a 2D mesh network. The

private L1 caches are kept coherent through an on-

chip directory (at L2 cache banks), which maintains

a presence-bit vector of sharers and implements the

MESI protocol.

Workloads. For this evaluation, we have selected

seven transactional applications from the STAMP suite

[2]: genome, intruder, kmeans, labyrinth, ssca2, vaca-

tion and yada. The application, bayes, was excluded

since it exhibits unpredictable behaviour and high vari-

ability in its execution time [4], [10]. For kmeans and

vacation, both high and low contention configurations

were used, resulting in a total of 9 benchmarks. Small

input parameters, detailed in [2], were used.

Buffering configurations. We consider three different

buffering schemes for the lazy HTM system. In order

to establish an upper bound on the performance achiev-

able by the introduction of non-coherent buffering,

we simulate an ideal write buffer of unlimited size

(idealWB). At the other end of this design space, we
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Figure 5: L1 data cache miss rates.

simulate a lazy HTM system that relies solely on

its coherent buffering (private L1 caches) for storing

speculative updates (noWB). The third scheme models

a more realistic design (realWB) which combines a

128-byte, non-coherent write buffer and uses the L1

data cache in case the write buffer runs out of space.

5.2. Results and Discussion

In this section, we analyze the impact of the three

buffering schemes described in the previous section

and quantify the effectiveness of non-coherent buffers

in improving cache performance and reducing the

number of coherence actions required on commit.
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Figure 6: Downgrade and abort misses.

Figure 5 shows the average miss rate of L1 data

caches for each STAMP benchmark. In Figure 6, we

present the number of abort misses suffered on average

by a transaction that restarted at least once. The same

plot shows the average number of downgrade misses
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per committed transaction. Figure 7 shows the execu-

tion time breakdown of all applications, normalized

to the execution time of the configuration with no

write buffer, running 16 threads. The execution time is

broken down into eight components that indicate how

threads spend their time. The first component (barrier)

is a measure of the time spent waiting at barriers.

The second component (non-txnal) corresponds to the

number of cycles spent executing non-transactional

code. The third and fourth components (tx-useful, tx-

aborted) represent cycles spent in transactional execu-

tion, split into useful and aborted cycles, respectively,

depending on the final outcome of the transaction. The

fifth component (stall) is the time a transaction spent

stalled in a data access, because such data was in the

write set of a committing transaction. The six compo-

nent corresponds to the back-off cycles during which

an aborted transaction delayed its restart, determined

using a linear-backoff algorithm. Finally, components

seven and eight represent the overheads experienced at

commit time, due to arbitration for the commit token

(arbitration), and acquisition of exclusive ownership

over modified lines (acquisition). The sum of these two

components corresponds to the commit phase overhead

imposed by the lazy nature of the HTM system, and

it is depicted separately in Figure 8.

A dedicated write buffer reduces miss rate for almost

every benchmark. The improvement in L1 cache per-

formance is most significant in intruder, an application

with moderate contention, a very large number of

transactions and a medium-sized write set (about 50

bytes spread across 6 cache lines on average for its

main transaction). Here, the impact of pollution of

private cache is considerable. As described in Section

3, repeated aborts cause a number of invalidations of

speculatively dirty data, which then result in misses

when the transaction re-executes. As shown in Figure

6, the number of abort misses suffered by restarted

transactions is significant in intruder, with an average

of 10 such misses until a (perhaps repeatedly) restarted

transaction eventually commits. This causes a severe

degradation in the L1 cache miss rate. The use of

a write-buffer completely eliminates abort misses for

this application, and effectively reduces its cache miss

rate by 40%, as shown in Figure 5, for both con-

figurations with speculative write-buffering enabled.

Figure 5 shows how, in general, 32 words (128 bytes)

are enough to buffer all transactionally written data

in the common case, except for those benchmarks

with exceptionally large write sets. For intruder, the

improvement in L1 cache performance shortens the du-

ration of the transaction and thus reduces its probability

of conflicting with another concurrent transaction. The

nett effect is a substantial decrease of the number of

aborted transactions (from almost 14000 in noWB to

around 12200 in realWB/idealWB) as well as in the

contention of the application, as shown in Figure 4.

This explains the reductions in both tx-aborted and

backoff components of the total execution time.

Yada also exhibits a high degree of cache pollution

in the configuration with coherent buffering, with 92

abort misses per each commit of a restarted transaction.

However, its very large write set (60 cache lines on

average for its main transaction, with 2124 bytes writ-

ten) makes it impossible for the 128-byte write buffer

configuration to keep up with its ideal counterpart.

The effect of non-coherent buffering in benchmarks

with low to medium contention –like genome, ssca2

and vacation– is substantially different. Most of the

improvement in cache performance when write buffers

are introduced is due to substantial reduction in the

number of redundant coherence requests for local or

non-actively shared data (downgrade misses).

In vacation, for example, each transaction suffers an

average of 2.6 downgrade misses (see Figure 6) that

can be avoided with non-coherent buffering. Due to

the large transaction size in vacation, the elimination

of such misses does not have a significant effect on the

arbitration component of the commit phase, as depicted

in Figure 8. However, the acquisition phase is substan-

tially shortened, although it has minimal influence in

the overall execution time of the application because

of its relatively small number of transactions (see

Figure 7). The small improvement in execution time is

primarily due to slightly better L1 cache performance,

caused by the removal of abort misses.

For low contention benchmarks with small to

medium transaction sizes, such as genome or ssca2 the

key bottleneck is the arbitration for commits. Thanks

to the introduction of write buffers, the arbitration

delays in genome are reduced from almost 90% of

the total commit overhead to around 30%, which in

turn results in a reduction of around 15% in the

overall execution time. The reason for this dramatic

improvement in the performance of genome is the

elimination of downgrade misses that occur during the

acquisition phase. These coherence upgrades lengthen

the duration of each commit, which combined with the

simple arbitration scheme, creates a snowball effect:

A slight increase in the commit phase may cause

severe contention for the commit token, as exhibited

by genome (see Figure 8).

The very large number of downgrade misses that

Figure 6 shows for labyrinth (77) is worth an ex-

planation. In this benchmark, each thread replicates

the global grid into its thread-local memory, and then
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Figure 8: Commit and arbitration delays.

applies Lee’s routing algorithm on a local grid. Every

time a thread creates a copy of the global grid, the

cache lines that contain the local grid are likely to be

still in modified state since the last commit, and thus

must be written back to the L2 as well as downgraded

to shared state before being speculatively modified

again. At commit time, the writes to the local grid

are indistinguishable from those to the global structure,

and hence result in a large number of redundant coher-

ence requests. The inclusion of an infinite write buffer

improves L1 hit rates slightly and this is reflected in the

minor improvement seen in useful transactional time

(see Figure 7). The finite write buffer is too small to

buffer any significant portion of the write-set (13 KB

across 217 lines) and, hence, its performance is almost

the same as that of the case without it.

For intruder, the elimination of downgrade misses

during acquisition shortens the total commit delay

by 30% with respect to the noWB configuration, as

shown in Figure 8. The removal of such misses is

responsible for a 3% decrease in the overall execution

time, while the remaining 20% improvement comes

from the lowered contention levels achieved through

the elimination of abort misses, as discussed earlier.

SSCA2, a workload with a high commit rate, shows

improvement in execution time 7 when write-buffering

is enabled. A shorter commit phase, as a result of no

downgrade misses, is the primary contributing factor.

The contraction in execution time results in commits

being concentrated in a shorter span of time than in

the noWB case, resulting in a slight increase in the

proportion of commit arbitration time (see Figure 8).
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6. Conclusion and Future Work

In this work we have described and analyzed the

inefficiencies that can be caused by buffering of specu-

lative writes in coherent structures like private caches.

While we do not recommend exclusive use of non-

coherent write buffers since area and power restrictions

may severely limit flexibility, the importance of having

such buffering to support the common case has been

underlined. The performance impact of non-coherent

buffering has been quantified and shown to yield

significant improvements in the set of benchmarks

analyzed here. The expectation is that TM program-

ming constructs would eventually enable workloads

with coarse grained transactions, where significant

amounts of non-contended data could be written along

with actively contended data. In scenarios of high

contention abort misses would result in significant

degradation of cache performance. In scenarios with

low contention but high commit throughput downgrade

misses might result in substantial slowdown due to

prolonged arbitration.

In the future we would like to extend this study to

include the mitigation of write-write conflicts between

transactions when using non-coherent buffering. Its

implications in eager HTM systems also appear to be

of some importance.
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