
Validating a token coherence protocol for scientific
workloads

Ricardo
Fernández-Pascual

r.fernandez@ditec.um.es

José M. Garcı́a
jmgarcia@ditec.um.es

Manuel E. Acacio
meacacio@ditec.um.es

Departamento de Ingenierı́a y Tecnologı́a de Computadores
Universidad de Murcia, 30071-Murcia (Spain)

ABSTRACT
Token coherence provides a flexible framework for designing
new coherence protocols which decouples performance from
correctness, easing the design of efficient coherence proto-
cols. In this work, we have implemented a coherence pro-
tocol for a cc-NUMA architecture based on TokenB using
the RSIM performance simulator to validate previous claims
about token coherence performance and viability. Unlike
previous works, we have used scientific workloads to evaluate
the protocol performance against a directory based coher-
ence protocol and we have found that it provides a significant
speedup on average. Also, we have created our own simula-
tion environment based on RSIM which can perform faster
simulations of larger systems for scientific benchmarks. Our
results show that token coherence protocols are a good alter-
native to directory based coherence protocols which can pro-
vide improved performance and reduced complexity. Also,
we have compared the results obtained with our simulation
environment with those obtained using GEMS for the same
benchmarks and we have found them similar, giving further
credibility to both our simulation environment and GEMS.

Categories and Subject Descriptors
C.1.4 [Computer Systems Organization]: Parallel Ar-
chitectures—Distributed architectures

General Terms
Performance,Verification

Keywords
Cache coherence, Token protocol

1. INTRODUCTION
Shared-memory machines are the most flexible architecture
currently used for scientific, technical and commercial work-
loads due to the convenience of the programming model. In
particular, cc-NUMAs are shared memory machines where

the memory is physically distributed among processor nodes.
These machines add additional hardware to provide the il-
lusion of a single shared memory common to all processors,
avoiding or minimizing the problem of manual data distribu-
tion. Programmers must still divide their computation into
parallel tasks, but all the tasks can work with a single com-
mon dataset resident in memory. This model significantly
reduces the difficulty inherent in parallel programming, es-
pecially for applications that exhibit dynamic communica-
tion patterns.

To provide the illusion of a shared memory while keep-
ing high performance, shared-memory machines use private
caches whose coherency must be kept through hardware co-
herence protocols. Until recently, there were two main kinds
of cache coherency protocols: snoopy protocols (which rely
on a logical shared and totally ordered bus) and directory
protocols (which keep track of each copy of a data block).

The scalability of SMP machines, whose coherency proto-
cols are based on bus snooping is limited by their need of
a totally ordered interconnection network like a shared bus.
In this kind of network, the demand of bandwidth for the
shared bus grows very quickly as the number of processors
increases. This makes impractical and cost-ineffective to
build machines of this kind with a great number of proces-
sors.

On the other hand, cc-NUMA machines use coherence pro-
tocols based on directories [1, 2]. These protocols do not rely
on a totally ordered network and require only point-to-point
communications which allow the use of a number of different
network topologies. Hence they are significantly more scal-
able, because although the total bandwidth must scale too,
the necessary bandwidth between each pair of nodes does
not increase as much. However, the directory is used as the
sequencing point for requests to the same memory block and
it introduces additional latency, specially in cache-to-cache
transfer misses [3], which are quite frequent. Another major
constraint of cc-NUMA scalability is the memory overhead
incurred by the directory information.

Coherence protocols for shared-memory machines are hard
to design and verify, specially in the case of cc-NUMA ma-
chines. The fine grain and asynchronous nature of commu-
nications along with the low-latency requirements lead to
complex and infrequent corner cases which are hard to de-
tect and deal with.



Token coherence [9] is a novel approach to design cache co-
herence protocols for distributed shared memory machines
which has been recently proposed. Token coherence pro-
tocols avoid the need of a totally ordered network and the
introduction of additional latency in the common case. Sev-
eral variants of token coherence protocols are possible as-
suming different tradeoffs of interconnection bandwidth and
request latency.

Until now, token coherence protocols have been evaluated
using commercial workloads like SPECjbb, Apache or OLTP
using full system-simulation. It has been evaluated against
traditional snooping and directory designs and against a co-
herence protocol modeled after that of the AMD’s Hammer
processors.

In this paper, we provide an independent evaluation of a to-
ken coherence protocol with a completely different simula-
tion environment and using scientific instead of commercial
workloads to validate previous claims.

We show that token coherence is a viable alternative to tra-
ditional directory based coherence protocols for designing ef-
ficient coherence protocols. For doing this, we implement a
coherence protocol very similar to TokenB using the RSIM
simulator [6] and compare it with a directory based proto-
col. We have performed simulations of both a 16 processor
system and a 32 processor one finding that token coher-
ence improves the execution time of the applications in both
cases.

For comparison purposes, we have evaluated the original
TokenB protocol using Multifacet GEMS simulator [10]
with a configuration as close as possible to our simulator
and running the same benchmarks with both TokenB and
a directory protocol and we have obtained similar results,
although not identical. The gaps are due to differences in
the simulated architectures which could not be easily solved,
like different available network topologies and distinct pro-
cessor models which are described below.

The rest of this paper is organized as follows: section 2 de-
scribes the token coherence framework as used in this work.
Section 3 details the coherence protocol that we have imple-
mented and evaluated. Section 4.1 describes our simulation
environment and the simulated architecture. Section 4.2
shows and evaluates our results. Finally, section 5 presents
the conclusions of this work.

2. TOKEN COHERENCE
Token coherence [8, 9] is a framework for designing coher-
ence protocols whose main asset is that it decouples the cor-
rectness substrate from several different performance poli-
cies. This allows a great flexibility, making possible to adapt
the protocol for different machines efficiently using a wide
range of interconnection topologies and different number of
processors [7]. Thanks to decoupling correctness from per-
formance, the different performance policies do not have to
deal explicitly with all the infrequent corner cases and race
conditions, allowing to make the common case as fast as
possible and rely on the correctness substrate to handle the
less important cases.

Decoupling different aspects of a problem is a trend in com-
puter architecture that allows new, simpler and more ag-
gressive solutions for different problems. Token coherence
uses decoupling at several levels:

• Firstly, coherence and consistency are decoupled since
token coherence provides a simple interface that allows
implementing serial consistency. This makes possible
to implement serial consistency or any relaxed consis-
tency model at the processor level.

• Secondly, the protocol is decoupled from the intercon-
nection network, being able to run on any intercon-
nection system as long as it guarantees the eventual
correct delivery of messages, without requiring any or-
dering constraint, not even point to point ordering.

• Thirdly, it decouples coherence from performance, since
it provides a correctness substrate and a performance
policy that builds upon it and does not need to be cor-
rect. This provides great flexibility to design a perfor-
mance policy which is fast for the most common cases
and does not need to worry about the infrequent cor-
ner cases which are usually hard to deal with correctly.
Hence, coherence protocols based on token coherence
can be adapted for different requirements and machine
sizes more easily than snoopy or directory protocols [7].

• Finally, the correctness substrate also decouples safety
from starvation. First, it enforces safety and correct
semantics of cache coherence using token counting (it
ensures that performed memory operations are cor-
rect). On the other hand, it avoids starvation using
an infrequently invoked mechanism called persistent
requests (it ensures that memory operations are even-
tually performed).

2.1 Ensuring safety
The main observation of the token framework is that simple
token counting rules can ensure that the memory system be-
haves in a coherent manner. Token counting specifies that
each block of the shared memory has a fixed number of to-
kens and that the system is not allowed to create or destroy
tokens. A processor is allowed to read a block only when it
holds at least one of the block’s tokens and has valid data,
and a processor is allowed to write a block only when it holds
all of its tokens and valid data. These simple rules prevent
a processor from reading the block while another processor
is writing it, ensuring coherent behavior at all times.

One of the tokens is distinguished as the owner token. The
processor or memory module which has this token is respon-
sible for providing the data when another processor needs
it or write it back to memory when necessary. The owner
token can be either clean or dirty, depending whether the
contents of the cache block are the same as in main memory
or not, respectively. In order to allow processors to receive
tokens without receiving data, a valid-data bit is added to
each cache block (independently of the usual valid-tag bit).

In [7], basic token counting rules are introduced and then the
rule set is extended to avoid always sending data with tokens
and to support an exclusive state. These local rules lead to



several global system invariants which are maintained by in-
duction and allow to guarantee a correct behavior without
reasoning about the interactions among intermediate proto-
col states and associated races.

We can relate token protocols with traditional MOESI pro-
tocols and define each of the states depending on the number
of tokens that a processor holds:

0: Invalid state.
1 to N − 1, but not the owner token: Shared state.
1 to N − 1, including the owner token: Owned state.
N , dirty bit inactive: Exclusive state.
N , dirty bit active: Modified state.

2.2 Avoiding starvation
When a processor detects potential starvation, it issues a
persistent request. Persistent requests, unlike transient re-
quests, are guaranteed to eventually succeed. To ensure this,
each token protocol must define how it deals with several
pending persistent requests. Such requests may queue in a
dedicated virtual network or at a queue in a persistent re-
quest arbiter, as long as they are served in a starvation free
way (like a FIFO queue).

There are several ways to implement the arbitration for per-
sistent requests: a single centralized arbiter, an arbiter for
each home node, a banked arbiter to reduce contention, or
distributed persistent request activation. However, ideally
the performance policy should deal with most requests and
avoid the necessity for persistent requests most of the time,
making their implementation less critical from the point of
view of performance. Persistent requests can deal with write
and read requests using the same mechanism for simplicity.

2.3 Performance policies
Token coherence provides the framework for designing sev-
eral particular coherence protocols. Building upon the cor-
rectness substrate, a variety of performance policies may be
designed specifying the precise behavior of each processor
and memory module to different coherence messages.

Performance policies are responsible for defining when and
what transient requests are issued and how each compo-
nent should react to them. Since transient requests are not
guaranteed to succeed, every token protocol must have pro-
visions to eventually resort to the persistent request mecha-
nism when necessary. Each performance policy may target
different aspects of efficiency: shorter latency for cache-to-
cache transfer misses, better bandwidth efficiency, less power
consumption, etc. Until now, three different performance
policies have been described for non-hierarchical cc-NUMA
systems:

Token-using-broadcast (TokenB) is a performance policy to
simultaneously achieve low-latency cache-to-cache transfer
misses and avoid an ordered interconnect. TokenB is faster
than both traditional snooping protocols and directory pro-
tocols, although it requires more bandwidth [9]. Like tradi-
tional snooping protocols, TokenB broadcasts every tran-
sient request, but instead of using a shared bus like snooping
protocols, it uses an interconnection network without any or-
dering guarantees. Due to races between processors some of

these requests may fail to collect sufficient tokens. To han-
dle those occasional situations TokenB reissues the tran-
sient request after a timeout period, ultimately relying on
the correctness substrate’s persistent request mechanism to
prevent starvation after several retries. TokenB can resolve
most misses using only two hops, including cache-to-cache
transfer misses.

Token-based-directory (TokenD) emulates a directory based
protocol using the token framework. Its main advantage is
the bandwidth efficiency obtained by avoiding broadcasting
requests. Instead of sending the transient request to every
other component, the faulting cache sends only a request
to a directory-like structure located at the home memory
module and then the memory module sends transient re-
quests to only the necessary nodes. Unlike in a traditional
directory, the directory information does not need to be ac-
curate, since the correctness substrate guarantees a correct
execution anyway. In TokenD, most misses will be resolved
using three hops. This extra indirection means that Tok-
enD will perform worse than TokenB when there is enough
bandwidth.

TokenM is a performance policy that seeks a compromise
between bandwidth usage and latency. In TokenM, the re-
quester processor uses destination set prediction to decide
the recipients of the transient requests and uses multicast to
send the requests to all of them. TokenM also has a soft
directory at the home node like TokenD which receives all
the requests and forwards them to the components missing
in the predicted destination set that, according to its infor-
mation, should have received the request too. TokenM has
a sightly larger latency than TokenB and uses sightly more
bandwidth than TokenD.

3. AN IMPLEMENTATION OF TOKEN CO-
HERENCE ON RSIM

For our simulations we have used a modified version of RSIM
(Rice Simulator for ILP Multiprocessors), a detailed execu-
tion driven simulator which models an out-of-order super-
scalar processor pipeline, a two-level cache hierarchy, a split-
transaction bus on each processor node, and an aggressive
memory and multiprocessor interconnection network sub-
system [5].

In our target system, each node consists of a processor, a
two-level cache hierarchy, a portion of the system’s physical
memory and its associated token count information, and a
network interface. The network interface connects the node
to a multiprocessor interconnection network for remote com-
munication. We use a two-dimensional mesh network and
wormhole-routing. We are restricted to employ this inter-
connection network since it was the only one implemented
in RSIM.

Since the memory is physically distributed, data placement
in our programs is either done explicitly by the programmer
or implicitly using a first-touch policy on cache-line granu-
larity. That is, each cache-line sized block of physical mem-
ory will be allocated at the first node that accesses it, unless
the programmer cares to distribute the data manually to im-
prove locality. Data distribution in most of our benchmarks
is done manually. On the other hand, previous works based



on GEMS did not use a physically distributed memory.

Token coherence defines a flexible framework for designing
coherence protocols. In this work we evaluate a TokenB
based protocol because we target medium sized machines
(from 16 to 32 processors) and we think that the intercon-
nection bandwidth will not be a problem for implement-
ing TokenB in these machines. Since TokenB achieves
the lowest miss latency of the polices described above when
bandwidth is unconstrained, it is the best option from the
point of view of performance. We have been able to create
a coherence protocol which is very similar to TokenB, but
may have small differences due to several implementation
decisions and the target architecture.

We use token coherence to keep the coherence at the L2
cache level, using traditional states for L1, which uses a
write-through and non-allocate policy on writes (previous
works on token coherence assume a write-back L1). The L2
cache is write back with write allocate policy. The L2 cache
maintains inclusion with respect to the L1 cache.

Our cache coherence protocol supports read, write and up-
grade transient requests. Read requests are satisfied by the
component (it can be a L2 cache or memory controller)
which has the owner token when it receives the request,
sending a reply with data and a single token. Write re-
quests are satisfied by every node having at least a token
when they receive the request, sending a message carrying
all the tokens that the node had. Also, the message will
include the data only if the replying node had the owner to-
ken. Upgrade requests are satisfied by every node, sending
all their tokens without data. The original TokenB pro-
tocol did not support upgrade requests, but they were less
important since the protocol included a migratory sharing
optimization.

Since transient requests can fail to obtain enough tokens or
data due to races between requests from different processors,
the protocol reissues each request that has gone unsatisfied
a certain amount of time. This timeout is adjusted dynam-
ically using the technique described in [7]. Each transient
request will be reissued up to three times. If the timeout
expires even after the third retry, a persistent request will
be raised.

Our version of TokenB uses a centralized persistent request
activation policy with an arbiter at each node. Persistent
requests are directed only to the persistent request arbiter
responsible for the requested block, which is the one at the
home node.

The persistent request arbiter state machine activates at
most one request each time by sending a persistent acti-
vation message to each node. Each node responds with an
acknowledgment (to avoid races) and remembers all the per-
sistent requests that are active using a hardware table (there
may be only one active persistent request for each memory
block, but several persistent requests for different memory
blocks may be active at the same time).

While a persistent request is active, the nodes must forward
all tokens (and data, if they have the owner token) to the

Table 1: Benchmarks and input sizes used in this
work

Benchmark Input Size
FFT 256K complex doubles

Ocean 258 × 258 ocean
Radix 2M keys, 1024 radix

Water-SP 512 molecules, 4 time steps
Water-NSQ 512 molecules, 4 time steps
Tomcatv 256 elements, 5 iterations

Unstructured Mesh.2K, 5 time steps

requester. They will also forward tokens and data that ar-
rive later, because the request persists until the requester
explicitly deactivates it. Note that every node but the re-
quester will be invalidated by a persistent request even if
the original request was a read request.

Once the requester receives enough tokens and data, it satis-
fies the miss and sends a message to the arbiter at the home
memory module to deactivate the request. The arbiter de-
activates the request by informing all the nodes, who delete
the entry from their table and send an acknowledgment. The
arbiter considers the request deactivated once it has received
all the acknowledgments.

The persistent request arbiter acts as the serialization point
for persistent requests and ensures that at most one per-
sistent request is active at any given time and that every
persistent request is eventually activated using a FIFO pol-
icy.

Our token protocol does not include the migratory sharing
optimization [11], since we wanted to compare it against a
directory based protocol which does not include it either.

For being able to implement the described protocol, we have
had to extend the network simulation layer of RSIM to
support efficient broadcast (using dual-path routing as de-
scribed in [4]). Notice that our directory based protocol does
not use multicast.

4. VALIDATING THE TOKEN PROTOCOL
FOR SCIENTIFIC WORKLOADS

We have used a set of scientific applications which cover
a variety of computation and communication patterns to
evaluate our protocol. The applications and the input sizes
used are summarized in table 1.

FFT, Ocean, Radix, Water-SP, and Water-NSQ are from
the SPLASH-2 benchmark suite. Tomcatv is a parallel ver-
sion of a SPEC benchmark and Unstructured is a computa-
tional fluid dynamics application. The experimental results
reported here correspond to the parallel phase of each pro-
gram only.

4.1 Simulation environment
The modeled systems are cc-NUMA with 16 or 32 unipro-
cessor nodes. Table 2 summarizes the relevant parameters
of the simulated systems. These values have been chosen to
be similar to the parameters of the multiprocessors built in
the near future considering current trends.



Table 2: Characteristics of simulated machine

16 or 32-Node System
ILP Processor Parameters

Processor speed 5 GHz
Max. fetch/retire rate 4
Instruction window 128
Branch predictor 2 bit agree, 2048 count

Cache Parameters
Cache block size 64 bytes
L1 cache: write-through

Size, associativity 32 KB, direct mapped
Hit time 2 cycles
Request ports 2

L2 cache: write-back
Size, associativity 512 KB, 4 ways
Hit time 15 cycles
Request ports 1

Directory Parameters (when applicable)
Directory controller cycle 1 cycle (on-chip)
Directory access time 6 cycles (L2 tag)
Message creation time:

First coherence message 4 cycles
Next coherence messages 2 cycles

Memory Parameters
Memory access time 300 cycles
Memory interleaving 4-way

Internal Bus Parameters
Bus width 8 bytes
Bus cycles 1 cycle

Network Parameters
Topology 2-dimensional mesh
Non-data message size 2 flits
Channel bandwidth 4 GB/s

To perform our simulations, we have used RSIM which pro-
vides a directory based coherence protocol. For the simula-
tions using a token protocol, we have developed a new ver-
sion of RSIM which models a protocol similar to TokenB
as described above.

Recently, the GEMS simulator has been released by the
Winsconsin Multifacet Project. GEMS is a timing simulator
based on the Simics full system simulator and includes im-
plementations for a TokenB protocol and a directory based
protocol, amongst others. We have run our simulation us-
ing GEMS too for comparison purposes using the supplied
TokenB and directory protocols. However, due to current
limitations in Simics, we have only been able to use 16 pro-
cessors for these simulations.

The configuration of the system simulated in GEMS is as
close as possible to the one used in RSIM. However, dif-
ferences between the simulators and the simulated architec-
tures are inevitable (for example, GEMS uses a torus instead
of a mesh for the interconnection topology). Also, we have
not used Opal (the detailed processor model provided by
GEMS) and we have used the in-order processor model pro-
vided by Simics. Using the simpler processor model allows
much shorter simulation times.

RSIM is a much faster simulator than GEMS. This makes
possible to scale up the problem size or the number of pro-
cessors in the system while keeping reasonable simulation
times. Currently, RSIM supports simulating systems with
up to 64 processors.

For the same problem size, the simulation of a 32-processor

Figure 1: Normalized execution time of the token
protocol with respect to the directory protocol for
16 processors using RSIM and GEMS.

system using RSIM which models a detailed ILP processor
takes less time than the simulation of a 16-processor system,
even when GEMS does not use its detailed processor model
(Opal) but an in-order processor.

4.2 Results
In figure 1 we show the execution time of each benchmark for
16 processors using our token based protocol simulated with
RSIM normalized with respect to the execution time using
a directory based protocol. We see that every benchmark
improves its execution time obtaining speedups from 4% for
Water-NSQ and Water-SP up to 51% for Unstructured. The
average improvement in execution time is 13%.

Figure 1 shows also the execution times of our benchmarks
using GEMS simulating a 16 processors systems using To-
kenB compared to a directory based protocol. These results
show higher speedups for most applications than those ob-
tained using our protocol simulated with RSIM, although
one of the applications obtains a much worse result, being
actually slower when using the TokenB protocol. The aver-
age speedup obtained is 14%, which is similar to our results.

When we increase the number of processors up to 32, the
average improvement in execution time is also 13% but now
not every benchmark obtains better time using our token
based coherence protocol. In figure 2 we can see the nor-
malized execution time of each benchmark. Some applica-
tions improve their execution time even more than using 16
processors, but other improve less or even obtain worse exe-
cution times than the directory version. Unstructured is still
the benchmark which obtains the best improvement, but it
is now only 26%. FFT and Tomcatv obtain a slightly worse
time too (1% and 3% worse respectively).

Looking at both figures we can see that the token based
coherence protocol does not scale as well as the directory
based protocol for some benchmarks. This is not totally
unexpected, since the token based protocol relies on broad-
casting every request and targets small and medium sized
systems, unlike the directory based protocol which is more
concerned with scalability. Hence, bigger machines using to-
ken based protocols may need to implement optimizations to



Figure 2: Normalized execution time of the token
protocol with respect to the directory protocol for
32 processors.

Table 3: Percentage of reissued requests for 16 pro-
cessors using RSIM

Number of retries
Benchmark 0 1 2 Persistent
FFT 99.68% 0.28% 0.01% 0.02%
Ocean 99.13% 0.72% 0.02% 0.13%
Radix 99.44% 0.55% 0.00% 0.01%
Water-NSQ 97.88% 1.56% 0.23% 0.34%
Water-SP 97.95% 1.19% 0.31% 0.56%
Tomcatv 96.32% 2.85% 0.17% 0.66%
Unstructured 97.40% 2.10% 0.20% 0.30%
Average 98.26% 1.32% 0.13% 0.29%

reduce bandwidth usage and use other performance policies
like those described in [7]. However, we see that for medium
sized machines like the simulated systems, the network is
not a bottleneck in general and token coherence scales on
average just as well as a directory based protocol.

In tables 3, 4 and 5 we see the percentage of misses sat-
isfied with one, two or three transient requests or using a
persistent request for GEMS and RSIM using 16 processors.
First, we see than in every case the percentage of requests
satisfied using only a single transient request is very high
(more than 95% in the worst case). However, we see that as
the number of processors increases to 32, the number of re-
quests that need at least one retry more than doubles. This
is because since there are more processors, it is more likely
that two or more processors request the same line at once.
This issue could limit the scalability of this token coherence
protocol when using even more processors.

When comparing the behavior of RSIM and GEMS using
16 processors with respect to the number of retries, we see
that our protocol makes less than half as many retries. This
difference is probably due to the small differences in param-
eters like initial timeouts and the different behavior of the
network. More retries do not necessarily imply worse perfor-
mance, since some retries are not actually necessary1 and in

1The answer for the first request may be already traveling
through the network when the retry is issued.

Table 4: Percentage of reissued requests for 16 pro-
cessors using GEMS

Number of retries
Benchmark 0 1 2 Persistent
FFT 95.83% 3.49% 0.47% 0.21%
Ocean 96.15% 3.52% 0.26% 0.07%
Radix 98.02% 1.86% 0.09% 0.03%
Water-NSQ 96.23% 3.35% 0.33% 0.08%
Water-SP 95.95% 3.47% 0.42% 0.16%
Tomcatv 93.50% 6.35% 0.12% 0.02%
Unstructured 96.42% 3.32% 0.20% 0.06%
Average 96.01% 3.62% 0.27% 0.09%

Table 5: Percentage of reissued requests for 32 pro-
cessors using RSIM

Number of retries
Benchmark 0 1 2 Persistent
FFT 98.81% 0.87% 0.17% 0.16%
Ocean 96.49% 2.32% 0.35% 0.84%
Radix 98.01% 1.94% 0.02% 0.03%
Water-nsq 94.87% 3.59% 0.71% 0.84%
Watersp 93.28% 4.39% 0.96% 1.37%
Tomcatv 95.90% 3.10% 0.40% 0.60%
Unstructured 93.77% 5.14% 0.76% 0.33%
Average 95.88% 3.05% 0.48% 0.60%

that case they do not hurt performance unless the network
is congested.

Also, the persistent request mechanism implemented by the
version of GEMS that we have used is different to the one
provided by our protocol. Instead of centralized arbitration,
it uses distributed arbitration which is more scalable and has
less latency. We think that this and the fact that our im-
plementation uses persistent requests more frequently than
GEM’s implementation is penalizing the performance of our
implementation.

Although the average speedup obtained by both implemen-
tations of the token protocol with respect to the correspond-
ing directory implementation is very similar (gap of 1%),
there are some benchmarks that obtain very different speedups.
Firstly, Unstructured obtains better improvement with our
implementation than with GEM’s implementation but we
think that this difference is not very important since the im-
provement is huge in both cases (51% and 39% respectively,
which are the best improvements for both simulators). On
the other hand, Water-NSQ and Ocean obtain a much worse
result using RSIM, while Tomcatv obtains a much worse one.
The reason of these differences are hard to explain due to
the many slight differences in the simulators and even in the
directory protocols assumed for the base cases.

4.3 Lessons learned
Modeling the performance of multiprocessor systems is a
resource hungry operation. There are several tradeoffs be-
tween accuracy, flexibility and simulation speed.



Contrary to GEMS using Simics, RSIM does not simulate
a whole system, but only the few components which are
interesting to measure the performance of the system run-
ning a certain kind of workloads. That is, RSIM can rea-
sonably model the performance of cc-NUMA systems run-
ning scientific benchmarks without the burden of model-
ing input/output, the effect of the operating system calls,
task scheduling, etc. On the other hand, these simplifica-
tions are not acceptable for running other kinds of workloads
like commercial workloads for which full system simulators
like GEMS can provide significantly more accurate measure-
ments. However, these simplifications allow RSIM to scale
easier than GEMS: RSIM can simulate the benchmarks pre-
sented in this work using 32 processors including a detailed
processor model employing a time comparable to the time
taken by GEMS using only 16 processors and an in-order
processor model (without Opal) for the same benchmarks.

Our protocol does not perform exactly as the TokenB de-
scribed in the literature due to differences in the architec-
ture simulated at the processor and network levels, and dif-
ferences in the protocol itself which have been already de-
scribed. However, the results are relevant as a verification
of the token coherence framework as a flexible tool to build
efficient coherence protocols.

We have found that token coherence provides a very good
framework for reasoning about the coherence protocol and
significantly eases the implementation of the protocol com-
pared to a traditional protocol. This is due to the correct-
ness substrate that ensures that races between different pro-
cessors cannot yield to an incoherence. However, those races
can degrade performance due to the retries (and eventually
persistent requests) which are needed to solve them. So,
although it is easier to build a correct coherence protocol,
there is still an important work required to fine-tune it and
obtain good performance.

Also, token coherence adds some issues to the protocol by
itself: most protocols based on token coherence will need
a multicast enabled interconnection network to be imple-
mented efficiently, some things are more difficult to imple-
ment or even impossible (like silent evictions), there is some
overhead involved in token accounting, etc.

5. CONCLUSIONS
In this work we have presented a new and independent eval-
uation of a cache coherence protocol for cc-NUMAs based on
token coherence. Our work validates previous claims about
token coherence using both a different simulator and a dif-
ferent kind of benchmarks.

Firstly, unlike previous works describing token coherence
protocols, we have used a different simulator than GEMS,
which was developed by the same group that proposed the
token coherence framework. Our simulator is based on RSIM,
a performance simulator already widely used for evaluating
cache-coherence protocols.

Secondly, we have used a different type of applications to
evaluate the coherence protocol, namely scientific workloads
(most of them from the SPLASH-2 benchmark suite) instead
of commercial workloads. Scientific problems are an impor-

tant use of high-performance shared memory computers and
they behave quite different than commercial workloads. In
particular, input/output performance is less important while
the processors speed and communication among threads are
more critical.

We have found that our version of the TokenB protocol per-
forms better than a directory based protocol for our bench-
marks using 16 processors, obtaining an average speedup of
13% with no slowdown in any of our applications when us-
ing 16 processors. In the case of a 32 processors machine,
we have found an average speedup of 13% too, but one of
the applications got 1% slower.

We think that these results could be improved tuning our
protocol implementation, specially implementing a better
persistent request arbitration method. Also, optimizations
using prediction that are easier to implement within the to-
ken coherence framework and that would be specially help-
ful for bigger machines have not been explored. However,
we have preferred to keep this initial implementation simple
and not optimize it too much to avoid skewing the results
in favor of the token based protocol.

For comparison purposes, we have evaluated the same ap-
plications using GEMS implementations of cache coherence
based on tokens and directory for SMPs using a 16-processor
configuration. We have found that GEMS implementation
of token coherence outperforms GEMS implementation of
directory coherence by 14%, which is very similar to the
average speedup obtained with our implementation.

Our simulation platform based on RSIM trades flexibility
for simulation speed to be able to simulate larger systems
or larger problem sizes. In this way, although RSIM can
only simulate scientific workloads (or workloads that do not
rely very much on the operating system behavior or in-
put/output) it can do it much faster than a full system
simulator like GEMS with Simics, which can simulate other
types of workloads too. We think that this is an acceptable
tradeoff if we are mostly interested in one kind of applica-
tions.

Finally, we think that token based protocols are a viable
alternative to traditional coherence protocols and the token
coherence provides a very flexible and simple framework to
develop new coherence protocol and optimizations.

Acknowledgements
We want to thank the anonymous reviewers for their insigth-
ful comments and valuable suggestions, which have helped to
improve the quality of this paper. This work has been sup-
ported by the Spanish Ministry of Ciencia y Tecnoloǵıa and
the European Union (Feder Funds) under grant TIC2003-
08154-C06-03. Ricardo Fernández-Pascual has been sup-
ported by the fellowship 01090/FPI/04 from the Comunidad
Autónoma de la Región de Murcia (Fundación Séneca, Agen-
cia Regional de Ciencia y Tecnoloǵıa).

6. REFERENCES
[1] M. E. Acacio and J. M. Garćıa. Techniques for

improving the performance and scalability of
directory-based shared-memory multiprocessors: A



survey. Journal of Computer Science & Technology,
3(2):1–8, October 2003. Invited paper.

[2] M. E. Acacio, J. González, J. M. Garćıa, and
J. Duato. An Architecture for High-Performance
Scalable Shared-Memory Multiprocessors Exploiting
On-chip Integration. IEEE Transactions on Parallel
and Distributed Systems, 15(8):755–768, August 2004.

[3] L. Barroso, K. Garachorloo, and E. Bugnion. Memory
system characterization of comercial workloads. In
Proceedings of the 25th International Symposium on
Computer Architecture (ISCA’98), pages 3–14, June
1998.

[4] J. Duato, S. Yalamanchili, and L. Ni. Interconnection
Networks: An Engineering Approach. Morgan
Kaufmann Publishers, Inc., 2002.

[5] R. Fernández and J. M. Garćıa. RSIM x86: A
cost-effective performance simulator. In 19th European
Conference on Modelling and Simulation, pages
774–779, Riga, Latvia, June 2005. European Council
for Modelling and Simulation.

[6] C. Hughes, V. Pai, P. Ranganathan, and S. Adve.
RSIM: Simulating shared-memory multiprocessors
with ILP processors. IEEE Computer, 35(2):40–49,
February 2002.

[7] M. M. Martin. Token Coherence. PhD thesis,
University of Wisconsin-Madison, December 2003.

[8] M. M. Martin, M. D. Hill, and D. A. Wood. Token
coherence: A new framework for shared-memory
multiprocessors. IEEE Micro, 23(6):108–116,
November/December 2003.

[9] M. M. Martin, M. D. Hill, and D. A. Wood. Token
coherence: Decoupling performance and correctness.
In The 30th Annual International Symposium on
Computer Architecture, pages 182–193, June 2003.

[10] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R.
Marty, M. Xu, A. R. Alameldeen, K. E. Moore, M. D.
Hill, and D. A. Wood. Multifacet’s general
execution-driven multiprocessor simulator (GEMS)
toolset. Computer Architecture News, 33(4):92–99,
September 2005.

[11] P. Stenström, M. Brorsson, and L. Sandberg. An
adaptive cache coherence protocol optimized for
migratory sharing. In 20th ACM/IEEE Annual
International Symposium on Computer Architecture,
pages 109–118, May 1993.


