IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOLX, NO. X, XXXXX XXXX 1

Extending the TokenCMP Cache Coherence
Protocol for Low Overhead Fault Tolerance in CMP
Architectures

Ricardo Fernandez-Pascual, José M. Gaildienber, IEEEManuel E. Acacio and José Duattember, IEEE

Abstract— It is widely accepted that transient failures will Transient failures [14], also known as soft errors or single
appear more frequently in chips designed in the near future de event upsets, occur when a component produces an erroneous
to several factors such as the increased integration scalen the gytput and it continues working correctly after the eventeT
other hand, chip-multiprocessors (CMP) that integrate seeral causes of transient errors are multiple and include algtigte

processor cores in a single chip are nowadays the best altextive trik . d radiation f dioacti tovhich
to more efficient use of the increasing number of transistorshat Slrikes, cosmic rays, and radiation from radioactive atovng

can be p|aced in a Sing|e d|e Hence’ |t is necessary to desigrp)qst In trace amounts In a” materla|S and electncal SesIrc
new techniques to deal with these faults to be able to build like power supply noise, electromagnetic interference (EM
sufficiently reliable Chip Multiprocessors (CMPs). In this work, radiation from lightning. Any event which upsets the stoad
we present a coherence protocol aimed at dealing with transht communicated charge can cause soft errors in the circufiubut
';?S'LuJﬁ]si‘nthiL :{f?ﬁ; trf“gtv'\?gﬁ(rciznﬂgclt(')%n gretrvevlci)zglél(e)f %Cl\é’;’cgq;f Transient failures are much more common than permanet fail
our propgosal extends a token-basedg cache cohererrl)ce prot(i)co ures [19]._Curr§ntly, transient failures are alrea_ldy digant for
so that no data can be lost and no deadlock can occur due to SOMe devices like caches, where error correction codessee u
any dropped message. Using GEMS full system simulator, we to deal with them. However, current trends of hlgher intG’gr&
compare our proposal against a similar protocol without faut and lower power consumption will increase the importance of
tolerance (TOKENCMP). We show that in absence of failures transient failures [8]. Since the number of components imgle
our proposal does not introduce overhead in terms of increa& chjp increases so much, it is no longer economically feasibl
execution time over TOKENCMP. Additionally, our protocol can 5o ;me a worst case scenario when designing and testing the
tolerate message loss rates much higher than those likely toe . . .
found in the real world without increasing execution time mae chips. Instead,_ new deS|gns_ will t_arget the common__case and
than 15%. assume a certain rate of transient failures. Hence, trarfsigures

will affect more components and more frequently and will chee

Index Terms—Fault tolerance, cache coherence, CMP, tran- 1, o handied across all the levels of the system to avoidahctu

sient failures, TokenCMP.

errors.
Communication between processors in a CMP is very fine-
I. INTRODUCTION grained (at the level of cache lines), hence small and freigues-

sages are used. In order to achieve the best possible parfoem
HIP Multiprocessors (CMPs) [3], [6] are currently acceptedt is necessary to use low-latency interconnections anddavo
as the best way to take advantage of the increasing numba@knowledgement messages and other control-flow messages a
of transistors available in a single chip, since they previtter much as possible.
performance without excessive power consumption expiiti In this work, we propose a way to deal with the transient
thread-level parallelism. failures that occur in the interconnection network of CMRe
In many applications, high availability and reliabilityeacrit- only consider traffic due to accesses to coherent memory and
ical requirements. The use of CMPs in critical tasks can hgnore for now accesses to non-coherent memory like memory-
hindered by the increased rate of transient faults due tetee mapped 1/0. We can assume that these failures cause the loss
decreasing feature size and higher frequencies. To enabfe mof some cache coherence messages, because either therinterc
useful chip multiprocessors to be designed, several falgtdnt nection network loses them, or the messages reach the atestin
techniques must be employed in their construction. node (or other node) corrupted. Messages corrupted by aisoft
Moreover, the reliability of electronic components is nevewill be discarded upon reception using error detection soar
perfect. Electronic components are subject to severalstygfe proposal adds only those acknowledgements which are abbolu
failures due to a number of sources. Failures can be eithereded and does so without affecting the critical path oftmos
permanent, intermittent or transient. Permanent failusggiire operations.
the replacement of the component and are caused by eleetromiWe attack this problem at the cache coherence protocol.level
gration among other causes. Intermittent failures are ipalne In particular, we assume that the interconnection netwsrka
to voltage peaks or falls. longer reliable and extend the TokenCMP [12] cache coherenc
protocol to guarantee correct execution in presence of mrdp
R. Fernandez-Pascual, J.M. Garcia and M.E. Acacio arh thié De- messages. Our proposal only modifies the coherence praindol

partamento de Ingenieria y Tecnologia de Computadoresyetsidad de does not add any requirement to the interconnection netveark
Murcia (Spain). E-mail:{rfernandez, jmgarcia, meacag¢i@ditec.um.es. J.

Duato is with the Departamento de Informatica de Sistem@smputadores, It IS applicable to current and future designs. We prptedlydi
Universidad Politécnica de Valencia (Spain). E-mail:gth@disca.upv.es. data with acknowledgement messages out of the critical path

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOLX, NO. X, XXXXX XXXX 2

cache misses and provide a mechanism for recovering from las [5]. Here, we extend that work with a more extensive eval-
non-data messages. Since the coherence protocol is kfitica uation process including a commercial application (the dkga
good performance and correct execution of any workload inkenchmark) in addition to the suite of scientific benchmarks
CMP, it is important to have a fast and reliable protocol. Owualready considered, better adjustment of the timeouts fised
protocol does not add a significant execution time overhedd letecting faults and we also consider the out-of-order @ti@c
adds a small network traffic overhead (around 10%). model. Additionally, we have rewritten the description diet
There have been several proposals for fault tolerancettagge cache coherence protocol to make comprehension easier.
shared-memory multiprocessors. Most of them use variation The rest of the paper is organized as follows. In section Il we
of checkpointing and recovery: R.E. Ahmext al. developed present some background about token coherence that issagges
Cache-Aided Rollback Errors Recovery (CARER) [1], Wual. to better understand the rest of the paper. In sections dl &
[22] developed error recovery techniques using privateheac we describe the problems posed by an unreliable intercoiomec
for recovering from processor transient faults in multggesor network to TOKENCMP and the solutions that we propose.
systems, Banatret al. proposed aRecoverable Shared MemorySection V presents the evaluation of the overhead intraditge
(RSM) which deals with processor failures on shared-memogur proposal and its effectiveness in presence of faulisally
multiprocessors using snoopy protocols [2], while Sunada in section VI we summarize the main conclusions of our work.
al. proposedDistributed Recoverable Shared Memory with Logs
(DRSM-L) [20]. More recently, Pruvlovicet al. presented Re- I[l. TOKEN COHERENCE BACKGROUND

Vive, which performs checkpointing, logging and memorydihs Regarding the cache coherence protocol background, token
distributed parity protection with low overhead in erroed exe- coherence [9], [10] is a framework for designing coherence
cution and is compatible with off-the-shelf processorghes and protocols whose main asset is that it decouples the coesstn
memory modules [16]. At the same time, Soghal. presented supstrate from several different performance policiess Btiows
SafetyNet [18] which aims at similar objectives but has lessreat flexibility, making it possible to adapt the protocair f
overhead, requires custom caches and can only recover frgffferent purposes easily [9] since the performance potiag be
transient faults. Several commercial systems have bedfruising modified without worrying about infrequent corner casespséh
fault-tolerance techniques and targeting high-avaitgbiteeds, correctness is guaranteed by the correctness substraken To
like Tandem (now HP) NonStop systems [4], IBM zSeries [17koherence protocols can avoid both the need of a totallyredde
or systems offered by Stratus. network and the introduction of additional indirection sad by

Recently, Meixneret al. have proposed an error detectionthe directory in the common case of cache-to-cache tramsfer
technique for multiprocessors [13] based on token coherenc The main observation of the token framework is that simple
which can detect any coherence error but provides no regovesken counting rules can ensure that the memory system bghav
mechanism. Also, Aggarwakt al. provide a mechanism to in a coherent manner. The followinfoken countingrules are
provide dynamic reconfiguration of CMPs which enables fauliitroduced in [9]:

containment for dealing with transient errors and recométian « Conservation of Tokens Each line of shared memory has a
to deal with hard errors, but does not directly address thblpms fixed number off” tokens associated with it. Once the system
caused by a faulty interconnection network in the coherence jg jnitialized, tokens may not be created or destroyed. One
protocol. token for each block is the owner token. The owner token
Up to the best of our knowledge, there has not been any may be either clean or dirty.

proposal dealing explicitly with transient faults in thedrcon- —, write Rule: A component can write a block only if it holds
nection network of multiprocessors or CMPs from the point of 3| 7 tokens for that block and has valid data. After writing
view of the cache coherence protocol. Also, most fault tolee the block, the owner token is set to dirty.

proposals require some kind of checkpointing and rollbactile « Read Rule A component can read a block only if it holds
ours does not. Our proposal could be used in conjunction with 5t least one token for that block and has valid data.

other techniques which provide fault tolerance to indiddcores « Data Transfer Rule: If a coherence message carries a dirty
and caches in the CMP to achieve full fault tolerance cov®rag gwner token, it must contain data.

inside the chip. « Valid-Data Bit Rule: A component sets its valid-data bit
The main contributions of this paper are the following: we for a block when a message arrives with data and at least
have identified the different problems that the use of anliaire one token. A component clears the valid-data bit when it no

interconnect poses to a token based CMP cache coherence prot |onger holds any tokens. The home memory sets the valid-
col (TOKENCMP) by the loss of messages due to an unreliable data bit whenever it receives a clean owner token, even if
interconnect; we have proposed modifications to the prétoco the message does not contain data.

and the architecture to cope with these problems withouinradd « Clean Rule Whenever the memory receives the owner
excessive overhead; and we have implemented such solutions token, the memory sets the owner token to clean.

in a full system simulator to measure their effectivenesd an Considering these rules, we can relate token protocols tth

execution time overhead. We show that in absence of failurggional MOESI protocols and define each of the states depgnd
our proposal does not introduce overhead in terms of inetasyn the number of tokens that a processor has:

execution time over DKENCMP. Additionally, our protocol can 0 tokens: Invalid.
tolerate message loss rates much higher than those likele to 1 to T — 1 tokens, but not thewner token Shared.
found in the real world without increasing execution timereo 1 to T — 1 tokens, including th@wner token Owned.
than 15%. T tokens, dirty bit inactive: Exclusive.
A preliminary and patrtial version of this article was pretezh T tokens, dirty bit active: M odified.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOLX, NO. X, XXXXX XXXX 3

The rules above ensure that cache coherence is maintaineatallel to the initial processing of the message (like aste to
but do not ensure forward progress. Token coherence avoitie cache tags and to the MSHR to check the line state).

starvation by issuing a persistent request whenever a §50ce There are several types of coherence messages that cart be los
detects potential starvation. Persistent requests, eutfinsient \yhich translate into a different impact in the coherencequol.
requests which are issued most times, are guaranteed tuellgn Firstly, losing transient requests is harmless. Note tahavhen
succeed. To ensure this, each token protocol must define howyk state that losing the message is harmless we mean thatano da

deals with several pending persistent requests. loss, deadlock, or incorrect execution would be causetpatth
In this WOfk, we will consider a distributed perSiStent reqU some performance degradation may happen_

scheme using a persistent request table at each cache abelésc Since invalidations (which can be persistent or transieat r
in [9]. Each processor will be able to activate at most on

.) g . uests) in the base protocol require acknowledgement éblees
persistent request at a time by broadcasting a persistet r&) b d g @

S) .) %olding tokens must respond to the requester), losing aagess
request activation or a persistent write request actimat®nce

o . cannot lead to an incoherence.
the request has been satisfied, the processor will broadcast

persistent request deactivation. To avoid livelock, a pssor -0Sing any other type of message, however, may lead to
will not be able to issue a persistent request again until &padlock or data loss. Particularly, losing coherence agess
the persistent requests issued by other processors bésofast containing one or more token; would lead to a deadlock, tm:aq
persistent request was deactivated have been deactiaated t € total number of tokens in the whole system must remain
Token coherence provides the framework for designing sbvefonstant to ensure correctness. More preC|s_er, if the enrob
particular coherence protocols. The performance policy twken tokens decreasgs becayse_a message carrying one or mare toke
based protocol is used to instruct the correctness substratove does nqt reach its destination, no processor will be ableritew
tokens and data through the system. To date, only a few perqu that line of memory anymore.
mance policies have been designed, amongst theken-using- ~ The same thing happens when a message carrying data and
broadcast(TOKENB) is a performance policy to achieve low-tokens is lost, as long as it does not carry the owner token. No
latency cache-to-cache transfer misses, although it resjmore data loss can happen because there is always a valid copg of th
bandwidth than traditional protocols [10]CKENCMP [12] is a data at the cache which has the owner token.
performance policy similar to 3KENB which targets hierarchical ~ Another different case occurs if the lost coherence message
multiple CMP systems. It uses a distributed arbitrationeset contains a dirty owner token, since it must also carry the orgm
for persistent requests, which are issued after a singly tet line. Hence, if the owner token is lost, no processor (or mgmo
optimize the access to contended lines. module) would send the data and a deadlock and possibly data
loss would occur. In the 3kENCMP protocol, like in most cache
coherence protocols, the data in memory is not updated dm eac
write, but only when it is evicted from the owner cache. Also,
the rules governing the owner token ensure that there isyalwa
From now on, we consider a CMP system whose intercoat least a valid copy of the memory line which travels alonghwi
nection network is not reliable due to the potential preseot it every time that the owner token is transmitted. So, losing
transient errors. We assume that these errors cause theflosgnessage carrying the owner token means that it is possible to
messages (either an isolated message or a burst of theng) shatally lose data.

they directly disappear from the interconnection netwarkmwive Finally, while a persistent request is in process, we have to

to their destination corrupted and are discarded. deal also with errors in the persistent request messagaind.a
Instead of detecting faults and return to a consistent staj@rsistent request or persistent request deactivationdwoeate

previous to the occurrence of the fault, our aim is to designconsistencies among the persistent request tables ltcaabe

a coherence protocol that can guarantee the correct seman a distributed arbitration scheme which would lead to dieeid

of program execution over an unreliable interconnectiotwnek situations too.

without ever having to perform a checkpointing or rollbae do 116 st obvious solution to the problems depicted above is

not try to address the full range of errors that can occur ilMPC 1, engre that no message is lost while traveling through the
system. We only concentrate on those errors that affectttire

Ill. PROBLEMS ARISING INCMPS WITH AN UNRELIABLE
INTERCONNECTION NETWORK

’ Y ; interconnection network by mean of reliable end-to-end sage
the interconnection network. Hence, other mechanismslgHmmu delivery using acknowledgement messages and sequenceraimb

used to complement our proposal to achieve full fault toleea i, 5 gimilar way to TCP [15]. However, this solution has sever
for the whole CMP. Next, we present the problems caused by the, \ hacks:

loss of messages in theoOKENCMP protocol and later we show

how these problems can be solved. « Adding acknowledgements to every message would increase
From the point of view of the coherence protocol, we assume the latency of cache misses, since a cache would not be able
that a coherence message either arrives correctly to itthdden to send a message to another cache until it has received the

or it does not arrive at all. In other words, we assume that no acknowledgement for the previous message.

incorrect or corrupted messages can be processed by a node. That solution would significantly increase network traffic.
To guarantee this, error detection codes are used. Upovakrri The number of messages would be at least doubled (one
the CRC is checked using specialized hardware and the nessag acknowledgement for each message).

is discarded if it is wrong. To avoid any negative impact on « Extra message buffers would be needed, to store the mes-
performance, the message is assumed to be correct becéise th sages until an acknowledgement is received in case they need
is by far the most common case and the CRC check is done in to be resent.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOLX, NO. X, XXXXX XXXX 4

IV. A FAULT TOLERANT TOKEN COHERENCE PROTOCOL other requests and the possibility of network congestiam, o
fault detection mechanism may produce false positivebpath

Instead of ensuring reliable end-to-end message delivesy, this should b inf s ; that
have extended th&kenCMPprotocol with fault tolerance mea- IS should be very inirequent. hience, we must ensure that ou
corrective measures are safe even if no fault really ocdurre

sures. For doing this, we have added the following statesido t Wi £ all th bl h ise d
traditional MOESI statdsused by the non fault tolerant protocol: e present a summary o a the problems t at can arise due
to loss of messages and their proposed solutions in table II.

« Backup (!3): This stgte is similar to the Invalid state, butye rest of this section, we explain how our proposal present
the data line is kept in the cache to be used for recovery Ry s each one of these situations in detail

the token recreation process$ necessary. A line will enter a
Backup state when the ownership needs to be transferred to TABLE Il

a different cache (that is, when leaving the Modified, Owned SUMMARY OF THE PROBLEMS CAUSED BY LOSS OF MESSAGES
or Exclusive states) and will, abandon it and become invalid

. . . | Fault / Lost message| Effect | Detection and Recovery |
once anownership acknowledgementessages is received. - =
. . Transient read/write] Harmless
o Blocked ownership (Mb, Eb and Ob) To prevent having request
more than one backup for a line at any given point ilTResponse with tokens Deadlock Lost token timeout, token
time, a cache that receives the owner token (entering the _ recreation
Modified, Exclusive or Owned state) will avoid transmit{ Response with tokens Deadlock Lost token timeout, token
i h to another cache until it receivedacku and data__ : receation
ting t € owner = X p Response with a dirty] Deadlock and| Lost data timeout, toker|
deletion acknowledgementessage. For achieving this, we owner token and datg data loss recreation using backu
have added blocked versions of the Modified, Exclusive and _ state .
Owned states. While a line is in one of this states, ﬂ,ePersstent read/writ§ Deadlock Lost to_ken timeout, token
- L. . requests recreation
cach_e will ignore eXte_mal requests fo_r writing to th_at_ line Persistent request dg- Deadlock Lost persistent deactiva:
Persistent requests will be attended just after receivirgy t| activations tion timeout, persistent re
backup deletion acknowledgemenessage.] quest ping
« Recreating tokens (R) A line will enter this state when a | OWnership acknowl-| Deadlock ~and| Lost data timeout, toker
. . . edgement cannot evict line| recreation
fault is detected and #ken recreation process requested. from cache
The main principle that has guided the protocol developmenlEaCklIde dele“(i“ ac| Deadlock l'zOSI lbzckUp dtele:_ion ac
has been to prevent adding significant overhead to the faylt="Viecgemen t;&ﬁ%gﬁgﬁgn imeou

free case and to keep the flexibility of choosing any parcul

performance policy. Therefore, we should try to avoid myidid

the usual behavior of transient requests. For example, welgh

Z\S/o:gupélsc;r;gp%zgzlt; point acknowledgements in theeaitpath A. Dealing with token loss
Once a problematic situation has been detected, the mair¥Vhen a processor tries to write to a memory line which has lost

recovery mechanism used by our protocol is thien recreation a token, it will eventually timeout and issue a persistequesst. In

processdescribed later. That process resolves a deadlock ensuriig end, after the persistent request gets activated eaéivtailable

both that there is the correct number of tokens and one and offPkens in the whole system for the memory line will be receive

one valid copy of the data. by the starving cache. Also, if the owner token was not lost an
As shown in the previous section, On]y the messages Carryi.ﬁgnot blocked (see section |V-B), the cache will receiveoib t

transient read/write requests can be lost without negatoe together with data. However, since the cache will not rexeaily

sequences. For the rest of the cases, losing a messages re8ifit tokens, it will not be able to complete the write miss, and

in a problematic situation. However, all of these cases have finally the processor will be deadlocked.

common that they lead to deadlock. Hence, a possible way toWe use the“lost token timeout” to detect this deadlock

detect faults is by using timeouts for transactions. We wse f situation. It will start when a persistent request is atédaand

timeouts for detecting message losses: ‘fost token timeout” Will stop once the miss is satisfied or the persistent regigest

(see section IV-A), the'lost data timeout”, the “lost backup deactivated. The value of the timeout should be long enoagh s

deletion acknowledgement timeouiee section IV-B) and the that, in normal circumstances, every transaction will bésfied

“lost persistent deactivation timeou(see section IV-C.2). Notice before triggering this timeotit

that all these timeouts along with the usual retry timeouthef ~ Hence, if the starving cache fails to acquire the necessary

token protocol (except théost persistent deactivation timegut tokens within certain time after the persistent request teen

can be implemented using just one hardware counter, sirge tigctivated, thdost token timeouwill trigger. In that case, we will

do not need to be activated simultaneously. Forltise persistent assume that some token carrying message has been lost and we

deactivation timeoytan additional counter per processor at eachill request a token recreation process for recovery to teenory

cache or memory module is required. A summary of the timeoutgodule. This process will also take care of false positivethe

used by our proposal can be found in table I. lost token timeoutvhich could lead to an increase in the total
Since the time to complete a transaction cannot be boundaémber of tokens and to coherence violations by means of the

reliably with a reasonable timeout due to the interactiohwi token serial numbe(see section IV-D). Notice that tHest token

timeoutmay be triggered for the same coherence transaction that

1There are many intermediate states also which are not @mesidn this

explanation for simplicity, both in the non fault toleramtdain the fault tolerant 2Using a value too short for any of the timeouts used to detadtsf would

protocols. lead to many false positives which would hurt performance.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOLX, NO. X, XXXXX XXXX 5

TABLE |
TIMEOUTS SUMMARY.

Timeout When is it activated? Where is it activated? When is it deactivated? What happens when it trig]
gers?
Lost Token When a persistent request At the starver cache. When the persistent request Request a token recreation.
becomes active. is satisfied or deactivated.
Lost Data When a backup state is en- At the cache that holds the When the backup stat¢ Request a token recreation.
tered (when the owner to{ backup. is abandoned (when the
ken is sent). Ownership Acknowledge-

ment arrives).
Lost Backup Deletion Ac-| When a line enters the At the cache that holds th¢ When the blocked state¢ Request a token recreation.
knowledgement blocked state. owner token. is abandoned (when the
Backup Deletion Acknowl-
edgement arrives).

Lost Persistent Deactiva} When a persistent request At every cache (by the per} When the persistent reque$t Send a persistent request
tion from another cache is acti; sistent request table). is deactivated. ping.
vated.

loses the message or for a subsequent transaction for the sanmA cache line in a backup state will be used for recovery if no
line. Once the token recreation has been done, the miss canvald copy is available when a message carrying the owneartok
satisfied immediately. is lost. To be able to do this in an effective way, it is necgssa
to ensure that there is a valid copy of the data or one and only
one backup copy at all times, or b8tiHence, a cache which has
received the owner token recently cannot transmit it agaitil u
To avoid losing data in our fault tolerant coherence prokoao it is sure that the backup copy for that line has been delédted.
cache (or memory controller) that has to send the owner tak#tn this situation, the line enters th#ocked ownershitate. A line
keep the data line in backupstate. A line in backup state will not will leave this state when the cache receivebazkup deletion
be evicted from the cache until awnership acknowledgementacknowledgemenivhich is sent by any cache when it deletes
is received, even if every token is sent to other caches. Thisbackup copy after receiving amwnership acknowledgement
acknowledgement is sent by every cache in response to a geessdigure 1 shows an example of how the owner token is transtnitte
carrying the owner token. While a line is backupstate its data is with our protocol.
considered invalid and will be used only if required for reery. The two acknowledgements necessary to finalize this transac
Hence, the cache will not be able to read from that3in®so, tion are out of the critical path of the miss. However, theyeai
when a line enters in a backup state thet data timeouwill period after receiving the owner token until thackup deletion

B. Avoiding data loss

start and will stop once the backup state is abandoned. acknowledgemerdrrives during which a cache cannot answer to
write requests because it would have to transmit the own@nto
c1 C2 which is blocked. This blocking also affects persistentuesis,
[R GetX M which are serviced immediately after receiving theckup dele-
P_at:afd: M->B tion acknowledgementThis blocked period could increase the
I->Mb (<=7 S.)A;\C_k o o latency of some cache-to-cache transfer misses, howeveave
CK - >

______ i found that it does not have impact on performance, as mogsvri
are sufficiently separated in time.

This mechanism also affects replacements (from L1 to L2
Cache C1 broadcasts a transient exclusive request (Ge)which and from L2 to memory), since the replacement cannot be
has all the tokens and hence it is rimodifiedstate (M), answers to Performed until anownership acknowledgemerst received. We
C1 with a message (DataO) carrying the data and all the tokeh@ve found that the effect on replacements is much more bérmf
including the owner token. Since C2 needs to send the owkento for performance than the effect on cache-to-cache tramsieses
it goes to thebackup state (B) and starts thiost data timeout Mentioned above.
When C1 receives the DataO message, it satisfies the miss ando alleviate the effect of the blocked period in the latenéy o
enters themodified and blockedtate (Mb), sending an ownershipreplacements, we propose using a snieltkup bufferto store
acknowledgement to C2. When C2 receives it, it discards #ofp, the backup copies. In particular, we add a backup buffer th ea
goes tanvalid state (1), stops thiost data timeoutind sends backup L1 cache. A line is moved to the backup buffer when it is in a
deletion acknowledgement C1. Once C1 receives it, it transitionsbackup state, it needs to be replaced and there is enough room
to the normalmodifiedstate. in the backup buffér The backup buffer acts as a small victim
cache, except that only lines in backup states are moved \¢eit
have found that a small backup buffer with just 1 or 2 entries i

Fig. 1. Transition diagram for the states and events inelive data loss
avoidance and message interchange example.

31t is possible for a cache to receive valid data and a tokerorbef “Having more than one backup copy would make recovery imptessi
abandoning a backup state, only if the data message was stotltothat ~ since it could not be known which backup copy is the most reoee.
case, it will be able to read from that line, since it will bartsitioned to an 5We do not move the line to the backup buffer immediately &ftenters a
intermediate backup and valid state until taenership acknowledgemerg backup state to avoid wasting energy in many cases and aasting backup
received. buffer space unnecessarily.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOLX, NO. X, XXXXX XXXX 6

enough to practically remove the negative effect of backages persistent request, it will not activate it in its local taldnd will
(see section V-B). Alternatively, a write-back buffer cd@chieve not send the tokens and data to the starver. Hence, the mnliss wi
the same effect. not be resolved and the starver will deadlock.

1) Handling the loss of an owned data carrying message or Since the persistent request has been activated at thesrstarv
an ownership acknowledgemeritosing a message which carriescache, thdost token timeouwill trigger eventually and the token
the owner token means that possibly the only valid copy oécreation process will solve this case too.
the data is lost. However, there is still an up to date backupOn the other hand, if the cache that does not receive thespersi
copy at the cache which sent the data carrying message. Sitet request did not have tokens necessary to satisfy the ihis
the data carrying message does not arrive to its destination will eventually receive an unexpected deactivation messegjch
correspondingownership acknowledgemeunitill be received by should ignore.
the cache and thiest data timeoutwill trigger. 2) Dealing with the loss of a deactivation messagé:a

If an ownership acknowledgemeistlost, the backup copy will persistent request deactivation message is lost, the sequitt
not be discarded and risackup deletion acknowledgementll pe permanently activated at some caches. To avoid thisgsach
be sent. Hence, the backup copy will remain in one of the achgill start thelost persistent deactivation timeowhen a persistent
and the data will remain blocked in the other. Eventuallthei request is activated and will stop it when it is deactivatathen
thelost data timeoubr thelost backup deletion acknowledgementhis timeout triggers, the cache will sengersistent request ping
timeoutwill trigger too. to the starver. A cache receiving ersistent request pinwill

When either timeout triggers, the cache requests a tokee-recanswer with a persistent request or persistent requestivtian
ation process to recover the fault (see section IV-D). Tlee@ss message whether it has a pending persistent request folirtaat
can solve both situations: if th@vnership acknowledgemewas or not, respectively. Théost persistent deactivation timeoig
lost, the memory controller will send the data which hadvedi restarted after sending theersistent request pintgp cope with
to the other cache; if the data carrying message was lost, the potential loss of this message.
cache will use the backup copy as valid data after the rdoreat |f the cache receives a persistent request from the samestar
process ensures that all other copies have been invalidated before thelost persistent deactivation timeotriggers, it should

2) Handling the loss of a backup deletion acknowledgementassume that the deactivation message has been lost anivateact
When abackup deletion acknowledgemesitost, a line will stay the old request, because caches can have only one pending
in a blocked ownership state. This will prevent it from beingersistent request.
replaced or to answer any write request. Both things woudd le
to a deadlock if they are not resolved.)

If a miss cannot be resolved because the line is blocked iesof Token recreation process
other cache waiting for backup deletion acknowledgemaevttich The token recreationis the main fault recovery mechanism
has been lost, eventually a persistent request will beatetivfor provided by our proposal. This process needs to be effediive
it and after some time thist token timeoutwill trigger. Hence, since it should happen very infrequently, it does not neetieto
the token recreation processill be used to solve this case. particularly efficient. In order to avoid any race and keep th

To be able to replace a line in a blocked state wherbdekup process simple, the memory controller will serialize th&eto
deletion acknowledgemeist lost, we use théost backup deletion recreation process, attending token recreation requestshe
acknowledgement timeout is activated when the replacement issame line in FIFO order.
necessary, and deactivated when tieekup deletion acknowl- The process works as long as there is at least a valid copy
edgemenarrives. If it triggers, @oken recreation processill be of the data in some cache or one and only one backup copy of
requested. the data or both things (the valid data or backup can be at the

The token recreation process will solve the fault in bothesas memory too). The protocol guarantees that these conditwas
since even lines in blocked states are invalidated and marstfer trye at every moment, despite any message61d$s[here is at

their data to the memory controller. least a valid copy of the data, it will be used for the recovery
Otherwise, the backup copy can be used for recovery.
C. Dealing with errors in persistent requests At the end of the process, there will be one and only one copy

Assuming a distributed arbitration policy, persistent ues of the data with all the tokens (recreating any token Whipty ma
messages (both requests and deactivations) are always-bréi@ve been lost) at the cache which requested the token tiecrea

casted to keep the persistent request tables at each cauttesy Process.

nized. Losing one of these messages will lead to an incemsigt There is one exception to this when the data was actually lost

among the different tables. (hence no valid copy of it exists, only a backup copy) and the
If the persistent request tables are inconsistent, songispent token recreation proceswas requested by a cache other than

requests may not be activated by some caches or some persidfg¢ one which holds the backup copy. In this case, tiien

requests may be kept activated indefinitely. These sitosiiould reécreation processvill fail to recreate the tokens, but the cache
lead to starvation. that holds the backup copy will eventually request anotbker

1) Dealing with the loss of a persistent requegtrstly, it is re.creation process (pecauselﬁst d{ata t.imeout/vill trigger), and
important to note that the cache which issues the persistquest this new process will succeed using its backup copy to recove
will always eventually activate it, since no message is lveg the data.
to update Its own persistent request table. 8In particular, these conditions are true if no message haa hest, hence

|T a (_:ache holding at |ea_5t one t0k?n for the requestgd iR token recreation process safe for false positives and can be requested
which is necessary to satisfy the miss does not receive theany moment.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOLX, NO. X, XXXXX XXXX 7

C1 C2 Mem C3
S Getx M ! |
D—at_a‘d z ™~ M->B
I->Mb |2 :QAck
ns
RERLCN [5N: 1Y TR
TES_':’; >R f~-._Tr1S
Br->Br [4>frSAck .’ A o BN
s -~/ R5R TrSA‘c_k_ .-
Mb->| | ezzz=====fmaccacpannans ‘ R->R 4"
--------- _TrSAck+Datal
BMmV.-z»R->Rd [--.BInv
Br->Ir ‘.'_BI_nvAck,') N e IR
Blnv “=ilRd-sRd| TOA -
. SR IS F Rdle"
e R Lo bl Bi-ay [Rd->Rd
s EUEY
Ir->M [Done+Data

In a transaction like the one of figure 1 tbevnership acknowledgemegets lost. Hence, C2 keeps the line in backup state (B). Afiare
time, thelost data timeoutriggers (LDto) and C2 sendstaken recreation requeshessage (TrR) to the memory controller and enters the
backup and recreatingtate. The memory controller sendset token serial numbanessage (TrS) to each cache. C2 and C3 receive this
message and answer with an acknowledgement (TrSAck) wittitanging their states, since they are either in invalid ackiop state. On
the other hand, C1 is imodified and blockedtate, hence it returns an acknowledgement with data (Tk$Bata) and changes its state
to invalid (I). When the memory receives the acknowledgement with, dasends abackup invalidatemessage to each cache. C1 and C3
answer with an acknowledgement (BInvAck) without chandingir states, while C2 discards its backup data (which cbeldnvalid since

C1 may have written already to the cache line), sets its statevalid and recreating(lr) and answers with an acknowledgement too. When
the memory receives all the acknowledgements, it sendiss&ruction donenessage to C2 including the new data (TrDone+Data). Finally
C2 receives the new data and sets its statmaodified(M).

Fig. 2. Transition diagram for the states and events ingblvethe token recreation process (used in this case to redov@ the loss of an ownership
acknowledgement).

When recreating tokens, we must ensure tbenservation to store those ones which have changed it and assume tta initi
of Tokensinvariant presented in section Il. In particular, if thevalue for the rest. Thirdly, the comparisons required tockhie
number of tokens increases, a processor would be able te wralidity of received messages can be done out of the crifiath
to the memory line while other caches hold readable copies aff cache misses.
the line, violating the memory coherence model. So, to avoid Since thetoken serial numbetable is finite, serial numbers are
increasing the total number of tokens for a memory line everset using the owner token recreation mechanism whenkeer t
in the case of a false positive, we need to ensure that all ttable is full and a new entry is needed, since resettirtgken
old tokens are discarded after the recreation process. fi@ae serial numberactually frees up its entry in the table.
this we define doken serial numbeconceptually associated with ~ Additionally, when a token serial number needs to be reset
each token and each memory line. (either to replace it from the token serial number table ardose
All the valid tokens of the same memory line should have t L ha_s reached the maximum vglue and need; to be incremented)

e interconnect should be drained and the line flushed fribm a

same serial number. The serial number will be transmittetini . -
. caches to ensure that there is not any old token still in tioré.
every coherence response. Every cache in the system must kno . . . o
. ; : . The information of the tables must be identical in all thehezsc
the current serial number associated with each memory Ik a oo . .
. . - . except while it is being updated by the token recreation gsec
should discard every message received containing an eaorr. ;
. - o The process works as follows:
serial number. Theoken recreation processiodifies the current . .
. : . ; When a cache decides that it is necessary to staxkan
token serial numbenssociated with a line to ensure that all the . :
. : fecreation process, it sends a@ecreate tokensrequest to the
old tokens are discarded. Hence, if there was no real falbute ; .
. memory controller responsible for that line. The memory can
a token carrying message was delayed on the network duea}o

. S - . . So decide to start #oken recreation processn which case
congestion (a false positive), it will be discarded whenereed P > .
: : no message needs to be sent. The memory will queken
by any cache because theken serial numbewill not match.

recreationrequests for the same line and service them in order
To store the token serial number of each line we proposeoé arrival.

small associative table present at each cache. Only lintws ami When servicing a@oken recreationrequest, the memory will

associated serial number different than zero must keep tiy erincrease thdoken serial numbeassociated to the line and send

in that table. The overhead of the token serial number is Isma set token serial numbenessage to every cache.

In the first place, we will need to increase it very infreqignt When receiving that message, each cache updatesokes

so a counter with a small number of bits should be enough (werial number destroys any token that it could have and sends

use a two bit wrapping counter). Secondly, most memory lines acknowledgement to the memory. The acknowledgement will

will keep the initial serial number unchanged, so we onlychealso include data if the cache had valid data (even if it waa in

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOLX, NO. X, XXXXX XXXX 8

blocked owner state). Our protocol also uses two more virtual channels tham T

Since all the tokens held by a cache are destroyed, the staltNCMP. One of the channels is used for sending ownership
of the line will become invalid, even if the line was in a bleck acknowledgement and the other for backup deletion ackriyele
owner state. However, if the line was held in a backup state,ment messages. These virtual channels are also used fangend
will remain in that way. the messages involved in the token recreation process.

If the memory controller receives an acknowledgement with Finally, to avoid performance penalty in replacements due
data, it will send abackup invalidatemessage to all the cachesto the blocked ownership period, we have proposed to add a
When receiving that request, the caches will send an acknowmall backup buffer at each L1 cache. The backup buffer can
edgement and discard its backup copy. This avoids having twe effective having just one entry, as will be shown in sectio
backup copies when several faults occur and two or more lpacku-B.
recreation processes are requested in quick succession.

Once the memory receives all the acknowledgements (ingdudi
the acknowledgements for the backup invalidation if it hasrb
requested), it will send destruction donanessage to the cacheA. Methodology

which initiated the recreation process (unless it is the orgym We have evaluated the performance of our proposal using
itself). The destruction doneanessage will include the data if it

. full system simulation. We have used Virtutech Simics [fdu
R¥nal simulator with Multifacet GEMS [11] timing infrasicture.

ltself, otherwise it means that there was no valid copy ofdh_ta GEMS can model both in-order and out-of-order processargjus
and there must be a backup copy in some cache (most “kelycﬂmal

the same cache that requested the token recreation).

V. EVALUATION

. . . We have simulated two likely design points for future CMP
When a cache receivesdestruction donanessage with data,) .
systems: a 4-way CMP system with out-of-order cores and a 16-

it will recreate all the tokens (with the neteken serial numbgr L) -
. o : way CMP system with in-order cores. Both configurations are
and hence set its statertwodified If the destruction donenessage . . . :
designed as an array of replicated tiles connected overrd-fimi

came without data and the cache was in backup state, it vall us_; ! -) .
the backup data and recreate the tokens anywayi.) deseruction point switched network. As shown in figure 3, each tile camtai

: . a processor, private L1 data and instruction caches andptre
done message came without data and the cache did not have . - !
L ... Shared L2 cache. We estimate that the two configurationsdvoul
backup copy, it will not be able to recreate the tokens, atie

will restart the usual timeouts for the cache miss. As mewtib ' 0o ¢ & comparable number of transistors.
above, when this last case happens there must be a backup copy

in another cache and thiest data timeoutof that cache will Network
eventually trigger and recover from this fault. Figure 2\whaan L1 data |y interface
example of thetoken recreatiorprocess at work. i) -L1|nst

1) Handling faults in the token recreation proces&ince I I

the efficiency of the token recreation process is not a great
concern, we can use unsophisticated (brute force) methmds t
avoid problems due to losing the messages involved. Hellad, a L2 cache
these messages are repeatedly sent every certain numhaies c s
(1000 in our current implementation) until an acknowledgeiris
received. Serial numbers are used to detect and ignorecdigsi
unnecessarily sent.

Fig. 3. Diagram of an individual tile.
E. Hardware overhead of our proposal

Firstly, to implement the token serial number table we have Using out-of-order execution does not affect the corressnaf
added a small associative table at each cache and at the gnentie@ protocol at all and does not have an important effect & th
controller to store those serial numbers whose value is eat.z overhead introduced by the fault tolerance measures cadar
In this work, we have assumed that each serial number regjuitee non fault tolerant protocol.
two bits (if the tokens of any line need to be recreated maieth ~ We have implemented the proposed fault tolerant coherence
times the counter will wrap) and that 16 entries per proceas® protocol using the detailed memory model provided by GEMS
sufficient (if more than 16 different lines need to be stomedhie simulator (Ruby) to evaluate its overhead compared to tbe T
table, the least recently modified entry will be chosen factian KENCMP [12] protocol and to check its effectiveness dealindiwit
using the token recreation process to reset the serial Mfmbe message lossesORENCMP is a token based coherence protocol

Most of the timeouts employed to detect faults can be impl&ithout fault tolerance provision but that has been optedifor
mented using the same hardware already employed to imptemparformance in CMPs.
the starvation timeout required by token coherence prdépco The most relevant configuration parameters of the modeled
although the counters may need more bits since the new timieosystems are shown in table 1ll. In particular, the valuesseno
are longer. For thelost persistent deactivation timeout is for the fault-detection timeouts have been fixed experiaignt
necessary to add a new counter per processor at each cachetaminimize the performance degradation in presence oftfaul
at the memory controller. while avoiding false positives which would reduce perfonoa

Also, some hardware is needed to calculate and check the eirothe fault-free case. Using even shorter timeout valueslavo
detection code used to detect and discard corrupt messages. reduce the performance degradation in presence of faulis on

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOLX, NO. X, XXXXX XXXX 9

TABLE Il

different sizes for the backup buffer, including the casenof
CHARACTERISTICS OF SIMULATED ARCHITECTURES

having a backup buffer at all.

4 or 16-Way CMP System
Processor Parameters
Processor speed 2 GHz 4 out-of-order core CMP
Max. fetch/rgtire rate 4
Cache Parameters
Cache line size 64 bytes
L1 cache: 12
Size, associativity 32 KB, 2 ways
Hit time 2 cycles
Shared L2 cache: 2
Size, associativity 512 KB per core, 4 ways éu—
Hit time 15 cycles 8
Memory Parameters M
Memory access time 300 cycles §
Memory interleaving 4-way s 7
Network Parameters 107 /
Topology 2D Torus i
Non-data message size 8 bytes ;
Data message size 72 bytes g
Channel bandwidth 64 GB/s ool g
Fault tolerance parameters ’ o S o e
Lost token timeout . 2000 cycles L N o o ““c_‘m‘e RLC
Lost data timeout 1000 cycles Applications
Lost backup deletion acknowledgement 1000 cycles
Lost persistent deactivation timeout 1000 cycles in-
Token serial number size 2 bits 16 in-order core CMP
Token serial number table size 16 entries
Backup buffer size 0, 1, 2 or 4 entries
1.2
TABLE IV

BENCHMARKS AND INPUT SIZES USED IN THE SIMULATIONS

Normalized execution time

[Benchmark | Input Size |
Apache 300 http transactions
Barnes 8192 bodies, 4 time steps
Cholesky tk16.0 ii
FFT 256K complex doubles ! |
Ocean 258 X 258 ocean g gj
Radix 1M keys, 1024 radix g !
Raytrace 10Mb, teapot.env scene [@ P S S e e
Tomcatv 256 points, 5 iterations &5 @ o T e e o e e e
Unstructured Mesh.2K, 5 time steps Applications
Water-NSQ | 512 molecules, 4 time steps
Water-SP 512 molecules, 4 time steps

Fig. 4. Execution time overhead of our proposal compareda@BNCMP
for several backup buffer sizes.

modgrately, but would significantly increase the risk ofséal As derived from figure 4, without a backup buffer the overhead
pos!t|ves. . . . in terms of execution time is more than 5% on average for the
Flnal_ly, ".JII.I the simulations have been conducted using S€)Y-core CMP and more than 20% for some benchmarks, which we
eral scientific programs anq the Apache HTTP server. Bam?ﬁink is not acceptable. The results for 16-core CMPs ardlaim
ggolesk¥, FF-[EOCSeSCASRSdéX’ Ziay;racer,] Watker-N.tSQ,Tand N\{at?oo. We have found that this slowdown is due to the increased
are" Tom € ¢ SF-’E(E b] erTC mkar (sjwue. tonlca\(/j fatency of the misses which need a replacement of an owned lin
a paraliel version of a - benchmark an nstructure ff?st, since the replacement is no longer immediate but has to
a computational fluid dynamics application. The experlralsntwait until an ownership acknowledgemeist received from the
results reported here correspond to the parallel phase df €85 cache
program only. In the case of Apache, We use version 2'.2'4@“/ Fortunately, the use of a very small backup buffer is enough
static web pages of different sizes. Table IV shows the ispmés to avoid nearly all this penalty. In the 4-core CMP, a backup

used in the simulations. We have performed several sinaugti bru(]ffer of just one entry cuts down the penalty to less than 2%

with different random seeds for each benchmark to accou . .
for the variability of multithreaded execution, that vduility is Sn ea\é?]rt???ﬁ '3? ed ;;ZLE:;1b6l;f(;g:eisalrgglst?ﬁgjr:el’£ e slowdosing.

represented by the error bars in the figures which enclose t%e]_he other potential source of miss latency overhead in our

resulting 95% confidence interval of the results. protocol is due to the fact that a cache holding a line in ack#d
owner state cannot respond to write requests (not evenspanmsi
B. Measuring the overhead for the fault-free case write requests). The blocked time lasts while tbanership
First, we evaluate both execution time overhead and netwaskknowledgementravels to the previous owner and until the
overhead of our protocol when no messages are lost. As prevackup deletion acknowledgemettives to the new owner. The
ously explained, the execution time overhead depends osizke results shown in figure 4 suggest that the effect of this ceh
of the backup buffer (see section 1V-B). Figure 4 plots itngsi in the total execution time is negligible, since the writésitt

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOLX, NO. X, XXXXX XXXX 10

different cores perform on the same line are usually sufiitye Figure 6 shows the execution time overhead of the protocol
separated in time and the new owner can progress its exacutising a backup buffer with one entry under several message lo
as soon as the data is received. rates. Failures rates are expressed in number of messagfes lo

On the other hand, figure 5 shows the network overheger million of messages that travel through each switch & th
measured as relative increase of bytes transmitted thrabigh network. These failure rates are much higher than realiaiicre
network for the same benchmarks and configurations employedes, so these tests overstress the fault tolerance mosi®f
above. As shown in our previous work [5] where we simulatethe protocol. Obviously, the baseoKENCMP protocol (or any
a 4-way in-order CMP, the relative network overhead de@gaspreviously proposed cache coherence protocol) would netbibe
slightly as we increase the number of processors (11% fortd execute correctly any of these tests.
processors and 8% for 16 processors on average). The network
overhead is due to the acknowledgements used to guarargee th

L |) 4 out-of-order core CMP

correct transmission of the owner token and its associasd. d
On average, we have found a 10% of network overhead that
represents the cost of extending theKENCMP protocol with
fault tolerance properties.

5

5

4 out-of-order core CMP

Normalized execution time
[N
T

1.0

RSSO

S
SIS
SN

S

0.9—

Y O Q e
& & o) o
W 5 &
N N e
o W
o

Applications

Normalized network usage

16 in-order core CMP

1.4

ESSSSUSSIT T S
ST

e
o

o

& @ &
@ o a
< o o

(= ¥ o«
e w

o
o« w®

5

Applications

16 in-order core CMP

5

WMoO1mA2@4

Normalized execution time

I
N
I

1.0

RN

=

0.9—

d N e & R o
e ¢ N A e (™
W e @ @ @ e
o™

Applications

Normalized network usage

Fig. 6. Execution time overhead under several message dss. r

R T LT T AL LA LA AR AN A AN

é
é
7

SIS

IS
STy

As we can see, our proposal can support failure rates of up to
R i A g e 2000 messages lost per million with an average degradafion o
Applications 12% in the execution time in a 4-core CMP. In a 16-core system,
the same loss rate yields 8% average slowdown. Hence, our
Fig. 5. Network traffic overhead of our protocol compared KENCMP. ~ Protocol can support a message loss rate of up to 2000 message
per million without increasing the execution time more tl&96.
As expected, higher failure rates create a higher slowdaowthé
execution but the fault tolerance measures of the prototibhl s
allow the program to complete correctly, confirming the rstbu
We have shown that our protocol introduces negligible oveness of such measures. The slowdown depends almost lirearly
head in the average execution time and slight network oegrhethe failure rate. Additionally, the extent of this slowdownvery
On the other hand, our proposal is capable of guaranteeig 8ensitive to the values of the timeouts used to detect messag
correct execution of a multi-threaded workload on a CMP evdasses. In particular, in our previous work [5] we used very
in the presence of transient faults. However, the failumes the different and much higher timeout values (6777 — 20000 cycle
necessary recovery introduce certain overhead which wddvounstead of 1000 — 2000) in order to avoid false positives astmu
like to keep as small as possible. as possible. Using those timeouts, the performance deipada

C. Measuring the supported fault tolerance ratio

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOLX, NO. X, XXXXX XXXX 11

presence of faults was much higher due to the increasedtiaten Ingenio-2010 CSD2006-00046" and “TIN2006-15516-C04:03”
detect a fault and start a recovery process. The new shatgesy Ricardo Fernandez-Pascual has been supported by the$bijm
used for this paper have been determined experimentalljpato t01090/FPI/04 from the Comunidad Autdnoma de la Region
the false positive rate remains almost zero (hence the eadrh de Murcia (Fundacion Séneca, Agencia Regional de Ciencia
in absence of faults is almost the same) but the performaritecnologia).
degradation in presence of faults is much lower. We thank the anonymous reviewers for their insightful com-
ments and suggestions which have helped significantly toanep
V1. CONCLUSIONS the final version of this paper.
The rate of transient failures in near future chips will iease
due to a number of factors like the increased scale of integra
the lower voltages used and changes in the design process. Th
will create problems for CMPs and new techniques will be
required to avoid errors. One important source of problenis w [1] R.E. Ahmed, R.C. Frazier, and P.N. Marinos. Cache-aideitback
be faults in the interconnection network used to commumicat error recovery (CARER) algorithm for shared-memory mutigessor
between the cores, the caches and the memory. In this work, we %Ztgms' InFault-Tolerant Computing. FTCS-20pages 82-88, June
have shown which problems appear in a CMP system with a tokgB) wichel Banatre, Alain Gefflaut, Philippe Joubert, Ghiine Morin, and
based cache coherence protocol when the interconnectiaomhe Peter A. Lee. An architecture for tolerating processor ufais in
is subject to transient failures and we have proposed a new shared-memory multiprocessorslEEE Transactions on Computers
cache coherence protocol (whiCh is an e?(tenSi.o n of the dyrea [3] i?gl.olg'ailric?:o_,llilg’hggtghb(izofgs..McNamara, A. Nowatzgk Qadeer,
proposed BKENCMP [12]) aimed at dealing with those faults "~ g sano, S. Smith, R. Stets, and B. Verghese. Piranha: A ISeala
that ensures the correct execution of programs while inicod) Architecture Based on Single-Chip Multiprocessing. Rroc. of 27th
very small overhead. The main recovery mechanism intradluce Int! Symp. on Computer Architecture (ISCA'O@ages 282-293, June
by our protocol is thetoken recreation processvhich takes a

2000.

. .] David Bernick, Bill Bruckert, Paul Del Vigna, David Gas; Robert
cache line to a valid state and ensures forward progress @fte * ~ jardine, Jim Klecka, and Jim Smullen. Nonstop advancedtestire.
fault is detected. In DSN '05: Proceedings of the 2005 International Conference o

We have implemented our protocol using a full system simu- Dependable Systems and Networks (DSN'p&jyes 12-21, Washington,
lator and we have presented results comparing it to theraigi DC, USA, 2005. IEEE Computer Society.

. . [5] Ricardo Fernandez-Pascual, José M. Garcia, Manueldacio, and
version of TOKENCMP which does not support any fault toler- * josg Duato. A low overhead fault tolerant coherence pabttsr CMP
ance but is tuned for performance in CMPs. We have shown that architectures. Iri3th Intl Symposium on High-Performance Computer
in the fault free scenario the overhead introduced by oupgsal f;‘r’]tiec::;ﬁ éq*éidCA'gg]gZ?c‘is:%ﬁg&rzzemﬁgjogi Mamora
IS _between 5% and 20% when no ba(_:kuP buffer is used’ ?‘nd th@l Prabhu, Michael Chen, and Kunle Olukotun. The Stanford HyeMP.
using a backup buffer able to store just one cache line in each |EEg MICRO Magazine20(2):71-84, March-April 2000.

L1 cache is enough to reduce it to almost insignificant lef@ls [7] Peter S. Magnusson, Magnus Christensson, Jesper &skiBaniel
4 and 16 way CMPs. Forsgren, Gustav Hallberg, Johan Hogberg, Fredrik Larséomreas

We have checked that our proposal is capable of supporting 'ggf;ﬁg; gg?zsgggggvezrggg Simics: A full system simufaptatform.

message loss rates Of.Up t? 2000 messages lost per millibpwtit (g atul Maheshwari, Wayne Burleson, and Russell Tessieradihg off
increasing the execution time more than 15%. The message los transient fault tolerance and power consumption in deepmstron
rates used for our tests are several orders of magnitudeehigh E\?Eg:)) V'-St' C'g‘iLz“(tg) 'z'fggngrﬁnsam'Oﬂszggi’eW large scale integration
. system :299-311, Marcl .
than the rates eXp_eCted in the real world, hence under re@lwo [9] Milo M.K. Martin. Token Coherence PhD thesis, University of
circumstances no important slowdown should be observed ieve Wisconsin-Madison, December 2003.
the presence of transient failures in the interconnectietwark. [10] Milo M.K. Martin, Mark D. Hill, and David A. Wood. Tokenaherence:
The main cost of our proposal is a 10% increase in network ?3?5“’1&3”1‘?2'0;\"(for sbha/rgd-mengoryzcr)r(ljtgnprocessortEEE Micro,
: :108-116, November/December .
raffic due to some .eXtra aCkno.Wledgement messages._ The h?{?] Milo M.K. Martin, Daniel J. Sorin, Bradford M. BeckmanMichael R.
ware overhead required to provide the fault-tolerance isimmél: Marty, Min Xu, Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hiand
just a small associative table at each cache to storetaken David A. Wood. Multifacet’s general execution-driven niptocessor
Serial numbe’r some extra counters at each Cache, and a Very simulator (GEMS) tooIset.Computer Architecture NeW§3(4)92—99,

small backup buffer at each L1 cache. September 2005.

REFERENCES

. . . . 12] Michael R. Marty, Jesse D. Bingham, Mark D. Hill, AlanHu, Milo
In this way, our protocol provides a solution to transierilufes 2] s Y
in the interconnection network with very low overhead whaan

M. K. Martin, and David A. Wood. Improving multiple-CMP sgshs
using token coherence. Ihlth Int'l Symposium on High-Performance
Computer Architecture (HPCA'O5)pages 328-339. IEEE Computer

be easily combined with other fault tolerance measuresh@eae i
Society, February 2005.

full system fal_JIt tolerance in future CMPs. [13] Albert Meixner and Daniel J. Sorin. Error detection wialine checking
Although this work extends a token coherence based prqtocol ™ of cache coherence with token coherence signaturesi3th Interna-

the same ideas could be applied to other types of protocols. | tional Symposium on High-Performance Computer ArchitecttiPCA-
fact, we are designing a directory-based fault tolerantquui 13), pages 145-156, February 2007.

: o T : [14] S. S. Mukherjee, J. Emer, and S. K. Reinhardt. The softrer
for CMPs with similar characteristics to the one presentethis problem: An architectural perspective. 1th Intl Symposium on High-

article. Performance Computer Architecture (HPCA'QOBebruary 2005.
[15] J.B. Postel. RFC 793: Transmission control protoc@pt8mber 1981.
ACKNOWLEDGEMENTS [16] Milos Prvulovic, Zheng Zhang, and Josep Torrellas. ReV Cost-

. . . effective architectural support for rollback. 189th Annual Int'l
This work has been jointly supported by the Spanish MEC symposium on Computer Architecture (ISCAQRges 111-122, May

and European Comission FEDER funds under grants “Consolide 2002.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOLX, NO. X, XXXXX XXXX

[17] Timothy J. Slegel, Robert M. Averill 1ll, Mark A. CheckBruce C.
Giamei, Barry W. Krumm, Christopher A. Krygowski, Wen H. Li,
John S. Liptay, John D. MacDougall, Thomas J. McPhersomifiznrA.
Navarro, Eric M. Schwarz, Kevin Shum, and Charles F. Webtm'sb
s/390 g5 microprocessor desigiEEE Micro, 19(2):12-23, 1999.

[18] Daniel J. Sorin, Milo M.K. Martin, Mark D. Hill, and Dadi A. Wood.
SafetyNet: Improving the availability of shared memory timbcessors
with global checkpoint/recovery. 129th Annual Int'l Symposium on
Computer Architecture (ISCA'02pages 123-134, May 2002.

[19] L. Spainhower and T. A. Gregg. IBM S/390 parallel enteap server
G5 fault tolerance: A historical perspectivéBM Journal of Research
and Development43(5/6):863—-873, September 1999.

[20] Dwight Sunada, Michael Flynn, and David Glasco. Mutiigessor
architecture using an audit trail for fault tolerance. Twenty-Ninth
Annual International Symposium on Fault-Tolerant Compytipages
40-47, June 1999.

[21] S.C.Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Guptae PLASH-2
Programs: Characterization and Methodological Constiers. In22nd
Int'l Symposium on Computer Architecture (ISCA'9aages 24—-36, June
1995.

[22] K.L.Wu, W.K. Fuchs, and J.H. Patel. Error recovery irmasd memory
multiprocessors using private cachetfEEE Transactions on Parallel
and Distributed Systemd(2):231-240, April 1990.

Ricardo Fernandez Pascualreceived his MS de-
gree in computer science from the Universidad de
Murcia, Spain, in 2004. That year he joined the
Computer Engineering Department as a PhD studel
with a fellowship from the regional government.
Since 2006, he is an assistant professor in the Un
versidad de Murcia. His research interests includ
general computer architecture, fault tolerance, chij
multiprocessors and performance simulation.

/ \
s a)

(=)

12

Manuel E. Acacio received the MS and PhD de-
grees in computer science from the Universidad de
Murcia, Spain, in 1998 and 2003, respectively. He
joined the Computer Engineering Department, Uni-
versidad de Murcia, in 1998, where he is currently
an Associate Professor of computer architecture and
technology. His research interests include prediction
and speculation in multiprocessor memory systems,
multiprocessor-on-a-chip architectures, and power-
aware cache-coherence protocol design.

Jose Duato received the MS and PhD degrees in
electrical engineering from the Technical University
of Valencia, Spain, in 1981 and 1985, respectively.
Currently, Dr. Duato is Professor in the Department
of Computer Engineering (DISCA) at the same
university. He was also an adjunct professor in the
Department of Computer and Information Science,
The Ohio State University. His current research
interests include interconnection networks, multi-
processor architectures, networks of workstations,
and switch fabrics for IP routers. Prof. Duato has

In 1987 he joined the Computer Science Department at theelsify of

published over 250 refereed papers. He proposed the firstytiog deadlock-
free adaptive routing for wormhole networks. Versions of ttheory have
i i))) been used in the design of the routing algorithms for the Midliddle
Jos M. Garcia was born in Valencia, Spain on Router, the Cray T3E supercomputer, the internal routehefAlpha 21364
January 9, 1962. He received a MS degree imjcroprocessor, and the BlueGene/L supercomputer. Protdis the first
Electrical Engineering from the Technical University aythor of the book "Interconnection Networks: An EnginegriApproach”.
of Valencia (Valencia, Spain) in 1987, and a PhDrhjs hook was co-authored by Prof. Sudhakar Yalamanchitimf Georgia
degree in Computer Engineering from the Tecr‘/n"lnstitute of Technology, and Prof. Lionel Ni, from Michig&@tate University.
cal University of Valencia in 1991. Prof. Garcia pr. Duato served as a member of the editorial boards of IEE®Sactions on
is currently serving as the Dean of the School ofparallel and Distributed Systems and IEEE Transactionsampiters. He has
Computer Science at the Universidad de Murcigeen the General Co-Chair for the 2001 International Cenige on Parallel
(Spain). He is a professor in the Department obrocessing and is the Program Committee Chair for the Temtdrriational
Computer Engineering, and also the Head of th&ymposium on High Performance Computer Architecture (HPOA Also,
Research Group on Parallel Computer Architecturene served as Co-Chair, member of the Steering Committees-®fwir, or
member of the Program Committee in more than 40 confererigekiding

Castilla-La Mancha at the Campus of Albacete (Spain). Fré8i71to 1993, the most prestigious conferences in his area (HPCA, ISCRSISBPDP, ICPP,
he was an Assistant Professor of Computer Architecture 98¥lhe became |cpcs, Europar, HiPC).

an Associate Professor at the University of Murcia (Spalrpm 1995 to
1997 he served as Vice-Dean of the School of Computer Sciemat also
as Director of the Computer Engineering Department from8L&92004.

He has developed several courses on Computer Structuréph®wed
Devices, Computer Architecture, Parallel Computer Aretiiire and Mul-
ticomputer Design. He specializes in computer architectyarallel pro-
cessing and interconnection networks. His current rebednterests lie
in high-performance coherence protocols for Chip Multg@ssors (CMPs)
and shared-memory multiprocessor systems, and high-spésdonnection
networks. He has published more than 90 refereed papergénedit journals
and conferences in these fields.

Prof. Garcia is member of HIPEAC, the European Network ofeflience
on High-Performance Embedded Architecture and Compilatide is also
member of several international associations such as e Bhd ACM, and
also member of some European associations (Euromicro amd AT

