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Abstract— It is widely accepted that transient failures will
appear more frequently in chips designed in the near future due
to several factors such as the increased integration scale.On the
other hand, chip-multiprocessors (CMP) that integrate several
processor cores in a single chip are nowadays the best alternative
to more efficient use of the increasing number of transistorsthat
can be placed in a single die. Hence, it is necessary to design
new techniques to deal with these faults to be able to build
sufficiently reliable Chip Multiprocessors (CMPs). In this work,
we present a coherence protocol aimed at dealing with transient
failures that affect the interconnection network of a CMP, thus
assuming that the network is no longer reliable. In particular,
our proposal extends a token-based cache coherence protocol
so that no data can be lost and no deadlock can occur due to
any dropped message. Using GEMS full system simulator, we
compare our proposal against a similar protocol without fault
tolerance (TOKEN CMP). We show that in absence of failures
our proposal does not introduce overhead in terms of increased
execution time over TOKEN CMP. Additionally, our protocol can
tolerate message loss rates much higher than those likely tobe
found in the real world without increasing execution time more
than 15%.

Index Terms— Fault tolerance, cache coherence, CMP, tran-
sient failures, TokenCMP.

I. I NTRODUCTION

CHIP Multiprocessors (CMPs) [3], [6] are currently accepted
as the best way to take advantage of the increasing number

of transistors available in a single chip, since they provide better
performance without excessive power consumption exploiting
thread-level parallelism.

In many applications, high availability and reliability are crit-
ical requirements. The use of CMPs in critical tasks can be
hindered by the increased rate of transient faults due to theever
decreasing feature size and higher frequencies. To enable more
useful chip multiprocessors to be designed, several fault tolerant
techniques must be employed in their construction.

Moreover, the reliability of electronic components is never
perfect. Electronic components are subject to several types of
failures due to a number of sources. Failures can be either
permanent, intermittent or transient. Permanent failuresrequire
the replacement of the component and are caused by electromi-
gration among other causes. Intermittent failures are mainly due
to voltage peaks or falls.
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Transient failures [14], also known as soft errors or single
event upsets, occur when a component produces an erroneous
output and it continues working correctly after the event. The
causes of transient errors are multiple and include alpha-particle
strikes, cosmic rays, and radiation from radioactive atomswhich
exist in trace amounts in all materials and electrical sources
like power supply noise, electromagnetic interference (EMI) or
radiation from lightning. Any event which upsets the storedor
communicated charge can cause soft errors in the circuit output.

Transient failures are much more common than permanent fail-
ures [19]. Currently, transient failures are already significant for
some devices like caches, where error correction codes are used
to deal with them. However, current trends of higher integration
and lower power consumption will increase the importance of
transient failures [8]. Since the number of components in a single
chip increases so much, it is no longer economically feasible to
assume a worst case scenario when designing and testing the
chips. Instead, new designs will target the common case and
assume a certain rate of transient failures. Hence, transient failures
will affect more components and more frequently and will need
to be handled across all the levels of the system to avoid actual
errors.

Communication between processors in a CMP is very fine-
grained (at the level of cache lines), hence small and frequent mes-
sages are used. In order to achieve the best possible performance
it is necessary to use low-latency interconnections and avoid
acknowledgement messages and other control-flow messages as
much as possible.

In this work, we propose a way to deal with the transient
failures that occur in the interconnection network of CMPs.We
only consider traffic due to accesses to coherent memory and
ignore for now accesses to non-coherent memory like memory-
mapped I/O. We can assume that these failures cause the loss
of some cache coherence messages, because either the intercon-
nection network loses them, or the messages reach the destination
node (or other node) corrupted. Messages corrupted by a softerror
will be discarded upon reception using error detection codes. Our
proposal adds only those acknowledgements which are absolutely
needed and does so without affecting the critical path of most
operations.

We attack this problem at the cache coherence protocol level.
In particular, we assume that the interconnection network is no
longer reliable and extend the TokenCMP [12] cache coherence
protocol to guarantee correct execution in presence of dropped
messages. Our proposal only modifies the coherence protocoland
does not add any requirement to the interconnection network, so
it is applicable to current and future designs. We protect dirty
data with acknowledgement messages out of the critical pathof
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cache misses and provide a mechanism for recovering from lost
non-data messages. Since the coherence protocol is critical for
good performance and correct execution of any workload in a
CMP, it is important to have a fast and reliable protocol. Our
protocol does not add a significant execution time overhead but
adds a small network traffic overhead (around 10%).

There have been several proposals for fault tolerance targeting
shared-memory multiprocessors. Most of them use variations
of checkpointing and recovery: R.E. Ahmedet al. developed
Cache-Aided Rollback Errors Recovery (CARER) [1], Wuet al.
[22] developed error recovery techniques using private caches
for recovering from processor transient faults in multiprocessor
systems, Banâtreet al. proposed aRecoverable Shared Memory
(RSM) which deals with processor failures on shared-memory
multiprocessors using snoopy protocols [2], while Sunadaet
al. proposedDistributed Recoverable Shared Memory with Logs
(DRSM-L) [20]. More recently, Pruvlovicet al. presented Re-
Vive, which performs checkpointing, logging and memory based
distributed parity protection with low overhead in error-free exe-
cution and is compatible with off-the-shelf processors, caches and
memory modules [16]. At the same time, Sorinet al. presented
SafetyNet [18] which aims at similar objectives but has less
overhead, requires custom caches and can only recover from
transient faults. Several commercial systems have been built using
fault-tolerance techniques and targeting high-availability needs,
like Tandem (now HP) NonStop systems [4], IBM zSeries [17],
or systems offered by Stratus.

Recently, Meixneret al. have proposed an error detection
technique for multiprocessors [13] based on token coherence
which can detect any coherence error but provides no recovery
mechanism. Also, Aggarwalet al. provide a mechanism to
provide dynamic reconfiguration of CMPs which enables fault
containment for dealing with transient errors and reconfiguration
to deal with hard errors, but does not directly address the problems
caused by a faulty interconnection network in the coherence
protocol.

Up to the best of our knowledge, there has not been any
proposal dealing explicitly with transient faults in the intercon-
nection network of multiprocessors or CMPs from the point of
view of the cache coherence protocol. Also, most fault tolerance
proposals require some kind of checkpointing and rollback,while
ours does not. Our proposal could be used in conjunction with
other techniques which provide fault tolerance to individual cores
and caches in the CMP to achieve full fault tolerance coverage
inside the chip.

The main contributions of this paper are the following: we
have identified the different problems that the use of an unreliable
interconnect poses to a token based CMP cache coherence proto-
col (TOKENCMP) by the loss of messages due to an unreliable
interconnect; we have proposed modifications to the protocol
and the architecture to cope with these problems without adding
excessive overhead; and we have implemented such solutions
in a full system simulator to measure their effectiveness and
execution time overhead. We show that in absence of failures
our proposal does not introduce overhead in terms of increased
execution time over TOKENCMP. Additionally, our protocol can
tolerate message loss rates much higher than those likely tobe
found in the real world without increasing execution time more
than 15%.

A preliminary and partial version of this article was presented

in [5]. Here, we extend that work with a more extensive eval-
uation process including a commercial application (the Apache
benchmark) in addition to the suite of scientific benchmarks
already considered, better adjustment of the timeouts usedfor
detecting faults and we also consider the out-of-order execution
model. Additionally, we have rewritten the description of the
cache coherence protocol to make comprehension easier.

The rest of the paper is organized as follows. In section II we
present some background about token coherence that is necessary
to better understand the rest of the paper. In sections III and IV
we describe the problems posed by an unreliable interconnection
network to TOKENCMP and the solutions that we propose.
Section V presents the evaluation of the overhead introduced by
our proposal and its effectiveness in presence of faults. Finally,
in section VI we summarize the main conclusions of our work.

II. TOKEN COHERENCE BACKGROUND

Regarding the cache coherence protocol background, token
coherence [9], [10] is a framework for designing coherence
protocols whose main asset is that it decouples the correctness
substrate from several different performance policies. This allows
great flexibility, making it possible to adapt the protocol for
different purposes easily [9] since the performance policycan be
modified without worrying about infrequent corner cases, whose
correctness is guaranteed by the correctness substrate. Token
coherence protocols can avoid both the need of a totally ordered
network and the introduction of additional indirection caused by
the directory in the common case of cache-to-cache transfers.

The main observation of the token framework is that simple
token counting rules can ensure that the memory system behaves
in a coherent manner. The followingToken countingrules are
introduced in [9]:

• Conservation of Tokens: Each line of shared memory has a
fixed number ofT tokens associated with it. Once the system
is initialized, tokens may not be created or destroyed. One
token for each block is the owner token. The owner token
may be either clean or dirty.

• Write Rule : A component can write a block only if it holds
all T tokens for that block and has valid data. After writing
the block, the owner token is set to dirty.

• Read Rule: A component can read a block only if it holds
at least one token for that block and has valid data.

• Data Transfer Rule: If a coherence message carries a dirty
owner token, it must contain data.

• Valid-Data Bit Rule : A component sets its valid-data bit
for a block when a message arrives with data and at least
one token. A component clears the valid-data bit when it no
longer holds any tokens. The home memory sets the valid-
data bit whenever it receives a clean owner token, even if
the message does not contain data.

• Clean Rule: Whenever the memory receives the owner
token, the memory sets the owner token to clean.

Considering these rules, we can relate token protocols withtra-
ditional MOESI protocols and define each of the states depending
on the number of tokens that a processor has:

0 tokens: Invalid.
1 to T − 1 tokens, but not theowner token: Shared.
1 to T − 1 tokens, including theowner token: Owned.
T tokens, dirty bit inactive: Exclusive.
T tokens, dirty bit active: Modified.
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The rules above ensure that cache coherence is maintained,
but do not ensure forward progress. Token coherence avoids
starvation by issuing a persistent request whenever a processor
detects potential starvation. Persistent requests, unlike transient
requests which are issued most times, are guaranteed to eventually
succeed. To ensure this, each token protocol must define how it
deals with several pending persistent requests.

In this work, we will consider a distributed persistent request
scheme using a persistent request table at each cache as described
in [9]. Each processor will be able to activate at most one
persistent request at a time by broadcasting a persistent read
request activation or a persistent write request activation. Once
the request has been satisfied, the processor will broadcasta
persistent request deactivation. To avoid livelock, a processor
will not be able to issue a persistent request again until all
the persistent requests issued by other processors before its last
persistent request was deactivated have been deactivated too.

Token coherence provides the framework for designing several
particular coherence protocols. The performance policy ofa token
based protocol is used to instruct the correctness substrate to move
tokens and data through the system. To date, only a few perfor-
mance policies have been designed, amongst themToken-using-
broadcast (TOKENB) is a performance policy to achieve low-
latency cache-to-cache transfer misses, although it requires more
bandwidth than traditional protocols [10]. TOKENCMP [12] is a
performance policy similar to TOKENB which targets hierarchical
multiple CMP systems. It uses a distributed arbitration scheme
for persistent requests, which are issued after a single retry to
optimize the access to contended lines.

III. PROBLEMS ARISING IN CMPS WITH AN UNRELIABLE

INTERCONNECTION NETWORK

From now on, we consider a CMP system whose intercon-
nection network is not reliable due to the potential presence of
transient errors. We assume that these errors cause the lossof
messages (either an isolated message or a burst of them) since
they directly disappear from the interconnection network or arrive
to their destination corrupted and are discarded.

Instead of detecting faults and return to a consistent state
previous to the occurrence of the fault, our aim is to design
a coherence protocol that can guarantee the correct semantics
of program execution over an unreliable interconnection network
without ever having to perform a checkpointing or rollback.We do
not try to address the full range of errors that can occur in a CMP
system. We only concentrate on those errors that affect directly
the interconnection network. Hence, other mechanisms should be
used to complement our proposal to achieve full fault tolerance
for the whole CMP. Next, we present the problems caused by the
loss of messages in the TOKENCMP protocol and later we show
how these problems can be solved.

From the point of view of the coherence protocol, we assume
that a coherence message either arrives correctly to its destination
or it does not arrive at all. In other words, we assume that no
incorrect or corrupted messages can be processed by a node.
To guarantee this, error detection codes are used. Upon arrival,
the CRC is checked using specialized hardware and the message
is discarded if it is wrong. To avoid any negative impact on
performance, the message is assumed to be correct because this
is by far the most common case and the CRC check is done in

parallel to the initial processing of the message (like accessing to
the cache tags and to the MSHR to check the line state).

There are several types of coherence messages that can be lost
which translate into a different impact in the coherence protocol.
Firstly, losing transient requests is harmless. Note that even when
we state that losing the message is harmless we mean that no data
loss, deadlock, or incorrect execution would be caused, although
some performance degradation may happen.

Since invalidations (which can be persistent or transient re-
quests) in the base protocol require acknowledgement (the caches
holding tokens must respond to the requester), losing a message
cannot lead to an incoherence.

Losing any other type of message, however, may lead to
deadlock or data loss. Particularly, losing coherence messages
containing one or more tokens would lead to a deadlock, because
the total number of tokens in the whole system must remain
constant to ensure correctness. More precisely, if the number of
tokens decreases because a message carrying one or more tokens
does not reach its destination, no processor will be able to write
to that line of memory anymore.

The same thing happens when a message carrying data and
tokens is lost, as long as it does not carry the owner token. No
data loss can happen because there is always a valid copy of the
data at the cache which has the owner token.

Another different case occurs if the lost coherence message
contains a dirty owner token, since it must also carry the memory
line. Hence, if the owner token is lost, no processor (or memory
module) would send the data and a deadlock and possibly data
loss would occur. In the TOKENCMP protocol, like in most cache
coherence protocols, the data in memory is not updated on each
write, but only when it is evicted from the owner cache. Also,
the rules governing the owner token ensure that there is always
at least a valid copy of the memory line which travels along with
it every time that the owner token is transmitted. So, losinga
message carrying the owner token means that it is possible to
totally lose data.

Finally, while a persistent request is in process, we have to
deal also with errors in the persistent request messages. Losing a
persistent request or persistent request deactivation would create
inconsistencies among the persistent request tables at each cache
in a distributed arbitration scheme which would lead to deadlock
situations too.

The most obvious solution to the problems depicted above is
to ensure that no message is lost while traveling through the
interconnection network by mean of reliable end-to-end message
delivery using acknowledgement messages and sequence numbers
in a similar way to TCP [15]. However, this solution has several
drawbacks:

• Adding acknowledgements to every message would increase
the latency of cache misses, since a cache would not be able
to send a message to another cache until it has received the
acknowledgement for the previous message.

• That solution would significantly increase network traffic.
The number of messages would be at least doubled (one
acknowledgement for each message).

• Extra message buffers would be needed, to store the mes-
sages until an acknowledgement is received in case they need
to be resent.
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IV. A FAULT TOLERANT TOKEN COHERENCE PROTOCOL

Instead of ensuring reliable end-to-end message delivery,we
have extended theTokenCMPprotocol with fault tolerance mea-
sures. For doing this, we have added the following states to the
traditional MOESI states1 used by the non fault tolerant protocol:

• Backup (B): This state is similar to the Invalid state, but
the data line is kept in the cache to be used for recovery by
the token recreation processif necessary. A line will enter a
Backup state when the ownership needs to be transferred to
a different cache (that is, when leaving the Modified, Owned
or Exclusive states) and will, abandon it and become invalid
once anownership acknowledgementmessages is received.

• Blocked ownership (Mb, Eb and Ob): To prevent having
more than one backup for a line at any given point in
time, a cache that receives the owner token (entering the
Modified, Exclusive or Owned state) will avoid transmit-
ting the owner to another cache until it receives abackup
deletion acknowledgementmessage. For achieving this, we
have added blocked versions of the Modified, Exclusive and
Owned states. While a line is in one of this states, the
cache will ignore external requests for writing to that line.
Persistent requests will be attended just after receiving the
backup deletion acknowledgementmessage.

• Recreating tokens (R): A line will enter this state when a
fault is detected and atoken recreation processis requested.

The main principle that has guided the protocol development
has been to prevent adding significant overhead to the fault-
free case and to keep the flexibility of choosing any particular
performance policy. Therefore, we should try to avoid modifying
the usual behavior of transient requests. For example, we should
avoid placing point-to-point acknowledgements in the critical path
as much as possible.

Once a problematic situation has been detected, the main
recovery mechanism used by our protocol is thetoken recreation
processdescribed later. That process resolves a deadlock ensuring
both that there is the correct number of tokens and one and only
one valid copy of the data.

As shown in the previous section, only the messages carrying
transient read/write requests can be lost without negativecon-
sequences. For the rest of the cases, losing a message results
in a problematic situation. However, all of these cases havein
common that they lead to deadlock. Hence, a possible way to
detect faults is by using timeouts for transactions. We use four
timeouts for detecting message losses: the“lost token timeout”
(see section IV-A), the“lost data timeout”, the “lost backup
deletion acknowledgement timeout”(see section IV-B) and the
“lost persistent deactivation timeout”(see section IV-C.2). Notice
that all these timeouts along with the usual retry timeout ofthe
token protocol (except thelost persistent deactivation timeout)
can be implemented using just one hardware counter, since they
do not need to be activated simultaneously. For thelost persistent
deactivation timeout, an additional counter per processor at each
cache or memory module is required. A summary of the timeouts
used by our proposal can be found in table I.

Since the time to complete a transaction cannot be bounded
reliably with a reasonable timeout due to the interaction with

1There are many intermediate states also which are not considered in this
explanation for simplicity, both in the non fault tolerant and in the fault tolerant
protocols.

other requests and the possibility of network congestion, our
fault detection mechanism may produce false positives, although
this should be very infrequent. Hence, we must ensure that our
corrective measures are safe even if no fault really occurred.

We present a summary of all the problems that can arise due
to loss of messages and their proposed solutions in table II.In
the rest of this section, we explain how our proposal prevents or
solves each one of these situations in detail.

TABLE II

SUMMARY OF THE PROBLEMS CAUSED BY LOSS OF MESSAGES.

Fault / Lost message Effect Detection and Recovery

Transient read/write
request

Harmless

Response with tokens Deadlock Lost token timeout, token
recreation

Response with tokens
and data

Deadlock Lost token timeout, token
recreation

Response with a dirty
owner token and data

Deadlock and
data loss

Lost data timeout, token
recreation using backup
state

Persistent read/write
requests

Deadlock Lost token timeout, token
recreation

Persistent request de-
activations

Deadlock Lost persistent deactiva-
tion timeout, persistent re-
quest ping

Ownership acknowl-
edgement

Deadlock and
cannot evict line
from cache

Lost data timeout, token
recreation

Backup deletion ac-
knowledgement

Deadlock Lost backup deletion ac-
knowledgement timeout,
token recreation

A. Dealing with token loss

When a processor tries to write to a memory line which has lost
a token, it will eventually timeout and issue a persistent request. In
the end, after the persistent request gets activated, all the available
tokens in the whole system for the memory line will be received
by the starving cache. Also, if the owner token was not lost and
is not blocked (see section IV-B), the cache will receive it too
together with data. However, since the cache will not receive all
the tokens, it will not be able to complete the write miss, and
finally the processor will be deadlocked.

We use the“lost token timeout” to detect this deadlock
situation. It will start when a persistent request is activated and
will stop once the miss is satisfied or the persistent requestis
deactivated. The value of the timeout should be long enough so
that, in normal circumstances, every transaction will be finished
before triggering this timeout2.

Hence, if the starving cache fails to acquire the necessary
tokens within certain time after the persistent request hasbeen
activated, thelost token timeoutwill trigger. In that case, we will
assume that some token carrying message has been lost and we
will request a token recreation process for recovery to the memory
module. This process will also take care of false positives of the
lost token timeoutwhich could lead to an increase in the total
number of tokens and to coherence violations by means of the
token serial number(see section IV-D). Notice that thelost token
timeoutmay be triggered for the same coherence transaction that

2Using a value too short for any of the timeouts used to detect faults would
lead to many false positives which would hurt performance.
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TABLE I

TIMEOUTS SUMMARY.

Timeout When is it activated? Where is it activated? When is it deactivated? What happens when it trig-
gers?

Lost Token When a persistent request
becomes active.

At the starver cache. When the persistent request
is satisfied or deactivated.

Request a token recreation.

Lost Data When a backup state is en-
tered (when the owner to-
ken is sent).

At the cache that holds the
backup.

When the backup state
is abandoned (when the
Ownership Acknowledge-
ment arrives).

Request a token recreation.

Lost Backup Deletion Ac-
knowledgement

When a line enters the
blocked state.

At the cache that holds the
owner token.

When the blocked state
is abandoned (when the
Backup Deletion Acknowl-
edgement arrives).

Request a token recreation.

Lost Persistent Deactiva-
tion

When a persistent request
from another cache is acti-
vated.

At every cache (by the per-
sistent request table).

When the persistent request
is deactivated.

Send a persistent request
ping.

loses the message or for a subsequent transaction for the same
line. Once the token recreation has been done, the miss can be
satisfied immediately.

B. Avoiding data loss

To avoid losing data in our fault tolerant coherence protocol, a
cache (or memory controller) that has to send the owner tokenwill
keep the data line in abackupstate. A line in backup state will not
be evicted from the cache until anownership acknowledgement
is received, even if every token is sent to other caches. This
acknowledgement is sent by every cache in response to a message
carrying the owner token. While a line is inbackupstate its data is
considered invalid and will be used only if required for recovery.
Hence, the cache will not be able to read from that line3. Also,
when a line enters in a backup state thelost data timeoutwill
start and will stop once the backup state is abandoned.

Cache C1 broadcasts a transient exclusive request (GetX). C2, which
has all the tokens and hence it is inmodifiedstate (M), answers to
C1 with a message (DataO) carrying the data and all the tokens,
including the owner token. Since C2 needs to send the owner token,
it goes to thebackup state (B) and starts thelost data timeout.
When C1 receives the DataO message, it satisfies the miss and
enters themodified and blockedstate (Mb), sending an ownership
acknowledgement to C2. When C2 receives it, it discards the backup,
goes toinvalid state (I), stops thelost data timeoutand sends abackup
deletion acknowledgementto C1. Once C1 receives it, it transitions
to the normalmodifiedstate.

Fig. 1. Transition diagram for the states and events involved in data loss
avoidance and message interchange example.

3It is possible for a cache to receive valid data and a token before
abandoning a backup state, only if the data message was not lost. In that
case, it will be able to read from that line, since it will be transitioned to an
intermediate backup and valid state until theownership acknowledgementis
received.

A cache line in a backup state will be used for recovery if no
valid copy is available when a message carrying the owner token
is lost. To be able to do this in an effective way, it is necessary
to ensure that there is a valid copy of the data or one and only
one backup copy at all times, or both4. Hence, a cache which has
received the owner token recently cannot transmit it again until
it is sure that the backup copy for that line has been deleted.In
this situation, the line enters theblocked ownershipstate. A line
will leave this state when the cache receives abackup deletion
acknowledgementwhich is sent by any cache when it deletes
a backup copy after receiving anownership acknowledgement.
Figure 1 shows an example of how the owner token is transmitted
with our protocol.

The two acknowledgements necessary to finalize this transac-
tion are out of the critical path of the miss. However, there is a
period after receiving the owner token until thebackup deletion
acknowledgementarrives during which a cache cannot answer to
write requests because it would have to transmit the owner token,
which is blocked. This blocking also affects persistent requests,
which are serviced immediately after receiving thebackup dele-
tion acknowledgement. This blocked period could increase the
latency of some cache-to-cache transfer misses, however wehave
found that it does not have impact on performance, as most writes
are sufficiently separated in time.

This mechanism also affects replacements (from L1 to L2
and from L2 to memory), since the replacement cannot be
performed until anownership acknowledgementis received. We
have found that the effect on replacements is much more harmful
for performance than the effect on cache-to-cache transfermisses
mentioned above.

To alleviate the effect of the blocked period in the latency of
replacements, we propose using a smallbackup bufferto store
the backup copies. In particular, we add a backup buffer to each
L1 cache. A line is moved to the backup buffer when it is in a
backup state, it needs to be replaced and there is enough room
in the backup buffer5. The backup buffer acts as a small victim
cache, except that only lines in backup states are moved to it. We
have found that a small backup buffer with just 1 or 2 entries is

4Having more than one backup copy would make recovery impossible,
since it could not be known which backup copy is the most recent one.

5We do not move the line to the backup buffer immediately afterit enters a
backup state to avoid wasting energy in many cases and avoid wasting backup
buffer space unnecessarily.
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enough to practically remove the negative effect of backup states
(see section V-B). Alternatively, a write-back buffer could achieve
the same effect.

1) Handling the loss of an owned data carrying message or
an ownership acknowledgement:Losing a message which carries
the owner token means that possibly the only valid copy of
the data is lost. However, there is still an up to date backup
copy at the cache which sent the data carrying message. Since
the data carrying message does not arrive to its destination, no
correspondingownership acknowledgementwill be received by
the cache and thelost data timeoutwill trigger.

If an ownership acknowledgementis lost, the backup copy will
not be discarded and nobackup deletion acknowledgementwill
be sent. Hence, the backup copy will remain in one of the caches
and the data will remain blocked in the other. Eventually, either
the lost data timeoutor thelost backup deletion acknowledgement
timeoutwill trigger too.

When either timeout triggers, the cache requests a token recre-
ation process to recover the fault (see section IV-D). The process
can solve both situations: if theownership acknowledgementwas
lost, the memory controller will send the data which had arrived
to the other cache; if the data carrying message was lost, the
cache will use the backup copy as valid data after the recreation
process ensures that all other copies have been invalidated.

2) Handling the loss of a backup deletion acknowledgement:
When abackup deletion acknowledgementis lost, a line will stay
in a blocked ownership state. This will prevent it from being
replaced or to answer any write request. Both things would lead
to a deadlock if they are not resolved.

If a miss cannot be resolved because the line is blocked in some
other cache waiting for abackup deletion acknowledgementwhich
has been lost, eventually a persistent request will be activated for
it and after some time thelost token timeoutwill trigger. Hence,
the token recreation processwill be used to solve this case.

To be able to replace a line in a blocked state when thebackup
deletion acknowledgementis lost, we use thelost backup deletion
acknowledgement timeout. It is activated when the replacement is
necessary, and deactivated when thebackup deletion acknowl-
edgementarrives. If it triggers, atoken recreation processwill be
requested.

The token recreation process will solve the fault in both cases,
since even lines in blocked states are invalidated and must transfer
their data to the memory controller.

C. Dealing with errors in persistent requests

Assuming a distributed arbitration policy, persistent request
messages (both requests and deactivations) are always broad-
casted to keep the persistent request tables at each cache synchro-
nized. Losing one of these messages will lead to an inconsistency
among the different tables.

If the persistent request tables are inconsistent, some persistent
requests may not be activated by some caches or some persistent
requests may be kept activated indefinitely. These situations could
lead to starvation.

1) Dealing with the loss of a persistent request:Firstly, it is
important to note that the cache which issues the persistentrequest
will always eventually activate it, since no message is involved
to update its own persistent request table.

If a cache holding at least one token for the requested line
which is necessary to satisfy the miss does not receive the

persistent request, it will not activate it in its local table and will
not send the tokens and data to the starver. Hence, the miss will
not be resolved and the starver will deadlock.

Since the persistent request has been activated at the starver
cache, thelost token timeoutwill trigger eventually and the token
recreation process will solve this case too.

On the other hand, if the cache that does not receive the persis-
tent request did not have tokens necessary to satisfy the miss, it
will eventually receive an unexpected deactivation message which
should ignore.

2) Dealing with the loss of a deactivation message:If a
persistent request deactivation message is lost, the request will
be permanently activated at some caches. To avoid this, caches
will start thelost persistent deactivation timeoutwhen a persistent
request is activated and will stop it when it is deactivated.When
this timeout triggers, the cache will send apersistent request ping
to the starver. A cache receiving apersistent request pingwill
answer with a persistent request or persistent request deactivation
message whether it has a pending persistent request for thatline
or not, respectively. Thelost persistent deactivation timeoutis
restarted after sending thepersistent request pingto cope with
the potential loss of this message.

If the cache receives a persistent request from the same starver
before thelost persistent deactivation timeouttriggers, it should
assume that the deactivation message has been lost and deactivate
the old request, because caches can have only one pending
persistent request.

D. Token recreation process

The token recreationis the main fault recovery mechanism
provided by our proposal. This process needs to be effective, but
since it should happen very infrequently, it does not need tobe
particularly efficient. In order to avoid any race and keep the
process simple, the memory controller will serialize the token
recreation process, attending token recreation requests for the
same line in FIFO order.

The process works as long as there is at least a valid copy
of the data in some cache or one and only one backup copy of
the data or both things (the valid data or backup can be at the
memory too). The protocol guarantees that these conditionsare
true at every moment, despite any message loss6. If there is at
least a valid copy of the data, it will be used for the recovery.
Otherwise, the backup copy can be used for recovery.

At the end of the process, there will be one and only one copy
of the data with all the tokens (recreating any token which may
have been lost) at the cache which requested the token recreation
process.

There is one exception to this when the data was actually lost
(hence no valid copy of it exists, only a backup copy) and the
token recreation processwas requested by a cache other than
the one which holds the backup copy. In this case, thetoken
recreation processwill fail to recreate the tokens, but the cache
that holds the backup copy will eventually request another token
recreation process (because itslost data timeoutwill trigger), and
this new process will succeed using its backup copy to recover
the data.

6In particular, these conditions are true if no message has been lost, hence
the token recreation processis safe for false positives and can be requested
at any moment.
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In a transaction like the one of figure 1 theownership acknowledgementgets lost. Hence, C2 keeps the line in backup state (B). Aftersome
time, thelost data timeouttriggers (LDto) and C2 sends atoken recreation requestmessage (TrR) to the memory controller and enters the
backup and recreatingstate. The memory controller sends aset token serial numbermessage (TrS) to each cache. C2 and C3 receive this
message and answer with an acknowledgement (TrSAck) without changing their states, since they are either in invalid or backup state. On
the other hand, C1 is inmodified and blockedstate, hence it returns an acknowledgement with data (TrSAck+Data) and changes its state
to invalid (I). When the memory receives the acknowledgement with data, it sends abackup invalidatemessage to each cache. C1 and C3
answer with an acknowledgement (BInvAck) without changingtheir states, while C2 discards its backup data (which couldbe invalid since
C1 may have written already to the cache line), sets its stateto invalid and recreating(Ir) and answers with an acknowledgement too. When
the memory receives all the acknowledgements, it sends adestruction donemessage to C2 including the new data (TrDone+Data). Finally,
C2 receives the new data and sets its state tomodified(M).

Fig. 2. Transition diagram for the states and events involved in the token recreation process (used in this case to recover from the loss of an ownership
acknowledgement).

When recreating tokens, we must ensure theConservation
of Tokensinvariant presented in section II. In particular, if the
number of tokens increases, a processor would be able to write
to the memory line while other caches hold readable copies of
the line, violating the memory coherence model. So, to avoid
increasing the total number of tokens for a memory line even
in the case of a false positive, we need to ensure that all the
old tokens are discarded after the recreation process. To achieve
this we define atoken serial numberconceptually associated with
each token and each memory line.

All the valid tokens of the same memory line should have the
same serial number. The serial number will be transmitted within
every coherence response. Every cache in the system must know
the current serial number associated with each memory line and
should discard every message received containing an incorrect
serial number. Thetoken recreation processmodifies the current
token serial numberassociated with a line to ensure that all the
old tokens are discarded. Hence, if there was no real failurebut
a token carrying message was delayed on the network due to
congestion (a false positive), it will be discarded when received
by any cache because thetoken serial numberwill not match.

To store the token serial number of each line we propose a
small associative table present at each cache. Only lines with an
associated serial number different than zero must keep an entry
in that table. The overhead of the token serial number is small.
In the first place, we will need to increase it very infrequently,
so a counter with a small number of bits should be enough (we
use a two bit wrapping counter). Secondly, most memory lines
will keep the initial serial number unchanged, so we only need

to store those ones which have changed it and assume the initial
value for the rest. Thirdly, the comparisons required to check the
validity of received messages can be done out of the criticalpath
of cache misses.

Since thetoken serial numbertable is finite, serial numbers are
reset using the owner token recreation mechanism whenever the
table is full and a new entry is needed, since resetting atoken
serial numberactually frees up its entry in the table.

Additionally, when a token serial number needs to be reset
(either to replace it from the token serial number table or because
it has reached the maximum value and needs to be incremented)
the interconnect should be drained and the line flushed from all
caches to ensure that there is not any old token still in the network.

The information of the tables must be identical in all the caches
except while it is being updated by the token recreation process.
The process works as follows:

When a cache decides that it is necessary to start atoken
recreation process, it sends arecreate tokensrequest to the
memory controller responsible for that line. The memory can
also decide to start atoken recreation process, in which case
no message needs to be sent. The memory will queuetoken
recreation requests for the same line and service them in order
of arrival.

When servicing atoken recreationrequest, the memory will
increase thetoken serial numberassociated to the line and send
a set token serial numbermessage to every cache.

When receiving that message, each cache updates thetoken
serial number, destroys any token that it could have and sends
an acknowledgement to the memory. The acknowledgement will
also include data if the cache had valid data (even if it was ina
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blocked owner state).
Since all the tokens held by a cache are destroyed, the state

of the line will become invalid, even if the line was in a blocked
owner state. However, if the line was held in a backup state, it
will remain in that way.

If the memory controller receives an acknowledgement with
data, it will send abackup invalidatemessage to all the caches.
When receiving that request, the caches will send an acknowl-
edgement and discard its backup copy. This avoids having two
backup copies when several faults occur and two or more backup
recreation processes are requested in quick succession.

Once the memory receives all the acknowledgements (including
the acknowledgements for the backup invalidation if it has been
requested), it will send adestruction donemessage to the cache
which initiated the recreation process (unless it is the memory
itself). The destruction donemessage will include the data if it
was received by the memory or the memory had a valid copy
itself, otherwise it means that there was no valid copy of thedata
and there must be a backup copy in some cache (most likely in
the same cache that requested the token recreation).

When a cache receives adestruction donemessage with data,
it will recreate all the tokens (with the newtoken serial number)
and hence set its state tomodified. If the destruction donemessage
came without data and the cache was in backup state, it will use
the backup data and recreate the tokens anyway. If thedestruction
done message came without data and the cache did not have a
backup copy, it will not be able to recreate the tokens, instead it
will restart the usual timeouts for the cache miss. As mentioned
above, when this last case happens there must be a backup copy
in another cache and thelost data timeoutof that cache will
eventually trigger and recover from this fault. Figure 2 shows an
example of thetoken recreationprocess at work.

1) Handling faults in the token recreation process:Since
the efficiency of the token recreation process is not a great
concern, we can use unsophisticated (brute force) methods to
avoid problems due to losing the messages involved. Hence, all of
these messages are repeatedly sent every certain number of cycles
(1000 in our current implementation) until an acknowledgement is
received. Serial numbers are used to detect and ignore duplicates
unnecessarily sent.

E. Hardware overhead of our proposal

Firstly, to implement the token serial number table we have
added a small associative table at each cache and at the memory
controller to store those serial numbers whose value is not zero.
In this work, we have assumed that each serial number requires
two bits (if the tokens of any line need to be recreated more than 4
times the counter will wrap) and that 16 entries per processor are
sufficient (if more than 16 different lines need to be stored in the
table, the least recently modified entry will be chosen for eviction
using the token recreation process to reset the serial number).

Most of the timeouts employed to detect faults can be imple-
mented using the same hardware already employed to implement
the starvation timeout required by token coherence protocols,
although the counters may need more bits since the new timeouts
are longer. For thelost persistent deactivation timeoutit is
necessary to add a new counter per processor at each cache and
at the memory controller.

Also, some hardware is needed to calculate and check the error
detection code used to detect and discard corrupt messages.

Our protocol also uses two more virtual channels than TO-
KENCMP. One of the channels is used for sending ownership
acknowledgement and the other for backup deletion acknowledge-
ment messages. These virtual channels are also used for sending
the messages involved in the token recreation process.

Finally, to avoid performance penalty in replacements due
to the blocked ownership period, we have proposed to add a
small backup buffer at each L1 cache. The backup buffer can
be effective having just one entry, as will be shown in section
V-B.

V. EVALUATION

A. Methodology

We have evaluated the performance of our proposal using
full system simulation. We have used Virtutech Simics [7] func-
tional simulator with Multifacet GEMS [11] timing infrastructure.
GEMS can model both in-order and out-of-order processors using
Opal.

We have simulated two likely design points for future CMP
systems: a 4-way CMP system with out-of-order cores and a 16-
way CMP system with in-order cores. Both configurations are
designed as an array of replicated tiles connected over a point-to-
point switched network. As shown in figure 3, each tile contains
a processor, private L1 data and instruction caches and partof the
shared L2 cache. We estimate that the two configurations would
require a comparable number of transistors.

Fig. 3. Diagram of an individual tile.

Using out-of-order execution does not affect the correctness of
the protocol at all and does not have an important effect in the
overhead introduced by the fault tolerance measures compared to
the non fault tolerant protocol.

We have implemented the proposed fault tolerant coherence
protocol using the detailed memory model provided by GEMS
simulator (Ruby) to evaluate its overhead compared to the TO-
KENCMP [12] protocol and to check its effectiveness dealing with
message losses. TOKENCMP is a token based coherence protocol
without fault tolerance provision but that has been optimized for
performance in CMPs.

The most relevant configuration parameters of the modeled
systems are shown in table III. In particular, the values chosen
for the fault-detection timeouts have been fixed experimentally
to minimize the performance degradation in presence of faults
while avoiding false positives which would reduce performance
in the fault-free case. Using even shorter timeout values would
reduce the performance degradation in presence of faults only
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TABLE III

CHARACTERISTICS OF SIMULATED ARCHITECTURES.

4 or 16-Way CMP System
Processor Parameters

Processor speed 2 GHz
Max. fetch/retire rate 4

Cache Parameters
Cache line size 64 bytes
L1 cache:

Size, associativity 32 KB, 2 ways
Hit time 2 cycles

Shared L2 cache:
Size, associativity 512 KB per core, 4 ways
Hit time 15 cycles

Memory Parameters
Memory access time 300 cycles
Memory interleaving 4-way

Network Parameters
Topology 2D Torus
Non-data message size 8 bytes
Data message size 72 bytes
Channel bandwidth 64 GB/s

Fault tolerance parameters
Lost token timeout 2000 cycles
Lost data timeout 1000 cycles
Lost backup deletion acknowledgement 1000 cycles
Lost persistent deactivation timeout 1000 cycles
Token serial number size 2 bits
Token serial number table size 16 entries
Backup buffer size 0, 1, 2 or 4 entries

TABLE IV

BENCHMARKS AND INPUT SIZES USED IN THE SIMULATIONS

Benchmark Input Size

Apache 300 http transactions
Barnes 8192 bodies, 4 time steps
Cholesky tk16.O
FFT 256K complex doubles
Ocean 258 × 258 ocean
Radix 1M keys, 1024 radix
Raytrace 10Mb, teapot.env scene
Tomcatv 256 points, 5 iterations
Unstructured Mesh.2K, 5 time steps
Water-NSQ 512 molecules, 4 time steps
Water-SP 512 molecules, 4 time steps

moderately, but would significantly increase the risk of false
positives.

Finally, all the simulations have been conducted using sev-
eral scientific programs and the Apache HTTP server. Barnes,
Cholesky, FFT, Ocean, Radix, Raytrace, Water-NSQ, and Water-
SP are from the SPLASH-2 [21] benchmark suite. Tomcatv is
a parallel version of a SPEC benchmark and Unstructured is
a computational fluid dynamics application. The experimental
results reported here correspond to the parallel phase of each
program only. In the case of Apache, we use version 2.2.4 serving
static web pages of different sizes. Table IV shows the inputsizes
used in the simulations. We have performed several simulations
with different random seeds for each benchmark to account
for the variability of multithreaded execution, that variability is
represented by the error bars in the figures which enclose the
resulting 95% confidence interval of the results.

B. Measuring the overhead for the fault-free case

First, we evaluate both execution time overhead and network
overhead of our protocol when no messages are lost. As previ-
ously explained, the execution time overhead depends on thesize
of the backup buffer (see section IV-B). Figure 4 plots it using

different sizes for the backup buffer, including the case ofnot
having a backup buffer at all.
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Fig. 4. Execution time overhead of our proposal compared to TOKENCMP
for several backup buffer sizes.

As derived from figure 4, without a backup buffer the overhead
in terms of execution time is more than 5% on average for the
4-core CMP and more than 20% for some benchmarks, which we
think is not acceptable. The results for 16-core CMPs are similar
too. We have found that this slowdown is due to the increased
latency of the misses which need a replacement of an owned line
first, since the replacement is no longer immediate but has to
wait until an ownership acknowledgementis received from the
L2 cache.

Fortunately, the use of a very small backup buffer is enough
to avoid nearly all this penalty. In the 4-core CMP, a backup
buffer of just one entry cuts down the penalty to less than 2%
on average. And for the 16-core architecture, the slowdown using
one entry in the backup buffer is less than 1%.

The other potential source of miss latency overhead in our
protocol is due to the fact that a cache holding a line in an blocked
owner state cannot respond to write requests (not even persistent
write requests). The blocked time lasts while theownership
acknowledgementtravels to the previous owner and until the
backup deletion acknowledgementarrives to the new owner. The
results shown in figure 4 suggest that the effect of this overhead
in the total execution time is negligible, since the writes that



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XXXXX XXXX 10

different cores perform on the same line are usually sufficiently
separated in time and the new owner can progress its execution
as soon as the data is received.

On the other hand, figure 5 shows the network overhead
measured as relative increase of bytes transmitted throughthe
network for the same benchmarks and configurations employed
above. As shown in our previous work [5] where we simulated
a 4-way in-order CMP, the relative network overhead decreases
slightly as we increase the number of processors (11% for 4
processors and 8% for 16 processors on average). The network
overhead is due to the acknowledgements used to guarantee the
correct transmission of the owner token and its associated data.
On average, we have found a 10% of network overhead that
represents the cost of extending the TOKENCMP protocol with
fault tolerance properties.
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Fig. 5. Network traffic overhead of our protocol compared to TOKENCMP.

C. Measuring the supported fault tolerance ratio

We have shown that our protocol introduces negligible over-
head in the average execution time and slight network overhead.
On the other hand, our proposal is capable of guaranteeing the
correct execution of a multi-threaded workload on a CMP even
in the presence of transient faults. However, the failures and the
necessary recovery introduce certain overhead which we would
like to keep as small as possible.

Figure 6 shows the execution time overhead of the protocol
using a backup buffer with one entry under several message loss
rates. Failures rates are expressed in number of messages lost
per million of messages that travel through each switch in the
network. These failure rates are much higher than realisticfailure
rates, so these tests overstress the fault tolerance provisions of
the protocol. Obviously, the base TOKENCMP protocol (or any
previously proposed cache coherence protocol) would not beable
to execute correctly any of these tests.
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Fig. 6. Execution time overhead under several message loss rates.

As we can see, our proposal can support failure rates of up to
2000 messages lost per million with an average degradation of
12% in the execution time in a 4-core CMP. In a 16-core system,
the same loss rate yields 8% average slowdown. Hence, our
protocol can support a message loss rate of up to 2000 messages
per million without increasing the execution time more than12%.
As expected, higher failure rates create a higher slowdown in the
execution but the fault tolerance measures of the protocol still
allow the program to complete correctly, confirming the robust-
ness of such measures. The slowdown depends almost linearlyon
the failure rate. Additionally, the extent of this slowdownis very
sensitive to the values of the timeouts used to detect message
losses. In particular, in our previous work [5] we used very
different and much higher timeout values (6777 – 20000 cycles
instead of 1000 – 2000) in order to avoid false positives as much
as possible. Using those timeouts, the performance degradation in
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presence of faults was much higher due to the increased latency to
detect a fault and start a recovery process. The new shorter values
used for this paper have been determined experimentally so that
the false positive rate remains almost zero (hence the overhead
in absence of faults is almost the same) but the performance
degradation in presence of faults is much lower.

VI. CONCLUSIONS

The rate of transient failures in near future chips will increase
due to a number of factors like the increased scale of integration,
the lower voltages used and changes in the design process. This
will create problems for CMPs and new techniques will be
required to avoid errors. One important source of problems will
be faults in the interconnection network used to communicate
between the cores, the caches and the memory. In this work, we
have shown which problems appear in a CMP system with a token
based cache coherence protocol when the interconnection network
is subject to transient failures and we have proposed a new
cache coherence protocol (which is an extension of the already
proposed TOKENCMP [12]) aimed at dealing with those faults
that ensures the correct execution of programs while introducing
very small overhead. The main recovery mechanism introduced
by our protocol is thetoken recreation process, which takes a
cache line to a valid state and ensures forward progress after a
fault is detected.

We have implemented our protocol using a full system simu-
lator and we have presented results comparing it to the original
version of TOKENCMP which does not support any fault toler-
ance but is tuned for performance in CMPs. We have shown that
in the fault free scenario the overhead introduced by our proposal
is between 5% and 20% when no backup buffer is used, and that
using a backup buffer able to store just one cache line in each
L1 cache is enough to reduce it to almost insignificant levelsfor
4 and 16 way CMPs.

We have checked that our proposal is capable of supporting
message loss rates of up to 2000 messages lost per million without
increasing the execution time more than 15%. The message loss
rates used for our tests are several orders of magnitude higher
than the rates expected in the real world, hence under real world
circumstances no important slowdown should be observed even in
the presence of transient failures in the interconnection network.

The main cost of our proposal is a 10% increase in network
traffic due to some extra acknowledgement messages. The hard-
ware overhead required to provide the fault-tolerance is minimal:
just a small associative table at each cache to store thetoken
serial number, some extra counters at each cache, and a very
small backup buffer at each L1 cache.

In this way, our protocol provides a solution to transient failures
in the interconnection network with very low overhead whichcan
be easily combined with other fault tolerance measures to achieve
full system fault tolerance in future CMPs.

Although this work extends a token coherence based protocol,
the same ideas could be applied to other types of protocols. In
fact, we are designing a directory-based fault tolerant protocol
for CMPs with similar characteristics to the one presented in this
article.
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