
Simulating Server Consolidation
Antonio Garćıa-Guirado, Ricardo Fernández-Pascual, José M. Garćıa1

Abstract—Recently, virtualization has become a hot
topic in computer architecture research. The cost re-
duction and management simplification brought by
server consolidation are good reasons why virtualiza-
tion has become so popular. But there is a lack of
tools for researchers to seek new proposals of archi-
tectures that improve the performance of virtualized
systems. To fill this niche we have developed Virtual-
GEMS, a multiprocessor simulator that allows us to
simulate the behavior of a virtualized system and re-
search new architectures suitable for virtualization.
For testing Virtual-GEMS, we describe and evaluate
some configurations for the shared L2 cache of a 16-
core CMP running 4 virtual machines.

Our main contribution is the ease of configura-
tion of simulations of virtualized workloads. Virtual-
GEMS uses ordinary system checkpoints as virtual
machines. This way, it avoids the need to create com-
plex checkpoints including the hypervisor and the im-
ages of the virtual machines to simulate.

I. Introduction

Nowadays, full system virtualization is receiving
renewed interest after years of relatively little activ-
ity. One of the main reasons is its application to
server consolidation, which is the most important use
of virtualization today.

If only one application is being run in a big server,
then it is probably underutilized because most ap-
plications usually do not have enough parallelism to
use all the processors or do not require all the avail-
able resources. Additionally, without server consol-
idation, a typical data center is made up of several
small servers for executing different services, making
the management more complex and expensive.

The solution to this is server consolidation,
achieved through virtualization. In short, consoli-
dation brings several servers into a single big server.
This cuts management costs, as the number of ma-
chines to manage and maintain gets reduced. In con-
trast to executing every application on the same op-
erating system instance, using a VM (Virtual Ma-
chine) for each service provides more flexibility (for
example, the ability to use different operating sys-
tems for different applications) and more security,
isolating each application from the others.

Simulation is used in computer architecture re-
search to validate and evaluate new proposals. For
example, simulation can be used to determine which
is the best branch prediction scheme or to test new
coherence protocols. It would be logical to use sim-
ulators for also determining which architectures or
architecture parameters are best for a virtualized
system. However, the simulators available do not
provide adequate mechanisms for researching in this
field in an easy way.

1Dpto. de Ingenieŕıa y Tecnoloǵıa de Computa-
dores, Univ. Murcia, e-mail: {toni, rfernandez,
jmgarcia}@ditec.um.es

In this paper we present Virtual-GEMS, a simu-
lation infrastructure that actually provides the abil-
ity to simulate virtual machines. Virtual-GEMS is
based on Simics [1] and GEMS [2] simulators, and it
provides full-system virtualization, i.e., each virtual
machine runs its own operating system instance.

The rest of the paper is organized as follows. In
Section II we give some background. Section III ex-
plains the development Virtual-GEMS and its struc-
ture. In section IV we describe the tests performed
to show the use of the simulator and its benefits. Fi-
nally, in sections V and VI we present some proposals
of future work and our conclusions, respectively.

II. Background

A. Related work

Research in the implications of server consolida-
tion for computer architecture has grown over the
last years. Enright et al. [3] showed that server con-
solidation raise interactions across the consolidated
workloads, which open new paths to research. They
demonstrated that workloads cannot be evaluated
just in isolation when researching consolidated en-
vironments.

Marty et al. [4] propose two new two-level coher-
ence protocols. These protocols actually provide a
virtual cache hierarchy adaptable to the virtual ma-
chines executing in the consolidated server, achiev-
ing considerable performance improvements in rela-
tion to traditional protocols. One important topic in
that paper is that their protocols are well suited for
inter-VM page sharing. However, their tests do not
simulate this feature.

In the work of Apparao et al. [5], an analytical
performance model for consolidated workloads is de-
veloped, instead of using simulation.

Finally, Hsu et al. [6] explore the cache design
space for CMPs by using traces instead of full system
simulation.

B. Basic simulator infrastructure

We base our simulator on GEMS [2], a multipro-
cessor simulator developed by the Multifacet Project
from the University of Wisconsin-Madison. It is
based upon Simics, a full system simulator released
in 2002 and developed by Virtutech.

Simics [1] is a simulator accurate enough to exe-
cute unmodified operating systems and even device
drivers. It focuses on functional simulation, and can
be expanded in many ways by building modules that
give it new features.

GEMS extends Simics so that it can, among other
things, simulate the timing of a detailed and con-
figurable memory system. For that purpose, GEMS
implements several Simics modules. One of them,

421 A Coruña, 16-18 de septiembre de 2009



Fig. 1. Evolution from simulating a single real machine to

simulating a virtualized system.

Ruby, is the responsible for simulating the memory
system.

This modular simulation infrastructure decouples
functional simulation (driven in Simics) and timing
simulation (driven in GEMS).

III. Virtual-GEMS

Virtual-GEMS intends to simulate several virtual
machines. It is based on Simics and GEMS simula-
tors as its basic constructing blocks. Virtual-GEMS
simulates each virtual machine by means of a Sim-
ics instance (only functional simulation), each one
with its own OS and workload. But in order to get
a single view of the whole server, a single GEMS in-
stance is used to simulate the timing of all virtual
machines. To do that, we first decouple Simics and
GEMS, and then we develop a mechanism to connect
several Simics instances (i.e. virtual machines) to the
same GEMS timing simulation (see Figure 1). This
way, we approximate the behavior of a virtualized
system. We do not simulate any software virtualiza-
tion layer, instead, in the current implementation, we
assume that every virtualization issue is managed in
hardware. The design of Virtual-GEMS allows us to
implement the functionality of the hypervisor as part
of the simulator.

The first decision is to choose the more adequate
virtualization scheme. Virtualization software could
be executed directly inside the simulation. If in-
simulation virtualization software were used, to cre-
ate a checkpoint we would have to include the vir-
tual machine images inside the new checkpoint. And
these virtual machine images are in turn checkpoints
of the workloads to be simulated. Modifying any
workload or any virtualization software parameter
would require to build a new checkpoint, and creat-
ing such a complex checkpoint is a time demanding
task.

The other approach is to implement virtualization
in the simulator itself, allowing the direct use of the
workload checkpoints already used for simulations
that do not involve virtualization. This way, chang-
ing the workloads to use in each virtual machine or
changing the virtualization parameters (which would
be set in the simulator) would not require the cre-
ation of new checkpoints. The differences between
both approaches can be seen in Figure 2. We have
followed the later approach in our case.

This is the main contribution of our simulation in-
frastructure. We avoid the need to create a large

Fig. 2. Virtualization Schemes. With in-simulation virtu-

alization software very complex checkpoints must be used

(a), while with virtualization inside the simulator the al-

ready available checkpoints of the workloads can be used

as VMs (b).

number of complex checkpoints to perform simula-
tions. We also provide a simple hypervisor inside
our infrastructure. In order to include new virtual-
ization features, this in-simulator hypervisor is easier
to expand than in-simulation virtualization software.
The latter would also require to create new complex
checkpoints everytime the virtualization software is
modified, whereas our hypervisor can be freely mod-
ified and the original checkpoints can still be used.

A. Modifying the Simics-GEMS communication

The Simics simulator provides interfaces to be ex-
tended. Users can use these interfaces to extend
some missing functionality in the simulator. For ex-
ample, the memory access timing can be developed
in a timing-model interface.

Processors modelled by Simics are simple in-order
non-pipelined processors which block at every mem-
ory access. GEMS provides a more detailed out-of-
order processor simulator in a module called Opal.
Due to the core simplification that seems to be the
trend nowadays in many-core CMP designs (mainly
due to power consumption and heat constraints), we
use the Simics simple model in our infrastructure in-
stead of the out-of-order model simulated by Opal.

The most important element in GEMS is the Ruby
module, which is responsible for simulating the mem-
ory system.

The interface between Simics and Ruby is another
module that we call SimicsRuby, which passes and
preprocesses the memory requests from Simics to
Ruby and returns to Simics the information about
completed requests.

The module implementing the timing-module in-
terface (SimicsRuby) receives all the information of
each memory request as these are performed by the
processors simulated by Simics. This module re-
turns the number of cycles that the requesting pro-
cessor will stall until the access is completed. The
information concerning the memory access that is
passed through the timing-module interface includes
the memory address, the kind of access (read, write),
and other necessary information.

The synchronization between Simics and Ruby is
an important aspect. Memory requests do not carry

XX Jornadas de Paralelismo 422



any information about the cycle in which they are
performed. Thus, some additional mechanism is
needed to carry out this synchronization.

To do that, a Simics API function is used for reg-
istering a callback in Simics. This function is called
each time a fixed number of cycles passes. When the
callback is executed, the events in Ruby correspond-
ing to that cycle are executed too.

Unfortunately, when a memory request is issued,
we cannot predict how many cycles it will take to
complete. Instead, the actual implementation blocks
the requesting processor for a huge number of cy-
cles, such as to be sure that the request will be com-
pleted before that processor wakes up. As the sim-
ulation advances, the events in Ruby keep executing
each cycle, and eventually the memory access that
blocked the processor will be completed. Then, Ruby
will unblock the requesting processor (through Sim-
icsRuby) so it can continue its execution. This way,
the requesting Simics processor stays blocked from
the moment it sends the request until the time the
request is satisfied. This mechanism feeds back the
timing information to the functional simulator.

As an intermediate step in the construction of
Virtual-GEMS we have divided the SimicsRuby
module to decouple Simics and Ruby. Two new mod-
ules have been developed. The first one is the module
called mi-device, which implements the timing-model
interface and receives the Simics memory requests.
All the Simics dependent code has been put into this
module (e.g. all the calls needed to perform the syn-
chronization).

The second module is referred to as RemoteRuby,
and contains all the calls to Ruby elements. It com-
municates through a pipe with mi-device using a
new and very simple interface which is used to send
all the information concerning memory accesses and
synchronization.

This way, we move from a single process executing
Simics and GEMS to two different processes: one for
Simics and other for GEMS, communicating through
FIFO pipes.

B. Virtualization in Virtual-GEMS

First of all, we need to remind that our focus is
on full-system virtualization. Each virtual machine
runs its own operating system instance.

The virtualization process has to handle three
main elements: processors, memory, and I/O de-
vices. In our scheme, processors are physically par-
titioned so each virtual machine runs in a subset of
the processors of the real machine. I/O buses are
also physically partitioned, so each VM has its own
set of disks and other devices. Memory is logically
partitioned. The information of different VMs is in-
terleaved in memory with a memory page granular-
ity. This scheme is depicted in Figure 3.

Virtual memory is a key point to be properly han-
dled in the virtualization context. Broadly speaking,
virtual memory is supported by a page table for each
process that maps the virtual memory addresses han-

Fig. 3. Virtualization Scheme. Physically partitioned proces-

sors. Page level memory virtualization. Physically parti-

tioned I/O.

Fig. 4. Structure of Virtual-GEMS. Each VM is supported

by a Simics instance. The timing simulation of the whole

system is performed in GEMS. RemoteRuby manages all

the virtualization issues.

dled by each process to real memory addresses which
can be found in memory or in swap space in the disk.
This page table is usually handled by the OS.

In the virtualization environment, an extra level
of page tables is needed. This extra level of page
tables is managed by the hypervisor, and contains a
page table for each VM. This page table maps the
real memory addresses accessed by a VM to physi-
cal memory addresses in the physical machine. This
is an approach similar to the one taken in Cellular
Disco [7].

To build this virtualization scheme, Virtual-GEMS
uses different Simics instances as VMs (see Figure 1).
Each Simics instance is a different process, simulat-
ing a complete virtual machine in a functional man-
ner, with its own processors and I/O devices. On the
other hand, a specific subset of the processors sim-
ulated by Ruby corresponds to each VM. Therefore,
we need to do a mapping between Simics proces-
sors and Ruby processors. We also need to map real
memory pages from each VM to physical pages in
the real machine using the new page table level men-
tioned before. All these virtualization issues (which
would be handled by the hypervisor in a real system)
are implemented in the RemoteRuby module which
also controls all the concurrency and synchroniza-
tion issues between VMs. Figure 4 shows the final
structure of Virtual-GEMS.

423 A Coruña, 16-18 de septiembre de 2009



C. Synchronization and parallelism

We force the execution of all the Simics instances
to advance steadily. To do that, every mi-device
module attached to a Simics process sends a trigger-
event message to RemoteRuby every fixed number
of Simics cycles, and then stops and waits for confir-
mation from RemoteRuby. Once RemoteRuby has
received the trigger-event messages from every mi-
device module, the virtual machines are synchro-
nized. Then, RemoteRuby executes the events corre-
sponding to that cycle and then sends the confirma-
tion messages to the mi-device modules. The Simics
instances can now continue the functional simulation
of the virtual machines. With this process, the exe-
cution of every virtual machine advances one Ruby
cycle. The equivalence between Simics cycles and
Ruby cycles is customizable and it is used to poorly
approximate an N-way superscalar processor by us-
ing the Simics simple processors, where N is the value
of the cycle multiplier. Therefore, all the memory
requests performed by the Simics instances between
two RemoteRuby confirmation messages are consid-
ered to be issued in the same Ruby cycle. This pro-
cess is the same as the one performed in the original
GEMS, but it now involves several Simics instances
instead of a single one. Thanks to the trigger-event
and confirmation messages, the synchronization and
advance of all virtual machines does not introduce
any loss of accuracy into the simulation.

In contrast to the original GEMS, where the whole
simulation was performed in a single thread, Virtual-
GEMS shows some level of parallelism. The func-
tional simulation of each VM is performed in a sepa-
rate Simics process, allowing each VM simulation to
execute in a different core of our simulation servers.
Unfortunately, the heaviest part of the simulation
corresponds with the timing simulation performed
by Ruby, which is single threaded.

Therefore, Virtual-GEMS can speed up the simu-
lation when executed in a multicore server, i.e., al-
lowing several parallel simulations of few-core VMs
instead of one single simulation of a many-core full
system. On the other hand, the communication be-
tween processes introduces an important overhead,
reducing the benefits of the parallelization.

IV. Testing the simulator

Once the structure of the simulator has been
shown, in this section Virtual-GEMS is used to eval-
uate the best L2 configuration for a multicore archi-
tecture in which virtualization is used. The main
purpose of this evaluation is to test the simulator
and check the sanity of the results.

A. Simulated Architectures

Virtual-GEMS allows the simulation of a wide
range of machine configurations. Our base architec-
ture is a tiled-CMP with 16 tiles. Each tile has a pro-
cessor, a private L1 cache, and a bank of the shared
L2 cache. Since the L2 is shared, cache coherence
must also be kept at L1 level.

Fig. 5. Simulated Architectures. The tiled CMP with Fully

Shared L2 (above) and the Virtual Machines placement

on it. The Partially Shared L2 configuration (below) and

VMs placement.

On top of this base architecture, we set up four
virtual machines, with four tiles each. We evaluate
two different configurations that we derive from our
base architecture, and we call them Fully Shared L2
and Partially Shared L2. In the Fully Shared L2, all
the L2 banks are shared among all the cores in the
chip, regardless of which virtual machine they be-
long to. In the Partially Shared L2, the L2 banks
are only shared by the tiles of a specific virtual ma-
chine. Therefore, L2 banks are not shared among
VMs but they are private to each VM. The simu-
lated architectures are shown in Figure 5.

The placement of data lines in L2 cache banks is
determined by a subset of the bits of the physical
address. In the case of Totally Shared L2 these bits
choose the specific bank among all the banks of the
chip. On the other hand, for Partially Shared L2,
the bits choose the specific bank among those private
to the VM. In both cases, these bits are out of the
page offset part of the address, hence the hypervisor
has control over them when it performs the mapping
from real address on the VM to physical address.

We take advantage of this fact to try to place data
as close as possible to the cores that will use them.
To do this, the hypervisor chooses the physical ad-
dress that will correspond to each real address of each
VM so that the memory lines of that page will map
to the desired L2 bank.

We have used three different real-to-physical ad-
dress mappings based on the proposals of Cho et al.
[8]. The first mapping is a simple arrival order as-
signment, which maps a new real memory page from
a VM to the next free physical page. This approach,
called simple mapping, does not control where the
data is located in the chip (i.e. in which L2 cache
bank), so we consider it as an almost random as-
signment. The second one, called VMCBM (Virtual
Machine Cache Bank Mapping), maps all the real
pages from one VM to the L2 banks belonging to
that VM, using a round-robin order to choose the L2
bank inside the VM. The third mapping is referred to
as TCBM (Tile Cache Bank Mapping) or first-touch
policy. It brings the data to the L2 bank of the tile
whose core first accessed the page.

XX Jornadas de Paralelismo 424



Name Architecture Real-to-Physical

Address Mapping

config1 Fully Shared L2 simple mapping
config2 Partially Shared L2 simple mapping
config3 Partially Shared L2 VMCBM
config4 Partially Shared L2 TCBM

TABLE I

Machine Configurations Tested.

Processors 16 UltraSPARC-III+ 4-ways, in-order. 2
GHz

L1 Cache Split I&D. Size: 128KB. Associativity:
4-ways. 64 bytes/block. Access latency:
2 cycles.

L2 Cache Size: 1MB each slice. 16MB total. Asso-
ciativity: 4-ways. 64 bytes/block. Data
array access latency 15 cycles.

TLB 64 entries, totally associative
RAM 4 GB DRAM. 1 memory controller for

each chip. Memory latency 160 cycles +
on-chip latency

Interconnection Bidimensional mesh 4x4. 64 bytes links.
8 latency cycles by link.

TABLE II

Common target architecture characteristics.

We set up four different configurations that can
be seen in Table I. From now on, we refer to the
four configurations used as config1/2/3/4. The com-
mon characteristics of the architecture can be seen
in Table II.

Finally, for the configurations tested, we use two
different memory coherence protocols, both based on
a MOESI state scheme. The first one is a two level
directory based protocol [9]. The second protocol is
a token-based one [10].

B. Workloads

We use a mix of commercial and scientific work-
loads for testing Virtual-GEMS. We use two com-
mercial workloads: the Apache web server and the
JBB Java server. For the scientific workloads we use
one of the SPLASH-2 suite benchmarks [11] called
Barnes, and another scientific benchmark called Un-
structured. The details of these workloads can be
found in Table III.

C. Methodology

In the virtual machine environment, with a chip
running four different VMs, we need to define a met-
ric for measuring the performance of the full sys-
tem. One alternative is to run the simulation for a
fixed amount of time, and then count the transac-
tions (i.e. units of work) completed by the workload
in each VM to measure the performance. But this
approach has several problems, as the execution of
scientific workloads (Barnes and Unstructured) can-
not be easily split in transactions. Moreover, since
a transaction is a unit of work which depends on
the particular benchmark, counting transactions for
a workload made of a mix of different benchmarks is
not straightforward.

Hence, we have decided to fix the amount of work
that each workload performs for the different eval-

Workload Description Size Simulation

apache4x4p Web server
with static
contents

3000 transac-
tions per VM

Four 4-
processor
Apache VMs

jbb4x4p Java server 5000 transac-
tions per VM

Four 4-
processor JBB
VMs

unstructu-
red4x4p

Fluid dynam-
ics application

Mesh.2K, 5
time steps

Four 4-
processor
Unstructured
VMs

barnes4x4p Simulation of
gravitational
forces

8192 parti-
cles

Four 4-
processor
Barnes VMs

commercial Mix of com-
mercial work-
loads

See Apache
& JBB sizes

Two 4-processor
Apache VMs,
Two 4-processor
JBB VMs

scientific Mix of scien-
tific workloads

See Unstruc-
tured &
Barnes sizes

Two 4-processor
Unstructured
VMs, Two
4-processor
Barnes VMs

TABLE III

Workload configurations tested.

uated configurations. We have balanced the size of
the different workloads so that every workload take
approximately the same time to complete. We use
the average number of cycles elapsed by all the VMs
in the simulation to complete their workloads as the
performance metric regarding the whole system.

D. Results

We use config1 as the base configuration to com-
pare the rest of the configurations that have been
proposed in this work. Config1 is the base situation
of a CMP architecture with no special adaptation to
virtualization or multiprogramming, while the rest
of configurations try to improve the performance of
this one by using the real-to-physical address map-
ping policies explained before. The results of these
evaluations are shown in Figures 6 and 7.

apache4x4p

jbb4x4p

unstru
ctured4x4p

barnes4x4p

commercial

scientific

Average

Workload

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

N
or

m
al

iz
ed

 T
im

e

config1 config2 config3 config4

Fig. 6. Test results using the directory-based protocol.

All config2/3/4 get average speedups between 5%
and 6% when using the directory based protocol, and
around 7% when using the token based one.

The smallest performance improvement in a sin-
gle benchmark achieved by a Partially Shared L2
configuration is 2.6% (config3 in Barnes using di-
rectory), with the rest of the results showing better

425 A Coruña, 16-18 de septiembre de 2009



apache4x4p

jbb4x4p

unstru
ctured4x4p

barnes4x4p

commercial

scientific

Average

Workload

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1
N

or
m

al
iz

ed
 T

im
e

config1 config2 config3 config4

Fig. 7. Test results using the token-based protocol.

improvements. It seems clear that Partially Shared
L2 is a better choice for these workloads than Fully
Shared L2. Nevertheless, we are not able to point
out which one of the three mappings (simple, VM-
CBM or TCBM) used in combination with Partially
Shared L2 performs best.

V. Future Work

Implementing page sharing among virtual ma-
chines is an interesting path of research. It will pro-
vide benefits in the cache usage, specially if the vir-
tual machines run the same OS. On the other hand,
the hypervisor introduces overhead since it has to
run a mechanism to detect shared pages. It will al-
low us to reproduce virtual hierarchies [4] actually
using inter-VM page sharing to check the behavior
of the protocols proposed in that paper.

Another interesting research idea is the devel-
opment of profiling mechanisms in the hypervisor.
With live statistics about the execution we can dy-
namically reassign the resources of the physical ma-
chine to fit the needs of the virtual machines. This
can provide support to check the potential for per-
formance improvement of new ideas for dynamic re-
assignment.

VI. Conclusions

Simulation is an important and extensively used
tool in the computer architecture research arena.
Virtualization has become a hot topic nowadays, be-
cause server consolidation is a good approach to re-
duce costs and management time. However, there is
a lack of simulators usable for research in the virtu-
alization field.

This paper introduces Virtual-GEMS, a new sim-
ulator based on Simics and GEMS that allows us
to simulate the behaviour of a multicore architec-
ture running several virtual machines on it. Virtual-
GEMS is based on virtualizing the functional simu-
lator (by creating several instates of Simics, as many
as the number of VMs), and doing the timing simu-
lation with a single instance of GEMS.

The main contribution of our infrastructure is the
ease for using ordinary checkpoints as VMs, instead
of needing to build complex checkpoints including

the hypervisor and virtual machines. Also, the hy-
pervisor included in our infrastructure can be ex-
panded with new functionality without having to cre-
ate new checkpoints.

We consider that our simulator can help to im-
prove the new multicore architectures designed for
being used for server consolidation.

Acknowledgements

This work has been jointly supported by the
Fundación Séneca (Agencia Regional de Ciencia
y Tecnoloǵıa, Región de Murcia) under grant
00001/CS/2007, and also by the Spanish MEC
and European Commission FEDER funds under
grants “Consolider Ingenio-2010 CSD2006-00046”
and “TIN2006-15516-C04-03”. Antonio Garćıa-
Guirado is also supported by a research grant from
the Fundación Séneca.

References

[1] P. S. Magnusson, M. Christensson, J. Eskilson, D. Fors-
gren, G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt,
B. Werner, and B. Werner, “Simics: A full system sim-
ulation platform,” Computer, vol. 35, no. 2, pp. 50–58,
2002.

[2] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beck-
mann, Michael R. Marty, Min Xu, Alaa R. Alameldeen,
Kevin E. Moore, Mark D. Hill, and David A. Wood,
“Multifacet’s general execution-driven multiprocessor
simulator (GEMS) toolset,” SIGARCH Comput. Archit.
News, vol. 33, no. 4, pp. 92–99, November 2005.

[3] Natalie Enright Jerger, Dana Vantrease, and Mikko Li-
pasti, “An evaluation of server consolidation workloads
for multi-core designs,” IEEE Workload Characteriza-
tion Symposium, vol. 0, pp. 47–56, 2007.

[4] Michael R. Marty and Mark D. Hill, “Virtual hierarchies
to support server consolidation,” SIGARCH Comput.
Archit. News, vol. 35, no. 2, pp. 46–56, May 2007.

[5] Padma Apparao, Ravi Iyer, and Don Newell, “To-
wards modeling & analysis of consolidated cmp servers,”
SIGARCH Comput. Archit. News, vol. 36, no. 2, pp. 38–
45, 2008.

[6] Lisa Hsu, Ravi Iyer, Srihari Makineni, Steve Reinhardt,
and Donald Newell, “Exploring the cache design space
for large scale cmps,” SIGARCH Comput. Archit. News,
vol. 33, no. 4, pp. 24–33, 2005.

[7] Kingshuk Govil, Dan Teodosiu, Yongqiang Huang, and
Mendel Rosenblum, “Cellular Disco: resource manage-
ment using virtual clusters on shared-memory multipro-
cessors,” ACM Transactions on Computer Systems, vol.
18, no. 3, pp. 229–262, 2000.

[8] Sangyeun Cho and Lei Jin, “Managing Distributed,
Shared L2 Caches through OS-Level Page Allocation,”
in MICRO, 2006, pp. 455–468.

[9] Michael R. Marty, Cache coherence techniques for mul-
ticore processors, PhD in Computer science, University
of Wisconsin - Madison, 2008.

[10] Michael R. Marty, Jesse D. Bingham, Mark D. Hill,
Alan J. Hu, Milo M. K. Martin, and David A. Wood, “Im-
proving multiple-cmp systems using token coherence,”
in HPCA ’05: Proceedings of the 11th International
Symposium on High-Performance Computer Architec-
ture, Washington, DC, USA, 2005, pp. 328–339, IEEE
Computer Society.

[11] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie,
Jaswinder Pal Singh, and Anoop Gupta, “The SPLASH-
2 Programs: Characterization and Methodological Con-
siderations,” in Proceedings of the 22th International
Symposium on Computer Architecture, Santa Margherita
Ligure, Italy, 1995, pp. 24–36.

XX Jornadas de Paralelismo 426


