
Article

Accelerating collision detection
for large-scale crowd simulation on
multi-core and many-core architectures

Guillermo Vigueras1, Juan M Orduña1, Miguel Lozano1,
José M Cecilia2 and José M Garcı́a2

Abstract
The computing capabilities of current multi-core and many-core architectures have been used in crowd simulations for
both enhancing crowd rendering and simulating continuum crowds. However, improving the scalability of crowd simula-
tion systems by exploiting the inherent parallelism of these architectures is still an open issue. In this paper, we propose
different parallelization strategies for the collision check procedure that takes place in agent-based simulations. These
strategies are designed for exploiting the parallelism in both multi-core and many-core architectures like graphic process-
ing units (GPUs). As for the many-core implementations, we analyse the bottlenecks of a previous GPU version of
the collision check algorithm, proposing a new GPU version that removes the bottlenecks detected. In order to fairly
compare the GPU with the multi-core implementations, we propose a parallel CPU version that uses read–copy update
(RCU), a new synchronization method which significantly improves performance. We perform a comparison study of
these different implementations. On the one hand, the comparison study shows the first performance evaluation of RCU
in a real user-space application with complex data structures. On the other hand, the comparison shows that the GPU
greatly accelerates the collision test with respect to any other implementation optimized for multi-core CPUs. In addition,
we analyse the efficiency of the different implementations taking into account the theoretical performance and power
consumption of each platform. The evaluation results show that the GPU-based implementation consumes less energy
and provides a minimum speedup of 45� with respect to any of the CPU-based implementations. Since interactivity is
a hard constraint in crowd simulations, this acceleration of the collision check process represents a significant improve-
ment in the overall system throughput and response time. Therefore, the simulations are significantly accelerated, and the
system throughput and scalability are improved.

Keywords
Multi-core programming, GPU programming, crowd simulations, collision check procedure, performance improvement

1 Introduction

The computing capabilities of current multi-core and

many-core architectures like graphic processing units

(GPUs) have been used by many distributed applications

for performing general purpose computations (Owens

et al., 2007; Pratas et al., 2009; Goswami et al., 2010;

Herault et al., 2010). One of the applications that can take

advantage of the inherent parallelism of these architec-

tures is crowd simulations. Crowd simulations are a spe-

cial case of Virtual Environments where the avatars are

autonomous agents instead of user-driven entities. Each

of these agent-based entities can have its own goals,

knowledge and behavior (Reynolds, 1987). The computa-

tional cost of multi-agent crowd simulations increases

greatly with the number of agents in the system, requiring

a scalable design that can support huge numbers of agents

(of different orders of magnitude) by simply adding more

hardware.

In order to actually improve the scalability of crowd

simulation systems, we proposed a distributed system

architecture that can take advantage of the underlying

distributed computer system (Vigueras et al., 2008; Lozano

et al., 2009; Vigueras et al., 2010a, 2011). In addition, we

implemented a preliminary version of a distributed server

1 Departamento de Informática, Universidad de Valencia, Spain
2 Departamento Ingenierı́a y Tecnologı́a de Computadores, Universidad

de Murcia, Spain

Corresponding author:

Juan Manuel Orduña, Unversidad de Valencia Avda de la Universidad, s/n

Burjassot (Valencia), 46100 Spain.

Email: juan.orduna@uv.es

The International Journal of High
Performance Computing Applications
2014, Vol. 28(1) 33–49
ª The Author(s) 2013
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342013476119
hpc.sagepub.com

 at Universidad de Murcia on January 23, 2014hpc.sagepub.comDownloaded from

http://www.sagepub.co.uk/journalsPermissions.nav
http://hpc.sagepub.com
http://hpc.sagepub.com/
http://hpc.sagepub.com/

for crowd simulations using an on-board GPU (Vigueras

et al., 2010b, 2010c).

In this paper, we propose different parallelization and

code development strategies for the collision check proce-

dure when executed on both multi-core and many-core

architectures. In addition, we present a comparison study

of the proposed implementations. We propose an imple-

mentation based on the traditional Mutex synchronization

method and an implementation based on the read–copy

update (RCU) synchronization mechanism (McKenney and

Slingwine, 1998) as an optimization of the collision check

procedure for multi-core architectures. In particular, the

RCU-based implementation represents the first perfor-

mance evaluation of RCU in a real user-space application

with complex data structures. We also consider three differ-

ent implementations of the collision check procedure on

GPUs. The comparison study shows that the huge number

of cores in the GPU is used to simultaneously validate

movement requests from different agents, greatly reducing

the execution time of the collision test with respect to any

other implementation optimized for multi-core CPUs. As a

result, one of the GPU-based implementations greatly

reduces the execution time required for the collision check

process with respect to the implementation of the same dis-

tributed server on a CPU, due to the absence of sorting pro-

cedures. We also analyse the efficiency of the different

platforms by comparing the performance provided by the

different implementations, taking into account the theoreti-

cal performance and power consumption of each platform.

The performance evaluation results show that the GPU is

the best platform since it consumes less energy and it pro-

vides a minimum speedup of 45� with respect to any of the

CPU-based implementations. Since interactivity is a hard

constraint in crowd simulations (Vigueras et al., 2008;

Lozano et al., 2009), this reduction in the execution time

of the collision test represents a significant improvement

of the overall system throughput and response time. There-

fore, the simulations are significantly accelerated, and the

system throughput and scalability are improved. Also, the

results show that the RCU mechanism better exploits

the parallelism of a multi-core CPU than the most common

techniques like Mutex.

The rest of the paper is organized as follows: Section 2

details the existing state-of-the-art of crowd simulations

based on multi-core and many-core architectures; Section

3 describes two different implementations of the collision

check procedure for multi-core processors; Section 4

describes the proposed optimizations of the GPU algorithm

for performing the collision check procedure in crowd

simulations; Section 5 demonstrates the performance eva-

luation of the different optimizations proposed and, finally,

Section 6 contains our concluding remarks.

2 Related work

Recently, proposals have been made for exploiting the

capabilities of multi-core and many-core architectures in

crowd simulations. In this sense, a new approach has been

presented for the CellBe processor to distribute the load

among the processing elements (Reynolds, 2006). Other

work uses graphics hardware to simulate crowds of thou-

sands of individuals using models designed for gaseous

phenomena (Courty and Musse, 2005). Recently, some

authors have started to use GPU in an animation context

(particle engine) (Latta, 2004; Peter et al., 2004), and there

are also some proposals for running simple stochastic agent

simulations on GPUs (Lysenko and D’Souza, 2008; Peru-

malla and Aaby, 2008). However, these proposals are not

suitable for simulating complex agents, including a cogni-

tive model, at interactive rates.

Other proposals show efficient GPU implementations of

particle simulations (Par, 2008) or parallel global pathfind-

ing (Bleiweiss, 2008) using the CUDA programming envi-

ronment. These works propose efficient models for a

single GPU. In contrast, this paper proposes a distributed

implementation that can use as many GPUs as necessary

to perform the collision check process.

The collision detection problem has been addressed in

many areas, such as computer graphics, computer anima-

tion, agent-based simulation, etc. (Teschner et al., 2003;

Guy et al., 2009). In the context of agent-based simulation,

it consists of checking the collisions between agents that

freely move within the same geometric space. A collision

occurs when the volume occupied by one agent intersects

with another agent (this problem can be reduced to a

two-dimensional environment, by considering the two-

dimensional shape that represents each agent instead of its

volume). Although collision avoidance techniques have

been developed for crowd simulations, they still fail to

avoid some collisions when used in high-density environ-

ments (Guy et al., 2009). In order to efficiently solve the

collision detection problem, usually the simulated scenario

is divided by means of an n-dimensional grid (with n equal

to 2 or 3 for two-dimensional and three-dimensional envir-

onments, respectively). In this way, only the agents con-

tained in that grid cell and the agents contained in the

neighboring cells are checked. A naı̈ve implementation

on the GPU of this grid (called the collision grid) consists

of defining a static array and assigning each grid cell to

each position of the array. The mapping of agents to grid

cells is performed by the spatial hashing method, depend-

ing on the cell size and the position of agents. Since many

agents can fall within the same cell, GPU threads can

simultaneously update the same memory address. In order

to guarantee the memory coherence of the application,

atomic operations are needed for access to the same posi-

tion in global memory by more than one thread (NVIDIA,

2010). Although atomic operations solve the coherence

problem, they cause a penalty on performance, increasing

the total execution time of the application (Par, 2008). Due

to this penalty, other approaches based on sorting (Par,

2008) have been shown to obtain better performance than

static approaches based on atomic operations. Also, there

have been different implementations based on hierarchical

34 The International Journal of High Performance Computing Applications 28(1)

 at Universidad de Murcia on January 23, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/
http://hpc.sagepub.com/

data structures and sorting for solving the GPU-based

collision check procedure (Zhou et al., 2008; Kim et al.,

2009; Lauterbach et al., 2009, 2010). However, the compu-

tational cost of these proposals was shown to be efficient

for solving problems like ray-tracing but not for agent-

based simulation.

Regarding collision avoidance techniques, it must be

noted that all the different implementations of the collision

test proposed in this paper should be executed on the action

server (AS) of the distributed system for crowd simulation

(Vigueras et al., 2008). However, the path-planning algo-

rithm for animating agents within the crowd is executed

in parallel on client orocesses (CP) being executed on dif-

ferent computers. Thus, the movements computed on the

CPs are validated by the AS in order to keep the consis-

tency of the simulation. Following this scheme, CPs can

execute navigation algorithms like rule-based (Reynolds,

1987), social forces (Helbing et al., 2000) and reciprocal

velocity obstacle (van den Berg et al., 2008) methods.

However, these methods can fail to avoid collisions espe-

cially in high-density environments (Guy et al., 2009). For

that reason, the proposed collision check implementations

will be in charge of keeping the consistency, regardless

of the navigation algorithms executed by the CPs.

Finally, we implemented a preliminary version of a dis-

tributed server for crowd simulations using an on-board

GPU (Vigueras et al., 2010b). However, that was a single,

preliminary version that was not optimized. In this paper,

we go further, proposing different parallelization strategies

and code development for the collision check procedure:

parallel implementations using Mutex and RCU methods

for the case of multi-core (CPU) architectures, and three

different strategies for the case of many-core (GPU) archi-

tectures. In the latter case, we use the preliminary version

shown in Vigueras et al. (2010b), as the baseline algorithm

(see Section 4.1 below), and we improve this version in two

different ways. We also present a comparison study of all

the proposed implementations. In particular, the RCU-

based implementation represents the first performance eva-

luation of RCU in a real user-space application with complex

data structures. Additionally, one of the GPU implementa-

tions greatly reduces the execution time required for the col-

lision check process with respect to the implementation of

the same distributed server on a CPU, due to the absence

of sorting procedures.

3 Accelerating the collision check
procedure on multi-core CPUs

As multi-core processors become mainstream, multi-

threaded applications will become more common, increas-

ing the need for efficient programming models. Efficiently

managing the data structures on a multi-core processor is

relatively easy when the input of the parallel application

is a static structure without data dependencies that can be

partitioned between the execution threads. The OpenMP

API for example, permits the parallelization of a program

by means of directives, partitioning the workload between

different execution threads. However, problems arise if

dynamic data structures are not safely managed in a

multi-threaded program. Furthermore, to obtain a proper

speedup with the number of cores, an efficient thread coor-

dination of concurrent accesses to shared data structures is

needed. Traditional locking requires expensive atomic

operations, such as compare-and-swap (CAS), even when

locks are not contended. Locking is also susceptible to pri-

ority inversion, convoying, deadlock, and blocking due to

thread failures. Therefore, many researchers recommend

avoiding a locking-based synchronization. Some proposals

use non-blocking (or lock-free) synchronization in multi-

threaded applications for avoiding the use of locking,

obtaining good results (McKenney and Slingwine, 1998;

Sundell and Tsigas, 2008). Other work has studied the

impact of replacing a locking-based synchronization with

software transactional memory (STM) in a multi-player

game server (Zyulkyarov et al., 2009; Gajinov et al.,

2009). Nevertheless, these studies reveal that regardless the

granularity of memory transactions used in STM, the per-

formance obtained is even worse compared to a locking-

based implementation.

This section describes two CPU implementations of the

collision check problem using a grid data structure based on

hashing. The first implementation is based on Mutex, the

thread synchronization method provided by the POSIX

threads API. The second implementation is based on a

lock-free data structure, and the RCU method (McKenney

and Slingwine, 1998) is used to protect this lock-free data

structure from race conditions.

3.1 Mutex-based implementation of the collision
check procedure

The Mutex version uses a grid-based data structure to per-

form the collision checking, this data structure is denoted as

the collision grid. Figure 1 illustrates the implementation

details of the Mutex-based version. The top part of the fig-

ure shows the geometric space partitioned using a grid with

16 grid cells. Four agents, represented as numbered circles,

are allocated within the grid at given positions. The bottom

part of Figure 1 shows that the collision grid is implemen-

ted as a lineal array. Each element of this array contains a

Mutex and a pointer to a dynamic data structure, implemen-

ted as a linked list, that contains the agents positions. The

Mutex avoids the corruption of the dynamic data structure

protecting it when reader and writer threads access it con-

currently during the collision check. A thread performs the

collision check for an agent, calculating first the mapping

of the agent’s position into the collision grid by means of

the hashing method. The Mutex located at the position

returned by the hashing method is locked and the dynamic

data structure is queried in the case of read access, or

updated in the case of write access. The described imple-

mentation using an array of Mutexes instead of one Mutex

protecting the collision grid, provides a certain level of

Vigueras et al. 35

 at Universidad de Murcia on January 23, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/
http://hpc.sagepub.com/

concurrency between threads. However, the use of lock-

free dynamic data structures along with the appropriate

reclamation scheme can significantly improve the paralle-

lism on a multi-core processor.

3.2 Read–copy update based implementation
of the collision check procedure

Read–copy update (RCU) is a synchronization mechanism

that was added to the Linux kernel during the development

of version 2.5. In 2009 it was released for user-space access

(Desnoyers, 2009). However, the benefits provided by

RCU have not been evaluated in complex applications with

large data structures. The idea behind RCU is to split

updates into removal and reclamation phases. The removal

phase removes references to data items within a data struc-

ture (possibly by replacing them with references to new

versions of these data items), and can run concurrently with

readers. The reason that it is safe to run the removal phase

concurrently with readers is the fact that the semantics of

modern CPUs guarantee that readers will see either the old

or the new version of the data structure rather than a par-

tially updated reference. The reclamation phase does the

work of reclaiming (e.g. freeing) the data items removed

from the data structure during the removal phase. Since

reclaiming data items can disrupt any readers concurrently

referencing those data items, the reclamation phase must

not start until readers no longer hold references to those

data items. Splitting the update into removal and reclama-

tion phases permits the updater to perform the removal

phase immediately, and to defer the reclamation phase until

all readers active during the removal phase have com-

pleted, either by blocking until they finish or by registering

a callback that is invoked after they finish. Only readers

that are active during the removal phase need to be consid-

ered, because any reader starting after the removal phase

will be unable to gain a reference to the removed data

items, and therefore cannot be disrupted by the reclamation

phase.

Different reclamation schemes can be used to imple-

ment RCU. We have implemented an RCU version using

the quiescent state-based reclamation (QSBR) scheme

since it provides concurrent reads with the lowest overhead

but at the cost that the application has to be modified in

order to explicitly manage reclamations (Hart et al.,

2006; Desnoyers, 2009). QSBR uses the concept of a grace

period. A grace period is a time interval [a,b] such that,

after time b, all nodes removed before time a may safely

Figure 1. Diagram of CPU collision checking using Mutex.

36 The International Journal of High Performance Computing Applications 28(1)

 at Universidad de Murcia on January 23, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/
http://hpc.sagepub.com/

be reclaimed. QSBR uses quiescent states to detect grace

periods. A quiescent state for thread T is a state in which

T holds no references to shared nodes. Hence, a grace

period for QSBR is any interval of time during which all

threads pass through at least one quiescent state. Figure 2

illustrates the relationship between quiescent states and

grace periods in QSBR. Thread T1 goes through quiescent

states at times t1 and t5, T2 at times t2 and t4, and T3 at time

t3. Hence, a grace period is any time interval containing

either [t1, t3], or [t3, t5].

Figure 3 shows the management of a linked-list in a

multi-threaded environment by using RCU API calls

(McKenney and Slingwine, 1998). The figure shows the

changes suffered by a linked-list containing three elements

(A, B and C) while an updater thread deletes element B.

This element is deleted using the RCU API call list_del_rcu

(). This function removes a list element allowing some con-

current readers to continue seeing the removed element.

Looking at Figure 3, it can be seen that after executing

list_del_rcu (), the element B has been removed from the

list. Since readers do not synchronize directly with upda-

ters, readers might be concurrently scanning this list. These

concurrent readers might or might not see the newly

removed element, depending on timing. However, readers

that were delayed (e.g. due to interrupts) just after fetching

a pointer to the newly removed element might see the old

version of the list for quite some time after the removal.

Therefore, there are two versions of the list, one with ele-

ment B and one without it. The filling color of element B

is still white during the grace period, indicating that readers

might be referencing it, for that reason the freeing of ele-

ment B is postponed.

Readers are not permitted to maintain references to ele-

ment B after exiting from their RCU read-side critical sec-

tions. Therefore, when all readers have exited their critical

sections, then no more readers can be referencing element

B, as indicated by its grey color and dashed frame in the

‘Updater’ column in Figure 3. When no more readers

hold references to element B, then the synchronize_rcu ()

function completes. At this point, the list is back to a single

version and element B may safely be freed.

We have adapted the CPU implementation based on

Mutex described in Figure 1, in order to support lock-free

data structures along with the RCU synchronization

method. In this way, the lineal array representing the colli-

sion grid is modified removing the Mutex from each ele-

ment of the collision grid. As a consequence, lock-free

linked-lists containing the agents’ positions are obtained.

Read and update accesses to the lock-free linked-lists

are performed by threads through a user-space RCU API

(Desnoyers, 2009). This API allows us to manage the

RCU removal phase defining read-side critical sections

in order to run write accesses to shared linked-lists con-

currently with read accesses. The reclamation phase is

managed using the QSBR reclamation scheme within

RCU. The QSBR version of RCU implemented by this

API, permits the definition of quiescent states in order

to safely update or reclaim the linked lists nodes contained

in the collision grid.

4 Optimization of the collision check
procedure on graphic processing units

All NVIDIA GPU platforms from the G80 architecture can

be programmed using the compute unified device architec-

ture (CUDA) programming model which makes the GPU

operate as a highly parallel computing device (NVIDIA,

2010). Each GPU device is a scalable processor array con-

sisting of a set of single instruction multiple threads (SIMT)

streaming multi-processors (SM), each of them containing

several stream processors (SPs). Different memory spaces

are available in each GPU on the system. The global mem-

ory (also called the device or video memory) is the only

space accessible by all multi-processors. It is the largest

and the slowest memory space and it is private to each GPU

on the system. Moreover, each multi-processor has its own

private memory space called its shared memory. The

shared memory is smaller and also provides lower access

latencies than global memory. Finally, there are other

addressing spaces for specific purposes such as texture and

constant memory (NVIDIA, 2010).

The CUDA programming model is based on a hierarchy

of abstraction layers. The thread is the basic execution unit

that is mapped to a single SP. A thread-block is a batch of

threads which can cooperate together as they are assigned

to the same multi-processor, and therefore they share all the

resources included in this multi-processor, such as register

file and shared memory. A grid is composed of several

thread-blocks which are equally distributed and scheduled

among all multi-processors. As an aside, there is no partic-

ular order to the way the thread-blocks are executed, there-

fore they are executed in multiple instruction multiple data

(MIMD) fashion. Finally, threads included in a thread-

block are divided into batches of 32 threads called warps.

The warp is the scheduled unit, so the threads of the same

thread-block are scheduled in a given multi-processor warp

Figure 2. Illustration of QSBR. Black boxes represent quiescent
states.

Vigueras et al. 37

 at Universidad de Murcia on January 23, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/
http://hpc.sagepub.com/

by warp. The 32 threads in a warp execute the same instruc-

tion over multiple data (SIMD). The programmer declares

the number of thread-blocks, the number of threads per

thread-block and their distribution to arrange parallelism

given the program constraints (i.e. data and control

dependencies).

This section describes a new GPU algorithm, implemen-

ted with CUDA (NVIDIA, 2010), for performing the

collision check procedure. Additionally, in order to make

this paper self-contained, this section briefly describes the

preliminary version of the algorithm for the GPU-based

collision check procedure proposed in our previous work

(Vigueras et al., 2010b), denoted as the baseline version.

This algorithm has been used in other works about GPU-

based collision detection and particle simulation (Par,

2008; Erra et al., 2009), therefore becoming a reference for

comparison with other work. Also, several optimizations of

the baseline algorithm (Vigueras et al., 2010c) are

described, for comparison purposes.

4.1 Baseline algorithm

The baseline algorithm uses a grid to perform the collision

test (Vigueras et al., 2010b). The dimensions of this grid,

the grid cell size and grid origin coordinates are input para-

meters that depend on the simulated scene.

The algorithm consists of five main steps, each one rep-

resented by one CUDA kernel: First, the spatialHash ker-

nel updates the collision grid, performing the spatial

hashing by means of the agents’ positions given as inputs.

Second, a radixSort (Harada et al., 2007) is performed for

ordering the output of the previous step based on the cell

identifier (the first being the lowest cell identifier). This

sorting is needed to allow efficient access to global memory

during the collision check step. Third, the coordinates of

the agents given as inputs are sorted based on the order

established in the previous step. Fourth, the data contained

in the collision grid is indexed in order to allow a quick

access to the agents in neighboring cells. Finally, the colli-

sion test is performed.

4.2 Improved baseline algorithm

The baseline algorithm is composed of five kernels. In

order to improve the baseline algorithm, the first step is

to determine which kernels are the most time-consuming.

The percentage of the global execution time consumed by

each kernel was measured when checking the movements

of 1,000,000 agents. These measurements are shown in

Figure 4. This figure shows that the most time-consuming

kernel is the one performing the collision check, consuming

63% of the total time. The main reason for this time con-

sumption is that this kernel does not take advantage of the

GPU memory hierarchy in the baseline version, accessing

only to global memory.

During the collision check kernel (the fifth kernel in the

baseline algorithm), each agent checks its neighborhood.

This data locality can be exploited by using the on-chip

GPU memories. The input arrays of the kernel performing

the collision check can be bound to the texture memory.

Hence, neighbor cells are cached and they can be fetched

from the texture memory instead of the device memory,

increasing the memory bandwidth. This first improvement

of the baseline algorithm is denoted the texture memory

Figure 3. Deletion of one element in an RCU linked-list.

38 The International Journal of High Performance Computing Applications 28(1)

 at Universidad de Murcia on January 23, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/
http://hpc.sagepub.com/

optimization. On the other hand, data locality can be also

exploited by using the shared memory along with a tiling

technique (Xu et al., 2009). Tiles are defined within the col-

lision grid in such a way that collisions can be indepen-

dently checked by each GPU block, avoiding inter-block

synchronization. Collision grid cells are ordered in global

memory based on the tile organization. In this way, all

threads in a GPU block collaborate in loading the assigned

tile from global memory to shared memory, obtaining a

coalesced access and reducing the number of accesses to

device memory. This memory layout also avoids bank con-

flicts in the access to shared memory. In order to illustrate

this improvement, Figure 5 shows the memory access pat-

tern of the baseline algorithm, while Figure 6 shows the

memory access pattern of the improved baseline algorithm.

Both figures show a collision grid with sixteen cells. Figure 5

shows how a given tile consisting of 3�3 cells (from cell 5

to cell 15, except cells 8 and 12) is stored in global memory.

It can be seen that the neighboring cells are stored in non-

adjacent memory segments (cells 8 and 12 are interleaved

within the tile segments) preventing coalesced accesses to

global memory.

Figure 6 shows the global memory layout for the

improved version. A tile in the improved algorithm consists

of 3�3 sub-matrix of cells, as in the case of the baseline

algorithm. This 3�3 sub-matrix is composed of a 2�2

sub-matrix of cells and its neighbor cells. For example, the

tile highlighted in Figure 6 with a blue circle, consists of

cells 12, 13, 14 and 15 forming the 2�2 sub-matrix that

along with cells 3, 6, 7, 9 and 11 form the 3�3 tile. For that

reason, cell numbers (i.e. big numbers in the middle of each

cell) are assigned in the improved version for keeping those

cells contained in the 2�2 sub-matrix linearly ordered. In

addition, the improved algorithm replicates those cells that

are in the border of the 2�2 sub-matrix of a tile. Figure 6

shows this replication scheme. In this figure, the numbers

in the middle of each cell denote the cell number in the col-

lision grid, while the small numbers in the corners of each

cell denote the replicas of that cell in each tile. For exam-

ple, the cell number 3 is replicated as cell 4 in the first tile,

cell 12 in the second tile, cell 19 in the third tile, and cell 27

in the fourth tile. The advantage of this data replication

consists of having all the cells belonging to a given tile lin-

early ordered in the same global memory segment. There-

fore, all threads in a warp (half-warp) can linearly access

the same global memory segment and load the data into

shared memory obtaining a coalesced access. The lower

part of Figure 6 shows how the cells of the first tile (black

numbers in the corner of each cell) are stored in the same

global memory segment. The same occurs for the second

tile (numbers in red), for the third tile (numbers in green)

and for the fourth tile (numbers in blue). This improved

organization along with the use of shared memory is

denoted as the shared memory optimization. It should be

2%

7%

2%

63%

27%
calcHash
radixSort
reorderData
findCellStart
collisionCheck

Figure 4. Percentage of execution time required by the kernels
for the baseline version.

Figure 5. Grid mapping to global memory in the baseline version.

Figure 6. Grid mapping to global memory in the improved
version.

Vigueras et al. 39

 at Universidad de Murcia on January 23, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/
http://hpc.sagepub.com/

noticed that GPU memory consumption is not a hard limita-

tion since crowd simulations are performed in a distributed

fashion. In this way, the replication of border cells cannot

exhaust GPU memory, since the simulated world can be

distributed across several GPU-based action servers (Vig-

ueras et al., 2008, 2010b).

Figure 4 shows that the collision check is the most time-

consuming kernel in the baseline algorithm. However, this

figure also shows that the kernel performing the radixSort

requires 27% of the total execution time, being the second

most time-consuming kernel. Since the radixSort is the

fastest GPU sorting method (Satish et al., 2009), the radix-

Sort procedure used in the baseline algorithm has been

replaced by the fastest published version of this sorting

algorithm (Satish et al., 2009). Finally, although the execu-

tion times for the rest of the kernels are less significant than

the previous ones, some optimizations can be performed on

them. The kernels corresponding to the third and fourth

steps in the baseline algorithm can be merged into a single

one, as there are no global synchronization requirements

between them. Therefore, the cost of synchronization can

be saved. Furthermore, the shared memory can be used

by the fourth kernel, taking advantage of the data locality

and improving the global memory bandwidth.

In order to show the improvements achieved by the opti-

mized version of the baseline algorithm, Figure 7 shows the

impact of the optimizations in terms of percentages of the

execution time (100% being the total execution time of

the baseline algorithm on the left bar). This bar shows that

the effect of the optimizations represents a reduction of

70% in the global execution time with respect to the base-

line version. The right bar in Figure 7 zooms into the results

obtained for the improved version. In this version, the most

time-consuming kernel is the radixSort, using 54% of the

global execution time for the optimized version. For this

reason we propose a new algorithm to perform the collision

check that is not based on sorting.

4.3 New graphic processing unit based algorithm
for collision check

This section describes a new algorithm for performing the

GPU collision check. This algorithm avoids the sorting step

in the collision check procedure. In order to achieve this

goal, a static grid is used. Nevertheless, if many agents fall

within the same grid cell and they try to write into the same

memory address, atomic operations are needed. In order to

avoid the performance penalty caused by atomic opera-

tions, a different approach is proposed in which the size

of each grid cell is fixed in order to guarantee the consis-

tency of the simulation. The consistency is guaranteed if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ L2

p
¼ D ¼ 2R ð1Þ

where L is the size of the side of a grid cell, D is the diag-

onal of a grid cell and R is the radius of the agents. When

the distance between two agents is less or equal to twice the

agent radius (2R), a collision occurs. For that reason, the

condition in equation (1) establishes that all the agents

falling in the same cell will collide since the maximum dis-

tance within a cell is the diagonal of the cell (i.e. D ¼ 2R).

In this way, the condition in equation (1) implicitly per-

forms the collision detection for agents trying to move to

the same cell. In that situation, the consistency can be guar-

anteed by allowing the movement of one agent and forbid-

ding the rest of the movements. It must be noted that the

selection of the agent to perform the movement can be done

in a non-deterministic fashion since agent-based simula-

tions evolve in this way.

As a result of using the condition in equation (1) to

define the cell size, more neighbor cells will have to be

queried during the collision check. Since the side of a cell

can be shorter than 2R, not only the closest neighbor cells

must be queried but also those cells that are one cell distant.

This set of cells is denoted as extended neighbor cells.

Nevertheless, in spite of the fact that more neighbor cells

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Opt. version respect baseline
version

Opt. version kernel consumption

Saved Time

collisionCheck

reorder&FindCS

radixSort

calcHash

Figure 7. Percentage of execution times required by the kernels in the baseline optimized version.

40 The International Journal of High Performance Computing Applications 28(1)

 at Universidad de Murcia on January 23, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/
http://hpc.sagepub.com/

are accessed, the performance can be improved by loading

these cells from global memory only once and storing them

on shared memory.

Using the consistency condition (equation (1)), a new

collision check algorithm has been defined consisting of

four steps, each one containing one GPU kernel call. In this

new algorithm there is an array (denoted as CollisionRe-

sponseArray) containing each element a pair (collision

flag, agent identifier). Another array called ObjectPosition-

sArray contains the agents positions, and the array colli-

sionGrid has as many positions as cells used to perform

the collision check. In addition, the collisionGrid array

contains three elements in each position. The first element

indicates the current step of the simulation. The second ele-

ment in a given position i, stores an agent identifier indicat-

ing that the target cell for that agent is cell i. The third

element in a given position i, stores an agent identifier indi-

cating that the source cell for that agent is cell i.

Before the collision check test is launched, agents’ posi-

tions are copied by the CPU onto device memory. Once the

test is finished the result is returned back to the CPU by

copying the CollisionResponseArray. Actions performed

in each step of the new algorithm are illustrated in Figure 8.

This figure shows an example of the whole process,

Figure 8. New algorithm for collision check on the GPU.

Vigueras et al. 41

 at Universidad de Murcia on January 23, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/
http://hpc.sagepub.com/

including the data structures involved as both input and output

of each step. The upper part of this figure shows a snapshot

of a 2D grid, composed of sixteen cells containing four

agents at given locations. In the lower part, this figure shows

the data structures with the values corresponding to that

snapshot for each step of the algorithm described above. The

actions performed in each step are the following ones:

In the first step, the collisionResponse array is initialized

indicating that there are collisions for all agents (see Figure

8). This initialization is necessary because one agent can

overwrite another agent when falling in the same cell.

Overwritten agents can detect the collision by means of this

initialization step.

In the second step, the hashing to determine the target

and the source cell for each agent position stored in Object-

PositionsArray is performed. Each thread writes a step

identifier and the agent identifier in both the source and tar-

get cells. All updated positions share a common step iden-

tifier. This identifier allows us to determine whether the

information within a cell is correct or if it contains obsolete

data. This step identifier is used to avoid using the function

cudaMemset () for clearing the content of collisionGrid

before launching the second step. The execution time of

this function significantly increases the global execution

time, especially when the size of the array to be cleared

grows. The hashing performed in this step by the calcHash

kernel is shown in Figure 8. Since cell 1 is the previous one

for Agent 0 and it wants to move to cell 3, Agent 0 writes its

identifier in these cells in the corresponding slot. Agent 2

moving from cell 11 to cell 8 and Agent 3 moving from cell

12 to cell 11, write their identifiers in the corresponding

slots in these cells. In addition, Agent 1 writes its identifier

in the proper slot of cell 8 (the source cell of Agent 1) but

the value for the target cell (cell 3) is overwritten with the

value stored by Agent 0 when the kernel calcHash finishes.

All agents share the step identifier 0, since movements for

these agents are checked in the same collision test launch.

The third step of the new algorithm consists of agents

detecting whether their desired movements are possible

or not. If the desired movement of an agent was overwritten

in the previous kernel or generates a collision, it means that

the desired position is not possible. In that case, the colli-

sion grid is updated in the following way: agents whose

desired movement was finally written clean their identifier

from their source cell. However, if an agent detects that its

movement is not possible, it checks whether its source cell

is the target cell of other agent. In such cases, the overwrit-

ten agent notifies that the desired movement is not possible.

It must be noted that restoring the previous position cannot

lead to an inconsistent situation, since the initial scenario is

collision free (i.e. position restore is possible), and for each

cycle the agents’ positions are updated, keeping the consis-

tency. In Figure 8, Agent 0 cleans its identifier from its

source position, cell 1. On the other hand, Agent 1 notifies

Agent 2 that its desired movement to cell 8 is not possible.

In addition, Agent 2 notifies Agent 3 that the desired posi-

tion of the latter agent generates a collision.

Finally, the collision check is performed in the fourth

step. For each grid cell, if the agent identifier stored in that

cell is written in the Desired Cell slot then its extended

neighbor cells are queried to detect a collision. If no colli-

sion is detected, then the collision flag in collisionResponse

array is set to 0, indicating that there is no collision. On the

other hand, if the agent identifier is written in the Previous

Cell slot, then the collision flag is not overwritten, since the

desired position for that agent generates a collision. Figure

8 shows that the collision for Agent 1 is detected. The

collisions for Agent 2 and Agent 3 are also detected, since

they are notified about it.

The algorithm described above performs global syn-

chronization through finishing the second kernel launch.

In this way, in the third kernel the overwritten agents are

restored to their previous positions and the consistency of

the simulation is kept. A version of this algorithm has been

implemented using atomic operations for comparison

purposes. This new version consists of merging the second

and third steps in a single kernel. In order to merge these

two steps, atomic operations are needed (the global syn-

chronization achieved through the second kernel termina-

tion should be performed by using atomic operations).

However, the advantage of saving one kernel launch at the

cost of using atomic operations should be analyzed.

5 Performance analysis

This section shows the performance evaluation of both

CPU and GPU algorithms of the collision check procedure

described in Sections 3 and 4. Our performance tests are

based on different configurations of the simulated scenario,

increasing the number of agents, in order to evaluate the

scalability of each algorithm version. Agents are uniformly

distributed and the size of the scene is proportionally

increased in order to obtain low-density scenarios. The col-

lision test algorithms described before iterate over the set of

neighbor cells until any obstacle is found. For that reason,

low-density represents the worst case scenario (the absence

of surrounding obstacles results in more neighbor cells

checked during the collision test (Lozano et al., 2009)).

Nevertheless, the initial density of the scenario varies as the

agents move around the scene.

Regarding the movement pattern, we use wandering

agents that move around the scene following random paths.

This movement pattern generates the highest workload in

the action server, since all the movements must be vali-

dated (Vigueras et al., 2008). Paths are generated by com-

puting 100 random movements per agent, using the agent

identifiers as the seed for the random generation, in order

to obtain reproducible results. The execution times reported

below are the aggregated time obtained for all the move-

ments performed by all the agents considered for each

simulation. We have compared the new GPU implementa-

tion with the baseline version, that is the reference imple-

mentation shown in the literature for collision tests (Par,

2008; Erra et al., 2009)

42 The International Journal of High Performance Computing Applications 28(1)

 at Universidad de Murcia on January 23, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/
http://hpc.sagepub.com/

Figures 9 and 10 compare the different GPU collision

check implementations showing the overall execution time

for each implementation. These figures show on the x-axis

the number of agents considered for the simulations. The y-

axis shows the aggregated execution time obtained for each

collision check method on a log scale. Since the considered

algorithm should scale up with the physical parallelism

available on the GPU, we have considered two different

NVIDIA Tesla GPUs: The Tesla C870 (16 SMs) and Tesla

C1060 (30 SMs). When comparing the corresponding

results for different cards, Figures 9 and 10 show that the

execution times are inversely related to the number of SMs

available on the cards.

Figure 9 shows the results for the Tesla C870 platform.

The new version using atomic operations has not been tested

for this platform, since it does not support this kind of oper-

ation. As would be expected, the greatest differences arise

for the largest population size, that is, 1,000,000 agents.

We use the texture memory to decrease the use of the device

memory in the first optimization. In addition, we reduce the

overhead due to kernel launches, resulting in a speedup of

2� with respect to the baseline algorithm for the C870 card.

In the second optimization, the shared memory is used in

such a way that a coalesced access to device memory is guar-

anteed, obtaining a speedup of around 3.3� compared to the

baseline version. Nevertheless, the proposed technique

achieves the best results, obtaining a speedup of 7.2� with

respect to the baseline version. Figure 10 shows that the

effects of the texture memory optimization hardly arise for

the case of the C1060 card. The reason is that for this card

the global memory access algorithm allows us to obtain

more coalesced accesses (NVIDIA, 2010), and therefore the

baseline algorithm requires much shorter execution times

than for the case of the C870 card. Nevertheless, the pro-

posed algorithm achieves the best execution times, obtaining

a speedup of 4.1� for a population of 1,000,000 agents.

Figure 9. Execution times on the Tesla C870 card.

Figure 10. Execution times on the Tesla C1060 card.

Vigueras et al. 43

 at Universidad de Murcia on January 23, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/
http://hpc.sagepub.com/

In order to show that these execution times are directly

related to the workload generated by each method, we have

measured the throughput of the different versions in terms

of the number of collisions checked per second. Figures 11

and 12 show the collisions check rates obtained when

increasing the number of agents for both the Tesla C870

and C1060 cards, respectively. Figures 11 and 12 show that

the proposed method without atomic operations performs at

the highest collision check rate for all the population sizes.

These figures also show that the collision check rate per-

formed by the proposed method significantly increases

with the number of available SMs on the GPU, assessing

the scalability of this method.

The platform used for the CPU tests was a 16-core

machine integrating 8 AMD Opteron processors (2 cores

@ 1 GHz per processor), with 32.5 GB of RAM and the

operating system was Linux 2.6.18-92. We used the POSIX

API in order to obtain different configurations with an

increasing number of cores. This API allows us to set the

affinity of the execution threads, limiting the core set in

which the threads are executed. Four configurations con-

taining 2, 4, 8 and 16 cores were used in order to check the

scalability with the number of cores of the CPU-based

implementations.

Figure 13 shows the overall execution time for both the

RCU- and the Mutex-based implementations. This figure

shows on the -axis the number of agents considered for the

simulations and the number of cores used for each popula-

tion size (i.e. 2, 4, 8 and 16 cores). The y-axis shows, in log

scale, the execution times measured in ms. It can be seen

that the RCU obtains lower execution times when increas-

ing the number of cores and as the population size grows. In

addition, when the population size of the crowd grows, the

differences in the execution time between the RCU and the

Mutex implementations increases. The reason for this

behavior is that the RCU synchronization method improves

Figure 11. Collision rate on the Tesla C870 card.

Figure 12. Collision rate on Tesla C1060 card.

44 The International Journal of High Performance Computing Applications 28(1)

 at Universidad de Murcia on January 23, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/
http://hpc.sagepub.com/

concurrency with respect to the Mutex method, since the

critical section protected by a Mutex can only be sequen-

tially executed by the existing threads.

Figure 14 shows the speedup obtained by the proposed

GPU algorithm with respect to the CPU implementations.

The results were obtained by comparing the execution

times for both Tesla C870 and Tesla C1060 platforms with

the execution times obtained for the CPU implementations

using 16 cores. The execution times used for the GPU

implementations were the aggregated execution time of the

kernels, shown in Figures 9 and 10, plus the PCI time to

transfer the data onto device memory and to return it back

to the host. Figure 14 shows on the x-axis the number of

agents considered for the simulations. The y-axis shows the

speedup obtained. It can be seen that as the crowd popula-

tion size increases, the speedup obtained for both GPU plat-

forms in comparison with the RCU version, significantly

decreases with respect to the speedup obtained for the

Mutex version. In addition, the good scalability offered

by the RCU version is the cause of the flatter slope of the

speedup plot respect to the plot for the Mutex version. The

reason for this behavior is that the RCU method allows read

accesses in parallel with write accesses to dynamic data

structures, avoiding the sequential access that a Mutex

represents for these data structures. In this way, it can better

exploit the existing number of processor cores, and the

speedup of the GPU-based implementation hardly increases

(50�) with respect to the RCU-based implementation when

the population size increases by orders of magnitude,

obtaining a flat slope. In contrast, the Mutex implementa-

tion generates more serial accesses to data structures when

the population increases, and therefore the performance

improvement of the GPU implementations significantly

increase with the population size with respect to the Mutex

implementation. These results show the potential of the RCU

synchronization method for improving parallel and distribu-

ted applications when executed on multi-core architectures.

Nevertheless, despite the good scalability provided by the

Figure 13. Overall execution time for both the RCU- and the Mutex-based implementations.

Figure 14. Speedup obtained for the new GPU procedure executed on different cards, with respect to the CPU implementations.

Vigueras et al. 45

 at Universidad de Murcia on January 23, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/
http://hpc.sagepub.com/

RCU implementation, the speedup obtained by the new GPU

algorithm for the highest population size,with respect to the

RCU implementation, is around 45.5� and 52.9�when com-

pared to the Tesla C870 and C1060 platforms, respectively.

In order to measure the efficiency of the different plat-

forms, Table 1 shows the power consumption and theoretical

peak performance for the platforms considered, as well as

the speedup achieved by the GPU implementations accord-

ing to Figure 14. The first column shows the results for

the multi-core server, consisting of 8 AMD Dual Opteron

processors (16 cores), the second column shows the results

for the NVIDIA C870 graphics card, and the last one shows

the results for the NVIDIA C1060 graphics card.

Table 1 shows in the first row that the energy consump-

tion of the multi-core server is one order of magnitude

larger than the energy consumption of the graphics cards.

However, the second row shows that the theoretical peak

performance of the multi-core server is several times lower

than that of the graphics cards. The third row expresses the

relationships between the numbers in the second row as a

ratio, showing that the theoretical peak performance of the

C870 card is 4.48� higher than that of the multi-core ser-

ver, and the theoretical peak performance of the C1060

card is 9.72� higher that of the multi-core server. Never-

theless, the fourth row shows that with a performance ratio

of the hardware platform of 4.48 and 9.72�, the speedups

obtained with respect to the RCU implementations are

45.5 and 52.9� for the C870 and C1060 cards, respectively

(as shown in Figure 14). That is, the speedup achieved

greatly exceeds the theoretical expected performance, mul-

tiplying it by a factor of around 5�. If we consider the

speedup obtained by the graphics cards with respect to the

performance of the multi-core server when using the Mutex

implementation, then the achieved speedup multiplies the

theoretical performance ratio by around 18�. These results

validate the GPU as the best platform for performing colli-

sion check procedures in distributed crowd simulations.

6 Conclusions

In this paper, we have proposed different parallelization stra-

tegies for collision check procedures that take place in agent-

based simulations, as part of a new distributed architecture

for large-scale crowd simulations. These strategies are

designed for exploiting the parallelism in both multi-core

and many-core architectures like graphic processing units

(GPUs). In order to fairly compare GPUs with multi-core

implementations, we propose a parallel CPU version that

uses RCU, a new synchronization method which signifi-

cantly improves performance. In addition, we have pre-

sented a comparison study of the proposed implementations.

The comparison study shows that the GPU greatly accel-

erates the collision test with respect to any other implemen-

tation optimized for multi-core CPUs. On other hand, the

comparison study shows the first performance evaluation

of RCU in a real user-space application with complex data

structures. The results show that RCU allows read accesses

concurrently with write accesses to dynamic data struc-

tures, avoiding the sequential access that a Mutex repre-

sents for these data structures. In addition, we analyse the

efficiency of the different platforms by comparing the per-

formance provided by the different parallel implementa-

tions, taking into account the theoretical performance and

power consumption of each platform. The performance

evaluation results show that the GPU-based implementa-

tion consumes less energy and it provides a minimum

speedup of 45� with respect to any of the CPU-based

implementations.

Since interactivity is a hard constraint in crowd simula-

tions, this reduction in the execution time of the collision

check process represents a significant improvement of the

overall system throughput and response time. Therefore,

the simulations are significantly accelerated, and the sys-

tem throughput and scalability are improved.

Funding

This work has been jointly supported by the Spanish

MINECO and the European Commission FEDER funds

(grant numbers CSD2006-00046 and TIN2009-14475-C04).

References

NVIDIA Corporation (2008). Particles Example. NVIDIA CUDA

SDK.

Bleiweiss A (2008) GPU accelerated pathfinding. In: 23rd SIG-

GRAPH/EUROGRAPHICS symposium on graphics hardware

(GH ‘08), Sarajevo, Bosnia, 20–21 June 2008, pp. 65–74.

Aire-la-Ville: Eurographics Association.

Courty N and Musse SR (2005) Simulation of large crowds in

emergency situations including gaseous phenomena. In:

computer graphics international (CGI ‘05), New York, USA,

22–24 June 2005, pp. 206–212. Piscataway: IEEE Press.

Desnoyers M (2009) Userspace RCU library: What linear multipro-

cessor scalability means for your application. In: linux plumbers

conference, Portland, Oregon, USA, 23–25 September 2009.

Erra U, Frola B, Scarano V and Couzin I (2009) An efficient GPU

implementation for large scale individual-based simulation of

collective behavior. In: international workshop on high perfor-

mance computational systems biology (HiBi ‘09), Trento,

Italy, 14–16th October 2009, pp. 51–58. USA, IEEE.

Gajinov V, Zyulkyarov F, Unsal OS, Cristal A, Ayguade E, Harris

T, et al (2009) Quaketm: parallelizing a complex sequential

application using transactional memory. In: 23rd international

Table 1. Theoretical specifications and speedups for the
considered platforms.

CPU GPU GPU
Server C870 C1060

Power (W) 1170 170 187.8
Theor. Peak perf (GFlops) 96 430 933
Perf. ratio 1 4.48 9.72
Speedup vs RCU 1 45.5 52.9
Speedup vs Mutex 1 850 1000

46 The International Journal of High Performance Computing Applications 28(1)

 at Universidad de Murcia on January 23, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/
http://hpc.sagepub.com/

conferenceon supercomputing (ICS ‘09), New York, USA, 8–12

June 2009, pp. 126–135. New York: ACM Press.

Goswami P, Schlegel P, Solenthaler B and Pajarola R (2010) Inter-

active SPH simulation and rendering on the GPU. In: SIG-

GRAPH/EUROGRAPHICS symposium on computer animation

(SCA ‘10), Madrid, Spain, 2–4 July 2010, pp. 55–64. Aire-la-

Ville: Eurographics Association.

Guy SJ, Chhugani J, Kim C, Satish N, Lin M, Manocha D, et al

(2009) Clearpath: highly parallel collision avoidance for

multi-agent simulation. In: SIGGRAPH/EUROGRAPHICS

symposium on computer animation (SCA ‘09), New Orleans,

USA, 1–2 August 2009, pp. 177–187. New York: ACM Press.

Harada T, Tanaka M, Koshizuka S and Kawaguchi Y (2007) Real-

time rigid body simulation using GPUs. IPSJ SIG Technical

Reports 13: 79–84.

Hart TE, McKenney PE and Brown AD (2006) Making lockless

synchronization fast: Performance implications of memory

reclamation. In: 20th IEEE international parallel and distrib-

uted processing symposium, Rhodes, Greece, 25–29 April

2006, Piscataway: IEEE Press.

Helbing D, Farkas I and Vicsek T (2000) Simulating dynamical

features of escape panic. Nature 407: 487–490.

Herault A, Bilotta G and Dalrymple RA (2010) SPH on GPU with

CUDA. Journal of Hydraulic Research 48: 74–79.

Kim D, Heo JP, Huh J, Kim J and Yoon SE (2009) HPCCD:

Hybrid parallel continuous collision detection using CPUs and

GPUs. Computer Graphics Forum 28(7): 1791–1800.

Latta L (2004) Building a million particle system. In: game devel-

opers conference (GDC ‘04), San Jose, California, USA, 22–26

March 2004.

Lauterbach C, Garland M, Sengupta S, Luebke D and Manocha D

(2009) Fast BVH construction on GPUs. Computer Graphics

Forum 28(2): 375–384.

Lauterbach C, Mo Q and Manocha D (2010) Gproximity: Hier-

archical GPU-based operations for collision and distance

queries. Computer Graphics Forum 29(2): 419–428.

Lozano M, Morillo P, Orduña JM, Cavero V and Vigueras G

(2009) A new system architecture for crowd simulation. Jour-

nal of Network and Computer Applications 32(2): 474–482.

Lysenko M and D’Souza RM (2008) A framework for mega-

scale agent based model simulations on graphics processing

units. Journal of Artificial Societies and Social Simulation

11(4): 10.

McKenney PE and Slingwine JD (1998) Read-copy update: Using

execution history to solve concurrency problems. In: 18th

international conference on parallel and distributed comput-

ing systems (PDCS ‘98), Las Vegas, USA, 12–14 September

2005, pp. 509–518. IASTED Acta Press.

[NVIDIA(2010)] NVIDIA (2010) CUDA programming guide

3.2. Available at: http://docs.nvidia.com/cuda/pdf/CUDA_C_

Programming_Guide.pdf (accessed 1 February 2012).

[Owens et*al.(2007)Owens, John, Luebke, David, Govindaraju,

Naga, Harris, Mark, Kruger, Jens, Lefohn, Aaron, Purcell, and

Timothy] Owens JD, Luebke D, Govindaraju N, Harris M,

Krüger J, Lefohn A, et al. (2007) A survey of general-

purpose computation on graphics hardware. Computer Gra-

phics Forum 26(1): 80–113.

[Perumalla and Aaby(2008)] Perumalla KS and Aaby BG (2008)

Data parallel execution challenges and runtime performance of

agent simulations on GPUs. In: 2008 spring simulation multi-

conference (SpringSim ‘08), Ottawa, Canada, 14–17 April

2008, pp. 116–123. New York: ACM Press.

[Peter et*al.(2004)Peter, Mark, and Rudiger] Peter K, Mark S

and Rudiger W (2004) Uberflow: a GPU-based particle

engine. In: 19th SIGGRAPH/EUROGRAPHICS symposium

on graphics hardware (GH ‘04), Grenoble, France, 29–30

August 2004, pp. 115–112. New York: ACM Press.

[Pratas et*al.(2009)Pratas, Trancoso, Stamatakis, and Sousa]

Pratas F, Trancoso P, Stamatakis A and Sousa L (2009)

Fine-grain parallelism using multi-core, Cell/BE, and GPU

systems: Accelerating the phylogenetic likelihood function.

In: 38th international conference on parallel processing

(ICPP ‘09), Vienna, Austria, 22–25 September 2009, pp. 9–17.

Piscataway: IEEE Press.

[Reynolds(2006)] Reynolds C (2006) Big fast crowds on PS3. In: 1st

ACM/SIGGRAPH symposium on videogames, Boston, MA,

USA, 29–30 July 2006, pp. 113–121. New York: ACM Press.

[Reynolds(1987)] Reynolds CW (1987) Flocks, herds and

schools: A distributed behavioral model. SIGGRAPH Com-

puter Graphics 21(4): 25–34.

[Satish et*al.(2009)Satish, Harris, and Garland] Satish N, Harris

M and Garland M (2009) Designing efficient sorting algo-

rithms for manycore GPUs. In: 2009 IEEE international sym-

posium on parallel and distributed processing (IPDPS ‘09),

Rome, Italy, 23–29 May 2009, pp. 1–10. Piscataway: IEEE

Press.

[Sundell and Tsigas(2008)] Sundell H and Tsigas P (2008) Lock-

free deques and doubly linked lists. Journal of Parallel and

Distributed Computing 68(7): 1008–1020.

[Teschner et*al.(2003)Teschner, Heidelberger, Mueller, Pomer-

anets, and Gross] Teschner M, Heidelberger B, Mueller M,

Pomeranets D and Gross M (2003) Optimized spatial hashing

for collision detection of deformable objects. In: vision,

modeling, and visualization conference (VMV ‘03), München,

Germany, AKA Gmbh, 19–21 November 2003, pp. 47–54.

Eurographics Association.

[van*den Berg et*al.(2008)van*den Berg, Lin, and Manocha]

van den Berg J, Lin MC and Manocha D (2008) Reciprocal

velocity obstacles for real-time multi-agent navigation. In:

IEEE international conference on robotics and automation

(ICRA ‘08), Pasadena, California, USA, 19–23 May 2008,

pp. 1928–1935. Piscataway: IEEE Press.

[Vigueras et*al.(2010)Vigueras, Lozano, Ordu na, and Grimaldo]

Vigueras G, Lozano M, Orduña JM and Grimaldo F (2010 a) A

comparative study of partitioning methods for crowd simula-

tions. Journal of Applied Soft Computing 10(1): 225–235.

[Vigueras et*al.(2008)Vigueras, Lozano, Perez, and Ordu na]

Vigueras G, Lozano M, Perez C and Orduña J (2008) A scal-

able architecture for crowd simulation: Implementing a paral-

lel action server. In: 37th international conference on parallel

processing (ICPP ‘08), Portlan, Oregon, USA, 8–12 Septem-

ber 2008,pp. 430–437. Los Alamitos, USA: IEEE Press.

[Vigueras et*al.(2010)Vigueras, Ordu na, and Lozano] Vigueras

G, Orduña J and Lozano M (2010 b) A GPU-based multi-

Vigueras et al. 47

 at Universidad de Murcia on January 23, 2014hpc.sagepub.comDownloaded from

http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://hpc.sagepub.com/
http://hpc.sagepub.com/

agent system for real-time simulations. In: 8th international

conference on practical applications of agents and multiagent

systems (PAAMS ‘10), Salamanca, Spain, 26–28 April 2010,

vol. 70, pp. 15–24. New York: Springer.

[Vigueras et*al.(2011)Vigueras, Ordu na, Lozano, and Chry-

santhou] Vigueras G, Orduña JM, Lozano M and Chrysanthou

Y (2011) A distributed visualization system for crowd simula-

tion. Integrated Computer-Aided Engineering 18(4): 1008–1020.

[Vigueras et*al.(2010)Vigueras, Ordu na, Lozano, Cecilia, and

Garc] Vigueras G, Orduña JM, Lozano M, Cecilia JM and

Garcı́a JM (2010 c) Improving the GPU-based collision check

procedure for distributed crowd simulations. In: 19th interna-

tional conference on parallel architectures and compilations

techniques (PACT ‘10), Vienna, Austria, 11–15 September

2010.

[Xu et*al. (2009) Xu, R.*Kirk, and Jenkins] Xu CR, Kirk S and

Jenkins S (2009) Tiling for performance tuning on different

models of GPUs. In: 2nd international symposium on informa-

tion science and engineering (ISISE ‘09), Shanghai, China,

26–28 December 2009, pp. 500–504. Washington, USA: IEEE

Computer Society.

[Zhou et*al. (2008) Zhou, Hou, Wang, and Guo] Zhou K, Hou Q,

Wang R and Guo B (2008) Real-time KD-tree construction on

graphics hardware. ACM Transactions on Graphics 27(5): 1–11.

[Zyulkyarov et*al. (2009) Zyulkyarov, Gajinov, Unsal, Cristal,

Ayguadà Harris, and Valero] Zyulkyarov F, Gajinov V, Unsal

OS, Cristal A, Ayguadé E, Harris T, et al. (2009) Atomic

quake: using transactional memory in an interactive multi-

player game server. In: 14th ACM/SIGPLAN symposium on

principles and practice of parallel programming (PPoPP

‘09), Raleigh, North Carolina, USA, 14–18 February 2009,

pp. 25–34. New York: ACM Press.

Author biographies

Guillermo Vigueras received an MSc degree in computer

engineering from the University of Valencia, Spain in

2005. He is a member of the GREV research group which

is part of the ACCA team. Currently, he is a PhD candidate

at the University of Valencia, Spain. His research interests

include crowd simulations, parallel programming and dis-

tributed systems.

Juan Orduña received an MSc degree in computer

engineering from the Technical University of Valencia,

Spain in 1990 and a PhD in computer engineering from the

University of Valencia, Spain in 1998. His research has

been developed inside the ACCA team. He was a Computer

Engineer with Telefónica de España, Manpel Electrónica,

and at the Technical University of Valencia. He is currently

a Lecturer Professor with the Department of Informatics,

University of Valencia, where he leads the Networking and

Virtual Environments Group. He is a member of the

HiPEAC network of excellence, and his research is cur-

rently supported by the Spanish MEC and the European

Commission through several projects. His research cur-

rently focuses on networks-on-chip, distributed virtual

environments, and crowd simulations. He has published

papers about his research in a number of international jour-

nals and conferences. He has served as a Program Commit-

tee Member for different conferences and workshops (e.g.

the IEEE International Conference on Parallel Processing,

European Conference on Parallel Processing, IEEE Virtual

Reality Conference, and International Conference on Paral-

lel and Distributed Systems), and is also a reviewer for

journals such as IEEE Transactions on Parallel and Dis-

tributed Systems, the Journal of Network and Computer

Applications and the IEEE Journal of Selected Areas in

Communication.

Miguel Lozano received an MSc degree in computer engi-

neering from the Technical University of Valencia, Spain

in 1996. Since 2006 he has been an Associate Professor

of Computer Science and Artificial Intelligence. He

received a PhD in computer engineering from the Univer-

sity of Valencia in 2005 and his current research interests

include large-scale multi-agent systems, social engineer-

ing and distributed/parallel architectures. He is an active

member of the Networks and Virtual Environments Group

and has published papers on intelligent multi-agent deci-

sion taking and large-scale distributed simulations in a

large number of high-impact international journals and

conferences.

José Cecilia received a BSc degree in computer science

from the University of Murcia, Spain in 2005 and an

MSc degree in computer science from Cranfield Univer-

sity, UK in 2007. He is currently a PhD candidate at

the University of Murcia. He has recently received a

collaboration grant from the European Network of

Excellence on High Performance and Embedded Archi-

tecture and Compilation (HiPEAC) to visit the Novel

Computation Group at Manchester Metropolitan Univer-

sity, UK. He has published several papers in interna-

tional peer-reviewed journals and conferences. His

research interests include heterogeneous architectures

as well as bio-inspired algorithms for evaluating the

newest frontiers of computing.

Jose Garcı́a received an MSc degree in electrical engi-

neering and a PhD in computer engineering both from the

Technical University of Valencia, Spain in 1987 and

1991, respectively. He is Professor of Computer Architec-

ture at the Department of Computer Engineering, and also

Head of the Research Group on Parallel Computer Archi-

tecture. He is currently serving as Dean of the School of

Computer Science at the University of Murcia, Spain.

He has developed several courses on Computer Structure,

48 The International Journal of High Performance Computing Applications 28(1)

 at Universidad de Murcia on January 23, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/
http://hpc.sagepub.com/

Peripheral Devices, Computer Architecture, Parallel

Computer Architecture and Multicomputer Design. He spe-

cializes in computer architecture, parallel processing and

interconnection networks. His current research interests lie

in high-performance coherence protocols for chip multipro-

cessors (CMPs) and shared-memory multiprocessor systems,

high-speed interconnection networks, and the use of GPUs

for general-purpose applications. He has published more

than 110 refereed papers in different journals and confer-

ences in these fields. He is member of HiPEAC and also

member of several international associations such as the

IEEE and ACM.

Vigueras et al. 49

 at Universidad de Murcia on January 23, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/
http://hpc.sagepub.com/

