
XVII JORNADAS DE PARALELISMO—ALBACETE, SEPTIEMBRE 2006 1

Resumen—Energy-efficient microprocessor designs are
currently one of main goals pursued by designers in both
high performance and embedded processor domains.
Recent processor implementations and research efforts
have been focused on dynamic power consumption.
However, as process technology advances toward deep
submicron –below 90 nm.–, static power becomes a new
challenge to address, especially for large on-chip array
structures such as caches and prediction tables. Value
prediction emerged in the recent past as a natural way of
increasing performance by breaking data dependences.
The more accurate the predictor is the more performance
is obtained, at the expense of becoming an increasing
source of power consumption and a thermal hot spot.

This paper proposes the design of low-leakage value
predictors by applying decay techniques –already used in
caches and branch predictors– in order to disable unused
entries from the prediction tables. We explore decay
strategies for the three most common value predictors
(Stride, FCM and DFCM) studying the particular tradeoffs
for these prediction structures, that exhibit different
pattern access behavior than caches, in order to reduce VP
leakage efficiently without compromising VP accuracy nor
processor performance. Results show average leakage
power reductions of 61%, 76% and 68% for the stride,
FCM and DFCM value predictors of 20 KB respectively.

Palabras clave—Leakage, Value Prediction, Power and
Energy Consumption, Decay.

I. INTRODUCTION
OWER dissipation and energy consumption are one
of the major design concerns when facing the design

of a new microprocessor in the high performance
domain –server and desktop– and, more dramatically, in
the embedded microprocessor domain, especially in the
case of battery-operated devices.

There are two sources of power dissipation, dynamic
power and static power (leakage). The dynamic power
of an structure is the power dissipated each time that
structure is accessed, due to the repeated capacitance
charge and discharge on the outputs of transistor gates.
On the other hand, static power is the power the
structure dissipates regardless of activity, especially
through subthreshold leakage currents and gate leakage
currents [12][13] that flow even when the transistor is
nominally off.

For several generations, leakage has been just a
minimum part of the overall power consumption of
microprocessors, and it was not considered as a major

 Dpto. Ingeniería y Tecnología de Computadores, Universidad de
Murcia, 30071 Murcia (Spain) e-mail: {jcebrian,jlaragon,jmgarcia}@
ditec.um.es.

concern. However, as feature size shrinks to allow
greater density and higher performance, supply voltage
must be lowered in order to contain power consumption,
since dynamic power is proportional to the square of
supply voltage. But using smaller geometries (with very
small threshold voltages) has the additional effect of
increasing leakage loss exponentially, which leads to
static power beginning to dominate the overall power
consumption as process technology drops below 65 nm.
[13][16].

In order to deal with this problem, it can be found in
the literature several proposals both at circuit and
architecture level for managing leakage energy. Many
proposals have focused on reducing the leakage power
by switching off unused portions of large array
structures. Cache Decay [14] selectively turns individual
data cache lines off if they have not been used in a long
time, reducing leakage energy at the expense of loosing
the content of the cache line. This non-state preserving
technique has also been successfully applied to branch
predictors and BTB structures [6][10].

On the other hand, Value Prediction has been proposed
[4][5][8][9][15] as an effective way of improving
superscalar processor performance by overcoming data
dependences which are one of the major performance
limitations in current superscalar processors. However,
such prediction structures incur in additional dynamic
and static power dissipation –despite the speedup
provided– and, therefore, their use has not been widely
spreaded. Furthermore, in the ultra-low power
embedded domain, the use of VP techniques may be
prohibitive in terms of both power and area.

In this paper we propose Value Prediction Decay, a
mechanism able to dramatically reduce the leakage
power of traditional value predictors with negligible
impact on accuracy, especially for deep-submicron
designs (below 90 nm.) by locating and disabling unused
entries in the predictor and, therefore, making value
prediction a power-performance efficient mechanism for
low-power processor designs. It is important to note that
value predictors show a significant amount of spatial
and temporal locality and, unlike caches, a decayed
prediction does not degrade performance as much as a
decayed cache line.

The rest of the paper is organized as follows. Section
II reviews some related works and provides an overview
on value prediction. Section III analyzes the dynamic
utilization of the prediction tables. The proposed Value
Prediction Decay mechanism is described in Section IV.
Section V shows the experimental methodology and the
leakage savings obtained. Finally, Section VI
summarizes the main conclusions of the work.

Reducing Leakage in Value Predictors
by using Decay Techniques

Juan M. Cebrián, Juan L. Aragón and José M. García

P

2 CEBRIÁN, ARAGÓN AND GARCÍA: REDUCING LEAKAGE IN VALUE PREDICTORS

II. RELATED WORK
In order to reduce leakage power in processors, several

techniques have been proposed both at the circuit level
and at the architectural level. At the architectural level,
many proposals have focused on reducing the leakage
power by switching off unused portions of large array
structures such as caches. These techniques have been
categorized into state-preserving and non-state
preserving [1][7][17].

Studies by Powell et al. [14] proposed gated-VDD as a
technique to limit static leakage power by banking and
providing “sleep” transistors which dramatically reduce
leakage current by gating off the supply voltage. This
technique, known as decay, reduces the leakage power
drastically but the cell’s contents are lost, being
necessary to apply it very carefully since the loose of
information can deliver into an increase of the dynamic
power to retrieve it again. Kaxiras et al. [11]
successfully applied decay techniques to individual
cache lines in order to reduce leakage in cache structures
(67% of static power consumption can be saved with a
minimal performance loss due to decay induced misses).
This technique has also been applied to conditional
branch predictors and BTB structures [6][10].

On the other hand, drowsy techniques try to reduce
leakage without loosing the cell’s information. Drowsy
caches [2] use different supply voltages according to the
state of each cache line. Those lines in drowsy mode use
a low-voltage level, retaining the data, while requiring a
high voltage level to access it again. Waking up from the
drowsy state is similar to a pseudo-cache miss incurring
in some additional penalty cycles (about 7 cycles). Of
course, the leakage savings of this mechanism are lower
than the decay ones, but the increase of dynamic power
consumption due to the loose of information is also
lower. Flautner et al. [2] showed that a drowsy cache
putting to sleep all cache blocks periodically (every one
Kcycles) achieves 54% leakage power savings with a
negligible performance degradation of about 1%.

Li et al. [7] confronted the use of state and non-state
preserving techniques in caches. The authors showed
that for a fast L2 cache (5-8 cycles latency) decay
techniques are superior in terms of both performance
loss and energy savings to drowsy ones.

Finally, an alternative to traditional decay is to use
quasi-static, four-transistor (4T) memory cells. 4T cells
are approximately as fast as 6T SRAM cells, but do not
have connections to the supply voltage (VSS). Rather, the
4T cell is charged upon each access, whether read or
write, and it slowly leaks the charge over time. When
the charge in the cell has been depleted, the value stored
is lost. In [10] it was proposed to apply decay techniques
to branch predictors by using 4T cells. By doing this,
some of the drawbacks of using gated-VDD transistors
are eliminated, since an access to a 4T cell automatically
reactivates the cell, whereas reactivating a 6T cell from
the “sleep” mode is somewhat more complex, requiring
extra hardware involved in gating the supply voltage.

A. Value Prediction Overview

The last value predictor was introduced by Lipasti et

al. [9]. This is the most basic prediction mechanism and,

basically, it assumes that the next value produced by an
instruction will be the same as the previous one.

A generalization of the last value predictor leads to the
stride value predictor (STP). Introduced by Gabbay et
al. [4], it uses the last value produced by an instruction
plus a stride pattern. In a stride pattern, the difference
between two consecutive values is always the same
constant. The next predicted value is computed by
adding the last value to the stride.

The finite context method value predictor (FCM),
introduced by Sazeides et al. [15], uses the history of
recent values, called the context, to determine the next
value. This is implemented by using two-level
prediction tables. The first level stores the context of the
recent history of the instruction (VHT). The second level
stores, for each possible context, the value which is most
likely to follow it (VPT). The value is predicted by using
the program counter to access the VHT table and,
according to the context hash function, the VPT table is
accessed to get the predicted value.

The differential finite context method value predictor
(DFCM), introduced by Goeman et al. [5], joins the best
of the two previous predictors in one structure. DFCM
works like FCM (two-level prediction tables, VHT and
VPT), but it stores the differences between the values
instead of the values themselves, plus the last value of
the instruction. This allows DFCM to capture stride
patterns as if they where constant patterns, containing
only one value. For a stride pattern (e.g., 0 1 2 3), the
DFCM predictor will remember the last value 3 and the
history of differences: 1 1 1. In this way, the DFCM can
predict stride patterns by adding the last value to the
stride associated to the context 1 1 1. For non-stride
patterns, DFCM works just like the FCM predictor.

III. UTILIZATION ANALYSIS OF VALUE
PREDICTION STRUCTURES

As previously seen, power dissipation of value
prediction structures is divided into dynamic and static
power. The dynamic component depends on the
utilization of the value predictor. Values can be
predicted at different levels, the most aggressive
utilization predicts the output value for all instructions
traversing the pipeline. Other approaches found in the
literature restrict the use of the value predictor to just a
fraction of instructions such as long-latency instructions;
load instructions that miss in the L1 or L2 data cache;
instructions that belong to a critical path; instructions
that have been proven to provide the highest VP hit
ratio; or just to predict the effective address of memory
instructions to provide early memory disambiguation.

Therefore, restricting the VP utilization to just a
fraction of selected instructions, effectively reduces the
dynamic power component of this structure. However,
the static power component is still present, as the VP
structure leaks regardless of utilization with increasing
leakage loss as process technology shrinks, as cited
before. For this reason, this work is focused on reducing
the static power component of the VP structure.

In [11] Kaxiras et al. showed that, very frequently,
cache lines have an initial active period (known as live
time) followed by a period of no utilization (known as

XVII JORNADAS DE PARALELISMO—ALBACETE, SEPTIEMBRE 2006 3

dead time) before they are eventually evicted. They
proposed to break the stream of references to a particular
cache line into generations. Each generation lasts until
the cache line is evicted and replaced by a new one. This
generational behaviour also appears in the value
predictor structure, although with some particularities:
as value predictors are implemented as direct-mapped
tables with no tags and allowing destructive
interferences, in our proposal, a generation ends when
the VP entry is accessed by an instruction with a
different PC (see Figure 1). Its live time will be the
period of accesses with the same PC and its dead time
will be the period between the last access with an
specific PC until an access with a new one.

Live Time Dead Time

Last Access New Generation

PC1 PC1 PC1
PC1 PC1 PC2

time

New Generation

Figure 1. Generations in value predictor entries.

Our first evaluation analyzes the utilization of the

value prediction tables, measuring the fraction of time
each entry remains in the dead state, in order to
determine if turning those VP entries off will result in a
significant decrement of leakage power.

0,40
0,45
0,50
0,55
0,60
0,65
0,70

0 25 50 75 100 125 150 175 200

VP Size (KB)

de
ad

_t
im

e
/

(li
ve

_t
im

e+
de

ad
_t

im
e)

STP
FCM
DFCM

Figure 2. Fraction of time VP entries are in a dead state.

Figure 2 shows the average fraction of time each
generation is in a dead state (i.e., the ratio
dead/(live+dead)) for the whole SPECint2000
benchmark suite as a function of VP size (see Section V
for details about simulation methodology and processor
configuration). It can be observed that the three
evaluated value predictors –stride, FCM y DFCM–
present a similar utilization regardless of their size. For
sizes around 20 KB, the average fraction of dead time is
43% and for predictor sizes around 40 KB the average
fraction of time the entries spend in their dead state is
47%. Therefore, if we were able to take advantage of
these dead times by detecting them and shutting the
entries off, we could reduce the leakage power of the
value predictor structure by one half on average.

It is important to note that this is not an upper bound
on the leakage power savings that could be achieved by

decaying VP entries. Long periods of inactive live time
could be also detected to early shut the entry off in order
to obtain further leakage savings, at the expense of
reducing the VP accuracy.

IV. VALUE PREDICTION DECAY MECHANISM
In order to apply decay techniques to the value

predictor mechanism we need to detect those VP entries
that have been unused for a significant period of time in
order to switch them off. But in order to successfully
apply decay techniques it is necessary to choose
carefully the number of cycles we should wait before
shutting an entry off in order to match generational
changes.

The proposed Value Prediction Decay mechanism is
time-based as in [11]. It tracks the accesses to each VP
entry in order to detect if a particular entry is accessed
very frequently or, otherwise, the entry has been unused
for a long period of time, probably entering into a dead
state. In order to measure the power-efficiency of our
proposal, we will explore a wide range of decay
intervals to precisely detect the dead states while at the
same time not degrading the value predictor accuracy.

Note that, if the policy that decides when to turn a VP
entry off uses too long decay intervals, the potential
leakage savings will be reduced. Conversely, if the time-
based policy uses too short decay intervals, the VP hit
ratio will be degraded. In any case, a positive effect in
Value Prediction Decay when compared to Cache
Decay is that prematurely disabling a VP entry is not so
harmful as disabling a cache line: loosing the content of
the VP entry will most likely result in a value
misprediction on the next access (the entry will be reset
to an initial state) but this is exactly what it would have
happened if we had a real generation change.

A power-efficient implementation of the time-based
decay mechanism requires the use of a hierarchical
counter composed of a global counter and two-bit
saturated gray-code counters on each value predictor
entry1 as in [11]. Every time the global counter gets to
zero, all the local counters will be incremented by one.
On the other hand, an access to a VP entry results on a
reset of its local counter. When a VP entry remains
unused for a long time, its local counter will reach the
upper limit eventually, and the corresponding entry will
be shut off.

The length of the decay intervals are controlled by the
period of the global counter. If we set the period of the
global counter to a low value, the VP entries may be
disabled prematurely and leakage will be reduced
drastically, but so will the hit rate of the predictor. On
the other hand, if we disable too late (large global
counter periods), the leakage savings won’t be as high as
they could be.

The VP entries will be shut off by using gated-VDD
transistors [14]. These “sleep” transistors are inserted
between the ground (or supply) and the cells of each VP
entry, which reduces the leakage in several orders of
magnitude and can be considered negligible. An

1 Using a hierarchical counter is more power-efficient since it allows
accessing the local counters at a much coarser level. Accessing the
local counters each cycle would be prohibitive because of the power
overhead associated.

4 CEBRIÁN, ARAGÓN AND GARCÍA: REDUCING LEAKAGE IN VALUE PREDICTORS

alternative to using gated-VDD transistors consists of
using quasi-static 4T transistors [10] in the VP array.

Regarding the power overhead associated to the
proposed Value Prediction Decay mechanism, we are
introducing two additional bits per VP entry plus the
dynamic power consumption of updating these bits. That
power has been measured to be about 2% of the
dynamic power of the VP, which can be considered
negligible. As for the static power overhead, all the two-
bit local counters and the global counter have been
included in the static power model associated to the
proposed Value Prediction Decay mechanism.

V. EXPERIMENTAL RESULTS

A. Simulation Methodology
To evaluate the power-performance efficiency of the

proposed Value Prediction Decay, we have used the
SPECint2000 benchmark suite. All benchmarks were
compiled with maximum optimizations (-O4 -fast) by
the Compaq Alpha compiler and were run using a
modified version of HotLeakage power-performance
simulator [18] that includes the static power model for
the three evaluated value predictors (stride, FCM and
DFCM) as well as the static power overhead of the
proposed mechanism. Due to the large number of
dynamic instructions in some benchmarks, we reduced
the input data set while keeping a complete execution.

TABLE I. SPECINT2000 BENCHMARK CHARACTERISTICS.

Benchmark Input set Total # simulated
instr. (Mill.)

skipped
instr (Mill.)

bzip2 input source 1 500 500
crafty test (modified) 437 -
eon kajiya image 454 -
gap test (modified) 500 50
gcc test (modified) 500 50
gzip input.log 1 500 50
mcf test 259 -
parser test (modified) 500 200
twolf test 258 -
vortex test (modified) 500 50
vpr test 500 100

TABLE II. CONFIGURATION OF THE SIMULATED PROCESSOR.

Processor Core
Process Technology:

Frequency:
Instruction Window:

Decode Width:
Issue Width:

Functional Units:

Pipeline:

70 nanometers
5600 Mhz
128 RUU, 64 LSQ
8 inst/cycle
8 inst/cycle
8 Int Alu; 2 Int Mult
8 FP Alu; 2 FP Mult
2 Memports
22 stages (P4-like)

Memory Hierarchy
L1 Icache:

L1 Dcache:
L2 cache:

Memory latency:

64KB, 2-way
64KB, 2-way
1MB, 4-way, unified
120 cycles

Table I shows, for each particular benchmark, the
input set, the total number of simulated instructions, and
the number of forwarded instructions. Table II shows the
configuration of the simulated architecture. The leakage
related parameters have been taken from the provided
alpha 21264 configuration file using a process
technology of 70 nanometers.

B. Value Prediction Decay Leakage Savings
This section presents a power-performance evaluation

of the proposed Value Prediction Decay mechanism for
the stride, FCM and DFCM value predictors as predictor
size varies for several decay interval windows: 256,
1024, 8192 and 65536 cycles.

Figures 3 and 4 show the VP hit ratio and the leakage
power savings for the stride value predictor (STP). As
we can see in Figure 3, for decay windows below 8192
cycles, the hit ratio is reduced as expected, due to the
premature data loss of deactivating entries early; the use
of bigger decay windows provides hit ratios very close
to the original predictor. Figure 4 shows that our
proposal succeeds decreasing power consumption in a
wide range of values, from 10% to 91% depending on
the configuration. For a predictor of about 20 KB we
obtain average leakage power savings of 46% for an 8
Kcycles decay window, with a VP accuracy degradation
of just 0.1% and leakage savings of 61% with an
accuracy degradation of only 1%. As expected, further
leakage savings can be obtained as we increase VP size.

38
40
42
44
46
48
50
52
54

0 20 40 60 80
Predictor Size (KB)

V
P

H
it

R
at

io
 (%

)

STP-Original
STP-64K
STP-8K
STP-1K
STP-256

Figure 3. STP value predictor accuracy.

0

20

40

60

80

100

0 20 40 60 80
Predictor Size (KB)

Le
ak

ag
e

Po
w

er
 S

av
in

gs
 (%

)

STP-64K

STP-8K

STP-1K

STP-256

Figure 4. STP value predictor leakage power savings.

Regarding the FCM value predictor, as it is a two-level

predictor (with the relevant and bigger part of the data
stored in the second level table), we will be disabling

XVII JORNADAS DE PARALELISMO—ALBACETE, SEPTIEMBRE 2006 5

both level tables. Figures 5 and 6 show the VP hit ratio
and the leakage power savings for the FCM value
predictor. Leakage power savings go from 0% to 91%
depending on the configuration. For a predictor of about
20 KB we obtain average leakage power savings of 76%
for a 256-cycle decay window, with a VP accuracy
degradation of just 0.65%.

44
46

48
50
52

54
56

0 20 40 60 80 100
Predictor Size (KB)

V
P

H
it

R
at

io
 (%

)

FCM-Original
FCM-64K
FCM-8K
FCM-1K
FCM-256

Figure 5. FCM value predictor accuracy.

0

20

40

60

80

100

0 20 40 60 80 100

Predictor Size (KB)

Le
ak

ag
e

Po
w

er
 S

av
in

gs
 (%

)

FCM-64K
FCM-8K
FCM-1K
FCM-256

Figure 6. FCM value predictor leakage power savings.

42

46

50

54

58

62

0 20 40 60 80 100
Predictor Size (KB)

V
P

H
it

R
at

io
 (%

)

DFCM-Original
DFCM-64K
DFCM-8K
DFCM-1K
DFCM-256

Figure 7. DFCM value predictor accuracy.

0
10
20
30
40
50
60
70
80
90

0 20 40 60 80 100
Predictor Size (KB)

Le
ak

ag
e

Po
w

er
 S

av
in

gs
 (%

)

DFCM-64K
DFCM-8K
DFCM-1K
DFCM-256

Figure 8. DFCM value predictor leakage power savings.

Regarding the DFCM value predictor, it experiences
both the greater leakage power savings and the less VP
hit ratio reduction. Figures 7 and 8 show the VP hit ratio
and the leakage power savings for the DFCM value
predictor. For a predictor size of about 20 KB, we obtain
average leakage power savings of 68% for a 256-cycle
decay window, with no reduction on the predictor
accuracy.

As we can see in Figure 7, there is a positive side
effect when shutting DFCM entries off due to the
reduction of aliases and destructive interferences. It
causes the predictor to maintain its accuracy even for
small decay intervals. This effect was also reported in
[6] for branch predictors. In the DFCM predictor case,
resetting the entries to zero makes patterns between
generations from different entries match the same
second level entry, something that would not happen if
patterns from the previous generation were still inside
the predictor.

Finally, Figure 9 shows the leakage power savings
breakdown for a predictor size of 20 KB and a decay
interval of 1024 cycles. It can be observed that a
significant amount of leakage savings are obtained when
disabling VP entries during its live time period. As
commented in Section III, there are many cases where
even though an entry is live, the next access will be far
in the future (more than 1024 cycles ahead in this
experiment). In such cases, short decay intervals can
obtain even further leakage savings by early disabling
those entries. Figure 9 shows that, on average, half of
the leakage power savings comes from disabling entries
during their live time and the other half comes from
disabling entries during a dead time. Note also that the
three evaluated predictors obtain a very similar leakage
savings breakdown since they all are indexed in the
same way, i.e., using the instruction PC.

VI. CONCLUSIONS AND FUTURE WORK
In this paper we propose Value Prediction Decay, a

mechanism able to dramatically reduce the leakage
power of value predictors with negligible accuracy
reduction, especially for deep-submicron microprocessor
designs. Our proposal dynamically tracks the accesses to
each value predictor entry in order to determine if the
entry has been unused for a significant period of time,
and in that case, it switches the entry off, avoiding
leakage loss.

Experimental results have shown that both FCM and
DFCM seem to be the most power-efficient predictors
achieving average leakage power savings of 76% and
68%, respectively, for a predictor size of around 20 KB
with negligible VP accuracy reduction when considering
a decay interval window of 256 cycles. We have also
shown that leakage power savings are not limited by
only detecting dead times, since value predictors are
structures that exhibit long periods of inactivity during
an entry’s live time which allows to early shut the entry
off in order to obtain further leakage savings.

Finally, the use of low-power value prediction
structures could make value prediction a power-
performance efficient mechanism suitable for low-power
processor designs.

6 CEBRIÁN, ARAGÓN AND GARCÍA: REDUCING LEAKAGE IN VALUE PREDICTORS

ACKNOWLEDGEMENTS
This work has been supported by the Ministry of

Education and Science of Spain under grant TIC2003-
08154-C06-03.

REFERENCES
[1] J.A. Butts and G. Sohi. “A static power model for architects”. In

Proc. of the 33rd Int. Symp. on Microarchitecture, 2000
[2] K. Flautner et al. “Drowsy Caches: Simple Techniques for

Reducing Leakage Power”. In Proc. of the 29th Int. Symp. on
Computer Architecture, 2002.

[3] M.J. Flynn and P. Hung. “Microprocessor Design Issues:
Thoughts on the Road Ahead”. In IEEE Micro, vol. 25, no. 3, pp.
16-31, May/Jun, 2005.

[4] F. Gabbay and A. Mendelson. “Speculative execution based on
value prediction”. Technical Report 1080, Technion – Israel
Institute of Technology, 1997.

[5] B. Goeman, H. Vandierendonck and K. de Bosschere.
“Differential FCM: Increasing Value Prediction Accuracy by
Improving Table Usage Efficiency”. In Proc. of the 7th Int. Symp.
on High-Performance Computer Architecture, 2001.

[6] Z. Hu et al. “Applying Decay Strategies to Branch Predictors for
Leakage Energy Savings”. In Int. Conf. on Computer Design, Sep.
2002.

[7] Y. Li et al. “State-Preserving vs. Non-State-Preserving Leakage
Control in Caches,” In Proc. of the DATE Conference, Feb. 2004.

[8] M. Lipasti and J. Shen. “Exceeding the dataflow limit via value
prediction”. In Proc. of the 29th Annual International Symposium
on Microarchitecture, Dec. 1996.

[9] M. Lipasti, C. Wilkerson and J. Shen. “Value locality and load
value prediction”. In Proc. of the 7th International Conference on
Architectural Support for Programming Languages and
Operating Systems, Oct. 1996.

[10] P. Juang et al. “Implementing Branch-Predictor Decay Using
Quasi-Static Memory Cells”. In ACM Transactions on
Architecture and Code Optimization, Vol. 1, No. 2, June 2004.

[11] S. Kaxiras, Z. Hu and M. Martonosi. “Cache Decay: Exploiting
Generational Behavior to Reduce Cache Leakage Power”. In
Proc. of the 28th Int. Symp. on Computer Architecture, 2001.

[12] A. Kesharvarzi. “Intrinsic iddq: Origins, reduction, and
applications in deep sub-micron low-power CMOS IC’s”. In Proc.
of the IEEE International Test Conference, 1997.

[13] N.S. Kim, T. Austin et al. "Leakage Current: Moore’s Law Meets
Static Power". In Proc. of IEEE Computer, 2003.

[14] M.D. Powell et al. “Gated-Vdd: A Circuit Technique to Reduce
Leakage in Deep-Submicron Cache Memories”. In Proc. of the
Int. Symp. on Low Power Electronics and Design, 2000.

[15] Y. Sazeides and J.E. Smith. “The predictibility of data values”. In
Proc. of the 30th Annual International Symposium of
Microarchitecture, Dec 1997.

[16] Semiconductor Industry Association. “The international
technology roadmap for semiconductors”. Available at
http://public.itrs.net/Files/2001ITRS/Home.htm, 2001.

[17] S. Yang et al. “An integrated circuit/architecture approach to
reducing leakage in deep-submicron high-performance I-Caches”.

In Proc. of the 7th Int. Symp. on High-Performance Computer
Architecture, 2001.

[18] Y. Zhang, D. Paritkh, K. Sankaranarayanan, K.Skadron and M.
Stan. “HotLeakage: A Temperature-Aware Model of Subthreshold
and Gate Leakage for Architects”. Technical report, Dept. of
Computer Science, Univ. of Virginia, 2003.

Figure 9. Leakage power savings breakdown for a 20 KB predictor with a decay interval of 1024 cycles.

0
10
20
30
40
50
60
70
80
90

100

bz
ip

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf
pa

rs
er

tw
ol

f
vo

rte
x

vp
r

A
ve

ra
ge

bz
ip

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf
pa

rs
er

tw
ol

f
vo

rte
x

vp
r

A
ve

ra
ge

bz
ip

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf
pa

rs
er

tw
ol

f
vo

rte
x

vp
r

A
ve

ra
ge

Le
ak

ag
e

Po
w

er
 S

av
in

gs
br

ea
kd

ow
n

(%
)

Disabled in Dead Time

Disabled in Live Time

STP DFCM FCM

