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Resumen—Energy-efficient microprocessor designs are 
currently one of main goals pursued by designers in both 
high performance and embedded processor domains. 
Recent processor implementations and research efforts 
have been focused on dynamic power consumption. 
However, as process technology advances toward deep 
submicron –below 90 nm.–, static power becomes a new 
challenge to address, especially for large on-chip array 
structures such as caches and prediction tables. Value 
prediction emerged in the recent past as a natural way of 
increasing performance by breaking data dependences. 
The more accurate the predictor is the more performance 
is obtained, at the expense of becoming an increasing 
source of power consumption and a thermal hot spot.  

This paper proposes the design of low-leakage value 
predictors by applying decay techniques –already used in 
caches and branch predictors– in order to disable unused 
entries from the prediction tables. We explore decay 
strategies for the three most common value predictors 
(Stride, FCM and DFCM) studying the particular tradeoffs 
for these prediction structures, that exhibit different 
pattern access behavior than caches, in order to reduce VP 
leakage efficiently without compromising VP accuracy nor 
processor performance. Results show average leakage 
power reductions of 61%, 76% and 68% for the stride, 
FCM and DFCM value predictors of 20 KB respectively. 
 
Palabras clave—Leakage, Value Prediction, Power and 
Energy Consumption, Decay. 

I. INTRODUCTION 
OWER dissipation and energy consumption are one 
of the major design concerns when facing the design 

of a new microprocessor in the high performance 
domain –server and desktop– and, more dramatically, in 
the embedded microprocessor domain, especially in the 
case of battery-operated devices. 

There are two sources of power dissipation, dynamic 
power and static power (leakage). The dynamic power 
of an structure is the power dissipated each time that 
structure is accessed, due to the repeated capacitance 
charge and discharge on the outputs of transistor gates. 
On the other hand, static power is the power the 
structure dissipates regardless of activity, especially 
through subthreshold leakage currents and gate leakage 
currents [12][13] that flow even when the transistor is 
nominally off.  

For several generations, leakage has been just a 
minimum part of the overall power consumption of 
microprocessors, and it was not considered as a major 
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concern. However, as feature size shrinks to allow 
greater density and higher performance, supply voltage 
must be lowered in order to contain power consumption, 
since dynamic power is proportional to the square of 
supply voltage. But using smaller geometries (with very 
small threshold voltages) has the additional effect of 
increasing leakage loss exponentially, which leads to 
static power beginning to dominate the overall power 
consumption as process technology drops below 65 nm. 
[13][16]. 

In order to deal with this problem, it can be found in 
the literature several proposals both at circuit and 
architecture level for managing leakage energy. Many 
proposals have focused on reducing the leakage power 
by switching off unused portions of large array 
structures. Cache Decay [14] selectively turns individual 
data cache lines off if they have not been used in a long 
time, reducing leakage energy at the expense of loosing 
the content of the cache line. This non-state preserving 
technique has also been successfully applied to branch 
predictors and BTB structures [6][10].  

On the other hand, Value Prediction has been proposed 
[4][5][8][9][15] as an effective way of improving 
superscalar processor performance by overcoming data 
dependences which are one of the major performance 
limitations in current superscalar processors. However, 
such prediction structures incur in additional dynamic 
and static power dissipation –despite the speedup 
provided– and, therefore, their use has not been widely 
spreaded. Furthermore, in the ultra-low power 
embedded domain, the use of VP techniques may be 
prohibitive in terms of both power and area. 

In this paper we propose Value Prediction Decay, a 
mechanism able to dramatically reduce the leakage 
power of traditional value predictors with negligible 
impact on accuracy, especially for deep-submicron 
designs (below 90 nm.) by locating and disabling unused 
entries in the predictor and, therefore, making value 
prediction a power-performance efficient mechanism for 
low-power processor designs. It is important to note that 
value predictors show a significant amount of spatial 
and temporal locality and, unlike caches, a decayed 
prediction does not degrade performance as much as a 
decayed cache line.  

The rest of the paper is organized as follows. Section 
II reviews some related works and provides an overview 
on value prediction. Section III analyzes the dynamic 
utilization of the prediction tables. The proposed Value 
Prediction Decay mechanism is described in Section IV. 
Section V shows the experimental methodology and the 
leakage savings obtained. Finally, Section VI 
summarizes the main conclusions of the work. 
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II. RELATED WORK 
In order to reduce leakage power in processors, several 

techniques have been proposed both at the circuit level 
and at the architectural level. At the architectural level, 
many proposals have focused on reducing the leakage 
power by switching off unused portions of large array 
structures such as caches. These techniques have been 
categorized into state-preserving and non-state 
preserving [1][7][17]. 

Studies by Powell et al. [14] proposed gated-VDD as a 
technique to limit static leakage power by banking and 
providing “sleep” transistors which dramatically reduce 
leakage current by gating off the supply voltage. This 
technique, known as decay, reduces the leakage power 
drastically but the cell’s contents are lost, being 
necessary to apply it very carefully since the loose of 
information can deliver into an increase of the dynamic 
power to retrieve it again. Kaxiras et al. [11] 
successfully applied decay techniques to individual 
cache lines in order to reduce leakage in cache structures 
(67% of static power consumption can be saved with a 
minimal performance loss due to decay induced misses). 
This technique has also been applied to conditional 
branch predictors and BTB structures [6][10]. 

On the other hand, drowsy techniques try to reduce 
leakage without loosing the cell’s information. Drowsy 
caches [2] use different supply voltages according to the 
state of each cache line. Those lines in drowsy mode use 
a low-voltage level, retaining the data, while requiring a 
high voltage level to access it again. Waking up from the 
drowsy state is similar to a pseudo-cache miss incurring 
in some additional penalty cycles (about 7 cycles). Of 
course, the leakage savings of this mechanism are lower 
than the decay ones, but the increase of dynamic power 
consumption due to the loose of information is also 
lower. Flautner et al. [2] showed that a drowsy cache 
putting to sleep all cache blocks periodically (every one 
Kcycles) achieves 54% leakage power savings with a 
negligible performance degradation of about 1%. 

Li et al. [7] confronted the use of state and non-state 
preserving techniques in caches. The authors showed 
that for a fast L2 cache (5-8 cycles latency) decay 
techniques are superior in terms of both performance 
loss and energy savings to drowsy ones. 

Finally, an alternative to traditional decay is to use 
quasi-static, four-transistor (4T) memory cells. 4T cells 
are approximately as fast as 6T SRAM cells, but do not 
have connections to the supply voltage (VSS). Rather, the 
4T cell is charged upon each access, whether read or 
write, and it slowly leaks the charge over time. When 
the charge in the cell has been depleted, the value stored 
is lost. In [10] it was proposed to apply decay techniques 
to branch predictors by using 4T cells. By doing this, 
some of the drawbacks of using gated-VDD transistors 
are eliminated, since an access to a 4T cell automatically 
reactivates the cell, whereas reactivating a 6T cell from 
the “sleep” mode is somewhat more complex, requiring 
extra hardware involved in gating the supply voltage. 

A. Value Prediction Overview 
 
The last value predictor was introduced by Lipasti et 

al. [9]. This is the most basic prediction mechanism and, 

basically, it assumes that the next value produced by an 
instruction will be the same as the previous one. 

A generalization of the last value predictor leads to the 
stride value predictor (STP). Introduced by Gabbay et 
al. [4], it uses the last value produced by an instruction 
plus a stride pattern. In a stride pattern, the difference 
between two consecutive values is always the same 
constant. The next predicted value is computed by 
adding the last value to the stride. 

The finite context method value predictor (FCM), 
introduced by Sazeides et al. [15], uses the history of 
recent values, called the context, to determine the next 
value. This is implemented by using two-level 
prediction tables. The first level stores the context of the 
recent history of the instruction (VHT). The second level 
stores, for each possible context, the value which is most 
likely to follow it (VPT). The value is predicted by using 
the program counter to access the VHT table and, 
according to the context hash function, the VPT table is 
accessed to get the predicted value.  

The differential finite context method value predictor 
(DFCM), introduced by Goeman et al. [5], joins the best 
of the two previous predictors in one structure. DFCM 
works like FCM (two-level prediction tables, VHT and 
VPT), but it stores the differences between the values 
instead of the values themselves, plus the last value of 
the instruction. This allows DFCM to capture stride 
patterns as if they where constant patterns, containing 
only one value. For a stride pattern (e.g., 0 1 2 3), the 
DFCM predictor will remember the last value 3 and the 
history of differences: 1 1 1. In this way, the DFCM can 
predict stride patterns by adding the last value to the 
stride associated to the context 1 1 1. For non-stride 
patterns, DFCM works just like the FCM predictor. 

 

III. UTILIZATION ANALYSIS OF VALUE  
PREDICTION STRUCTURES 

As previously seen, power dissipation of value 
prediction structures is divided into dynamic and static 
power. The dynamic component depends on the 
utilization of the value predictor. Values can be 
predicted at different levels, the most aggressive 
utilization predicts the output value for all instructions 
traversing the pipeline. Other approaches found in the 
literature restrict the use of the value predictor to just a 
fraction of instructions such as long-latency instructions; 
load instructions that miss in the L1 or L2 data cache; 
instructions that belong to a critical path; instructions 
that have been proven to provide the highest VP hit 
ratio; or just to predict the effective address of memory 
instructions to provide early memory disambiguation.  

Therefore, restricting the VP utilization to just a 
fraction of selected instructions, effectively reduces the 
dynamic power component of this structure. However, 
the static power component is still present, as the VP 
structure leaks regardless of utilization with increasing 
leakage loss as process technology shrinks, as cited 
before. For this reason, this work is focused on reducing 
the static power component of the VP structure. 

In [11] Kaxiras et al. showed that, very frequently, 
cache lines have an initial active period (known as live 
time) followed by a period of no utilization (known as 
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dead time) before they are eventually evicted. They 
proposed to break the stream of references to a particular 
cache line into generations. Each generation lasts until 
the cache line is evicted and replaced by a new one. This 
generational behaviour also appears in the value 
predictor structure, although with some particularities: 
as value predictors are implemented as direct-mapped 
tables with no tags and allowing destructive 
interferences, in our proposal, a generation ends when 
the VP entry is accessed by an instruction with a 
different PC (see Figure 1). Its live time will be the 
period of accesses with the same PC and its dead time 
will be the period between the last access with an 
specific PC until an access with a new one. 

 

Live Time Dead Time 

Last Access New Generation 

PC1 PC1 PC1 
PC1 PC1 PC2

time

New Generation 

 
Figure 1. Generations in value predictor entries. 

 
Our first evaluation analyzes the utilization of the 

value prediction tables, measuring the fraction of time 
each entry remains in the dead state, in order to 
determine if turning those VP entries off will result in a 
significant decrement of leakage power. 
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Figure 2. Fraction of time VP entries are in a dead state. 
 

Figure 2 shows the average fraction of time each 
generation is in a dead state (i.e., the ratio 
dead/(live+dead)) for the whole SPECint2000 
benchmark suite as a function of VP size (see Section V 
for details about simulation methodology and processor 
configuration). It can be observed that the three 
evaluated value predictors –stride, FCM y DFCM– 
present a similar utilization regardless of their size. For 
sizes around 20 KB, the average fraction of dead time is 
43% and for predictor sizes around 40 KB the average 
fraction of time the entries spend in their dead state is 
47%. Therefore, if we were able to take advantage of 
these dead times by detecting them and shutting the 
entries off, we could reduce the leakage power of the 
value predictor structure by one half on average. 

It is important to note that this is not an upper bound 
on the leakage power savings that could be achieved by 

decaying VP entries. Long periods of inactive live time 
could be also detected to early shut the entry off in order 
to obtain further leakage savings, at the expense of 
reducing the VP accuracy. 

IV. VALUE PREDICTION DECAY MECHANISM 
In order to apply decay techniques to the value 

predictor mechanism we need to detect those VP entries 
that have been unused for a significant period of time in 
order to switch them off. But in order to successfully 
apply decay techniques it is necessary to choose 
carefully the number of cycles we should wait before 
shutting an entry off in order to match generational 
changes.  

The proposed Value Prediction Decay mechanism is 
time-based as in [11]. It tracks the accesses to each VP 
entry in order to detect if a particular entry is accessed 
very frequently or, otherwise, the entry has been unused 
for a long period of time, probably entering into a dead 
state. In order to measure the power-efficiency of our 
proposal, we will explore a wide range of decay 
intervals to precisely detect the dead states while at the 
same time not degrading the value predictor accuracy.  

Note that, if the policy that decides when to turn a VP 
entry off uses too long decay intervals, the potential 
leakage savings will be reduced. Conversely, if the time-
based policy uses too short decay intervals, the VP hit 
ratio will be degraded. In any case, a positive effect in 
Value Prediction Decay when compared to Cache 
Decay is that prematurely disabling a VP entry is not so 
harmful as disabling a cache line: loosing the content of 
the VP entry will most likely result in a value 
misprediction on the next access (the entry will be reset 
to an initial state) but this is exactly what it would have 
happened if we had a real generation change. 

A power-efficient implementation of the time-based 
decay mechanism requires the use of a hierarchical 
counter composed of a global counter and two-bit 
saturated gray-code counters on each value predictor 
entry1 as in [11]. Every time the global counter gets to 
zero, all the local counters will be incremented by one. 
On the other hand, an access to a VP entry results on a 
reset of its local counter. When a VP entry remains 
unused for a long time, its local counter will reach the 
upper limit eventually, and the corresponding entry will 
be shut off.  

The length of the decay intervals are controlled by the 
period of the global counter. If we set the period of the 
global counter to a low value, the VP entries may be 
disabled prematurely and leakage will be reduced 
drastically, but so will the hit rate of the predictor. On 
the other hand, if we disable too late (large global 
counter periods), the leakage savings won’t be as high as 
they could be.  

The VP entries will be shut off by using gated-VDD   
transistors [14]. These “sleep” transistors are inserted 
between the ground (or supply) and the cells of each VP 
entry, which reduces the leakage in several orders of 
magnitude and can be considered negligible. An 
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local counters each cycle would be prohibitive because of the power 
overhead associated. 
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alternative to using gated-VDD transistors consists of 
using quasi-static 4T transistors [10] in the VP array. 

Regarding the power overhead associated to the 
proposed Value Prediction Decay mechanism, we are 
introducing two additional bits per VP entry plus the 
dynamic power consumption of updating these bits. That 
power has been measured to be about 2% of the 
dynamic power of the VP, which can be considered 
negligible. As for the static power overhead, all the two-
bit local counters and the global counter have been 
included in the static power model associated to the 
proposed Value Prediction Decay mechanism. 
 

V. EXPERIMENTAL RESULTS 

A. Simulation Methodology 
To evaluate the power-performance efficiency of the 

proposed Value Prediction Decay, we have used the 
SPECint2000 benchmark suite. All benchmarks were 
compiled with maximum optimizations (-O4 -fast) by 
the Compaq Alpha compiler and were run using a 
modified version of HotLeakage power-performance 
simulator [18] that includes the static power model for 
the three evaluated value predictors (stride, FCM and 
DFCM) as well as the static power overhead of the 
proposed mechanism. Due to the large number of 
dynamic instructions in some benchmarks, we reduced 
the input data set while keeping a complete execution.  

 
 

TABLE I. SPECINT2000 BENCHMARK CHARACTERISTICS. 

Benchmark Input set Total # simulated 
instr. (Mill.)

# skipped
instr (Mill.)

bzip2 input source 1 500 500
crafty test (modified) 437 -
eon kajiya image 454 -
gap test (modified) 500 50
gcc test (modified) 500 50
gzip input.log 1 500 50
mcf test 259 -
parser test (modified) 500 200
twolf test 258 -
vortex test (modified) 500 50
vpr test 500 100

 

 

TABLE II. CONFIGURATION OF THE SIMULATED PROCESSOR. 

Processor Core 
Process Technology: 

Frequency:  
Instruction Window:  

Decode Width:  
Issue Width: 

Functional Units:  
 
 

Pipeline: 

70 nanometers 
5600 Mhz 
128 RUU, 64 LSQ 
8 inst/cycle 
8 inst/cycle 
8 Int Alu; 2 Int Mult 
8 FP Alu; 2 FP Mult 
2 Memports 
22 stages (P4-like) 

Memory Hierarchy 
L1 Icache:  

L1 Dcache:  
L2 cache:  

Memory latency:  

64KB, 2-way  
64KB, 2-way 
1MB, 4-way, unified  
120 cycles 

Table I shows, for each particular benchmark, the 
input set, the total number of simulated instructions, and 
the number of forwarded instructions. Table II shows the 
configuration of the simulated architecture. The leakage 
related parameters have been taken from the provided 
alpha 21264 configuration file using a process 
technology of 70 nanometers. 

B. Value Prediction Decay Leakage Savings 
This section presents a power-performance evaluation 

of the proposed Value Prediction Decay mechanism for 
the stride, FCM and DFCM value predictors as predictor 
size varies for several decay interval windows: 256, 
1024, 8192 and 65536 cycles.  

Figures 3 and 4 show the VP hit ratio and the leakage 
power savings for the stride value predictor (STP). As 
we can see in Figure 3, for decay windows below 8192 
cycles, the hit ratio is reduced as expected, due to the 
premature data loss of deactivating entries early; the use 
of bigger decay windows provides hit ratios very close 
to the original predictor. Figure 4 shows that our 
proposal succeeds decreasing power consumption in a 
wide range of values, from 10% to 91% depending on 
the configuration. For a predictor of about 20 KB we 
obtain average leakage power savings of 46% for an 8 
Kcycles decay window, with a VP accuracy degradation 
of just 0.1% and leakage savings of 61% with an 
accuracy degradation of only 1%. As expected, further 
leakage savings can be obtained as we increase VP size. 
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Figure 3. STP value predictor accuracy. 
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Figure 4. STP value predictor leakage power savings. 

 
Regarding the FCM value predictor, as it is a two-level 

predictor (with the relevant and bigger part of the data 
stored in the second level table), we will be disabling 
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both level tables. Figures 5 and 6 show the VP hit ratio 
and the leakage power savings for the FCM value 
predictor. Leakage power savings go from 0% to 91% 
depending on the configuration. For a predictor of about 
20 KB we obtain average leakage power savings of 76% 
for a 256-cycle decay window, with a VP accuracy 
degradation of just 0.65%.  
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Figure 5. FCM value predictor accuracy. 
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Figure 6. FCM value predictor leakage power savings. 
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Figure 7. DFCM value predictor accuracy. 
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Figure 8. DFCM value predictor leakage power savings. 

Regarding the DFCM value predictor, it experiences 
both the greater leakage power savings and the less VP 
hit ratio reduction. Figures 7 and 8 show the VP hit ratio 
and the leakage power savings for the DFCM value 
predictor. For a predictor size of about 20 KB, we obtain 
average leakage power savings of 68% for a 256-cycle 
decay window, with no reduction on the predictor 
accuracy. 

As we can see in Figure 7, there is a positive side 
effect when shutting DFCM entries off due to the 
reduction of aliases and destructive interferences. It 
causes the predictor to maintain its accuracy even for 
small decay intervals. This effect was also reported in 
[6] for branch predictors. In the DFCM predictor case, 
resetting the entries to zero makes patterns between 
generations from different entries match the same 
second level entry, something that would not happen if 
patterns from the previous generation were still inside 
the predictor. 

Finally, Figure 9 shows the leakage power savings 
breakdown for a predictor size of 20 KB and a decay 
interval of 1024 cycles. It can be observed that a 
significant amount of leakage savings are obtained when 
disabling VP entries during its live time period. As 
commented in Section III, there are many cases where 
even though an entry is live, the next access will be far 
in the future (more than 1024 cycles ahead in this 
experiment). In such cases, short decay intervals can 
obtain even further leakage savings by early disabling 
those entries. Figure 9 shows that, on average, half of 
the leakage power savings comes from disabling entries 
during their live time and the other half comes from 
disabling entries during a dead time. Note also that the 
three evaluated predictors obtain a very similar leakage 
savings breakdown since they all are indexed in the 
same way, i.e., using the instruction PC. 

VI. CONCLUSIONS AND FUTURE WORK 
In this paper we propose Value Prediction Decay, a 

mechanism able to dramatically reduce the leakage 
power of value predictors with negligible accuracy 
reduction, especially for deep-submicron microprocessor 
designs. Our proposal dynamically tracks the accesses to 
each value predictor entry in order to determine if the 
entry has been unused for a significant period of time, 
and in that case, it switches the entry off, avoiding 
leakage loss.  

Experimental results have shown that both FCM and 
DFCM seem to be the most power-efficient predictors 
achieving average leakage power savings of 76% and 
68%, respectively, for a predictor size of around 20 KB 
with negligible VP accuracy reduction when considering 
a decay interval window of 256 cycles. We have also 
shown that leakage power savings are not limited by 
only detecting dead times, since value predictors are 
structures that exhibit long periods of inactivity during 
an entry’s live time which allows to early shut the entry 
off in order to obtain further leakage savings. 

Finally, the use of low-power value prediction 
structures could make value prediction a power-
performance efficient mechanism suitable for low-power 
processor designs. 
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Figure 9. Leakage power savings breakdown for a 20 KB predictor with a decay interval of 1024 cycles.  
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