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a b s t r a c t

We designed Adaptive Neuromorphic Architecture (ANA) that self-adjusts its inherent parameters (for
instance, the resonant frequency) naturally following the stimuli frequency. Such an architecture is
required for brain-like engineered systems because some parameters of the stimuli (for instance, the
stimuli frequency) are not known in advance. Such adaptivity comes from a circuit element with
memory, namely mem-inductor or mem-capacitor (memristor’s sisters), which is history-dependent in
its behavior. As a hardware model of biological systems, ANA can be used to adaptively reproduce the
observed biological phenomena in amoebae.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Nature shows many unconventional ways of information
processing andmemristor is such an example. Amemristormimics
the synapses between neurons in the brain in terms of being
plastic according to the dynamical history of the system (Chua,
1971; Pershin & Ventra, 2009). We reported recently that a
memristor neural network performs the Pavlovian experiment on
Conditioned Reflex (Wang et al., 2011). Based on our discovered
‘‘delayed switching’’ effect (Wang et al., 2010), it was found that
the (stimuli) sequence length, (stimuli) sequence frequency and
spike width need to be carefully controlled in such a way that the
memristor synapse time delay point should not be overtakenwhile
only one neuron fires. Such neuromorphic architectures could be
used in situations, inwhich it is impossible or infeasible to solve the
problems with conventional methods and models of computation
(i.e. von Neumann, Turing).

In a typical human brain, there are 1011 neurons and 1014

synapses (on average, each neuron is connected to other neu-
rons through about 20,000 synapses). It is a great challenge to un-
derstand the brain with such extreme complexity and nonlinear
dynamics. However, organisms like amoebae display amazing in-
telligence (Pershin, La Fontaine, &Ventra, 2009; Saigusa, Tero, Nak-
agaki, & Kuramoto, 2008) and the (memorizing, timing and antici-
pating, etc.) mechanism in a unicellular amoebamay represent the
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origins of primitive learning. Amoebae are one of the simplest crea-
tures that have existed since life began on planet earth. Evolution
of life is the process of ever increasing intelligence based, in part,
on predicting and controlling the behavior. As shown in Fig. 1(a),
an amoeba has a nucleus enclosed in its cell membrane, which is a
brain-like organ that controls its actions.

Amoebae have no definite shape and can form an arm,
extending fromanypart of its body (McGrath&Blachford, 2001), as
shown in Fig. 1(a).When an amoeba senses food in its surroundings
it extends its pseudopodia in that direction and moves towards
the food. As shown in Fig. 1(b), the amoeba slows down when the
ambient temperature drops at time points S1, S2 and S3. When the
temperature does not drop any longer, the amoeba can still predict
the time of the next temperature drop by slowing down again at
the timeswhen the dropwould have occurred at time points C1, C2
and C3. Furthermore, the amoeba can trigger the oscillations (the
learnt temperature varying pattern) when the temperature drops
again at S4 (Saigusa et al., 2008).

The above behavior of amoebae is astonishing in terms of: 1.
memorizing the past; 2. predicting the future; 3. the timing of
periodic events. To explain this physiological observation, there
existed a hypothesis assuming that multiple chemical oscillators
of a series of periods underlie the multirhythmicity of locomotion
(Coggin & Pazun, 1996). Any environmental change with a certain
frequency excites one or more of these oscillators, which could be
the source of amoeba’s ability to recognize patterns and predict
events. The downside of this model is that, there should be a
huge number of continuous frequencies of oscillation to cover a
series of periods (from 1 s to 24 h). A more realistic assumption is
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(a) Anatomy of an amoeba. (b) Amoebae’s SPS and SPSD responses.

Fig. 1. Anatomy of an amoeba and its behaviors (re-depicted according to McGrath & Blachford, 2001, Saigusa et al., 2008). The amoeba slows down when the temperature
drops; when the temperature does not drop any longer, the amoeba can still predict the time of the next temperature drop by slowing down again at the times when the
drop would have occurred. SPS: spontaneous in-phase slowdown after three periodic stimuli (S1, S2 , and S3); SPSD: SPS after one disappearance after a single stimulus (S4).
that the actual frequency distribution consists of several discrete
major frequencies with deviations that overlap neighboring major
frequencies (Saigusa et al., 2008).

It was reported that amoebae’s adaptive behavior can be emu-
lated by ‘‘Di Ventra’s circuit’’ (a memristor-based RLC circuit) (Per-
shin et al., 2009). Inspired by this work, we will design Adaptive
Neuromorphic Architecture (ANA) that self-adjusts its inherent pa-
rameters (for instance, the resonant frequency) naturally following
the stimuli frequency. The architecture uses a circuit element with
memory (Chua, 1980, 2009, 2012), namelymem-inductor ormem-
capacitor (memristor’s sisters), to increment its time constant and
subsequently decrement its resonant frequency tomatch the stim-
uli frequency. Hopefully, our architecture will help better under-
stand the cellular origins of primitive intelligence.

2. Delayed switch in memristor, mem-capacitor and inductor

We reported that memristor has a peculiar effect in which the
switching takes place with a time delay because a memristor pos-
sesses certain inertia. This effect was named ‘‘The Delayed Switch-
ing Effect’’ (Wang et al., 2010, 2011). In this section, we will prove
that this effect should also exist in memristor’s sister, memory-
inductor (mem-inductor), to be used as a key element in our Adap-
tive Neuromorphic Architecture (ANA).

As shown in Fig. 2(b), the switching from the high inductance
(L1) to the low inductance (L2) takes placewith a time delay Td after
the application of an input flux. In a neuromorphic circuit, a square-
wave signal is equivalent, in terms of switching a mem-inductor,
to a sequence of spikes with the same net area of the observation
region bounded by the graph of the signal and the time axis
(Fig. 2(c)). This is because charge is the time integral of current and
the inductance of amem-inductor is normally a function of charge.

The inductance L of a mem-inductor depends on the complete
past history of the current, i.e. the time integral of the current from
τ = −8 to τ = t . As mentioned above, the current is a sequence
of spikes with a stimuli frequency, fsti, and an (equal) spike width,
Tw . Therefore

i(t) =
ϕ(t)
L

. (1)

Note that, the output current in Eq. (1) is not an electric current of
moving charges (there is no way to flow an electric current in an
open-circuited inductor), but a quantity reflecting the strength of
the flux via i = ϕ/L, which is similar to ‘‘displacement current’’ in
Maxwell’s electromagnetic equations.

q(t) =


+t

−∞

i(τ )dτ =
1
L


+t

−∞

ϕ(τ)dτ

=
ϕfull · Tw · fsti

L
t. (2)
Fig. 2. Mem-inductor’s delayed switching effect: the switching from one state (L1)
to another (L2) due to an input flux pulse takes place with a time delay. The effect
also applies to a train of spikes, which are also known as ‘‘action potentials’’ in
neurons (short-lasting events in which the electrical membrane potential of a cell
rapidly rises and falls). As illustrated in the inset, if the transition period (Time point
1–2) of the ρ–q curve consists of a number of linear segments, the same number of
stairs in the current i(t) can be generated.

At the transition points where t = Td1,2, we have q(Td1,2) = q1,2
and ρ(Td1,2) = ρ1,2. Therefore

q1,2 =
ϕfull · Tw · fsti

ρ1,2
q1,2

· Td1,2 (3)

Td1,2 =
ρ1,2

ϕfull · Tw · fsti
. (4)

That is

Td1 =
ρ1

ϕfull · Tw · fsti
(5)
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Fig. 3. An RLC neuromorphic circuit using a mem-inductor, L(q), to cover a major
frequency with a deviation. In the schematics at the top, an amoeba is put in a long
tube full of sea water at a controllable temperature measured by a thermometer.
The amoebamigrates along the tube and its position ismeasured by a video camera.

Td2 =
ρ2

ϕfull · Tw · fsti
. (6)

Eqs. (4)–(6) clearly demonstrate that Td decreases with an in-
creased spike amplitude, ϕfull, an increased spike width, TW , or an
increased spike frequency, fsti. If the input is removed before the
switching takes place, i.e. the width T of the input pulse is smaller
than Td ≈ Td1 ≈ Td2, the mem-inductor remains unaltered. There-
fore, in order to switch amem-inductor, T should be chosen in such
a way that T > Td.

The main part of Fig. 2 represents the simplest scenario, in
which only one stair of (L(q) from L1 to L2) is generated, corre-
sponding to a ‘‘quadratic’’ segment in the transition period be-
tween time point 1 and 2 (a piece-wise linear model) of the ρ–q
curve. One can imagine that, if the transition period of the ρ–q
curve consists of a number of linear segments, the same number
of stairs in i(t) can be generated, as illustrated in the inset of the
figure.

3. A neuromorphic circuit using mem-inductor

The purpose of this research is to reveal the cellular origins
of primitive intelligence by utilizing a neuromorphic circuit to
reproduce amoebae’s adaptive behaviors. As the most primitive
eukaryotic form of life known in the contemporary world, amoe-
bae have developed a crude nervous system (Chaisson, 2012). As
shown in Fig. 3, a simple RLC neuromorphic circuit using a mem-
inductor, L(q), is designed. The temperature andhumidity that con-
trol the motion of the amoeba correspond to an input voltage, Vin,
whereas an output voltage across the capacitor, Vout , is an analogue
to amoeba’s locomotive speed. Hopefully, this architecture used to
model the neural reactivity in amoebae may find applications in
neural networks and brain-like engineered systems helping us un-
derstand the origins of primitive adaptive behavior.

In an RLC circuit, only the capacitor C or the inductor L stores
energy in a form of electric field or magnetic field, respectively,
whereas the resistor R only consumes energy. Energy can be
transferred from one form to the other within the circuit and this
can be oscillatory, resulting in resonance. A mechanical analogy is
a weight suspended on a spring which will oscillate up and down
when released, reflecting the oscillation between kinetic energy
and potential energy. A mechanical analogy to the resistor R in
the circuit is friction in the spring/weight system, which will slow
down the oscillation. In a similar way, the resistance R in an RLC
circuit will ‘‘damp’’ the oscillation, diminishing it with time.

An amoeba’s behaviorswill be simulatedwith the oscillations of
the above RLC circuit. In this work, RLC circuits are used for picking
out a signal at a particular (resonant) frequency, fres =
1

2π
√
LC
, from

amore complex signal.
√
LC is sometimes called the time constant

of an RLC circuit.
As mentioned above, damping is caused by the resistance of

a resistor, R, in the circuit, which determines whether or not the
circuit will resonate naturally (that is, without a driving source).
Circuits which will resonate in this way are described as under-
damped and those that will not are over-damped. There must
be some signal impedance and dissipation inside the amoeba,
otherwise signals would travel instantaneously and indefinitely
(Pershin et al., 2009).

A (current-controlled) memory-inductor (mem-inductor,
memristor’s sister) (Chua, 1980, 2009, 2012), L(q), is used to au-
tomatically scan a range of frequencies. The inductance of a mem-
inductor is a function of charge or the accumulation (time integral)
of the current flowing through the inductor, as illustrated as below:

L = L(q) = L


i(t)dt


. (7)

With the progress of time, the circuit’s resonant frequency scans a
range of frequencies as below:

fres =
1

2π
√
LC

=
1

2π

L


i(t)dt

C

. (8)

When the varying circuit resonant frequency, fres, equals the (tem-
perature) stimulus frequency, fsti, at a time point, tres, a (speed) res-
onance will be triggered. We should have:

fres =
1

2π

L


i(t)dt

C


t=tres

= fsti. (9)

As an assumption, the circuit will be locked at that frequency and
the learning of a regular event is accomplished. At this stage, we
are not clear whether it is physiologically plausible that an analo-
gous biological ‘‘frequency-comparing’’ and triggering mechanism
might exist in the amoeba.

The response of the circuit shown in Fig. 3 is described by the
following equations:

Vout(t) +
d[L(q) · i(t)]

dt
+ i(t) · R = Vin(t) (10)

C ·
dVout(t)

dt
= i(t) (11)

where i(t) is the total current, Vin is the input voltage and Vout is
the output voltage. Eq. (10) simply states that the applied voltage
is equal to the sum of voltage drops on each element of the circuit
and Eq. (11) is the voltage drop across the capacitor. The above
equations were solved numerically using initial conditions.

Fig. 4 shows the response of the above neuromorphic circuit
using a mem-inductor to a train of voltage pulses. The mem-
inductor is assumed to have a piece-wise linear curve ρ–q with
multiple linear segments in the transition (Time point 1–2 as
shown in Fig. 2). The circuit’s resonant frequency due to L(q)
increases like a staircase following increased number of periodic
stimuli (the Delayed Switching Effect).

Fig. 4 demonstrates that a strong and longer-lasting re-
sponse for SPS (spontaneous in-phase slow down Saigusa et al.,
2008, Fig. 1) is observed because the increased circuit’s reso-
nant frequency after the three stimulus pulses matches with the
stimulus frequency and a resonance is triggered. As shown in
an SPS experiment (Fig. 1), the amoeba was exposed to three
temperature/humidity drops at S1, S2 and S3 and the locomotion
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Fig. 4. Simulations of the circuit response to applied pulse sequences. R = 1, C =

1 F. The mem-inductor is assumed to have a piece-wise linear curve ρ–q with
multiple linear segments in the transition (1–2 in Fig. 2). L starts with 2 H and then
drops by 20% after each stimulus pulse. The circuit’s resonant frequency due to L(q)
increases like a staircase as a result of increased number of periodic stimulus (the
Delayed Switching Effect).

speed of the amoeba decreased accordingly. After the tempera-
ture/humidity drops, favorable condition intervals were applied.
Amazingly, the amoeba has been found to slow down sponta-
neously when the next temperature/humidity drop would have
occurred at C1, C2 and C3. The neuromorphic circuit using a mem-
inductor reproduces a similar response to the observed behavior
in amoebae: in response to the three regular pulses at S1, S2 and
S3, the output voltage decreases at each time point when the pulse
is applied and even at the subsequent time points at C1, C2 and C3
when following pulses would have occurred.

Fig. 4 also demonstrates that a resonance is triggered for SPSD
(spontaneous in-phase slow down after one disappearance of the
stimulus Saigusa et al., 2008, Fig. 1). The application of the fourth
pulse at S4 in Vin(t) corresponds to a SPSD stimulus. Several output
voltage drops at C6 and C7 in Vout(t) (in analogue to amoebae’s
speed slow-downs) following the fourth pulse S4 (in analogue to
a temperature drop) are observed after the circuit was previously
trained by a periodic sequence of three equally spaced pulses S1, S2
and S3 and the circuit with a changing resonant frequency fres is
locked at the stimuli frequency fsti.

Our work was inspired by Di Ventra’s circuit (Pershin et al.,
2009). In Di Ventra’s circuit with amemristor (Pershin et al., 2009),
the memristor in parallel with a capacitor was used to change the
damping factor of the RLC circuit with a fixed time constant,

√
LC .

In our work (ANA), amem-inductor is used and thereby a changing
time constant,

√
L(q(t))C , is introduced to increment/decrement

the resonant frequency naturally to trace the applied stimuli based
on the Delayed Switching Effect (Wang et al., 2010, 2011). To
cover a frequency range of from 1 s to 24 h displayed in the
observed behavior in biological systems (Coggin & Pazun, 1996;
Saigusa et al., 2008), complex models will be needed. In addition
to the circuit with a memristor, Di Ventra et al. also proposed ‘‘a
single circuitwith the replacement of the capacitor and/or inductor
with the newly introducedmemory capacitor (memcapacitor) and
memory inductor (meminductor)’’ (Pershin et al., 2009). We now
realize that the proposed R–L(q)–C circuit in this paper is similar
to the latter in Pershin et al. (2009) and therefore our work should
be viewed as a knowledge advancement in actually implementing
the meminductor-based circuit and working out its unique theory
based on our discovered Delayed Switching Effect (Wang et al.,
2010). Note that, the meminductor-based circuit is not a simple
extension of thememristor-based one as it adapts its time constant
rather than damping factor. The method adopted in our work is
non-trivial with a sound mathematical foundation.

A reasonable similarity between the observed phenomenon
(Fig. 1) and the ANA-based emulation (Fig. 4) demonstrates that
simple nonlinear dynamics might suffice to explain the primitive
learning.

4. Real-world circuit experiments

The objective is to develop a real-world circuit based in order
to not only validate the above simulation results but also provide/
prove a design for silicon implementation. AdaptiveNeuromorphic
Architecture (ANA) is composed of conventional circuit elements
with newly-invented elements with memory that implement
hardware models of biological systems.

The invention of memristor as well as its sisters, mem-inductor
and mem-capacitor, opens a new way to unveil the origin of the
operations of the human brain and possibly of many other adap-
tive and spontaneous behaviors/mechanisms in living organisms.
Amemristor/mem-inductor/mem-capacitor is a simple 2-terminal
element, which means a vast number of memristors could be in-
tegrated together with other CMOS elements, in a single chip.
A LaAlO3/SrTiO3 junction presents a uni-polar pinched hystere-
sis loop and also shows the potential that a memristor could
be scaled down to half a nanometer (Fix, MacManus-Driscoll, &
Blamire, 2009). When implemented in VLSI (including FPGA) tech-
nology, neuromorphic systems often have similar strategies for
maximizing compactness and minimizing power consumption.
Memristor/mem-inductor/mem-capacitor are non-volatile, allow-
ing for low-power computation and storage. To date, a number of
exemplar memristors (titanium dioxide memristor, spin memris-
tor, polymeric memristor, manganite memristor, etc.) broaden the
possible range of memristors (Wang et al., 2011). Since there ex-
ists controversy as to the memristance behavior of these specific
devices, the emulation of circuit elements with memory provides
a generalized way to investigate their behavior.

We constructedmem-inductor emulator as shown in Fig. 5. The
differential ADC converts the voltage into a digital value. The mi-
crocontroller reads the digital code from ADC and controls a switch
K to connect an inductor out of a series to increment/decrement
the inductance continuously. These operations are performed con-
tinuously. The aforementioned ‘‘frequency-locking’’ mechanism is
being tested in two ways: 1. Using the microcontroller to lock the
time constant compulsorily according to a predefined function; 2.
Using amemristor (emulated by a potentiometer Pershin & Ventra,
2010) to ‘‘isolate’’ the RLC circuit from the stimuli. In our circuit, we
used amicrocontroller dsPIC30F2011with internal 12 bits ADC and
a 256 positions 10 k non-volatile digital potentiometer MCP4261
from Microchip.

As a matter of fact, the above mentioned ‘‘The Delayed Switch-
ing Effect (Wang et al., 2010, 2011)’’ was discovered based on
Chua’s Circuit Model (Chua, 1971). The advantages of physically
constructing and characterizing a circuit model of memristor/
mem-inductor/mem-capacitor include a broad generalization to
an interesting class, rather than a specific element and the ease of
changing the parameters.

The inductance of an inductor was obtained by using a Gauss
meter to measure the strength of magnetic field. As shown in
Fig. 6, measured inductance of an experimental mem-inductor
setup decreases like a staircase as a result of an increased number
of periodic stimuli (the Delayed Switching Effect). An agreement
with the theoretical analysis can be seen.
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Fig. 5. Schematic of the main units of the mem-inductor emulator. The differential
ADC converts the voltage into a digital value. The microcontroller reads the digital
code from ADC and controls Switch K to connect an inductor out of a series to
increment/decrement the inductance (ML) continuously.

Fig. 6. Measured inductance on an experimental mem-inductor setup. It decreases
like a staircase as a result of increased number of periodic stimuli (the Delayed
Switching Effect). A striking similarity with the simulation results can be seen.

5. Conclusions and discussions

Three questions may naturally be raised about amoebae’s mys-
terious adaptive behaviors: 1. How an amoeba remembers the
past; 2. How an amoeba predicts the future; 3. How an amoeba
encodes time.

Regarding Question 1, this work shows that an amoeba may
have a nonlinear element like memristor/mem-inductor/mem-
capacitor and use the internal state of this element to store
information about the past.

Regarding Question 2, this work shows that an amoeba may
have a biological oscillator with a variable resonant frequency and
lock this oscillator, assuming that such a mechanism might exist
in the amoeba, at the stimulus frequency to respond strongly to
similar events in the future.

Regarding Question 3, this work shows that an amoeba may
adapt the time constant of its biological oscillator to environmental
change in order to encode time.

Summarizing Questions 1–3, we conclude that a nonlinear
element with memory like memristor/mem-inductor/mem-
capacitor plays a key role in the above mechanisms (memoriz-
ing/predicting/timing). Memristor/mem-inductor/mem-capacitor
mimics many living things in terms of being plastic according to
the dynamical history. Irrespective of whether there is a biolog-
ical analogue, our Adaptive Neuromorphic Architecture (ANA) as
a hardware model of biological systems is in excellent agreement
with the observed biological responses in amoebae, which implies
that simple nonlinear dynamics might suffice to explain the amoe-
bae learning. Especially, using a (passive) nonlinear element with
memory to encode time is potentially important to brain-like en-
gineered systems.

However, we do not really know much about how an amoeba
might do the above. Inspired by Di Ventra’s circuit (Pershin et al.,
2009), we have a proposal for how a hardware model called ANA
might simulate behavior exhibited by amoebae. However that
says little about how an amoeba might do it without connecting
our model to amoebae physiology. For example, can an amoeba
implement memristors, mem-inductors or mem-capacitors?

It is worth mentioning that Alan Lloyd Hodgkin and Andrew
Huxley described a model (including an equivalent circuit) in
1952 to explain the ionic mechanisms underlying the initiation
and propagation of action potentials in the squid giant axon
(Hodgkin & Huxley, 1952). They received the 1963 Nobel Prize
in Physiology or Medicine for this work. In the Hodgkin–Huxley
model, each cell is an electrical circuit consisting of a capacitor, a
linear resistor, three batteries, and two unconventional elements
identified by Hodgkin and Huxley as time-varying resistors, which
we now know was a serious blunder that had led to numerous
anomalies and paradoxes, and had hindered progress on neural
physiology and brain science for over 70 years. Such anomalies had
recently been definitively resolved by substituting the potassium
and sodium time-varying resistors, by a potassium ion-channel
memristor, and a sodium ion-channel memristor, respectively
(Chua, Sbitnev, & Kim, 2012a, 2012b). These may be lessons of
history for us to learn in exploring the origins of primitive learning
from an evolutionary point of view.
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