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ABSTRACT.-  Second generation multicomputers use wormhole routing, allowing a very low
channel setup time and drastically reducing the dependency between network latency and
internode distance.  The network routing can be deterministic or adaptive.  In this paper, we
present the development and implementation of a fully adaptive routing algorithm.  Our work
is carried  out in a multicomputer with the C104 routers and the T9000 transputers.  We
describe several implementation details and give some simulation results.  These results show
the performance improvement that can be achieved using fully adaptive routing.  Our
simulations have been carried out on a torus 2-D topology.
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1.  Introduction.

A lot of research effort has been dedicated during the last decade to improve the
performance and cost of multicomputers.  The interconnection network used in a
multicomputer plays a major impact on such aspects.  A wide variety of interconnection
networks have been proposed, either direct or indirect networks.  Direct networks incorporate
the processing elements within the network itself, allowing for direct communication between
processors.  These networks are gaining in popularity and have been employed in many recent
existing or proposal machines.

The most commonly used direct networks are variants of the k-ary n-cube [2].  The k-
ary n-cube consists of N=kn nodes, arranged in n dimensions, with k nodes per dimension.
Each node is connected via a direct link to its nearest neighbours in each of n dimensions.
Links can be bi- or unidirectional.  The generality and flexibility of the k-ary n-cube make it an
excellent choice for interconnection network.

A key issue in these networks is routing algorithm and flow control [7].  Routing
determines the path chosen by a message in the network.  Flow control deals with the
allocation of channel and buffer resources to a message as it travels along this path.

Most multicomputers use deterministic routing.  With deterministic routing, the path
followed by a packet is determined solely  by its source and destination. This method is also
referred to as oblivious routing.  If any channel along this path is faulty the packet cannot be
delivered.  In adaptive routing, for a given source and destination, the path taken by a
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particular packet depends on dynamic network conditions, such as the presence of faulty or
congested channels.  In this way, adaptive routing improves both the performance and fault
tolerance of an interconnection network.

Flow control deals with the allocation of channels and buffers to a packet as it travels
along a path through the network.  Early direct networks used store-and-forward switching.  In
this approach, when a packet reaches an intermediate node, the entire packet is stored in a
packet buffer.  A newer approach is known as wormhole routing.  In this technique, each
message is split into a sequence of data units, called flow control units, or flits.  The flit at the
head of a message determines the route.  As the header flit is routed, the remaining flits follow
it in a pipeline fashion.  If the message header is blocked at some intermediate node, then all
the links that hold packets are blocked until the header can move forward.  Wormhole routing
avoids using storage bandwidth in the nodes through which messages are routed.  Also, it
makes the message latency largely insensitive to the distance in the network.

Routing must be performed in a manner that is deadlock-free.  Deadlock appears when
a set of packets became blocked forever in the network.  This situation occurs whenever there
is a cyclic dependency for resources: buffers or channels.  Networks that use deterministic
routing usually avoid deadlock by ordering channels so that messages travel along paths of
strictly increasing (or decreasing) channel numbers [1].  This ordering eliminates cycles in the
channel dependency and thus prevents deadlock.  However, there is a unique path from source
to destination nodes.

A different approach must be considered for adaptive routing, in which messages
usually have several options in each node.  In this case,  it is not necessary to eliminate all the
cyclic dependencies.  For store-and-forward networks, it is sufficient with the existence of a
connected channel subset C1 whose channels are not involved in cyclic dependencies.
However, wormhole routing can reserve several channels simultaneously, being possible for a
message to reserve a channel belonging to C1  and then another no belonging to C1, which may
be involved in a cyclic dependency.  Then, it is very important the development of deadlock-
free algorithms.  In [3] we can see two deadlock-free adaptive routing algorithms using virtual
channels.  Recently,  Duato [5] developed a necessary and sufficient condition for deadlock-
free adaptive routing, known as Duato's protocol [6].  Our paper is focused on this recent
theory.

In this paper we implement the fully adaptive routing algorithm for k-ary n-cubes based
in the Duato's theory on C104 routers and T9000 transputers.  The T9000 is the second-
generation transputer, which has some bandwidth and performance improvements over its
predecessors.  The C104 routing switch adds a further lever of performance, allowing any
T9000 to communicate with any other T9000 in the network without having to through-route
messages through intermediate processors.  Usually, the transputer networks use a
deterministic routing.  In this paper, we show the implementation of an adaptive algorithm and
the benefits can be obtained.  We also perform a comparative study between this algorithm and
the deterministic routing algorithm [2].  Section 2 deals with the Duato's adaptive algorithms
introducing the theory's foundations and the new kinds of channel dependency.  Section 3
proposes an implementation of the former algorithm on C104 Routers and T9000 Transputers.
Section 4 shows the results achieve through simulations.  Finally, in section 5, some
conclusions are drawn.
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2.  Duato's Fully Adaptive Algorithm for the k-ary n-cube topology.

2.1.  Foundations.

In this section, we are going to present the Duato's fully adaptive routing algorithm.
Firstly, we give the necessary theoretical foundations for this new theory.  This presentation is
described in an informal way.

The objective of this theory is to find under what assumptions an adaptive routing can
be deadlock-free.  Duato introduces a new kind of dependency among channels to prove the
necessary and sufficient condition for an adaptive algorithm to be deadlock-free.  These new
dependencies are called indirect dependency, direct cross dependency, and indirect cross
dependency [4], [5].

Indirect dependency appears in the following situation.  Let C1 be a connected channel
subset that is not involved in cyclic dependencies.  When a message uses a channel belonging
to C1, then another channel no belonging to C1 and then it tries to use a channel belonging to
C1, there is an indirect dependency between both channels belonging to C1.  If cyclic
dependencies are not allowed between channels belonging to C1, even when indirect
dependencies are considered, then we guarantee that the escape paths will not block forever.
Therefore, the adaptive routing is deadlock-free.  But this condition is only sufficient.

We can go one step further by conditionally assigning each channel to the escape paths,
depending on the destination of the message.  Then, the maximum flexibility is achieved in the
definition of the escape paths, but new problems appear.  Effectively, a message M can reserve
a channel  ci which does not belong to any escape path for the destination of M, and then
another channel belonging to the escape path for the destination of M.  If ci belongs to the
escape paths for other destinations, other messages may need it to reach their destination.
However, that channel may be occupied forever by M, which in turn may be blocked by
another message requesting ci.  It must be noticed that the problem arises when there are cyclic
dependencies among channels belonging to the escape paths and channels which do not belong
to the escape path for the message occupying them, but belong to the escape paths for others
destinations.  Again, the solution consists in defining a new kind of dependency, the direct
cross dependency.  Moreover, if this dependency is combined with the indirect dependency,
the indirect cross dependency is obtained.  By forbidding the cycles in the extended channel
dependency graph of C1⊆ C, in which a pair of channels are connected if there is either a
direct, indirect, direct cross or indirect cross dependency, the deadlock-free condition is
achieved.  Moreover, this condition is, not only sufficient, but necessary.

2.2.  Adaptive Algorithms for k-ary n-cube.

From the previous design methodology, several adaptive routing algorithms can be
derived for any topology.  For k-ary n-cube,  Duato proposes two algorithms, partially adaptive
and fully adaptive.  Firstly, we explain the partially adaptive algorithm.  In simpler case, we
have n=1, that is, an unidirectional ring.  For simplicity, we consider the ring with four nodes
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(k=4) denoted ni, i={0,1,2,3} and two channels connecting each pair of adjacent nodes, except
nodes n3 and n0 which are linked by a single channel.    In figure 1 we can see the network.

n0 n1

n3 n2

cH1

cH0

cA0

cA1

cA2

cH2

cA3

Figure 1.  Unidirectional 4-ary 1-cube.

Let cAi, i={0,1,2,3} and cHi, i={0,1,2} be the outgoing channels from node ni.  The
adaptive routing algorithm can be stated as follows:  If the current node ni is equal to the
destination node nj, store the message.  Otherwise, use either cAi, ∀ j≠i or  cHi, ∀ j>i.  It is easy to
show that there is not any deadlocked configuration by trying to build one.  Also, it can be
proved by using the extended channel dependency graph [5].

The next step is extending our adaptive algorithm for bidirectional rings.  In this case,
bidirectional channels must be split into two unidirectional channels.  Then, our former
algorithm is used, always forwarding messages through a minimal path.  As messages follow a
minimal path, once a message starts crossing channels in one direction, it cannot turn and
continue in the opposite direction.  Therefore, the use of bidirectional channels does not
introduce any additional channel dependency and the routing algorithm is also deadlock-free.

Now, we are going to present the adaptive routing algorithm for k-ary n-cubes.  It uses
the algorithm for bidirectional rings inside each dimension.  Channels can only be used
crossing dimensions in ascending order.  The result is a partially adaptive minimal routing
algorithm which only requires two virtual channels per physical channel.  As dimensions are
crossed in ascending order, adding dimensions does not introduce any additional cyclic
dependency and the routing algorithm is still deadlock-free.

Finally, to design a fully adaptive routing algorithm we start from the partially adaptive
routing algorithm.  Then, we add a third virtual channel to each physical channel.   This third
virtual channel is used for fully adaptive routing, crossing dimensions in any order following a
minimal path.  Obviously, the first and second virtual channels are used exactly in the same
way as in the partially adaptive algorithm.  The result is a fully adaptive minimal routing
algorithm with three virtual channels per physical channel.  It is easy to prove deadlock-
freedom by including the additional virtual channel in C-C1.  In other words, the routing
subfunction  R1 cannot use the fully adaptive virtual channels for any destination.
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3.   Implementation of the Fully Adaptive Algorithm on the C104.

In this section, we deal with the implementation on C104 routers and T9000 transputers
of the algorithm proposal in the previous section.  We focus on the k-ary 2-cube topology or
torus 2-D.  This network is a simple and popular topology, with many interesting properties as
symmetric, rectangular structure, wirability and scalability.  Many existing multicomputers are
using such low-dimensional networks as Intel Paragon, Stanford Dash or MIT J-Machine.
Previously, it is necessary to explain some details of the C104 router in order to achieve a fully
understanding of the implementation made and the aroused problems.

3.1.  The C104 router.

The ST C104 is a packet routing chip that contains a 32-way crossbar switch, where all
the 32 inputs can be routed simultaneously to the 32 outputs [8], [9].  Routing delays are
minimized by the use of wormhole routing, in which a packet can start to be output from a
switch whilst it is still being input.

Wormhole routing requires an efficient routing strategy to decide which link a packet
should be output from.  The C104 uses a routing scheme called interval labelling, whereby
each output link of a C104 is assigned a range, or interval, of labels.  This interval contains the
number of all the terminal nodes (i.e. microprocessors, gateway to another network, peripheral
chip, etc.) which are accessible via that link.  As a packet arrives at a C104 router the selection
of the outgoing link is carried out comparing the header label with the set of intervals.  As it is
showed in figure 2, the intervals are contiguous and non-overlapping and assigned so that each
header label can only belong to one of the intervals.

154

Compare with
interval table
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7

2

5
0

18

56

105

186

link
selected

1

send packet down link 8

Figure 2.  Interval labelling.

 Interval routing is implemented on C104 by interval selector units.  There is one
interval selector unit per input link, so the C104 router permits to modify the output selected
link in function of the input link that the incoming packet used.  However, the adaptive routing
algorithm used in Duato's theory does not depend on the input link used,  therefore, all the
C104's input links will have the same  interval table.
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Although the C104 Router does not restrict the size of the packets, the T9000
Transputer does.  A packet can contain up to 32 data bytes.  If a message is longer than 32
bytes then it is split up into a number of packets all, except the last, terminated by an end of
packet token.  The last packet of the message, which may contain less than a full 32 bytes, is
terminated by an end of message.  Shorter messages can be sent in a single packet, containing
0 to 32 bytes of data, terminated by the end of message token.

The C104 router allows deterministic or adaptive routing.  The adaptive routing is
named grouped adaptive routing. It is implement in the following manner.  A set of
consecutive numbered links can be configured to be grouped, so that a packet routed to any
link in that set would be sent down any free link of the set.  This feature will be used to
implement the fully adaptive routing algorithm seen in the former section.

3.2.  Implementation of the Duato's Fully Adaptive Routing Algorithm.

In this subsection, we will consider the following configuration for a torus 2-D with
transputers:
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Figure 3.  A k-ary 2-cube with Transputers.

where n=7 will be the maximum number of  physical links in each direction.

Note the C104 router uses an interval labelling that has not to be overlapping.   That
fact hinders the implementation of some routing algorithms in which exists overlapping
between the links that can be used by an arriving packet, in function of the destination node.

As earlier, we show our implementation of the adaptive routing algorithm for a
bidirectional ring with k nodes numbered from 0 to k-1.
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In this case, each node ni, i=0,...k-1, has three virtual channels on the right side and
three virtual channel on the left side, as it is showed in figure 4.

n ilcHi
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Figure 4.  Virtual channels per node.

We have found  three cases, depending on the position of the node, as we can see in
figure 5.
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Figure 5. Routing cases depending on the position of the current node.

The implementation of the fully adaptive algorithm depends on each previous case.
For each one, we obtain the following interval labelling:
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where d is the destination node and i is the current node.  Observe that we not use the H
channel in some cases.  As we stated, the Duato's theory not allows its use in the routing for
some destinations to avoid cycles in the dependency graph.

As we can see, this representation cannot  be implement on a C104 router yet, because
there are overlapping between the groups of  channels used by the different packets.  These
limitations can be save  adding more channels in order to force a separation between these
groups and matching each virtual channel defined above with a C014's different physical
channel.  We must take into account that each C104 router has 32 physical links.  In this point,
our implementation only takes 6 channels (three per side) for communication among routers
and 4 channels for communication with transputer.  Therefore, it is possible to add more
physical channels to the previous partition.  In this case we need four channels more (two per
side) to avoid the interval overlapping.  Next, in figure 6, we show the final configuration for
one of the previous cases.

C104lcH
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rc
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4

T9000

1
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3

2
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2

i<
k-1

2 case

i=0

Figure 6.  Final configuration of a k-ary 1-cube using adaptive routing.

The other two cases can be obtained easily by changing left and right channels.
Remain physical channels of C014 router can be used to increase fault tolerance and
performance of the network by duplicating the existing ones.

Now, we present our implementation of the fully adaptive routing algorithm on a torus
2-D.  Firstly, we consider that each router is identified by an n-digit radix k number, in which
the ith digit of the number represents the router's position in the ith dimension.we can describe
the routing algorithm using interval labelling as before.

In this case, each node ni, i=(0,0), ..., (k-1,k-1), has the virtual channels shows in figure
7.
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Figure 7.  Virtual channels per node.

As earlier, we must consider the node relative position with respect the network centre.
There are five possible locations: central node, up-right node, up-left node, down-right node
and down-left node.  Next, we show the implementation of two of them (The others can be
obtained easily by exchanging right-left and/or up-down channels, depending of the node
relative position).
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As in bidirectional ring, these groups have to be modified in order to obtain disjoin sets
of links in each option.  Again, we add some channels to force the separation among groups.
For example, if we consider the router which 2-digit radix k number is:
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we obtain the next groups of channels, each one of them will have associated a  C104's
physical link:
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This leads to the following configuration on the C104 router that use all 32 available
channels:
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Figure 8.  Configuration of the C104 router.

As we can see, this solution causes an asymmetry allowing more bandwidth in the first
dimension.  Moreover, there are some nodes in which the number of links that we will need to
obtain disjoint sets exceed the maximum number of available links.

In this case, the best solution is the elimination of some of the allowing links.  With
this, we overcome both problems:

•   Asymmetry in the topology.
•   Insufficient number of links.

Furthermore, it is possible to eliminate these links without loss of adaptability by
removing first one of the  lcA or lcH channels (if both can be used).  For example, considering
the following modified routing algorithm for the central node
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where four deterministic channels have been removed in order to add more adaptive channels,
the configuration on the C104 router will be now:
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Figure 9.  Configuration of the C104 router.
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The same technique can be used for the other cases, obtaining a configuration that
solves the asymmetry in the topology and needs an amount of links no greater than 32.

4.   Simulations.

In order to evaluated the behaviour of our adaptive algorithm we have carried out some
simulations.  The most important performance measures are delay (additional latency required
to deliver a message with respect to an idle network) and throughput (maximum amount of
information delivered per time unit).  Delay is measured in clock cycles.  Throughput is
measured in flits per node per cycle.

We have evaluated the performance on a torus 2-D with 8 nodes per dimension.  Our
simulator models the network at the flit level.  In addition, the deterministic e-cube algorithm
[2] for torus 2-D has been showed for comparison purposes.

The modelling parameters for a network make up C104 routers and T9000 transputer
can be obtained taking into account the following concepts:

•  The DS-Links have a transmission speed of 100 Mbits/s, but the overhead imposed
by the various layers of protocol reduces this speed to 8.27 Mbytes/s for packets with 2 byte
headers and 8.74 Mbytes/s for 1 byte headers.  This data are given without considering
latencies in the system that cause the link become idle for part of the time [8].  So a flit will
need approximately 370 ns to cross a DS-Link.

•  The C104 router need approximately 500ns to determine the output link on which the
incoming packet will be router.  A packet need 370 ns to cross the router [8].

•  The proposal network has seven physical links in each direction, this can be
simulated supposing a single physical link with a bandwidth seven times wider.  So, a packet
will need about 50 ns to be transmitted.  It is also right to suppose that the routing and cross
time will be decrease in absence of collisions between the output links selected by these
physical links.  Although it will be necessary a probabilistic study in order to determine the
mean routing and cross time under this new assumption, we can suppose that it will be seven
times faster without problems because these times will be used in both routing algorithms
(deterministic and adaptive).  So, it will not affect to the results.

•  We only consider the time taken by the messages inside the network.  So we do not
consider the time for communications between C104 routers and T9000 transputers.

From these data, we have carried out several simulations with the following
parameters.  Each simulation has collected data from 50000 messages, discarding the messages
corresponding to a transient period required to reach steady state (10000 messages).  Message
length is fixed to 256 flits.  Messages are generated randomly following a uniform distribution.
Message destination is also selected randomly.  The clock unit is 10 µs.
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Figure 10 shows, for a uniform distribution for destination of messages, the average
message delay versus traffic in the network and the amount of time for which the message was
blocked (average delay/average latency) versus traffic.  These figures give an accurate
information about the performance improvement in the network.
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Figure 10.  Comparative simulation results.

We see that adaptive algorithm increase performance over the deterministic one.
Maximum traffic allowing before saturation (throughput) also increases, because adaptive
routing permits a message to cross the dimensions in any order.  Then, the routing function
offers more choices, reducing channel contention and message delay accordingly.  Also, the
adaptive algorithm is able to use any minimal path, increasing channel utilization.  As a
consequence, throughput also increases.

Finally, the number of choices at each routing step increases with network size, almost
nullifying the negative effect produced by higher traffic.  Because of that, the adaptive
algorithm scales very well with network size.

5.  Conclusions.

We have carried out the implementation of fully adaptive routing proposal by Duato
on a 2-D torus topology make up of C104 routers and T9000 transputers.  This implementation
improves drastically results achieved by deterministic routing such as channel contention and
utilization, message delay, throughput, etc.  It also scales well with network size overcoming
one of the main problems of deterministic routing.

Finally, the utilization of low cost components as C104 routers and T9000 transputers
makes possible a wider use of multicomputers based on these components.
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