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Abstract—Transactional contention management policies show considerable variation in relative performance with changing
workload characteristics. Consequently, incorporation of fixed-policy Transactional Memory (TM) in general purpose computing
systems is suboptimal by design and renders such systems susceptible to pathologies. Of particular concern are Hardware TM
(HTM) systems where traditional designs have hardwired policies in silicon. Adaptive HTMs hold promise, but pose major challenges
in terms of design and verification costs. In this paper, we present the ZEBRA HTM design, which lays down a simple yet high-
performance approach to implement adaptive contention management in hardware. Prior work in this area has associated contention
with transactional code blocks. However, we discover that by associating contention with data (cache blocks) accessed by
transactional code rather than the code block itself, we achieve a neat match in granularity with that of the cache coherence protocol.
This leads to a design that is very simple and yet able to track closely or exceed the performance of the best performing policy for a
given workload. ZEBRA, therefore, brings together the inherent benefits of traditional eager HTMsVparallel commitsVand lazy
HTMsVgood optimistic concurrency without deadlock avoidance mechanismsV, combining them into a low-complexity design.

Index Terms—Multicore architectures, transactional memory, parallel programming, cache coherence protocols
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1 INTRODUCTION AND MOTIVATION

MOST microprocessor road-maps today project rapid
growth in the number of cores integrated on chip in

an attempt to provide increasing performance through
thread level parallelism. This has brought the problem of
effective concurrent programming of such systems to the
forefront of computing research, presenting both immense
opportunities and enormous challenges. In the context of
shared memory architectures where concurrent tasks co-
operatively process shared data, guaranteeing correctness
while maintaining efficiency and productivity is one key
challenge. Traditional multi-threaded programming mod-
els use low-level primitives such as locks to guarantee
mutual exclusion and protect shared data. Unfortunately,
the complexity of lock-based synchronization makes parallel
programming an error prone task, particularly when fine-
grained locks are used to extract more performance.

Transactional Memory (TM) [8], [10] has been proposed
as a conceptually simpler programming model that can
help boost developer productivity [9] by eliminating the
complex task of reasoning about the intricacies of safe fine-
grained locking. At a high level, the programmer or
compiler annotates sections of the code as atomic blocks

or transactions. The underlying system executes these
transactions atomically and in isolation from other any
other concurrently running code, while exploiting as much
parallelism as possible. By using transactions to safely
access shared data, programmers need not reason about the
safety of interleavings or the possibility of deadlocks to
write correct multi-threaded code. Hence, TM addresses
the performance-productivity trade-off by not discourag-
ing programmers from using coarse-grain synchronization,
since the underlying system can potentially achieve
performance comparable to fine-grained locks by execut-
ing transactions speculatively. The TM system attempts to
make best use of available concurrency in the application
while guaranteeing correctness.

Fast implementations of transactional programming
constructs that provide optimistic concurrency control
with stringent guarantees of atomicity and isolation are
necessary for TM to gain widespread usage. Software TM
[21] (STM) implementations impose too high an overhead
and do not fare well against traditional lock based ap-
proaches when performance is important. Hardware TM
(HTM) [1], [4], [5], [7], [16], [25] systems show much greater
promise. Yet, within the design space of HTM systems,
there are trade-offs to be made among various pertinent
metrics like design complexity, speed and scalability. Early
work on HTM proposals [7], [25] fixed critical TM policies
like versioning (how speculative updates in transactions are
dealt with) and conflict resolution (how and when races
between concurrent transactions are resolved). These de-
signs choose a point in the HTM design space and analyze
utilization of available concurrency within that framework.

Results in research so far do not show a clear winner or
an optimal design point. Lazy HTMs, which confine specul-
ative updates locally and run past data races until a
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transaction ends, do seem to be more efficient at extracting
parallelism [22] but require elaborate schemes [5], [19], [24]
to make race free publication of speculative updates (i.e.
transaction commit) scalable. Eager HTMs, which version
data in place and resolve conflicts as they occur, make such
publication rather trivial at the expense of complicating
behavior when speculative execution needs to be undone to
resolve data races (i.e. transaction abort). Eager HTMs fit
very naturally into existing scalable cache-coherent archi-
tectures and can tolerate spills of speculative data into the
shared memory hierarchy, unlike their lazy counterparts.
When comparing the performance of the two such designs,
a clear winner cannot be established. With workloads that
demand high commit throughput eager systems perform
substantially better, while with high contention workloads
lazy designs come out on top.

This reasoning suggests that a hybrid HTM design,
which selects the best performing policy (eager or lazy)
depending on workload characteristics, would be close to
the optimal point in the HTM design space. A key factor
would then be the complexity involved in realizing such a
design in hardware. The first attempt to provide a hybrid-
policy HTM design was DynTM [12], at which heart lies a
cache coherence protocol (UTCP) that allows transactions
in a multi-threaded application run either eagerly or lazily
based on some heuristics like prior behavior of transac-
tions. Although it lays down an interesting approach, UTCP
is a significant departure from existing cache coherence
designs, as we show in this paper, and its additional
complexity involved for just supporting TM represents too
high a design cost.

In this work we propose a different solution that is
simple and yet powerful and flexible. We recognize the fact
that assuming all data accessed in a transaction possesses
the same characteristics can lead to sub-optimal solutions.
Based on our study of conventional HTM design points we
infer that only a relatively small fraction of data accessed
inside transactions is actively contended. The rest is either
thread-private (stack or thread-local memory) or shared
but not actively contended [23]. Treating these two cat-
egories of data the same inside transactions leads to in-
efficiencies: A prolonged publication phase at commit
when using a lazy design, or increased contention leading
to expensive aborts when using an eager approach. This
work attempts to break this restriction by choosing a
granularity for versioning and contention management at
which minimal changes are required to support both eager
and lazy policies in existing cache coherence protocols: the
cache line. Our design annotates cache lines as being either
contended or not. Contended lines are managed lazily, thus
permitting greatest concurrency among transactions. All
non-contended lines are versioned eagerly and thus only
contended lines need to be published on transaction com-
mit. We call this data-centric, hybrid-policy HTM protocol
ZEBRA.1

Fig. 1 depicts an interleaving of three concurrent
transactions and highlights some important behavioural
aspects of our proposal, when compared to fixed-policy
approaches. In the eager case (Fig. 1a), we see that although
transactions T1 and T3 are independent, T3 is stalled
because of a chain of dependencies created via transaction
T2. This does not occur in the hybrid-policy ZEBRA design
(Fig. 1b) or the purely lazy case (Fig. 1c) and in the example
shown all three transactions commit without conflicts. The
figure shows how eager systems disallow the reader-writer
concurrency that naturally occurs in lazy systems if the
reader commits before the writer. It should be noted here
that in ZEBRA writes to A and B by T2 and T3 are managed
lazily, since the lines were annotated as contended at an
earlier stage of the execution. On the other hand, in the lazy
case T2’s commit is delayed because T1, having a relatively
large write-set, has locked resources that T2 needs to
publish its updates (i.e. when a simple global commit token
is used for serializing commits [2]). This in turn delays T3’s
commit. With ZEBRA, T1 is able to perform an instant
commit since none of the lines in its write-set are contended
and, hence, are managed eagerly, allowing T2 and T3 to
proceed with their commit operations without any delay
on account of T1.

Over the course of execution of a workload, versioning
of lines that are contended transitions from eager to lazy. In
the steady state we can expect only the contended subset of
the working dataset to be managed lazily. As our eval-
uation shall show, substantial gains over existing fixed-
policy HTM designs are achieved. The incremental cost of
implementing this approach is minimal since only very
modest behavioural changes are required in the cache
coherence protocol, as demonstrated in Section 4.

There are also certain other benefits that stem from
using such a data-centric approach. First, deadlock avoid-
ance mechanisms such as that used by LogTM [17] are not

1. An African folktale speaks of how the white zebra fell into a fire
and burning sticks scorched black stripes on its flawless coat. Here,
transactions manage data purely eagerly (white) to begin with but
acquire lazy lines (black stripes) when they conflict (fall into a fire).

Fig. 1. Behavioral differences between HTM designs.
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required since contended lines are eventually managed
lazily, thereby guaranteeing forward progress. Also, sig-
nificant reductions in transaction commit delays result in
a major contraction of the window of contention for con-
current transactions. Furthermore, the pressure on lazy
versioning mechanisms is considerably reduced, making
cache evictions of lazy speculatively modified data less
likely and hence enabling much larger transactions to run
without resorting to safety nets. Finally, since the design
does not lock policy and is able to revert the contention
annotations, it can adapt to changing workload conditions
and is resistant to pathologies that fixed policy HTMs suffer
from. Overall, this proposal touches upon a sweet spot in
the HTM design space that offers both simplicity of design
and robust performance.

A first implementation of ZEBRA was presented in [23].
Here, we extend that work in the following ways:

. We have incorporated a comparative complexity
analysis of our approach, describing in detail the
coherence protocol extensions that ZEBRA entails
over a standard MESI, in contrast to the UTCP
protocol that forms the basis of DynTM [12].

. We have incorporated prediction and reversion
mechanisms to dynamically switch between eager
and lazy management of cache lines based on
changes in their contention characteristics.

. The design has been evaluated more comprehen-
sively with the inclusion of DynTM and other new
design points. A new comparison against idealized
eager and lazy designs provides a better measure of
the performance potential of our protocol.

The rest of this paper is organized as follows. Section 2
puts our work here in perspective of other work in HTM
systems on related issues. Section 3 describes the salient
architectural and behavioural features of ZEBRA. In Section 4
we present our complexity analysis versus DynTM. Section 5
describes the experimental methodology adopted, and then
Section 6 presents our results. Section 7 concludes the paper
with our take away message about low-complexity hybrid-
policy HTM design.

2 BACKGROUND AND RELATED WORK

Parallelism at commit is important when running applica-
tions with low contention but a large number of transac-
tions. Transactions that do not conflict should ideally be
able to commit simultaneously. The very nature of lazy
conflict resolution protocols makes it difficult since only
actions taken at commit time permit discovery of data races
among transactions. Simple lazy schemes like ones em-
ploying a bus [7] or global commit token [2] do not permit
such parallelism. Hence most lazy protocols employ more
complex approaches like finer-grained locks on shared
memory [5], optimizing certain safe interleavings [19] and
early discovery of conflicts [24]. Eager schemes do not
suffer from this problem and our proposal, under such
workload conditions, would allow parallel commits since
most transactions would be managed eagerly. Thus, com-
plicated protocol extensions to support higher commit

parallelism are not critical to improve common case
performance for such workloads.

Lupon et al. proposed DynTM [12], the first hybrid-
policy HTM design capable of dynamically adapting its
choice of policy to the workload characteristics. DynTM
deserves further discussion since it constitutes a different
solution to the same challenge addressed by our work, i.e.
finding a point in the HTM design space which combines
the advantages of eager and lazy policies. The key dif-
ference between DynTM and ZEBRA is that the former
chooses a different dimension when combining eager and
lazy: DynTM selects policies at the level of transactions,
while ZEBRA is a data-centric design which works at the
granularity of cache lines. DynTM’s choice of granularity
does not match that of the underlying coherence infra-
structure, which works at the granularity of cache lines.
The result, as further discussed in Section 4, is increased
complexity, which will be a significant criterion in any
decision to incorporate TM in silicon. In regards to
adaptability, DynTM adapts based on a history of past
transactions, trying to figure out the best policy for each
transaction, which is an inherently slow process. Switching
entire transactions from eager to lazy is cumbersome as
well. ZEBRA, on the other hand, adapts seamlessly. If a
transactional reader exists for an eager line when a con-
flicting write is issued, policy switch to lazy occurs without
need for either stall or abort. A stall can only occur if an
eager writer exists and briefly lasts while the writer aborts.
Moreover, unlike DynTM, after a policy switch the be-
haviour of a transaction does not change drastically. As
ZEBRA discovers contention for shared data a gradual
shift in behaviour occurs permitting fine-grained adapt-
ability. The reader is referred to the online supplemental
material (Sections 2 and 4) for further detail about pre-
vious works.

3 THE ZEBRA DESIGN

We choose a tiled chip multiprocessor as the baseline
architecture upon which our design is built. Each tile com-
prises a processing core and a slice of a shared inclusive
L2 cache and corresponding directory entries. Each
processing core has private Level 1 instruction and data
caches. The directory keeps private caches coherent using
a MESI protocol. The tiles are interconnected by a mesh-
based routing network. ZEBRA uses eager versioning by
default, and thus it inherits features such as the logging
logic and the read and write signatures from LogTM-SE
[25]. Fig. 1 of the supplemental material available online
shows a high-level overview of the hardware com-
ponents required by the ZEBRA design. Read and write
set signatures [4] are used to track speculatively read as
well as eagerly-managed speculatively written lines, and
they allow such lines to be evicted from the private cache
level. In order to perform lazy versioning in private
caches, each cache entry is augmented with a speculatively
modified (SM) bit, which also enables gang-invalidation of
all SM lines on abort, similarly to prior HTM proposals [7].
A transaction with no lazy updates can commit without
delay, permitting true commit parallelism in such a case.
If there are some lazy updates, they must be validated and
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made globally visible. We adopt the simplest possible
approach to do so by having the committer acquire a
global commit token [2] to achieve a global serial order.
While more scalable lazy commit schemes [5] would
further enhance our proposal, the design choice is or-
thogonal to the key ideas described in this work. Once
commit is granted, a simple state machine issues coher-
ence requests to obtain exclusive ownership for each ad-
dress in the lazy address table. Thus, all lines in the shared
(S) state in cache with SM indicator set are upgraded to
modified (M) state. The invalidations forwarded by the
directory cause the abort of any concurrent transactional
reader or lazy writer.

3.1 Policy Selection Based on Contention Meta-Data
In order to track contention, ZEBRA extends per-cache line
meta-data at the private cache and directory levels with just
one additional bitV‘‘contended bit’’Vhereafter referred to
as the C-bit. The C-bit is transported with all coherence
messages. A C-bit value of ‘‘1’’ indicates that the line has
experienced contention in the past. C-bits at the directory
are set by unblock messages upon completion of in-flight
coherence operations which discovered contention. The
C-bit is cleared when a non-transactional update to the
line is completed allowing memory to be recycled without
the old C-bit value affecting behaviour in the new usage
context. In most applications it is highly unusual to find
non-transactional updates to a cache line interleaved with
transactional accesses. The C-bit is also cleared if a line
must be evicted from the directory. Apart from the C-bit,
all coherence messages generated in response to specula-
tive accesses by the core are distinguished from ordinary
ones by setting a special transactional status flag in such
messages. An abort occurs when any non-speculative
coherence message hits a line speculatively accessed by a

transaction. It should be noted that invalidations that
result when lazily managed lines are committed are non-
transactional.

Fig. 2 shows how writes from the processor are dealt
with by the private cache controller. Prior to such a cache
line update, non-exclusive (shared) access is acquired to
the line: line-fill if not present, or downgrade to shared
with write-back, if dirty. This ensures that 1) consistent
values are preserved in the shared L2 level, 2) gang-
invalidations of SM lines on abort simply appear as silent S
replacements, and 3) multiple speculative readers and
writers are allowed (tracked as sharers by the directory
protocol). Updates to lines that are either non-contended or
have unknown C-bit status (misses) are treated as usual,
issuing exclusive coherence requests to the directory if L1
line-fill or write permissions are required. If the coherence
operation succeeds but indicates that the line is contended
(i.e. there are concurrent readers), the line is allocated in the
cache (if not already present) with shared permissions, and
both SM and C bits are set. If the C-bit in the response is not
set, the update happens ‘‘in place’’ and the old contents of
the line are written to a thread-private log in virtual
memory. This aspect of eager behaviour is similar to that
of LogTM [25]. In the event that a load or store miss finds a
concurrent eager writer, the latter will set the C-bit, trigger
abort and respond with negative acknowledgements (nack)
as long as the write signature signals the conflict. Upon
reception of a nack, the requester simply retries after a few
cycles. The request will eventually succeed, once the abort-
ing writer has unrolled log (restoring the consistent value)
and the write signature has been cleared. A unique aspect
of our design is that offending cache lines will henceforth
be treated lazily during re-execution and, thus, will no
longer have the potential to cause either livelocks or dead-
locks. Note that ZEBRA provides the same forward progress

Fig. 2. Write handling at the L1 cache.
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guarantees of a lazy system, and thus renders LogTM’s
conservative deadlock avoidance mechanism based on TLR-
like timestamps [20] unnecessary.

3.2 Protocol Behaviour
Standard directory-based MESI cache coherence is em-
ployed for detecting and managing conflicts. Coherence
messages now contain two new flags - transactional status
and contended status. An additional flag, commit status, is
added to unblock requests indicating whether they corre-
spond to commit-time updates. Fig. 3 depicts key protocol
actions that occur when contended lines are accessed. All
cache lines are managed eagerly by default.

Fig. 3b shows steps taken when a switch to lazy
management occurs on encountering contention on a cache
line for the first time. The transaction interleaving consid-
ered here is the one between transactions T1 and T2 shown
in Fig. 3a. Core 1 (running T2) initiates a write to line A
(address 0x204, step 1). The store misses in the private
cache structures (step 2) and results in an exclusive
coherence request with transactional status (TGETX) sent
to the directory (step 3). The line is marked as shared at the
L2 directory, which forwards transactional invalidations
(TINV) to the sharers (step 4), in this case Core 0, and
responds with clean data and the ack count (number of
acknowledgements to expect) to Core 1, following its usual
behaviour. When Core 0 receives the invalidation, it checks
its read and write signatures, as well as the SM bit for the
line. It finds that it has only read the line transactionally
(step 5), thus detecting a conflict (note that in Fig. 3 we use a
speculatively readVSRVbit to indicate that the line ad-
dress hits in the read signature, for clarity). Core 0 then
marks the line as contended in its private cache (step 6)
causing any future write from Core 0 to be managed lazily.
An acknowledgement with contended status is sent to Core 1
(step 7). When Core 1 receives such a response, places the
line in shared state (rather than exclusive) in its cache, sets
the local C bit and performs the lazy write in cache (step 8).

Finally, it indicates completion of the coherence operation
by sending an unblock message with contended status to
the directory (step 9). The directory sets the C-bit for the
line and instead of marking Core 1 as exclusive owner, it
adds it to the sharers bit-vector, along with Core 0 (step 10).
The line will now be managed lazily by all accessors until a
non-transactional access causes a C-bit reset or the
reversion logic described in Section 3 of the supplemental
material determines that contention has dissipated.

Fig. 3c shows protocol actions that occur when lazily
managed lines are published upon commit. The details
correspond to interactions between transactions T2 and T3
in Fig. 3a. Core 2 (running T3) initiates a write to line B
(address 0x408, step 1). The line is found in cache with its
C-bit already set and in shared state, and so the store
performs lazily in cache and the SM bit is set (step 2). When
T3 commits (step 3), it first acquires a global commit token
and then issues a non-transactional request to the directory
for upgrading from shared to exclusive permissions over
line B (step 5). The directory responds by forwarding
invalidations to Core 1, which checks its read signature
(step 6) and proceeds to abort T2 upon detecting a conflict
with a non-transactional invalidation. It should also be
noticed that line C, also part of T3’s write set, does not need
to be published since it was managed eagerly. Core 1
completes its upgrade operation by sending an exclusive
unblock message to the directory. This message has the
commit flag set, causing the directory to maintain a value of
1 for the C-bit. Ordinary requests for exclusive ownership
generated from non-transactional code result in unblock
messages without the commit-flag set and cause the
directory to reset the bit.

4 ANALYSIS OF PROTOCOL COMPLEXITY

Designing and validating the coherence protocol, arguably
the most complex part in the memory hierarchy of chip
multiprocessor, is not an easy task [14]. As part of this

Fig. 3. ZEBRAVKey protocol actions.
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study, we show that the ZEBRA protocol is considerably
simpler than UTCP, the coherence protocol of DynTM [12].
The reader is referred to Section 4 of the supplemental
material for a detailed description of both protocols. Our
in-depth comparative analysis of both approaches to
hybrid-policy HTM design shows that the root cause
behind their different levels of complexity is the dimension
chosen for selecting the management policy (transactions
versus cache lines). By switching TM policy at the tran-
saction level, DynTM treats all data the same way re-
gardless of the contention experienced. To make up for this
suboptimal decision, DynTM then places strong demands
on the protocol, which is significantly modified to allow
both good lazy commit scalability with no contention, and
low rollback overheads during contention. Two key fea-
tures are responsible for this departure in terms of com-
plexity. The first of such features is the support for fast
abort of eager transactions inherited from FASTM [11] (i.e.
eager transactions restore consistent values without the
need to unroll the undo log in software). The second fea-
ture is the support for local commits of lazy transactions
(i.e. lazy transactions make their updates globally visible
at commit time without communication at that point). As
our performance evaluation will reveal, the ZEBRA design
represents a more cost-effective solution to hybrid-policy
HTM systems.

5 EXPERIMENTAL METHODOLOGY

Full-system execution-driven simulation, based on the
Wisconsin GEMS tool-set [15] and Simics [13], is used for
our evaluation. GEMS provides a detailed timing model for
the memory subsystem, which is connected to the Simics
in-order processor model. Simics provides functional
simulation of the SPARC-V9 ISA and boots an unmodified
Solaris 10 operating system. Experiments were performed
on a 16-core tiled CMP system, detailed in Table 1. Each tile
contains private L1 caches and a slice of the logically-
shared physically-distributed L2 cache.

The STAMP transactional benchmarks with recom-
mended inputs are used as workloads [3]. Bayes was ex-
cluded since it exhibits unpredictable behaviour and high
variability in its execution time [6]. For kmeans and vaca-
tion, only results for the high contention input are shown,
as these benchmarks exhibit barely no remarkable perfor-

mance variations between eager and lazy systems, for both
high and low contention configurations. Small input sizes
were used for all workloads. Medium length runs (denoted
by ‘þ’) were also included for five applications that show
widely varying transactional characteristicsVfrom vaca-
tion and ssca2 at the low contention end to yada and in-
truder at the high contention end. For each workload-
configuration pair we gathered average statistics over 10
randomized runs.

Table 2 lists all the HTM design points evaluated in this
work. The reader is referred to the supplemental material
available online (Section 5) for more details about each
design.

6 PERFORMANCE EVALUATION

All the results shown in this section are normalized to the
EE system. Averages for small and medium size ðþÞ inputs
are shown separately. Execution time is broken into
disjoint components, so that we can better understand the
roles that each source of overhead plays on HTM
performance: rollback and stalls in the eager case, arbitra-
tion and commit in the lazy case, and aborted transactional
execution in both cases. Fig. 4 shows the relative perfor-
mance of ZEBRA, compared to both realistic and ideal
flavours of HTM designs that cannot adapt their policy (see
Table 2). In it we see that ZEBRA provides marked gain in
overall performance (18 percent over EE and 5-8 percent
over LL-GCT). Our hybrid design closely tracks the per-
formance of the best policy for each workload and excels
when applications show mixed behaviourVhaving both
contended and non-contended phases, e.g. genome. This
confirms that ZEBRA is able to combine the best of both
eager and lazy, to achieve consistent performance across a
variety of workloads.

Evaluating ZEBRA against idealized fixed-policy de-
signs further reveals the clear advantages of our approach.
On the one hand, the comparison with LL-IdealCommit
highlights how ZEBRA can achieve performance at par
with that of a lazy design with truly parallel commits,
despite the fact that ZEBRA uses a very simplistic commit
scheme that precludes any lazy commit parallelism. The
reason behind this is the data-centricity of our hybrid
approach: As shown in our previous study [23], contended
lines represent a very small fraction of the transaction’s
write set, and thus the publication phase of transactions

TABLE 1
System Parameters

TABLE 2
HTM Configurations Evaluated in Section 6
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that write to contended data is considerably shortened.
Most written data (if not all, when no contention) is
managed eagerly and thus needs no further coherence
actions at commit time.

On the other hand, by comparing against EE-IdealAbort,
we observe in Fig. 4 that rollback overhead is not the
main reason for the performance loss seen in the EE sys-
tems, a fact which favours a mostly-eager system like
ZEBRAVsince the majority of the data is managed eagerly,
aborts are often done in software. We see that overall EE
performance is worse than lazy even when rollback penalty
is completely removed. This is particularly noticeable in
applications with moderate to high levels of contention like
genome, intruder or yada. Even in contended workloads
with large transactions (like yada or labyrinth), rollback
penalty is not that important, as transaction size in itself
leads to low abort counts. Only benchmarks with high
contention over small transactions (intruder) find signifi-
cant gains in reduced rollback overhead, because even a
small increase in abort latency translates into even more
contention.

Table 3 shows key statistics that offer a closer look into
the behaviour of our proposal. First of all, speed-ups with
respect to single-thread runs obtained for our 16-thread
configuration appear below each benchmark name, vali-
dating the scalability of the design. The table then shows
detailed number of commits ð#TxÞ, aborts ð#AbrÞ and
average write set size (WS, in cache lines), for each static
transaction TxID-n found in the source code. For bench-
marks with more than three atomic blocks (e.g. genome,
yada), only the first three are shown, due to space con-
straints. The numbers in brackets found below the com-
mit count and write set size represent, respectively, the
fraction of lazy commits and lazily managed lines in the
write set. Finally, the last two columns illustrate the use of
the policy predictor (commits with lazy default predic-
tion) and the safety net mechanism (commits after lazy
overflow).

The discussion below highlights important insights
gained from detailed study of interactions between HTM
policies and the behaviour of individual workloads.

Genome
This benchmark comprises several phases with varying
levels of contention. Reader-writer conflicts frequently
appear during hash table insertions in the initial phase,
creating contended scenarios in which lazy approaches
inherently allow greater concurrency and thus outperform
EE. ZEBRA quickly switches the management of contended
cache lines to lazy and also avoids the futile stalls suffered

Fig. 4. Execution time breakdown of ZEBRA vs. fixed-policy HTM designs.

TABLE 3
Hybrid, Data-Centric Management in ZEBRA
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by EE (stall_aborted in Fig. 4). Subsequent phases are dom-
inated by transactions with accesses to mostly non-
contended data, where the eager approach proves to be
the quickest. As shown in Table 3, despite the aborts seen in
TxID-0 and TxID-2, only a small fraction of all committed
writes are managed lazily by ZEBRA: 25-27 percent in
TxID-0, and 5-11 percent in TxID-2. Because ZEBRA runs
most of these transactions in a fully eager way (for instance,
in genome+ only 13 percent of TxID-2 commits have a lazy
portion), it does not suffer from the arbitration and commit
overheads seen in LL-GCT.

Intruder
This workload shows high contention in two of its three
atomic blocks. TxID-0 extracts elements from a highly
contended queue of packets, causing the EE systems to
experience a large number of aborts due to conflicts on a
single cache line (pointer to the head of the queue). ZEBRA
immediately turns this line to lazy (roughly 100 percent of
TxID-0 commits are completely lazy) to emulate the LL
systems, reducing the number of aborts dramatically. For
such heavily-contended small transactions that read-mod-
ify-write a single cache line, the lazy approach to conflict
detection and resolution proves to be more efficient, since
requests for exclusive ownership are only issued once the
transaction has acquired permission to commit. Eager
detection performs badly because it chokes the directory
with futile exclusive requests from transactions that end
up aborting, obstructing the processing of other requests
from higher-priority transactions, thus reducing commit
throughput. Lazy detection naturally combines in one
message the tasks of invalidating remote copies (and abort-
ing conflicting transactions) and publication of the com-
mitted value. It is interesting to note how in intruder+,
despite the high contention seen on its main transaction
TxID-1 (around 40 percent of all attempted instances have
to abort), most of the write-set is still managed eagerly
(61 percent). With the small input, contention on TxID-1
is so high (65 percent aborts) that the default policy pre-
diction switches to lazy (21 percent of all commits used lazy
prediction), explaining why 72 percent of the write set is
managed lazily.

SSCA2
In its main phase (TxID-2), it has a large number of tiny
transactions that demand high commit bandwidth. Inher-
ently parallel commits in eager approaches serve this
requirement very well. The LL-GCT approach suffers, as is
clearly evident in Fig. 4, where commit delays represent the
primary overhead. ZEBRA is able to manage the entire
write-set eagerly for most transactions (71-88 percent),
matching the performance of EE.

Labyrinth
The dominant transaction is TxID-1, with a write set of over
200 lines. Although a significant fraction is not contended
(a thread-local copy of the grid where the routing is com-
puted) and thus managed eagerly (65 percent), the sum of
the logging and rollback overheads makes both ZEBRA
and EE perform slightly worse than the lazy systems. In
spite of the huge write set, the latter can take full advantage

of the lazy versioning capabilities of the private cache
without resorting to safety nets.

Yada
The dominant transaction (TxID-2) exhibits high conten-
tion over a large write set (60-70 lines). In EE, 30 to 50 percent
of the accumulated cycle count corresponds to stalls, half
being futile. Though EE resolves some conflicts through
stalls rather than the wasteful aborts (note the larger
tx_aborted component in Fig. 4 for LL and ZEBRA), stalling
produces unnecessary thread serialization where lazy
approaches are better at exploiting parallelism. ZEBRA
performs slightly worse than LL because the predictor takes
a few repeated aborts to discover that contention is spread
across a large portion of the shared data, and change the
default policy to lazy.

Kmeans/Vacation
These applications are highly concurrent and do not show
major differences in execution times with changes in
policies.

6.1 ZEBRA vs. DynTM
Fig. 5 shows the relative performance of ZEBRA, compared
to the different flavours of DynTM described in Section 5.
The first observation that we make out of this figure is that
DynTM-E obtains in most cases performance levels similar
to EE, baseline of the normalization. While benchmarks
that exhibit moderate contention (such as genome and
labyrinth) show minor improvements, the protocol support
for local aborts in UTCP only brings a substantial benefit in
those workloads with many small and highly contended
transactions (the case of intruder). Though DynTM-E
achieves a reduction in execution time of roughly 40 per-
cent over EE, it is still far from the performance of ZEBRA.
As we mentioned earlier, rollback overheads are not the
primary cause of the poor performance achieved by eager
approaches but rather their tendency to collapse the
directory with requestsVsince conflicting requests are
retriedVfor those few contended lines with read-modify-
write behaviour.

DynTM-O, which in benchmarks without L1 cache
overflows (all, except yada) executes all transactions in
lazy mode, does not seem to handle high contention better
than DynTM-E. The reason behind this unexpected path-
ological behaviour is that, in order to enable local commits
of lazy mode transactions, DynTM leverages the underly-
ing UTCP protocol for eager conflict detection, as it was
discussed in Section 4. As shown in previous studies [18],
the eager-detection lazy-resolution of conflicts in DynTM
exposes a weakness not found in lazy-lazy designs or
ZEBRA. The requirement to detect all conflicts before a
lazy-mode transaction can commit brings the latency for
doing so in the critical path. This latency grows longer and
longer as the level of contention increases for these ‘‘hot’’
cache lines. In the case of intruder, the directory is per-
manently choked with requests to these lines, which often
belong to doomed transactions (i.e. those that have
received an abort message from a racing transaction while
waiting for their pending cache miss to complete). To com-
plicate things even further, the decision to remove back-off
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upon lazy mode aborts proposed in DynTM creates even
more contention for the conflicting cache lines at the
directory, explaining the performance drop in comparison
to DynTM-E. In contrast, the lazy conflict detection ap-
proach of ZEBRA works well in this case since it can
combine conflict detection with write-set publication.

Apart from the pathological behaviour in intruder, the
lazy-mode of DynTM allows more concurrency than its
eager counterpart in workloads with moderate contention
and larger transactions. DynTM-O achieves roughly the
performance of ZEBRA in genome and yada, and it obtains
a relative reduction of 10 percent in execution time for
labyrinth, thanks to its ability to exploit the versioning
capabilities of the private cache to a larger degree than our
proposal (ZEBRA still relies on logging for the most part). It
should be noted that for the small input size of labyrinth,
DynTM-O is able to lazily version all speculative writes in
L1 without resorting to the overflow mode (abort and
restart in eager mode). As problem size increases (larger
grids), the performance gap between ZEBRA and DynTM
is expected to close, since L1 cache will no longer be able to
lazily version all the speculative updates.

An interesting observation is that DynTM-O allows
good concurrency in moderate to high contention, and it
does so without introducing any penalty in low-contended
scenarios that require good commit bandwidth (e.g. ssca2),
thanks to the fancy mechanisms implemented by the UTCP
protocol to provide local commits of lazy transactions.
Overall, Fig. 5 shows that DynTM-O achieves an average
improvement over the EE baseline of 5-10 percent, whereas
our proposal reaches 15-19 percent on average due to its
more robust performance across all evaluated workloads.

Let us now analyse the case of DynTM-D, which dy-
namically chooses the most profitable execution mode
based on the transactional history and two heuristics. On
the one hand, DynTM-D keeps track of transactions that are
prone to suffer overflow of lazy speculative updates in L1
cache, and the predictor determines that those transactions

should execute in eager mode. As we have mentioned
earlier in this section, yada is the only benchmark for which
the prioritized retention of SM lines done by the replace-
ment algorithm does not suffice in avoiding transactional
overflows. Therefore, the transactional mode selector of
DynTM-D often predicts that TxID-2 in yada is prone to
overflow, and a majority of its instances are executed in
eager mode. This leads to the aforementioned stalls that
DynTM-D exhibits in yada, seen in Fig. 5. Whether futile or
useful, these stalls limit available concurrency and are
responsible for a performance degradation with respect to
DynTM-O. On the other hand, DynTM-D also tracks the
number of retries (aborts) suffered by each transaction. In
DynTM-D, transactions that are predicted to suffer multi-
ple lazy-mode aborts are executed in eager mode. This
heuristic is based on the fact that DynTM-D gives priority
to eager writers whenever they conflict with lazy transac-
tions (eager early write and eager late write [12]). Nonethe-
less, we find this heuristic counterintuitive, as lazy conflict
resolution inherently allows more concurrency in high
contention situations, as we have seen in Fig. 4. In bench-
marks with moderate to high contention, the predictor
adapts the behaviour of DynTM-D for contended tran-
sactions to resemble DynTM-E. This is positive in in-
truder, where lazy-mode transactions suffer due to the
increased congestion at the directory, but it results in a
performance drop in genome, compared to DynTM-O.
Finally, for low contention benchmarks that do not suffer
overflows (vacation or ssca2), DynTM-D basically behaves
like DynTM-O, as it chooses to execute all or most tran-
sactions lazily.

Overall, we find that the heuristics used by DynTM-D
to adapt its behaviour depending on the past history are
not particularly robust, and in certain cases the predictor
may unintendedly opt for a less profitable execution mode.
Thus, we believe that embedding these heuristics in sili-
con is not sound because it may open up the door to un-
expected pathologies.

Fig. 5. Execution time breakdown of ZEBRA vs. the different DynTM flavours.

TITOS-GIL ET AL.: ZEBRA: DATA-CENTRIC CONTENTION MANAGEMENT 1367



7 CONCLUSION

In this paper we have outlined a fresh approach to hybrid-
policy HTM design. Instead of viewing contention as a
characteristic of an atomic section of code, we view it as a
characteristic of the data accessed therein. Our observation
that contended data forms a relatively small fraction of
data written inside transactions reinforces our decision to
incorporate mechanisms that support efficient manage-
ment of such data. In the process, our proposalVthe
ZEBRA HTM systemVmanages to bring together the good
aspects of both eager and lazy designs with very modest
changes in architecture and protocol. ZEBRA supports
parallel commits for transactions that do not access con-
tended data and allows reader-writer concurrency when
contention is seen. We have shown, both qualitatively and
quantitatively, that it can utilize concurrency better and
consistently track or outperform the best performing scal-
able single-policy designVperforming as well as the eager
design when high commit rates limit performance of lazy
designs and, as well as lazy systems when contention
dominates. ZEBRA achieves the lowest deviation from the
best measured performance over a diverse set of workloads
corroborating our claim that the design is robust and less
susceptible to pathological conditions. Furthermore, in
comparison with state-of-the-art hybrid-policy designs,
this paper quantitatively shows that our data-centric ap-
proach not only entails significantly less complexity than
previous proposals but also surpases them in overall
performance. Hence, our study demonstrates that the
ZEBRA HTM design is the most cost-effective solution in
the area of low complexity hybrid-policy HTM systems.
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