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Learning Quantum Physics Building Simulations

Abstract Our experience on teaching Physics at theolsse of the Physics career at Murcia University using

computers to build simulations, particularly some examgibesit Quantum Mechanic, is presented. Our students
develop a systematic series of physics models coveringatifféspics dealt with in the General Physics course.

At the same time, the basics of building models withomputer is introduced along with the necessary

numerical techniques involved. In this communication Wallspresent the way we use computers to teach

Physics at this introductory level and some examples Bgrstudents about quantum mechanics, a particle in a
box, a particle in a finite potential well, time dependentfion state.

1. Introduction

“Simulation is now an integral part of contemporacyeace and is having a profound
effect on the way we do physics. The ability to compsiteow part of the essential repertoire
of research scientists” [1]. We claim that simulasionay have also a profound effect on the
way we teach physics and the way students learn phyls&spility to compute is now part
of the essential repertoire of studentgitophysics. This is now feasible thanks to authoring
tools like Easy Java Simulations [4], LabVIEW, or fd@k to program like Physlets . In the
first course of Physics Studies at the University of Muree teach a General Physics course
and an Introduction to Computational Physics and Sinaniafroblems that are proposed at
the General Physics course can be treated more effjciianks to interactivity, graphical
capabilities and animation due to time dependent problemsithalations offer.

Our goals coincide basically with those of Gould, Tdtvok and Christian in his book [1]

1. To provide a means for studentsmphysics.

2. To give students an opportunity to gain a deeper understanditige ghysics they

have learned in other courg€eneral Physicsin our case).

3. To encourage students to “discover” physics in a waylaino how physicist learn in

the context of research.

4. To introduce numerical methods and new areas of physatscan be studied with

these methods.

5. (In our case we change this item) To treat subjects that are complex to face them

without computing techniques because their mathematicgbleaity.

After eight years teaching General Physics and an Intriotiuit Computational Physics
and Simulation we can claim that the addition of b&ihjects is an efficient way to initiate
pupils in the development of physics models. After somitry, students are able to operate
with a high variety of physical problems, and to handiiations with an analytical
complexity higher than their mathematical background [2,B¥ using computers, the
learners can concentrate their effort in the maatel numerical algorithms to solve the
equations related to the problem.

To model and to create a simulation we use Easy Javal&ions (Ejs) [4], an authoring
graphic tool developed for the conceptual learning of physicshaddiows the creation of



sophisticated interactive animated interfaces with ootrhuch programming effort. Ejs is a
Java application and produces Java applets that can dhelose or embeded in a web page
that can also be built with Ejs, this tool implem#ré schenMODEL-VIEW-CONTROLLER

[1] that separates the physics (model) from the userfact (the controller) and the data
visualization (the view) that facilitate good design.

Simulations can be used to improve the teaching-learningggsdn quantum mechanics,
an abstract and complex subjeletiydets Quantum Physics [5] uses over 200 ready-to-run
interactive exercises which use over 250 carefully-desigcomputer simulation for the
teaching of quantum physics. Our approach is different antblementary to the method
shown. We propose to develop the simulations by the twdests; this is feasible thanks to
tools like Ejs that facilitate building sophisticated grapimterfaces with the use of the
mouse. This tool demands little knowledge of programming; @iih or two sessions of two
hours our students become familiar with it. Based oneaperience, we present here some
general comments about our method and with more detail pdwrt of our course
corresponding to some basic quantum mechanics examples.

2. Subject development

Our students must develop three different and complemesspacts at the same time:

First, they will learn to model simple physics problemth an increasing complexity. The
process has three main steps
* mathematically plan the problem
» identify the equation describing the process evolution
» compute numerically these equations

Student does not know any numerical method for solvingrdiifeal equation; therefore it
Is necessary to teach one. During the first two ogeHessons, the basic concepts of finite
differences method are presented. At this point we pagiapattention to the relation
between the intervals of temporal discretization dredcharacteristic times that characterize
the physical process.

The second aspect to develop is the use of programming taols,us arrays, loops,
logical sentences, subroutines and the use of matlsmdiraries. It is important the
presence and cooperation with a course devoted to intrakdeidesic concepts in computer
science.

The last element to consider is the development ofhgrapinterfaces that facilitates the
understanding of a physical process. The students areéeditig the representation of motion
in 2D. The graphical interface are growing in complexity ibgluding plots, movable
elements, arrays, springs, scalar and vector fietds,T&ée creation of interactive interfaces
allows to change the conditions of the model and tainldata from the simulation that
makes it possible to use the simulation as a virtualbry.

3. Materials

During the last years, we have learnt that the studbytthemselves, tend to concentrate
their attention and work into the development of ativadnterfaces, missing the importance
of the physics content of the model. The teacherldhale care of this problem and prepare
strategies to present a simulation as an opportunity o ide&e physics related knowledge.
With this in mind, we have incorporated some educatioraihenhts. For instance, each
student must have a notebook, analog to the one usedekparimental laboratory, where to
take note about the physics of the problem, new programr@ngeats and graphical design.



We have observed that computers enhance the participatidhe students; they are
interested to simultaneous search of information bgriett on the subject under study. In this
field, we try to foster the critical analysis of thata obtained through internet in the immense
world of the web where everyone writes about everything.

We have incorporated a questionnaire to be filled withhifle of the simulation to be
built. This new feature was very well accepted by the stsdmmd it has produced a double
benefit: the students have concentrated their attentito the physical aspects of the
simulation and it has established a greater connectitmtia@ FG course. The questionnaire
makes also possible to stand out the most important phgsieacts. The students of the first
year do not reach enough maturity as to value the passghibf the constructed model. At
the end, the student have to make a report in the ddranHTML document including the
basics of the phenomenon under study, information abeusimulation itself, the answer to
the questionnaire and the java applet simulation

In addition to the general development of the coursgeptipils choose a subject to make a
more advanced and detailed simulation, selected dependindgpeanown initiative and
personal capacity. The work is presented and defended 8) alag is made available to the
rest of the pupils. This is an important part of the progand a valid tool to foment the
initiative of the student, to stimulate the curiodity the physics and to develop the capacity
of oral expression and critical analysis, since tteeya@mment the work of other students.

4, Particle in a box

We begin with the simplest problem, a particle in a lb@xne dimension. We present here
the problem of calculating the eigenvalues and eigenfurscabthe infinite potential well.
4.1 Theoretical introduction

Let us consider the motion of a single particle bounbick and forth inside a box, from

which it cannot escape, and without loses of energy \itteailides with the walls of the box.
The time-independent Schrddinger equation in one dimensiobecaritten as:

-h? d?
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¢ () +U (0P (x) =Ege (x),0x (1)

where we make use of an standard notation for Plangkistantm is the mass of the particle,
¢ (x) is the wavefunction and E the energy of the patrticle

For the one-dimensional case, the function describiagpthiential well at each point can
be written as:

(2)

U(X):{o, if XD(O,L)}

oo, if x[J(O,L)

The equation (1) reduces to:
-h* d? .
—— ¢ (X) = Eg.(x) if xO(O,L) (3a)
2m dx

$:.(x)=0 if xO(O,L) (3b)



4.2 Numerical Resolution

We make use of the solution procedure reported in [6]. Adeis divided into N+1
intervals Ax wide (Figure 1). The continuous eigenfunctign(x) will be evaluated in N+1

points, obtaining the arrgy.} .
Using finite differences, equation (1) writes as:

£+ 1, —2f
LN L = Ef. 4
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So, the value of at point i+1,f;+1, is known in terms of the values at the two previous
points:

f=—f_ +f (Z—Zh—ranszj Oi =1,N (5)

i+1

To solve the Schrodinger equation it is necessartard \8ith an initial value for E and to
know fo andf;. The wavefield must be zerox=0 andx=L, eq (3b), i.ef;=0. We can assign
any value forf;. for instancef1=0.001. The rest of the N-1 values are calculated by making

use of (6). If a valué, =0 is obtained, then E is an eigenvalue, and the a[rfﬁ}yapproaches
to ¢ (x).
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Figure 1. Spatial discretization of the infinite potentialwell

The method to calculate the eigenfunctignand eigenvalues E, is the following [6]. We

first begin with a small value of the energy and cateutbe array f}. Then the value of the
energy is increased WE and the new values foffare recomputed. If we detect a change in
the sing of §, then there must exist an eigenvalue of energy betwestdEE-AE. A better
estimation of the exact value of the eigenvalue carbb@Ereed by using a small&AE.
Assumingn?/2m=1,andL =77, the energy eigenvalues are described by:

E.=n’>, n=123.. (6)

4.3 Computer simulation

The student should develop a program using the Ejs progranmioohgo calculate the
wave function depending on the energy. The simulatiost malude:
* A numeric field to introduce the energy



* An information field to present the valuefQfobtained by the computer.

«  Two plots:f vsx andf® vs x.

As an example, Figure 2 is provided to the student. It slaopassible graphical interface.
This simulation is developed at the middle of the cowasd the student has enough
computational background to implement the numerical algoridescribed above by
themselves. As a help, we provide a possible list of biesaFigure 3
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Figure 3. Suggested list of variables

It is clear from the graphic representation that thetians that satisfy the boundary
conditions are harmonic functions of the form:

@, (x) = Asin(n7x/ L) (7)
for O<x<L withn=1,2,3..

4.4 Questionnaire

Making use of your simulation, please answer the followjuestions:

a) Check the valugs=0.8 andE=1.2, and plot the functions obtained

b) Found the first eigenvali®. Plot the eigenfunctiofy and the probability densify’.

d) Plot the function for energy values slightly higlaed lower thark; What do you find?,
compare with case b)

c) Find the eigenvaluesind E and plot the corresponding eigenfunctidrendfs.

d) Coment the differences and similarities:d$ and f3

5. Particle in a potential barrier
In the above problem the analytical solution is nofialit and it can be reached by

students which have worked previously with a similar dafiftial equation when they study
elastic forces, if we change the potential used in tbeigus section, modifying one of the



walls by a finite potential the analytical solutionnst so easy as in the previous situation,
here students can experiment the power of numericallesdbn.

Now the boundary conditions changes at this wall, wet macgiire the continuity of the
function and the continuity of their derivative atstpioint.
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Figure 4. Diagram of potential energy, infinite energy at x = 0and 20 at x = 1.0
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We divide thex axis between energy walls kequally spaced and we follow the calculus
in otherM points in the region of potential energy differeminfr 0. The boundary conditions
at the wall that separate the region with null potémtieergy with the region that has a non
null value of potential energy, will be:

fIN+1]=2* f[N]- f[N -1]

e

Figtjre 5. Three steps of the search of a “possivie/e function modifying the energy that
will result in a function that fits the boundarynehtions.

Modifying the energy we test when it generates action that fits all the boundary
conditions. Figure 5 shows the step that allowdistinguish the eigenfunction.

6. Time dependent function state

The Schrédinger equation give us the time deperdericthe wave equation, if we
continue working with a problem in one dimensiord amith a potential energy function
independent of time, we can write:

;’fﬂz j—;w(x,t) AU(P(x) = ih% ®

This function is complex, it will have a real partd an imaginary one, we can write:

Y=y, +iy, 9)

If we substitute this equation in equation (8) vikain a pair of equations, with the relate
the real part and the imaginary part, both are genylar except in a sign.



Using finite differences similar to the developmendde at iterd.2 Numerical Resolution,
with a discretization ofx shown at figure 1, and with the valuet/2m=1, L=n,
dx=L/N, we arrive at a pair of sentences that are readgur computer:

In the case ot)(x)=0;

fr[i] = frli] - (fifi +1 + fi[i —1 - 2fi[i)dt/ b ifi] = fi[i] + (frfi +2+ frfi =2 - 2fr[i])dt/ @

The general form of the solution of equation (7#) ba expressed as a superposition of the
eigenstates of the operator corresponding to apgiqdl observable. If the Hamiltonian is
time independent, we can write:

Yx=cg,00e" (10)

If we are considering again the case of a particlee box, we know thaw (x )re

eigenfuntions for the stationary states given bwagign (7), we will use the following
functions to begin the interaction:

frli] = cisinax{i] 77/ L) + c2sinm2x{i] 72/ L)
fili]=0

Wherecl andc2 are constants to be normalized aridandn2 are two quantum numbers.
The student can observe that fgr# n,the quantum state changes through time with a time

periodic constant; h1=n2, the probability density function is stationary.
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Figure 5. Density of states corresponding to a mix superpogih in the infinite square
well at a defined time.

7. Conclusions

The inclusion of an introductory course about Cotapaonal Physics and Simulation in the
first year studies of Physics improve significarttig level of General Physics.



The use of simulations made by the own studentsvatetthem, they becomes more
active, they can face problems for what they ateyabmature because the mathematics they
require.

Creating their own interactive simulation boosthi® learn by searching.

Computer force students to think because it is esuigent, students must know very well
the model to obtain the desired result.
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