VII - ONDAS - Tareas

Pulso en una cuerda tensa

VII. 1.- El pulso de onda en la cuerda, mostrado en la figura para t = 0, se mueve hacia la derecha.

En este instante particular

- a) ¿Qué segmentos de la cuerda se están moviendo hacia arriba?
- b) ¿Cuáles se están moviendo hacia abajo
- c) ¿Existe algún segmento de la cuerda que se encuentre en el pulso y se encuentre en este instante con velocidad cero?
- d) Realizar un esquema de las fuerzas que actuan sobre los segmentos de la cuerda que se encuentran en el pulso.

Velocidad de propagación de un pulso en una cuerda tensa

VII.2 – Un gusano está a 2.5 cm del extremo se la cuerda de un tendedero cuando la chica que está tendiendo su traje de baño lo ve. La chica da un golpe a la cuerda de modo que por esta se propaga un pulso de 3 cm de altura. Si el gusano se mueve a 2.54 cm/s ¿llegará al extremo de la cuerda antes que le alcance el pulso? La cuerda tiene 25 m de longitud, una masa de 0.25 kg, se mantiene tensa gracias a un peso de 10 kg que cuelga en uno de sus extremos y la chica cuelga su traje a 5 m del extremo de la cuerda opuesto a la posición del gusano.

Sol.: Si, el pulso tarda 0.202 s en alcanzar el extremo de la cuerda y el gusano tarda 0.984 s.

Desplazamiento en onda sinusoidal

VII. 3 - Una onda sinusoidal tiene una amplitud $A = 0.5 \ cm$ y una longitud de onda $\lambda = 30 \ cm$, en el instante t = 0 ¿Cuál es su desplazamiento en $x = 6 \ cm$? ¿En qué punto posterior volverá a tener el mismo desplazamiento?

Solución: 0.475 cm. 36 cm

Onda armónica en una cuerda tensa

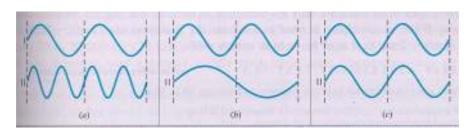
VII. 4 – La función de onda de una onda armónica que se mueve sobre una cuerda es $y(x, t) = (0.03 \text{ m}) \text{ sen}(2.2 \text{ m}^{-1} \text{ x} - 3.5 \text{ s}^{-1} \text{ t})$

- a) ¿Puede representar esta ecuación una onda?
- b) Determinar la longitud de onda, la frecuencia y el período de esta onda.
- c) ¿En qué dirección se propaga esta onda y cuál es su velocidad de propagación?
- d) Si la densidad de la cuerda es de 0.01 kg/m ¿Cuál es la tensión a la que se encuentra?
- e) ¿Cuál es el desplazamiento máximo de cualquier segmento de la cuerda?
- f) ¿Cuál es la velocidad máxima de cualquier segmento de la cuerda?

Energía de ondas armónicas en una cuerda tensa

VII. 5 – Una señal armónica de frecuencia *f1 Hz*, se desplaza por una cuerda con una amplitud *A1* transportando una energía media *E1*

- a) ¿Qué frecuencia debería tener la señal para transportar el doble de energía manteniendo la misma amplitud?
- b) Con esta nueva frecuencia ¿qué amplitud debería tener la señal para que con esta nueva frecuencia transporte la energía media inicial *E1*?


Aplicación numérica: f1 = 1000 Hz, A1 = 0.1 cm

Solución: a) 1 414 Hz; b) 0.07 cm

¹ Figura F15-30.JPG tomada del Tipler

Ondas en cuerdas

- **VII. 6** Una señal de igual amplitud y frecuencia se propaga por dos cuerdas, la cuerda I, en la imagen la superior que mantiene su forma en a) b) y c), tiene doble masa por unidad de longitud que la cuerda II, y tiene una tensión ocho veces mayor que la II.
- a) ¿Qué podemos decir de la velocidad de propagación de la onda en cada cuerda? (la velocidad de propagación de una onda en una cuerda es igual a la raíz cuadrada de la tensión dividida por la densidad)
- b) Explica cuál de las tres figuras representa la situación anterior (el dato que nos dan en cada figura es la longitud de onda de la señal)

