
Introduction
New ordering results based on signatures

Sufficient conditions based on dispersion properties
Bounds for the expected lifetimes of systems

New ordering results for coherent systems

Jorge Navarro1 and Rafael Rubio
Universidad de Murcia, Spain

September 28, 2012

1This work was supported by MEC-FEDER under grant MTM2009-08311
and Fundación Séneca under grant 08627/PI/08.

Jorge Navarro, IWAP2010 New ordering results for systems



Introduction
New ordering results based on signatures

Sufficient conditions based on dispersion properties
Bounds for the expected lifetimes of systems

Mixture representations
Ordering results
New results

Coherent systems and order statistics

X1, . . . ,Xn (positive) random variables.

X1, . . . ,Xn IID.

X1, . . . ,Xn exchangeable (EXC), i.e., for any σ

(X1, . . . ,Xn) =ST (Xσ(1), . . . ,Xσ(n)).

F (t) = Pr(Xi > t) reliability (survival) function.

X1:n, . . . ,Xn:n the associated OS.

Xk:n represents the lifetime of the k-out-of-n:F system.

T = φ(X1, . . . ,Xn) lifetime of a coherent system.
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Mixture representations

Samaniego (IEEE TR, 1985), IID and F continuous, then

FT (t) =
n∑

i=1

siF i :n(t). (1.1)

s = (s1, . . . , sn) is the signature of T , si = Pr(T = Xi :n).

si does not depend on F and

si =

∣∣{σ : φ(x1, . . . , xn) = xi :n, when xσ(1) < . . . < xσ(n)}
∣∣

n!
(1.2)

Navarro and Rychlik (JMVA, 2007), (1.1) holds for EXC r.v.
with absolutely continuous joint distribution.

Navarro, Samaniego, Balakrishnan and Bhathacharya (NRL,
2008), (1.1) holds for any EXC r.v. when s is computed from
(1.2).
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Mixed systems

A mixed system of order n is a stochastic mixture of
coherent systems of order n (Boland and Samaniego 2004).

From (1.1), all the mixed systems of order n can be written as
mixtures of X1:n, . . . ,Xn:n.

The vector with the coefficients in that representation is called
the signature of the mixed system.

Conversely, any probability vector in the simplex
{s ∈ [0, 1]n :

∑n
i=1 si = 1} determines a mixed system.
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The signature of order n

Samaniego’s representation was extended in Navarro,
Samaniego, Balakrishnan and Bhattacharya (NRL, 2008) as
follows.

If T = φ(X1, . . . ,Xk) and (X1, . . . ,Xn) is an EXC r.v. with
n ≥ k, then

FT (t) =
n∑

i=1

s
(n)
i F i :n(t). (1.3)

s(n) = (s
(n)
1 , . . . , s

(n)
n ) is called the signature of order n of T .

Note that T is equal in law to a mixed system based on
(X1, . . . ,Xn) with signature s(n).

If (X1, . . . ,Xn) has an absolutely continuous joint distribution,

then Pr(T = Xi :n) = s
(n)
i for i = 1, . . . , n.

If n = k, then s(k) is the Samaniego’s signature of T .
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Generalized mixture representations

Navarro, Ruiz and Sandoval (CSTM, 2007), if T has EXC
components, then

FT (t) =
n∑

i=1

aiF 1:i (t). (1.4)

a = (a1, . . . , an) is the minimal signature of T .

ai does not depend on F but can be negative.

A similar representation holds in terms of parallel systems.

In particular, in the IID case:

FT =
n∑

i=1

aiF
i
(t) = p(F (t)), (1.5)

where p(x) =
∑n

i=1 aix
i is the domination polynomial.
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Stochastic orderings

X ≤ST Y ⇔ FX (t) ≤ FY (t) stochastic order.

X ≤HR Y ⇔ hX (t) ≥ hY (t), hazard rate order.

X ≤HR Y ⇔ (X − t|X > t) ≤ST (Y − t|Y > t) for all t.

X ≤MRL Y ⇔ mX (t) ≤ mY (t), mean residual life order.

X ≤LR Y ⇔ fY (t)/fX (t) is nondecreasing, likelihood ratio
order.

X ≤LR Y ⇔ (X |s < X < t) ≤ST (Y |s < Y < t) for s < t.
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Stochastic orderings relationships

E (Xs,t) ≤ E (Ys,t) ⇒ E (Xt) ≤ E (Yt) ⇒ E (X ) ≤ E (Y )
m m m

X ≤DTM Y ⇒ X ≤MRL Y ⇒ X ≤M Y
⇑ ⇑ ⇑

X ≤LR Y ⇒ X ≤HR Y ⇒ X ≤ST Y
m m m

Xs,t ≤ST Ys,t ⇒ Xt ≤ST Yt ⇒ FX ≤ FY

where Zt = (Z − t|Z > t) and Zs,t = (Z |s < Z < t) (see Navarro,
Belzunce and Ruiz, PEIS, 1997).
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Ordering results for systems-IID case

Theorem (Kochar, Mukerjee and Samaniego, NRL 1999)

Let s1 and s2 be the signatures of the two coherent systems of
order n, both based on components with IID lifetimes with
common continuous reliability F . Let T1 and T2 be their
respective lifetimes.
(i) If s1 ≤ST s2, then T1 ≤ST T2.
(ii) If s1 ≤HR s2, then T1 ≤HR T2.
(iii) If s1 ≤LR s2, then T1 ≤LR T2.
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Ordering results for k-out-ofn systems

For any X1, . . . ,Xn, we have

X1:n ≤ST · · · ≤ST Xn:n. (1.6)

However,
X1:n ≤FR · · · ≤FR Xn:n (1.7)

does not necessarily hold (see Navarro and Shaked, JAP,
2006)

Analogously
X1:n ≤MRL · · · ≤MRL Xn:n, (1.8)

X1:n ≤LR · · · ≤LR Xn:n (1.9)

do not necessarily hold (see Navarro and Hernandez, Metrika,
2008, and Navarro, JSPI, 2008).
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Ordering results for systems-EXC case

Theorem (Navarro et al., NRL 2008)

If T1 = φ1(Y1, . . . , Yn1) and T2 = φ2(Z1, . . . ,Zn2) have signatures
of order n p = (p1, . . . , pn) and q = (q1, . . . , qn), {Y1, . . . ,Yn1}
and {Z1, . . . ,Zn2} are contained in {X1, . . . ,Xn} and (X1, . . . ,Xn)
is EXC, then:
(i) If p ≤ST q, then T1 ≤ST T2.
(ii) If p ≤FR q and (1.7) holds, then T1 ≤FR T2.
(iii) If p ≤FR q and (1.8) holds, then T1 ≤MRL T2.
(iv) If p ≤LR q and (1.9) holds, then T1 ≤LR T2.
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New results included in this talk

Extensions of the preceding ordering results for systems, in
two ways:

Necessary and sufficient conditions based on signatures for
systems with EXC components.

Sufficient conditions based on dispersion properties.

Bounds based on Gini index for the expected lifetimes of
systems with IID components.
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Main result-exchangeable case

Theorem (Navarro and Rubio)

If T1 = φ1(X1, . . . ,Xn) and T2 = φ2(X1, . . . ,Xn) are two coherent
(or mixed) systems with respective signatures p = (p1, . . . , pn) and
q = (q1, . . . , qn) and (X1, . . . ,Xn) has a joint exchangeable
distribution F, then:
(i) T1 ≤ST T2 holds for any F if, and only if p ≤ST q holds.
(ii) T1 ≤FR T2 holds for any F satisfying (1.7) if, and only if
p ≤FR q holds.
(iii) T1 ≤LR T2 holds for any F satisfying (1.9) if, and only if
p ≤LR q holds.
(iv) T1 ≤RFR T2 holds for any F satisfying
X1:n ≤RFR · · · ≤RFR Xn:n if, and only if p ≤RFR q holds.
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Stochastic comparisons of systems with 1-5 components

The signatures of order 5 of the 208 coherent systems with
1-5 components were given in Table 1 of Navarro and Rubio
(TEST, to appear), see also Navarro and Rubio (CSSC, 2010).

There are 94 different signatures of order 5 since some
systems have the same signatures.

The systems with the same signatures are equal in law when
the components are EXC.

The ST ordering properties for the 1-50 systems are given in
the next figure.

The systems 51-94 are the dual systems of the systems 1-44
and their properties can be obtained from:

TD
1 ≤ST TD

2 ⇔ T1 ≥ST T2.
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Figure: Stochastic ordering properties for all the coherent systems with
1-5 exchangeable components with the signatures of order 5 given in
Navarro and Rubio TEST, to appear
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A paradoxical example

Let us consider T1 = min(X1,max(X2,X3)) and
T2 = max(X1,min(X2,X3,X4)).

Let us assume that (X1,X2,X3,X4) has an exchangeable joint
distribution function F satisfying (1.9).

Their respective signatures of order 4 are
p = (1/4, 5/12, 1/3, 0) and q = (0, 1/2, 1/4, 1/4).

As
0

1/4
<

1/2

5/12
>

1/4

1/3
<

1/4

0
,

these signatures are not LR ordered.

Hence, from Theorem 2.1, these systems are not LR ordered
for all the exchangeable distributions satisfying (1.9).
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A paradoxical example

However, their respective signatures of order 5 are
p∗ = (1/5, 3/10, 3/10, 1/5, 0) and
q∗ = (0, 3/10, 3/10, 1/5, 1/5).

As
0

1/5
<

3/10

3/10
=

3/10

3/10
=

1/5

1/5
<

1/5

0
,

then p∗ ≤LR q∗.

Hence T1 ≤LR T2 holds for any distribution F satisfying (1.9).

What is the mistake?

Are these systems always LR ordered or not?
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A paradoxical example

The answer is simple. They are ordered for any random vector
(X1,X2,X3,X4,X5) with a 5 dimensional exchangeable joint
distribution F satisfying (1.9).

Hence they are ordered for the random vector (X1,X2,X3,X4)
when it can be obtained from a 5 dimensional random vector
(X1,X2,X3,X4,X5) satisfying these conditions.

Note that this is not always the case. For example, the
exchangeable random vector (X1,X2,X3,X4) which is equal to
a random permutation of the set {1, 2, 3, 4} cannot be
extended to a 5-dimensional exchangeable random vector.
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A paradoxical example: consequences

This example shows three relevant facts.

(1) Theorem 1.2 can prove ordering results for systems with n
components whose signatures of order n are not ordered.

(2) These new ordering results only holds for systems with
components having exchangeable n-dimensional distributions
which can be extended to exchangeable m-dimensional
distributions (for an m > n).

This property holds for the most relevant case, the systems
with IID components. Hence, we obtain that T1 ≤LR T2

whenever X1, . . . ,X4 are IID.
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which can be extended to exchangeable m-dimensional
distributions (for an m > n).

This property holds for the most relevant case, the systems
with IID components. Hence, we obtain that T1 ≤LR T2

whenever X1, . . . ,X4 are IID.
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A paradoxical example: consequences

This extension property only depends on the copula of the
random vector (X1, . . . ,Xn).

For example, it holds under some conditions for Archimedean
copulas.

(3) If two systems have n IID components with a common
reliability F , lifetimes T1 and T2 and signatures p and q,
respectively, then p ≤LR q is not a necessary condition to
have T1 ≤LR T2 for any F .

We do not know if this property holds for the other orders
(ST, FR, etc.).
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Dispersion comparisons

Convex order: X �CX Y if E (φ(X )) ≤ E (φ(Y )) for all convex
functions φ such that the expectations exist.

If X ≥ 0, then

µ = E (X ) =

∫ ∞

0
F (x)dx =

∫ 1

0
F
−1

(u)du, (3.1)

where F
−1

(u) = sup{x : F (x) ≥ u}.
Hence

hF (u) = F
−1

(u)/µ, 0 < u < 1, (3.2)

is a decreasing probability density function.

ZF will represent a r.v. having pdf hF .

If E (X ) = E (Y ), we get

X �CX Y ⇔ ZG �ST ZF .
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Main result

Theorem (Navarro and Rychlik, EJOR 2010))

Let T1 = φ(X1, . . . ,Xn) and T2 = φ(Y1, . . . ,Yn) with IID
components having continuous reliability functions F and G,
respectively, and a common mean µ = E (X1) = E (Y1). Let p be
the common domination polynomial. Then:
(i) If p is convex (concave) on (0, 1) and X1 �CX Y1, then

E (T1) ≥ E (T2) (≤).

(ii) If p′ is convex (concave) on (0, 1) and ZF �CX ZG , then

E (T1) ≤ E (T2) (≥).
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Main result

Theorem (Navarro and Rychlik, EJOR 2010)

Let T = φ(X1, . . . ,Xn) with IID∼ F components having mean
µ = E (Xi ) and domination polynomial p(x) =

∑n
i=1 aix

i .
(i) If p is convex (concave) on (0, 1), then

µa1 ≤ E (T ) ≤ µ (≥). (4.1)

(ii) If p′ is convex (concave) on (0, 1), then

µ inf
x∈(0,1]

p(x)

x
≤ E (T ) ≤ µmax(1, a1) (4.2)

(
µmin(1, a1) ≤ E (T ) ≤ µ sup

x∈(0,1]

p(x)

x

)
. (4.3)
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Comments

Corollary (Navarro and Rychlik, EJOR 2010)

If p′ is convex (concave) and αF = E (ZF ), then

µ
p(2αF )

2αF
≤ E (T ) ≤ µ[(1− 2αF )a1 + 2αF ] (≥). (4.4)

Parameter αF is as a measure of concentration of F since

αF = E (ZF ) =
1

2µ

∫ ∞

0
F

2
(t)dt =

E (X1:2)

2µ
=

E (X1:2)

E (X1:2) + E (X2:2)
.

Also, if γF is the Gini dispersion index of F , then

αF =
1− γF

2
.

For more bounds see Navarro and Rychlik (EJOR, 2010).
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Table: Lower (L) and upper (U) bounds for E (T ) when µ = 1 and the
Gini index is 0.5. E (Texp) gives the mean when F is exponential.

T p′(x) L E (Texp) U

X1:2 linear 0.5 0.5 0.5

X2:2 linear 1.5 1.5 1.5

X1:3 cx 0.25 0.3333 0.5

min(X1,max(X2,X3)) cv 0.5 0.6667 0.75

X2:3 cv 0.5 0.8333 1

max(X1,min(X2,X3)) cv 1 1.1667 1.25

X3:3 cv 1.75 1.8333 2

X1:4 cv 0.125 0.25 0.5

max(min(X1,X2),min(X3,X4)) cv 0.5 0.75 0.875

Consecutive 2-out-of-4:G cv 0.5 0.8333 1

X4:4 cx 1.875 2.0833 2.5
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