Mixture representations for the joint distribution of lifetimes of two coherent systems with shared components



Seventh International Workshop on Applied Probability Jorge Navarro, E-mail: jorgenav@um.es

# Outline

#### Mixture representations

- Coherent systems
- Bivariate Signature Matrix (BSM)
- Main results

### Ordering results

- Definitions
- Main result

### 3 Examples

- Example 1
- Example 2
- Example 3

Coherent systems Bivariate Signature Matrix (BSM) Main results

・ロン ・四マ ・ヨマ ・ヨマ

### Coherent systems

#### • A coherent system is

$$\psi = \psi(x_1, \ldots, x_n) : \{0, 1\}^n \to \{0, 1\},\$$

where  $x_i \in \{0, 1\}$  (it represents the state of the *i*th component) and where  $\psi$  (which represents the state of the system) is increasing in  $x_1, \ldots, x_n$  and strictly increasing in  $x_i$  for at least a point  $(x_1, \ldots, x_n)$ , for all  $i = 1, \ldots, n$ .

If X<sub>1</sub>,..., X<sub>n</sub> are the component lifetimes, then there exists φ such that the system lifetime T = φ(X<sub>1</sub>,..., X<sub>n</sub>).

Coherent systems Bivariate Signature Matrix (BSM) Main results

・ロト ・回ト ・ヨト ・ヨト

### Coherent systems

#### • A coherent system is

$$\psi = \psi(x_1, \ldots, x_n) : \{0, 1\}^n \to \{0, 1\},\$$

where  $x_i \in \{0, 1\}$  (it represents the state of the *i*th component) and where  $\psi$  (which represents the state of the system) is increasing in  $x_1, \ldots, x_n$  and strictly increasing in  $x_i$  for at least a point  $(x_1, \ldots, x_n)$ , for all  $i = 1, \ldots, n$ .

If X<sub>1</sub>,..., X<sub>n</sub> are the component lifetimes, then there exists φ such that the system lifetime T = φ(X<sub>1</sub>,..., X<sub>n</sub>).

・ロン ・回 と ・ ヨ と ・ ヨ と

# Order statistics (OS)

#### • $X_1, \ldots, X_n$ IID~ F random variables.

•  $X_1, \ldots, X_n$  exchangeable (EXC), i.e., for any permutation  $\sigma$ 

$$(X_1,\ldots,X_n)=_{ST}(X_{\sigma(1)},\ldots,X_{\sigma(n)}).$$

- Let  $X_{1:n}, \ldots, X_{n:n}$  be the associated OS which represent the lifetimes of k-out-of-n systems.
- X<sub>1:n</sub> is the series system lifetime and X<sub>n:n</sub> is the parallel system lifetime.
- Let  $F_{i:n}(t) = \Pr(X_{i:n} \leq t)$  be the DF.
- Let  $\overline{F}_{i:n}(t) = \Pr(X_{i:n} > t)$  be the RF.

・ロン ・回と ・ヨン・

- $X_1, \ldots, X_n$  IID $\sim F$  random variables.
- $X_1, \ldots, X_n$  exchangeable (EXC), i.e., for any permutation  $\sigma$

$$(X_1,\ldots,X_n) =_{ST} (X_{\sigma(1)},\ldots,X_{\sigma(n)}).$$

- Let  $X_{1:n}, \ldots, X_{n:n}$  be the associated OS which represent the lifetimes of k-out-of-n systems.
- X<sub>1:n</sub> is the series system lifetime and X<sub>n:n</sub> is the parallel system lifetime.
- Let  $F_{i:n}(t) = \Pr(X_{i:n} \leq t)$  be the DF.
- Let  $\overline{F}_{i:n}(t) = \Pr(X_{i:n} > t)$  be the RF.

・ロン ・回と ・ヨン ・ヨン

- $X_1, \ldots, X_n$  IID $\sim F$  random variables.
- $X_1, \ldots, X_n$  exchangeable (EXC), i.e., for any permutation  $\sigma$

$$(X_1,\ldots,X_n) =_{ST} (X_{\sigma(1)},\ldots,X_{\sigma(n)}).$$

- Let  $X_{1:n}, \ldots, X_{n:n}$  be the associated OS which represent the lifetimes of k-out-of-n systems.
- X<sub>1:n</sub> is the series system lifetime and X<sub>n:n</sub> is the parallel system lifetime.
- Let  $F_{i:n}(t) = \Pr(X_{i:n} \leq t)$  be the DF.
- Let  $\overline{F}_{i:n}(t) = \Pr(X_{i:n} > t)$  be the RF.

소리가 소문가 소문가 소문가

- $X_1, \ldots, X_n$  IID $\sim F$  random variables.
- $X_1, \ldots, X_n$  exchangeable (EXC), i.e., for any permutation  $\sigma$

$$(X_1,\ldots,X_n) =_{ST} (X_{\sigma(1)},\ldots,X_{\sigma(n)}).$$

- Let  $X_{1:n}, \ldots, X_{n:n}$  be the associated OS which represent the lifetimes of k-out-of-n systems.
- X<sub>1:n</sub> is the series system lifetime and X<sub>n:n</sub> is the parallel system lifetime.
- Let  $F_{i:n}(t) = \Pr(X_{i:n} \leq t)$  be the DF.
- Let  $\overline{F}_{i:n}(t) = \Pr(X_{i:n} > t)$  be the RF.

소리가 소문가 소문가 소문가

- X<sub>1</sub>,..., X<sub>n</sub> IID~ F random variables.
- $X_1, \ldots, X_n$  exchangeable (EXC), i.e., for any permutation  $\sigma$

$$(X_1,\ldots,X_n) =_{ST} (X_{\sigma(1)},\ldots,X_{\sigma(n)}).$$

- Let  $X_{1:n}, \ldots, X_{n:n}$  be the associated OS which represent the lifetimes of k-out-of-n systems.
- X<sub>1:n</sub> is the series system lifetime and X<sub>n:n</sub> is the parallel system lifetime.
- Let  $F_{i:n}(t) = \Pr(X_{i:n} \leq t)$  be the DF.
- Let  $\overline{F}_{i:n}(t) = \Pr(X_{i:n} > t)$  be the RF.

- $X_1, \ldots, X_n$  IID $\sim F$  random variables.
- $X_1, \ldots, X_n$  exchangeable (EXC), i.e., for any permutation  $\sigma$

$$(X_1,\ldots,X_n) =_{ST} (X_{\sigma(1)},\ldots,X_{\sigma(n)}).$$

- Let  $X_{1:n}, \ldots, X_{n:n}$  be the associated OS which represent the lifetimes of k-out-of-n systems.
- X<sub>1:n</sub> is the series system lifetime and X<sub>n:n</sub> is the parallel system lifetime.
- Let  $F_{i:n}(t) = \Pr(X_{i:n} \leq t)$  be the DF.

• Let 
$$\overline{F}_{i:n}(t) = \Pr(X_{i:n} > t)$$
 be the RF.

#### Mixture representation

• Samaniego (IEEE TR, 1985), IID case:

$$\overline{F}_{T}(t) = \sum_{i=1}^{n} p_{i} \overline{F}_{i:n}(t), \qquad (1.1)$$

where  $p_i = \Pr(T = X_{i:n})$  and  $\overline{F}_{i:n}(t) = \Pr(X_{i:n} > t)$ .

•  $\mathbf{p} = (p_1, \dots, p_n)$  is the signature of the system.

• IID case:  $p_i$  only depends on  $\phi$ 

$$p_{i} = \frac{\left|\{\sigma : \phi(x_{1}, \dots, x_{n}) = x_{i:n}, \text{ when } x_{\sigma(1)} < \dots < x_{\sigma(n)}\}\right|}{n!}$$
(1.2)

Navarro, Samaniego, Balakrishnan and Bhathacharya (NRL, 2008), (1.1) holds for EXC r.v. when p is given by (1.2).

Seventh International Workshop on Applied Probability Jorge Navarro, E-mail: jorgenav@um.es

#### Mixture representation

• Samaniego (IEEE TR, 1985), IID case:

$$\overline{F}_{T}(t) = \sum_{i=1}^{n} p_{i} \overline{F}_{i:n}(t), \qquad (1.1)$$

where 
$$p_i = \Pr(T = X_{i:n})$$
 and  $\overline{F}_{i:n}(t) = \Pr(X_{i:n} > t)$ .

•  $\mathbf{p} = (p_1, \dots, p_n)$  is the signature of the system.

• IID case:  $p_i$  only depends on  $\phi$ 

$$p_{i} = \frac{\left|\{\sigma : \phi(x_{1}, \dots, x_{n}) = x_{i:n}, \text{ when } x_{\sigma(1)} < \dots < x_{\sigma(n)}\}\right|}{n!}$$
(1.2)

Navarro, Samaniego, Balakrishnan and Bhathacharya (NRL, 2008), (1.1) holds for EXC r.v. when p is given by (1.2).

#### Mixture representation

• Samaniego (IEEE TR, 1985), IID case:

$$\overline{F}_{T}(t) = \sum_{i=1}^{n} p_{i} \overline{F}_{i:n}(t), \qquad (1.1)$$

where 
$$p_i = \Pr(T = X_{i:n})$$
 and  $\overline{F}_{i:n}(t) = \Pr(X_{i:n} > t)$ .

• 
$$\mathbf{p} = (p_1, \dots, p_n)$$
 is the signature of the system.

• IID case:  $p_i$  only depends on  $\phi$ 

$$p_{i} = \frac{\left|\{\sigma : \phi(x_{1}, \dots, x_{n}) = x_{i:n}, \text{ when } x_{\sigma(1)} < \dots < x_{\sigma(n)}\}\right|}{n!}$$
(1.2)

Navarro, Samaniego, Balakrishnan and Bhathacharya (NRL, 2008), (1.1) holds for EXC r.v. when p is given by (1.2).

#### Mixture representation

• Samaniego (IEEE TR, 1985), IID case:

$$\overline{F}_{T}(t) = \sum_{i=1}^{n} p_{i} \overline{F}_{i:n}(t), \qquad (1.1)$$

(4) (2) (4) (2) (4)

where 
$$p_i = \Pr(T = X_{i:n})$$
 and  $\overline{F}_{i:n}(t) = \Pr(X_{i:n} > t)$ .

•  $\mathbf{p} = (p_1, \dots, p_n)$  is the signature of the system.

• IID case:  $p_i$  only depends on  $\phi$ 

$$p_{i} = \frac{\left|\{\sigma : \phi(x_{1}, \dots, x_{n}) = x_{i:n}, \text{ when } x_{\sigma(1)} < \dots < x_{\sigma(n)}\}\right|}{n!}$$
(1.2)

• Navarro, Samaniego, Balakrishnan and Bhathacharya (NRL, 2008), (1.1) holds for EXC r.v. when **p** is given by (1.2).

#### Generalized mixture representation

• Navarro, Ruiz and Sandoval (CSTM, 2007), EXC case:

$$\overline{F}_{T}(t) = \sum_{i=1}^{n} a_{i} \overline{F}_{1:i}(t).$$
(1.3)

- $\mathbf{a} = (a_1, \ldots, a_n)$  is the minimal signature of T.
- $a_i$  only depends on  $\phi$  but can be negative and so (1.3) is called a generalized mixture.
- In the IID case:

$$\overline{F}_{\mathcal{T}}(t) = \sum_{i=1}^{n} a_i \overline{F}^i(t) = \overline{q}_{\phi}(\overline{F}(t)), \qquad (1.4)$$

(日) (四) (王) (王) (王)

 $\overline{q}_{\phi}(x) = \sum_{i=1}^{n} a_{i} x^{i}$  is the domination (reliability) polynomial

#### Generalized mixture representation

• Navarro, Ruiz and Sandoval (CSTM, 2007), EXC case:

$$\overline{F}_{T}(t) = \sum_{i=1}^{n} a_{i} \overline{F}_{1:i}(t).$$
(1.3)

- $\mathbf{a} = (a_1, \ldots, a_n)$  is the minimal signature of T.
- a<sub>i</sub> only depends on φ but can be negative and so (1.3) is called a generalized mixture.
- In the IID case:

$$\overline{F}_{\mathcal{T}}(t) = \sum_{i=1}^{n} a_i \overline{F}^i(t) = \overline{q}_{\phi}(\overline{F}(t)), \qquad (1.4)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

 $\overline{q}_{\phi}(x) = \sum_{i=1}^{n} a_{i} x^{i}$  is the domination (reliability) polynomial

#### Generalized mixture representation

• Navarro, Ruiz and Sandoval (CSTM, 2007), EXC case:

$$\overline{F}_{T}(t) = \sum_{i=1}^{n} a_{i} \overline{F}_{1:i}(t).$$
(1.3)

- $\mathbf{a} = (a_1, \ldots, a_n)$  is the minimal signature of T.
- a<sub>i</sub> only depends on \(\phi\) but can be negative and so (1.3) is called a generalized mixture.
- In the IID case:

$$\overline{F}_{T}(t) = \sum_{i=1}^{n} a_{i} \overline{F}^{i}(t) = \overline{q}_{\phi}(\overline{F}(t)), \qquad (1.4)$$

・ロン ・回 ・ モン・ モン・ モー うへつ

 $\overline{q}_{\phi}(x) = \sum_{i=1}^{n} a_{i} x^{i}$  is the domination (reliability) polynomial

### Generalized mixture representation

• Navarro, Ruiz and Sandoval (CSTM, 2007), EXC case:

$$\overline{F}_{T}(t) = \sum_{i=1}^{n} a_{i} \overline{F}_{1:i}(t).$$
(1.3)

- $\mathbf{a} = (a_1, \ldots, a_n)$  is the minimal signature of T.
- a<sub>i</sub> only depends on \(\phi\) but can be negative and so (1.3) is called a generalized mixture.
- In the IID case:

$$\overline{F}_{T}(t) = \sum_{i=1}^{n} a_{i} \overline{F}^{i}(t) = \overline{q}_{\phi}(\overline{F}(t)), \qquad (1.4)$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ - □ □

 $\overline{q}_{\phi}(x) = \sum_{i=1}^{n} a_i x^i$  is the domination (reliability) polynomial.

#### Mixture representations order *n*

• Navarro et al.(NRL, 2008): If  $T = \phi(X_1, \dots, X_m)$  and  $X_1, \dots, X_n$  (m < n) are IID, then

$$\overline{F}_{T}(t) = \sum_{i=1}^{n} p_{i}^{(n)} \overline{F}_{i:n}(t), \qquad (1.5)$$

where  $p_i^{(n)} = \Pr(T = X_{i:n})$ . •  $\mathbf{p}_i^{(n)} = (p_1^{(n)}, \dots, p_n^{(n)})$  is the signature of order n. •  $p_i^{(n)}$  only depends on  $\phi$  $p_i^{(n)} = \frac{|\{\sigma : \phi(x_1, \dots, x_n) = x_{i:n}, \text{ when } x_{\sigma(1)} < \dots < x_{\sigma(n)}\}|}{n!}$ (1.6)

• Navarro et al. (NRL, 2008), (1.1) holds for EXC r.v. when  $\mathbf{p}^{(n)}$  is given by (1.6).

Seventh International Workshop on Applied Probability

#### Mixture representations order *n*

• Navarro et al.(NRL, 2008): If  $T = \phi(X_1, \dots, X_m)$  and  $X_1, \dots, X_n$  (m < n) are IID, then

$$\overline{F}_{T}(t) = \sum_{i=1}^{n} p_{i}^{(n)} \overline{F}_{i:n}(t), \qquad (1.5)$$

where 
$$p_i^{(n)} = \Pr(T = X_{i:n})$$
.  
•  $\mathbf{p}_i^{(n)} = (p_1^{(n)}, \dots, p_n^{(n)})$  is the signature of order  $n$ .  
•  $p_i^{(n)}$  only depends on  $\phi$   
 $p_i^{(n)} = \frac{\left|\{\sigma : \phi(x_1, \dots, x_n) = x_{i:n}, \text{ when } x_{\sigma(1)} < \dots < x_{\sigma(n)}\}\right|}{n!}$ 
(1.6)  
• Navarro et al. (NRL, 2008), (1.1) holds for EXC r.v. when  
 $\mathbf{p}_i^{(n)}$  is given by (1.6).

Seventh International Workshop on Applied Probability Jo

#### Mixture representations order *n*

• Navarro et al.(NRL, 2008): If  $T = \phi(X_1, \dots, X_m)$  and  $X_1, \dots, X_n$  (m < n) are IID, then

$$\overline{F}_{T}(t) = \sum_{i=1}^{n} p_{i}^{(n)} \overline{F}_{i:n}(t), \qquad (1.5)$$

where 
$$p_i^{(n)} = \Pr(T = X_{i:n})$$
.  
•  $\mathbf{p}_i^{(n)} = (p_1^{(n)}, \dots, p_n^{(n)})$  is the signature of order  $n$ .  
•  $p_i^{(n)}$  only depends on  $\phi$   
 $p_i^{(n)} = \frac{\left|\{\sigma : \phi(x_1, \dots, x_n) = x_{i:n}, \text{ when } x_{\sigma(1)} < \dots < x_{\sigma(n)}\}\right|}{n!}$ 
(1.6)  
• Navarro et al. (NRL, 2008), (1.1) holds for EXC r.v. when  $\mathbf{p}^{(n)}$  is given by (1.6).

Seventh International Workshop on Applied Probability

#### Mixture representations order *n*

• Navarro et al.(NRL, 2008): If  $T = \phi(X_1, \dots, X_m)$  and  $X_1, \dots, X_n$  (m < n) are IID, then

$$\overline{F}_{T}(t) = \sum_{i=1}^{n} p_{i}^{(n)} \overline{F}_{i:n}(t), \qquad (1.5)$$

where 
$$p_i^{(n)} = \Pr(T = X_{i:n})$$
.  
•  $\mathbf{p}^{(n)} = (p_1^{(n)}, \dots, p_n^{(n)})$  is the signature of order  $n$ .  
•  $p_i^{(n)}$  only depends on  $\phi$   
 $p_i^{(n)} = \frac{\left|\{\sigma : \phi(x_1, \dots, x_n) = x_{i:n}, \text{ when } x_{\sigma(1)} < \dots < x_{\sigma(n)}\}\right|}{n!}$ 
(1.6)  
• Navarro et al. (NRL, 2008), (1.1) holds for EXC r.v. when  $\mathbf{p}^{(n)}$  is given by (1.6).

Ordering results Examples Coherent systems Bivariate Signature Matrix (BSM) Main results

# Example



Seventh International Workshop on Applied Probability Jorge Navarro, E-mail: jorgenav@um.es

Ordering results Examples Coherent systems Bivariate Signature Matrix (BSM) Main results

・ロン ・回と ・ヨン・

æ

# Example



Coherent system lifetime  $T = \min(X_1, \max(X_2, X_3))$ .

Ordering results Examples Coherent systems Bivariate Signature Matrix (BSM) Main results

イロン イヨン イヨン イヨン

æ

# Example



3! = 6 permutations.

Ordering results Examples Coherent systems Bivariate Signature Matrix (BSM) Main results

æ

### Example



 $X_1 < X_2 < X_3 \Rightarrow T = X_1 = X_{1:3}$ 

Ordering results Examples Coherent systems Bivariate Signature Matrix (BSM) Main results

æ

### Example



 $X_1 < X_3 < X_2 \Rightarrow T = X_1 = X_{1:3}$ 

Ordering results Examples Coherent systems Bivariate Signature Matrix (BSM) Main results

æ

### Example



 $X_2 < X_1 < X_3 \Rightarrow T = X_1 = X_{2:3}$ 

Ordering results Examples Coherent systems Bivariate Signature Matrix (BSM) Main results

æ

### Example



 $X_2 < X_3 < X_1 \Rightarrow T = X_3 = X_{2:3}$ 

Ordering results Examples Coherent systems Bivariate Signature Matrix (BSM) Main results

æ

### Example



 $X_3 < X_1 < X_2 \Rightarrow T = X_1 = X_{2:3}$ 

Ordering results Examples Coherent systems Bivariate Signature Matrix (BSM) Main results

æ

### Example



 $X_3 < X_2 < X_1 \Rightarrow T = X_2 = X_{2:3}$ 

Ordering results Examples Coherent systems Bivariate Signature Matrix (BSM) Main results

・ロン ・回と ・ヨン・

æ

# Example



IID  $\overline{F}$  cont.:  $\mathbf{p} = (2/6, 4/6, 0) = (1/3, 2/3, 0)$ .

Ordering results Examples Coherent systems Bivariate Signature Matrix (BSM) Main results

イロン イヨン イヨン イヨン

# Example



IID or EXC:  $\overline{F}$  cont.:  $\overline{F}_T(t) = \frac{1}{3}\overline{F}_{1:3}(t) + \frac{2}{3}\overline{F}_{2:3}(t)$ .

Ordering results Examples Coherent systems Bivariate Signature Matrix (BSM) Main results

イロン イヨン イヨン イヨン

# Example



IID or EXC:  $\overline{F}_T(t) = 2\overline{F}_{1:2}(t) - \overline{F}_{1:3}(t)$ , where  $\mathbf{a} = (0, 2, -1)$  is the minimal signature.

Ordering results Examples Coherent systems Bivariate Signature Matrix (BSM) Main results

æ

### Example



IID: 
$$\overline{F}_{T}(t) = 2\overline{F}^{2}(t) - \overline{F}^{3}(t) = q_{\phi}(\overline{F}(t)),$$
  
where  $q_{\phi}(u) = 2u^{2} - u^{3}.$ 

Ordering results Examples Coherent systems Bivariate Signature Matrix (BSM) Main results

- - 4 回 ト - 4 回 ト

# Example



The minimal signatures for systems with  $n \le 5$  can be seen in: Navarro and Rubio (2010, Comm Stat Simul Comp 39, 68–84).
Ordering results Examples Coherent systems Bivariate Signature Matrix (BSM) Main results

イロン 不同と 不同と 不同と

æ

#### Signature of order *n*



Coherent system lifetime  $T = \min(X_1, \max(X_2, X_3))$  from  $X_1, X_2, X_3, X_4$ .

Ordering results Examples Coherent systems Bivariate Signature Matrix (BSM) Main results

イロン イヨン イヨン イヨン

#### Signature of order *n*



4! = 24 permutations.

Ordering results Examples Coherent systems Bivariate Signature Matrix (BSM) Main results

イロン イヨン イヨン イヨン

#### Signature of order *n*



 $X_1 < X_2 < X_3 < X_4 \Rightarrow T = X_1 = X_{1:4}$ 

Ordering results Examples Coherent systems Bivariate Signature Matrix (BSM) Main results

イロン イヨン イヨン イヨン

#### Signature of order *n*



3! = 6 permutations lead to  $T = X_1 = X_{1:4}$ 

Ordering results Examples Coherent systems Bivariate Signature Matrix (BSM) Main results

イロン イヨン イヨン イヨン

#### Signature of order *n*



The signature of order 4 is (6/24, 10/24, 8/24, 0) = (1/4, 5/12, 1/3, 0).

Ordering results Examples Coherent systems Bivariate Signature Matrix (BSM) Main results

・ 同 ト ・ ヨ ト ・ ヨ ト

#### Signature of order *n*



The signatures of order 5 and minimal signatures for systems with  $n \le 5$  can be seen in: Navarro and Rubio (2010, Comm Stat Simul Comp 39, 68–84).

Mixture representations Ordering results Examples Ordering results Ordering results

# Bivariate Signature Matrix (BSM)

 T<sub>1</sub> and T<sub>2</sub> are the lifetimes of two coherent systems based on components with IID lifetimes X<sub>1</sub>,..., X<sub>n</sub> with a continuous DF F.

• Then 
$$\Pr(X_{1:n} < \ldots < X_{n:n}) = 1.$$

- The two systems may share one or more components.
- The systems may be of order less than *n*.
- We define the random vector  $I = (I_1, I_2)$  by

$$I = (i, j)$$
 whenever  $T_1 = X_{i:n}$  and  $T_2 = X_{j:n}$ . (1.7)

イロン イヨン イヨン イヨン

Mixture representations Ordering results Examples Ordering results Ordering results Ordering results

# Bivariate Signature Matrix (BSM)

 T<sub>1</sub> and T<sub>2</sub> are the lifetimes of two coherent systems based on components with IID lifetimes X<sub>1</sub>,..., X<sub>n</sub> with a continuous DF F.

• Then 
$$\Pr(X_{1:n} < \ldots < X_{n:n}) = 1.$$

- The two systems may share one or more components.
- The systems may be of order less than *n*.
- We define the random vector  $I = (I_1, I_2)$  by

$$I = (i, j)$$
 whenever  $T_1 = X_{i:n}$  and  $T_2 = X_{j:n}$ . (1.7)

イロン イヨン イヨン イヨン

Mixture representations Ordering results Examples Ordering results Ordering results Divariate Signature Matrix (BSM)

# Bivariate Signature Matrix (BSM)

- T<sub>1</sub> and T<sub>2</sub> are the lifetimes of two coherent systems based on components with IID lifetimes X<sub>1</sub>,..., X<sub>n</sub> with a continuous DF F.
- Then  $\Pr(X_{1:n} < \ldots < X_{n:n}) = 1.$
- The two systems may share one or more components.
- The systems may be of order less than *n*.
- We define the random vector  $I = (I_1, I_2)$  by

$$I = (i, j)$$
 whenever  $T_1 = X_{i:n}$  and  $T_2 = X_{j:n}$ . (1.7)

Mixture representations Ordering results Examples Ordering results Ordering results Divariate Signature Matrix (BSM)

# Bivariate Signature Matrix (BSM)

- T<sub>1</sub> and T<sub>2</sub> are the lifetimes of two coherent systems based on components with IID lifetimes X<sub>1</sub>,..., X<sub>n</sub> with a continuous DF F.
- Then  $\Pr(X_{1:n} < \ldots < X_{n:n}) = 1.$
- The two systems may share one or more components.
- The systems may be of order less than *n*.
- We define the random vector  $I = (I_1, I_2)$  by

$$I = (i, j)$$
 whenever  $T_1 = X_{i:n}$  and  $T_2 = X_{j:n}$ . (1.7)

# Bivariate Signature Matrix (BSM)

- T<sub>1</sub> and T<sub>2</sub> are the lifetimes of two coherent systems based on components with IID lifetimes X<sub>1</sub>,..., X<sub>n</sub> with a continuous DF F.
- Then  $\Pr(X_{1:n} < \ldots < X_{n:n}) = 1.$
- The two systems may share one or more components.
- The systems may be of order less than n.
- We define the random vector  $\mathbf{I} = (I_1, I_2)$  by

$$I = (i, j)$$
 whenever  $T_1 = X_{i:n}$  and  $T_2 = X_{j:n}$ . (1.7)

Mixture representations Ordering results Examples Ordering results Ordering results

# Bivariate Signature Matrix (BSM)

• The bivariate probability mass function of I is denoted by  $p_{i,j} = \Pr(I = (i,j))$ , for i, j = 1, ..., n.

#### Note that

$$p_{i,j} = |A_{i,j}|/n!,$$
 (1.8)

where  $|A_{i,j}|$  is the size of the set

 $A_{i,j} = \{ \sigma \in \mathcal{P}_n : T_1 = X_{i:n} \text{ and } T_2 = X_{j:n} \text{ when } X_{\sigma(1)} < \cdots < X_{\sigma(n)} \}$ 

and  $\mathcal{P}_n$  is the set of permutations of the set  $\{1, \ldots, n\}$ .

• The matrix  $P = (p_{i,j})$  is called the *bivariate signature matrix* (*BSM*) associated with  $(T_1, T_2)$ .

Mixture representations Ordering results Examples Coherent systems Bivariate Signature Matrix (BSM) Main results

# Bivariate Signature Matrix (BSM)

- The bivariate probability mass function of I is denoted by  $p_{i,j} = \Pr(I = (i,j))$ , for i, j = 1, ..., n.
- Note that

$$p_{i,j} = |A_{i,j}|/n!,$$
 (1.8)

・ロト ・回ト ・ヨト ・ヨト

where  $|A_{i,j}|$  is the size of the set

$$A_{i,j} = \{ \sigma \in \mathcal{P}_n : T_1 = X_{i:n} \text{ and } T_2 = X_{j:n} \text{ when } X_{\sigma(1)} < \cdots < X_{\sigma(n)} \}$$

and  $\mathcal{P}_n$  is the set of permutations of the set  $\{1, \ldots, n\}$ .

• The matrix  $P = (p_{i,j})$  is called the *bivariate signature matrix* (*BSM*) associated with  $(T_1, T_2)$ .

Mixture representations Ordering results Examples Coherent systems Bivariate Signature Matrix (BSM) Main results

# Bivariate Signature Matrix (BSM)

- The bivariate probability mass function of I is denoted by  $p_{i,j} = \Pr(I = (i,j))$ , for i, j = 1, ..., n.
- Note that

$$p_{i,j} = |A_{i,j}|/n!,$$
 (1.8)

・ロン ・四マ ・ヨマ ・ヨマ

where  $|A_{i,j}|$  is the size of the set

$$A_{i,j} = \{ \sigma \in \mathcal{P}_n : T_1 = X_{i:n} \text{ and } T_2 = X_{j:n} \text{ when } X_{\sigma(1)} < \cdots < X_{\sigma(n)} \}$$

and  $\mathcal{P}_n$  is the set of permutations of the set  $\{1, \ldots, n\}$ .

• The matrix  $P = (p_{i,j})$  is called the *bivariate signature matrix* (*BSM*) associated with  $(T_1, T_2)$ .

Mixture representations Ordering results Examples Coherent systems Bivariate Signature Matrix (BSM) Main results

イロン 不同と 不同と 不同と

- The BSM  $P = (p_{i,j})$  does not depend on F and can be computed using (1.8).
- Of course,  $p_{i,j} \ge 0$  and  $\sum_{i=1}^{n} \sum_{j=1}^{n} p_{i,j} = 1$ .
- The univariate signature (p<sub>1</sub>,..., p<sub>n</sub>) of order n of T<sub>1</sub>, can be computed from the BSM as p<sub>i</sub> = ∑<sub>j=1</sub><sup>n</sup> p<sub>i,j</sub>. A similar result holds for T<sub>2</sub>.
- If  $T_2 = X_{k:n}$  then  $p_{i,k} = p_i$  and  $p_{i,j} = 0$  for i = 1, ..., n and  $j \neq k$ . In this case,  $l_1$  and  $l_2$  are independent.

Coherent systems Bivariate Signature Matrix (BSM) Main results

・ロン ・回と ・ヨン・

- The BSM  $P = (p_{i,j})$  does not depend on F and can be computed using (1.8).
- Of course,  $p_{i,j} \ge 0$  and  $\sum_{i=1}^{n} \sum_{j=1}^{n} p_{i,j} = 1$ .
- The univariate signature (p<sub>1</sub>,..., p<sub>n</sub>) of order n of T<sub>1</sub>, can be computed from the BSM as p<sub>i</sub> = ∑<sub>j=1</sub><sup>n</sup> p<sub>i,j</sub>. A similar result holds for T<sub>2</sub>.
- If  $T_2 = X_{k:n}$  then  $p_{i,k} = p_i$  and  $p_{i,j} = 0$  for i = 1, ..., n and  $j \neq k$ . In this case,  $l_1$  and  $l_2$  are independent.

Coherent systems Bivariate Signature Matrix (BSM) Main results

・ロン ・回 と ・ ヨ と ・ ヨ と

- The BSM  $P = (p_{i,j})$  does not depend on F and can be computed using (1.8).
- Of course,  $p_{i,j} \ge 0$  and  $\sum_{i=1}^{n} \sum_{j=1}^{n} p_{i,j} = 1$ .
- The univariate signature (p<sub>1</sub>,..., p<sub>n</sub>) of order n of T<sub>1</sub>, can be computed from the BSM as p<sub>i</sub> = ∑<sub>j=1</sub><sup>n</sup> p<sub>i,j</sub>. A similar result holds for T<sub>2</sub>.
- If  $T_2 = X_{k:n}$  then  $p_{i,k} = p_i$  and  $p_{i,j} = 0$  for i = 1, ..., n and  $j \neq k$ . In this case,  $l_1$  and  $l_2$  are independent.

Coherent systems Bivariate Signature Matrix (BSM) Main results

- The BSM  $P = (p_{i,j})$  does not depend on F and can be computed using (1.8).
- Of course,  $p_{i,j} \ge 0$  and  $\sum_{i=1}^{n} \sum_{j=1}^{n} p_{i,j} = 1$ .
- The univariate signature (p<sub>1</sub>,..., p<sub>n</sub>) of order n of T<sub>1</sub>, can be computed from the BSM as p<sub>i</sub> = ∑<sub>j=1</sub><sup>n</sup> p<sub>i,j</sub>. A similar result holds for T<sub>2</sub>.
- If  $T_2 = X_{k:n}$  then  $p_{i,k} = p_i$  and  $p_{i,j} = 0$  for i = 1, ..., n and  $j \neq k$ . In this case,  $I_1$  and  $I_2$  are independent.

Mixture representations Ordering results Examples Ordering results Ordering results

# Example

- Let  $X_1, X_2, X_3, X_4$  be the IID lifetimes of four components.
- $T_1 = X_{2:3} = \min(\max(X_1, X_2), \max(X_1, X_3), \max(X_2, X_3)).$
- $T_2 = \min(X_3, X_4).$
- There are 4! = 24 permutations. Then:

イロン イヨン イヨン イヨン

3

Mixture representations Ordering results Examples Ordering results Dradering results Dradering results

# Example

- Let  $X_1, X_2, X_3, X_4$  be the IID lifetimes of four components.
- $T_1 = X_{2:3} = \min(\max(X_1, X_2), \max(X_1, X_3), \max(X_2, X_3)).$
- $T_2 = \min(X_3, X_4).$
- There are 4! = 24 permutations. Then:

Mixture representations Ordering results Examples Ordering results Dradering results Dradering results

# Example

- Let  $X_1, X_2, X_3, X_4$  be the IID lifetimes of four components.
- $T_1 = X_{2:3} = \min(\max(X_1, X_2), \max(X_1, X_3), \max(X_2, X_3)).$
- $T_2 = \min(X_3, X_4).$
- There are 4! = 24 permutations. Then:

・ロン ・回 と ・ ヨン ・ ヨン

Mixture representations Ordering results Examples Coherent systems Bivariate Signature Matrix (BSM) Main results

# Example

- Let  $X_1, X_2, X_3, X_4$  be the IID lifetimes of four components.
- $T_1 = X_{2:3} = \min(\max(X_1, X_2), \max(X_1, X_3), \max(X_2, X_3)).$
- $T_2 = \min(X_3, X_4).$
- There are 4! = 24 permutations. Then:

・ロン ・回 と ・ ヨン ・ ヨン

| Mixture representations | Coherent systems                 |
|-------------------------|----------------------------------|
| Ordering results        | Bivariate Signature Matrix (BSM) |
| Examples                | Main results                     |

| Equiprobable Orderings  | $(I_1, I_2)$ | Equiprobable Orderings  | $(I_1, I_2)$ |
|-------------------------|--------------|-------------------------|--------------|
| $X_1 < X_2 < X_3 < X_4$ | (2,3)        | $X_3 < X_1 < X_2 < X_4$ | (2,1)        |
| $X_1 < X_2 < X_4 < X_3$ | (2,3)        | $X_3 < X_1 < X_4 < X_2$ | (2,1)        |
| $X_1 < X_3 < X_2 < X_4$ | (2,2)        | $X_3 < X_2 < X_1 < X_4$ | (2,1)        |
| $X_1 < X_3 < X_4 < X_2$ | (2,2)        | $X_3 < X_2 < X_4 < X_1$ | (2,1)        |
| $X_1 < X_4 < X_2 < X_3$ | (3,2)        | $X_3 < X_4 < X_1 < X_2$ | (3,1)        |
| $X_1 < X_4 < X_3 < X_2$ | (3,2)        | $X_3 < X_4 < X_2 < X_1$ | (3,1)        |
| $X_2 < X_1 < X_3 < X_4$ | (2,3)        | $X_4 < X_1 < X_2 < X_3$ | (3,1)        |
| $X_2 < X_1 < X_4 < X_3$ | (2,3)        | $X_4 < X_1 < X_3 < X_2$ | (3,1)        |
| $X_2 < X_3 < X_1 < X_4$ | (2,2)        | $X_4 < X_2 < X_1 < X_3$ | (3,1)        |
| $X_2 < X_3 < X_4 < X_1$ | (2,2)        | $X_4 < X_2 < X_3 < X_1$ | (3,1)        |
| $X_2 < X_4 < X_1 < X_3$ | (3,2)        | $X_4 < X_3 < X_1 < X_2$ | (3,1)        |
| $X_2 < X_4 < X_3 < X_1$ | (3,2)        | $X_4 < X_3 < X_2 < X_1$ | (3,1)        |

・ロ・・(四・・)を注・・(注・・)注

# Example

• From the above, the bivariate signature matrix is

$$P = \left(\begin{array}{rrrr} 0 & 0 & 0 & 0 \\ 1/6 & 1/6 & 1/6 & 0 \\ 1/3 & 1/6 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

٠

イロン 不同と 不同と 不同と

- The marginal probability mass function of l<sub>1</sub> is (0, 1/2, 1/2, 0) and that of l<sub>2</sub> is (1/2, 1/3, 1/6, 0).
- These values coincide with the signatures of order 4 of these systems.

# Example

From the above, the bivariate signature matrix is

$$P = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1/6 & 1/6 & 1/6 & 0 \\ 1/3 & 1/6 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

- The marginal probability mass function of  $I_1$  is (0, 1/2, 1/2, 0) and that of  $I_2$  is (1/2, 1/3, 1/6, 0).
- These values coincide with the signatures of order 4 of these systems.

イロン 不同と 不同と 不同と

# Example

• From the above, the bivariate signature matrix is

$$P = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1/6 & 1/6 & 1/6 & 0 \\ 1/3 & 1/6 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

- The marginal probability mass function of  $l_1$  is (0, 1/2, 1/2, 0)and that of  $l_2$  is (1/2, 1/3, 1/6, 0).
- These values coincide with the signatures of order 4 of these systems.

# Main results

Theorem (Navarro, Samaniego and Balakrishnan, Adv. Appl. Prob., 2013)

Let  $T_1$  and  $T_2$  be the lifetimes of two coherent systems based IID (or EXC) components with lifetimes  $X_1, \ldots, X_n$  with a common continuous DF F. Then, the joint distribution function  $G(t_1, t_2) = \Pr(T_1 \le t_1, T_2 \le t_2)$  of  $(T_1, T_2)$  can be written as

$$G(t_1, t_2) = \sum_{i=1}^{n} \sum_{j=1}^{n} p_{i,j} F_{i,j:n}(t_1, t_2), \qquad (1.9)$$

・ロン ・回と ・ヨン ・ヨン

where  $P = (p_{i,j})$  is the bivariate signature matrix of  $(T_1, T_2)$  and  $F_{i,j:n}(t_1, t_2) = \Pr(X_{i:n} \le t_1, X_{j:n} \le t_2)$ .

# Main results

# Theorem (Navarro, Samaniego and Balakrishnan, J. Appl. Prob., 2010)

The joint distribution G of  $T_1$  and  $T_2$  based on IID components with lifetimes  $X_1, \ldots, X_n$  can be written as

$$G(t_1, t_2) = \sum_{i=1}^{n} \sum_{j=0}^{n} s_{i,j} F_{i:n}(t_1) F_{j:n}(t_2) \text{ for } t_1 \le t_2$$
(1.10)

$$G(t_1, t_2) = \sum_{i=0}^{n} \sum_{j=1}^{n} s_{i,j}^* F_{i:n}(t_1) F_{j:n}(t_2) \text{ for } t_1 > t_2, \qquad (1.11)$$

where  $F_{0:n} = 1$  (by convention) and  $\{s_{i,j}\}$  and  $\{s_{i,j}^*\}$  are collections of coefficients (which do not depend on F) such that  $\sum_{i=1}^{n} \sum_{j=0}^{n} s_{i,j} = \sum_{i=0}^{n} \sum_{j=1}^{n} s_{i,j}^* = 1.$ 

# Consequences

- $(T_1, T_2)$  has a singular part whenever  $Pr(T_1 = T_2) > 0$ .
- In the IID case, if F is absolutely continuous, then  $F_{i:n}(t_1)F_{j:n}(t_2)$  and  $F_{i,j:n}(t_1, t_2)$  are both absolutely continuous bivariate distributions when  $i \neq j$ .
- So, in the second theorem, we need two different linear combinations (one for t<sub>1</sub> ≤ t<sub>2</sub> and another one for t<sub>1</sub> > t<sub>2</sub>) based on F<sub>i:n</sub>(t<sub>1</sub>)F<sub>j:n</sub>(t<sub>2</sub>).
- However, in the first theorem, note that

 $F_{i,i:n}(t_1, t_2) = \Pr(X_{i:n} \le t_1, X_{i:n} \le t_2) = F_{i:n}(\min(t_1, t_2))$ 

・ロト ・回ト ・ヨト ・ヨト

#### Consequences

- $(T_1, T_2)$  has a singular part whenever  $Pr(T_1 = T_2) > 0$ .
- In the IID case, if F is absolutely continuous, then  $F_{i:n}(t_1)F_{j:n}(t_2)$  and  $F_{i,j:n}(t_1, t_2)$  are both absolutely continuous bivariate distributions when  $i \neq j$ .
- So, in the second theorem, we need two different linear combinations (one for  $t_1 \le t_2$  and another one for  $t_1 > t_2$ ) based on  $F_{i:n}(t_1)F_{j:n}(t_2)$ .
- However, in the first theorem, note that

 $F_{i,i:n}(t_1, t_2) = \Pr(X_{i:n} \le t_1, X_{i:n} \le t_2) = F_{i:n}(\min(t_1, t_2))$ 

・ロト ・回ト ・ヨト ・ヨト

#### Consequences

- $(T_1, T_2)$  has a singular part whenever  $Pr(T_1 = T_2) > 0$ .
- In the IID case, if F is absolutely continuous, then  $F_{i:n}(t_1)F_{j:n}(t_2)$  and  $F_{i,j:n}(t_1, t_2)$  are both absolutely continuous bivariate distributions when  $i \neq j$ .
- So, in the second theorem, we need two different linear combinations (one for  $t_1 \le t_2$  and another one for  $t_1 > t_2$ ) based on  $F_{i:n}(t_1)F_{j:n}(t_2)$ .
- However, in the first theorem, note that

 $F_{i,i:n}(t_1, t_2) = \Pr(X_{i:n} \le t_1, X_{i:n} \le t_2) = F_{i:n}(\min(t_1, t_2))$ 

・ロン ・聞と ・ほと ・ほと

#### Consequences

- $(T_1, T_2)$  has a singular part whenever  $Pr(T_1 = T_2) > 0$ .
- In the IID case, if F is absolutely continuous, then  $F_{i:n}(t_1)F_{j:n}(t_2)$  and  $F_{i,j:n}(t_1, t_2)$  are both absolutely continuous bivariate distributions when  $i \neq j$ .
- So, in the second theorem, we need two different linear combinations (one for  $t_1 \le t_2$  and another one for  $t_1 > t_2$ ) based on  $F_{i:n}(t_1)F_{j:n}(t_2)$ .
- However, in the first theorem, note that

 $F_{i,i:n}(t_1, t_2) = \Pr(X_{i:n} \le t_1, X_{i:n} \le t_2) = F_{i:n}(\min(t_1, t_2))$ 

・ロン ・聞と ・ほと ・ほと

| Mixture representations | Coherent systems                 |
|-------------------------|----------------------------------|
| Ordering results        | Bivariate Signature Matrix (BSM) |
| Examples                | Main results                     |

- Therefore, in the IID case, G is absolutely continuous if and only if p<sub>i,i</sub> = 0 for all i = 1,..., n.
- In this case, its PDF g can be written as

$$g(t_1, t_2) = \sum_{i=1}^n \sum_{j=1}^n p_{i,j} f_{i,j:n}(t_1, t_2),$$

- A similar representation holds the joint reliability function of  $(T_1, T_2)$  with the same coefficients.
- The functions  $F_{i:n}$ ,  $F_{i,j:n}$ ,  $\overline{F}_{i,j:n}$  and  $f_{i,j:n}$  can all be computed from F using the expressions known in the theory of order statistics.
- Replacing these expressions in the first theorem, we obtain the second.

| Mixture representations | Coherent systems                 |
|-------------------------|----------------------------------|
| Ordering results        | Bivariate Signature Matrix (BSM) |
| Examples                | Main results                     |

- Therefore, in the IID case, G is absolutely continuous if and only if p<sub>i,i</sub> = 0 for all i = 1,..., n.
- In this case, its PDF g can be written as

$$g(t_1, t_2) = \sum_{i=1}^n \sum_{j=1}^n p_{i,j} f_{i,j:n}(t_1, t_2),$$

- A similar representation holds the joint reliability function of (T<sub>1</sub>, T<sub>2</sub>) with the same coefficients.
- The functions  $F_{i:n}$ ,  $F_{i,j:n}$ ,  $\overline{F}_{i,j:n}$  and  $f_{i,j:n}$  can all be computed from F using the expressions known in the theory of order statistics.
- Replacing these expressions in the first theorem, we obtain the second.

| Mixture representations | Coherent systems                 |
|-------------------------|----------------------------------|
| Ordering results        | Bivariate Signature Matrix (BSM) |
| Examples                | Main results                     |

- Therefore, in the IID case, G is absolutely continuous if and only if p<sub>i,i</sub> = 0 for all i = 1,..., n.
- In this case, its PDF g can be written as

$$g(t_1, t_2) = \sum_{i=1}^n \sum_{j=1}^n p_{i,j} f_{i,j:n}(t_1, t_2),$$

- A similar representation holds the joint reliability function of  $(T_1, T_2)$  with the same coefficients.
- The functions  $F_{i:n}$ ,  $F_{i,j:n}$ ,  $\overline{F}_{i,j:n}$  and  $f_{i,j:n}$  can all be computed from F using the expressions known in the theory of order statistics.
- Replacing these expressions in the first theorem, we obtain the second.

| Mixture representations | Coherent systems                 |
|-------------------------|----------------------------------|
| Ordering results        | Bivariate Signature Matrix (BSM) |
| Examples                | Main results                     |

- Therefore, in the IID case, G is absolutely continuous if and only if p<sub>i,i</sub> = 0 for all i = 1,..., n.
- In this case, its PDF g can be written as

$$g(t_1, t_2) = \sum_{i=1}^n \sum_{j=1}^n p_{i,j} f_{i,j:n}(t_1, t_2),$$

- A similar representation holds the joint reliability function of  $(T_1, T_2)$  with the same coefficients.
- The functions  $F_{i:n}$ ,  $F_{i,j:n}$ ,  $\overline{F}_{i,j:n}$  and  $f_{i,j:n}$  can all be computed from F using the expressions known in the theory of order statistics.
- Replacing these expressions in the first theorem, we obtain the second.
| Mixture representations | Coherent systems                 |
|-------------------------|----------------------------------|
| Ordering results        | Bivariate Signature Matrix (BSM) |
| Examples                | Main results                     |

## Consequences

- Therefore, in the IID case, G is absolutely continuous if and only if p<sub>i,i</sub> = 0 for all i = 1,..., n.
- In this case, its PDF g can be written as

$$g(t_1, t_2) = \sum_{i=1}^n \sum_{j=1}^n p_{i,j} f_{i,j:n}(t_1, t_2),$$

where  $f_{i,j:n}$  is the PDF of  $(X_{i:n}, X_{j:n})$  for  $i \neq j$ .

- A similar representation holds the joint reliability function of  $(T_1, T_2)$  with the same coefficients.
- The functions  $F_{i:n}$ ,  $F_{i,j:n}$ ,  $\overline{F}_{i,j:n}$  and  $f_{i,j:n}$  can all be computed from F using the expressions known in the theory of order statistics.
- Replacing these expressions in the first theorem, we obtain the second.

 Mixture representations
 Coherent systems

 Ordering results
 Bivariate Signature Matrix (BSM)

 Examples
 Main results

## Consequences

#### Theorem

If  $T_1$  and  $T_2$  have respective signatures  $(p_1, ..., p_n)$  and  $(p_1^*, ..., p_n^*)$  of order n and BSM  $P = (p_{i,j})$ , then

$$E(T_1T_2) = \sum_{i=1}^{n} p_{i,i}\alpha_{i,i:n} + \sum_{i=1}^{n} \sum_{j=i+1}^{n} (p_{i,j} + p_{j,i})\alpha_{i,j:n}$$

$$Cov(T_1, T_2) = \sum_{i=1}^n \sum_{j=1}^n p_{i,j} \sigma_{i,j:n} + \sum_{i=1}^n \sum_{j=1}^n (p_{i,j} - p_i p_j^*) \mu_{i:n} \mu_{j:n},$$

where  $\mu_{i:n} = E(X_{i:n})$ ,  $\alpha_{i,j:n} = E(X_{i:n}X_{j:n})$ ,  $\sigma_{i,j:n} = Cov(X_{i:n}, X_{j:n})$ and  $\sigma_{i,i:n} = \sigma_{i:n}^2 = Var(X_{i:n})$  for i, j = 1, ..., n.

イロン イビン イヨン

 Mixture representations
 Coherent systems

 Ordering results
 Bivariate Signature Matrix (BSM)

 Examples
 Main results

### Consequences

• If 
$$T_2 = X_{k:n}$$
, then

$$Cov(T_1, X_{k:n}) = \sum_{i=1}^{k-1} p_i \sigma_{i,k:n} + p_j \sigma_{k:n}^2 + \sum_{i=k+1}^n p_i \sigma_{i,k:n}.$$

If F is exponential and the signature of order n is
 (0,...,0, p<sub>k</sub>,..., p<sub>n</sub>), then

$$Cov(T_1, X_{j:n}) = Var(X_{j:n}), \text{ for } j = 1, \dots, k.$$
 (1.12)

・ロン ・回と ・ヨン・

æ

 Mixture representations
 Coherent systems

 Ordering results
 Bivariate Signature Matrix (BSM)

 Examples
 Main results

### Consequences

• If 
$$T_2 = X_{k:n}$$
, then

$$Cov(T_1, X_{k:n}) = \sum_{i=1}^{k-1} p_i \sigma_{i,k:n} + p_j \sigma_{k:n}^2 + \sum_{i=k+1}^n p_i \sigma_{i,k:n}.$$

If F is exponential and the signature of order n is (0,..., 0, p<sub>k</sub>,..., p<sub>n</sub>), then

$$Cov(T_1, X_{j:n}) = Var(X_{j:n}), \text{ for } j = 1, \dots, k.$$
 (1.12)

イロン スポン イヨン イヨン

æ

# The multivariate stochastic order

### • Let **X** and **Y** be two *n*-dimensional random vectors.

- We say that X ≤<sub>ST</sub> Y if E(φ(X)) ≤ E(φ(Y)) for all increasing real-valued functions φ for which that these expectations exist.
- X ≤<sub>ST</sub> Y implies

$$\Pr(X_1 \le x_1, \dots, X_n \le x_n) \ge \Pr(X_1^* \le x_1, \dots, X_n^* \le x_n)$$
(2.1)

(lower orthant ordering) and

$$\Pr(X_1 > x_1, \dots, X_n > x_n) \ge \Pr(X_1^* > x_1, \dots, X_n^* > x_n)$$
(2.2)

・ロン ・回と ・ヨン・

## The multivariate stochastic order

- Let  ${\bf X}$  and  ${\bf Y}$  be two *n*-dimensional random vectors.
- We say that X ≤<sub>ST</sub> Y if E(φ(X)) ≤ E(φ(Y)) for all increasing real-valued functions φ for which that these expectations exist.

### X ≤<sub>ST</sub> Y implies

$$\Pr(X_1 \le x_1, \dots, X_n \le x_n) \ge \Pr(X_1^* \le x_1, \dots, X_n^* \le x_n)$$
(2.1)

(lower orthant ordering) and

$$\Pr(X_1 > x_1, \dots, X_n > x_n) \ge \Pr(X_1^* > x_1, \dots, X_n^* > x_n)$$
(2.2)

・ロン ・回と ・ヨン・

(upper orthant ordering) for all  $x_1, \ldots, x_n$ .

## The multivariate stochastic order

- Let  $\mathbf{X}$  and  $\mathbf{Y}$  be two *n*-dimensional random vectors.
- We say that X ≤<sub>ST</sub> Y if E(φ(X)) ≤ E(φ(Y)) for all increasing real-valued functions φ for which that these expectations exist.
- $\mathbf{X} \leq_{ST} \mathbf{Y}$  implies

$$\Pr(X_1 \le x_1, \dots, X_n \le x_n) \ge \Pr(X_1^* \le x_1, \dots, X_n^* \le x_n)$$
(2.1)

(lower orthant ordering) and

$$\Pr(X_1 > x_1, \dots, X_n > x_n) \ge \Pr(X_1^* > x_1, \dots, X_n^* > x_n)$$
(2.2)

・ 同 ・ ・ ヨ ・ ・ ヨ ・

(upper orthant ordering) for all  $x_1, \ldots, x_n$ .

Mixture representations Ordering results Examples

Definitions Main result

### The south-east order

#### Definition

Let  $A = (a_{i,j})$  and  $A^* = (a_{i,j}^*)$  be two  $n \times m$  matrices with the same total mass, that is, with  $\sum_{i=1}^n \sum_{j=1}^m a_{i,j} = \sum_{i=1}^n \sum_{j=1}^m a_{i,j}^*$ . Then we say that A is less than  $A^*$  in the **south-east shift order** (shortly written as  $A \leq_{S/E \rightarrow} A^*$ ) if  $A^*$  can be obtained from A through a finite sequence of transformations in which a positive mass c > 0 is moved from the term  $a_{i,j}$  to the term  $a_{r,s}$  with  $r \geq i$  and  $s \geq j$  (i.e., the new terms are  $a_{i,j} - c$  and  $a_{r,s} + c$ , respectively).

・ロン ・回と ・ヨン ・ヨン

The following matrices are  $S/E \rightarrow$  ordered:

$$\begin{pmatrix} 0 & 2/3 & 1/3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1/6 & 1/3 \\ 0 & 1/2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1/6 & 1/6 \\ 0 & 1/2 & 1/6 \\ 0 & 0 & 0 \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} 0 & 1/6 & 1/6 \\ 0 & 1/6 & 1/2 \\ 0 & 0 & 0 \end{pmatrix}.$$
(2.3)

・ロ・ ・ 日・ ・ 日・ ・ 日・

æ

# Main results

#### Theorem

Let  $T_1$  and  $T_2$  be the lifetimes of two coherent systems whose respective component lifetimes are subsets of  $\{X_1, \ldots, X_n\}$  and  $(X_1, \ldots, X_n)$  is an exchangeable random vector. Let  $T_1^*$  and  $T_2^*$  be the lifetimes of two coherent systems whose respective component lifetimes are subsets of  $\{X_1^*, \ldots, X_n^*\}$  and  $(X_1^*, \ldots, X_n^*)$  is an exchangeable random vector. If  $P \leq_{S/E \rightarrow} P^*$  and

$$(X_1,\ldots,X_n)\leq_{ST} (X_1^*,\ldots,X_n^*),$$

イロン イヨン イヨン イヨン

then  $(T_1, T_2) \leq_{ST} (T_1^*, T_2^*)$ .

Mixture representations Ordering results Examples Example 3

# Example 1

### Let $T_1 = \min(X_1, \max(X_2, X_3))$ and $T_2 = \max(X_1, \min(X_2, X_3))$ . Then:

| Equiprobable Orderings | $T_1$           | $T_2$           | I      |
|------------------------|-----------------|-----------------|--------|
| $X_1 < X_2 < X_3$      | $X_1 = X_{1:3}$ | $X_2 = X_{2:3}$ | (1,2)  |
| $X_1 < X_3 < X_2$      | $X_1 = X_{1:3}$ | $X_3 = X_{2:3}$ | (1, 2) |
| $X_2 < X_1 < X_3$      | $X_1 = X_{2:3}$ | $X_1 = X_{2:3}$ | (2,2)  |
| $X_2 < X_3 < X_1$      | $X_3 = X_{2:3}$ | $X_1 = X_{3:3}$ | (2,3)  |
| $X_3 < X_1 < X_2$      | $X_1 = X_{2:3}$ | $X_1 = X_{2:3}$ | (2,2)  |
| $X_3 < X_2 < X_1$      | $X_2 = X_{2:3}$ | $X_1 = X_{3:3}$ | (2,3)  |

・ロン ・回と ・ヨン・

æ

| Mixture representations | Example 1 |
|-------------------------|-----------|
| Ordering results        | Example 2 |
| Examples                | Example 3 |
| Example 1               |           |

$$P=\left( egin{array}{ccc} 0 & 1/3 & 0 \ 0 & 1/3 & 1/3 \ 0 & 0 & 0 \end{array} 
ight).$$

• The joint distribution is

$$G(t_1, t_2) = \frac{1}{3}F_{1,2:3}(t_1, t_2) + \frac{1}{3}F_{2,3:3}(t_1, t_2) + \frac{1}{3}F_{2:3}(\min(t_1, t_2)).$$

A (10) A (10) A (10) A

 G is not absolutely continuous since Pr(T<sub>1</sub> = T<sub>2</sub>) = p<sub>2,2</sub> = 1/3.
 The usual signatures are (1/3, 2/3, 0) and (0, 2/3, 1/3).

|           | Mixture representations<br>Ordering results<br>Examples | Example 1<br>Example 2<br>Example 3 |  |
|-----------|---------------------------------------------------------|-------------------------------------|--|
| Example 1 |                                                         |                                     |  |

$$P=\left(egin{array}{ccc} 0 & 1/3 & 0 \ 0 & 1/3 & 1/3 \ 0 & 0 & 0 \end{array}
ight).$$

• The joint distribution is

$$G(t_1, t_2) = \frac{1}{3}F_{1,2:3}(t_1, t_2) + \frac{1}{3}F_{2,3:3}(t_1, t_2) + \frac{1}{3}F_{2:3}(\min(t_1, t_2)).$$

(4月) (1日) (日)

G is not absolutely continuous since Pr(T<sub>1</sub> = T<sub>2</sub>) = p<sub>2,2</sub> = 1/3.
The usual signatures are (1/3, 2/3, 0) and (0, 2/3, 1/3).

|           | Mixture representations<br>Ordering results<br>Examples | Example 1<br>Example 2<br>Example 3 |  |
|-----------|---------------------------------------------------------|-------------------------------------|--|
| Example 1 |                                                         |                                     |  |

$$P=\left(egin{array}{ccc} 0 & 1/3 & 0 \ 0 & 1/3 & 1/3 \ 0 & 0 & 0 \end{array}
ight).$$

• The joint distribution is

$$G(t_1, t_2) = \frac{1}{3}F_{1,2:3}(t_1, t_2) + \frac{1}{3}F_{2,3:3}(t_1, t_2) + \frac{1}{3}F_{2:3}(\min(t_1, t_2)).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

- G is not absolutely continuous since  $Pr(T_1 = T_2) = p_{2,2} = 1/3.$
- The usual signatures are (1/3, 2/3, 0) and (0, 2/3, 1/3).

| Mixture representations | Example 1 |
|-------------------------|-----------|
| Ordering results        | Example 2 |
| <b>Examples</b>         | Example 3 |
| Example 1               |           |

$$P = \left(\begin{array}{rrrr} 0 & 1/3 & 0 \\ 0 & 1/3 & 1/3 \\ 0 & 0 & 0 \end{array}\right).$$

• The joint distribution is

$$G(t_1, t_2) = \frac{1}{3}F_{1,2:3}(t_1, t_2) + \frac{1}{3}F_{2,3:3}(t_1, t_2) + \frac{1}{3}F_{2:3}(\min(t_1, t_2)).$$

向下 イヨト イヨト

- G is not absolutely continuous since  $Pr(T_1 = T_2) = p_{2,2} = 1/3.$
- The usual signatures are (1/3, 2/3, 0) and (0, 2/3, 1/3).

| Mixture representations | Example 1 |
|-------------------------|-----------|
| Ordering results        | Example 2 |
| Examples                | Example 3 |

• Let 
$$T_1 = X_{1:3}$$
 and  $T_2 = \max(X_1, \min(X_2, X_3))$ , then

$$P=\left(egin{array}{ccc} 0&2/3&1/3\ 0&0&0\ 0&0&0\end{array}
ight).$$

• The joint distribution is

$$G(t_1, t_2) = \frac{2}{3}F_{1,2:3}(t_1, t_2) + \frac{1}{3}F_{1,3:3}(t_1, t_2)$$

If X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub> are IID and F is abs. cont., then G is abs. cont.
 since Pr(T<sub>1</sub> = T<sub>2</sub>) = 0 and

$$Cov(X_{1:3}, T_2) = \frac{2}{3}\sigma_{1,2:3} + \frac{1}{3}\sigma_{1,3:3}$$

• If F is exponential, then

 $Cov(X_{1:3}, T_2) = \sigma_{1,1:3} = Var(X_{1:3}) = \frac{1}{9}\mu^2$ 

| Mixture representations | Example 1 |
|-------------------------|-----------|
| Ordering results        | Example 2 |
| Examples                | Example 3 |

• Let 
$$T_1 = X_{1:3}$$
 and  $T_2 = \max(X_1, \min(X_2, X_3))$ , then

$$P = \left(\begin{array}{rrr} 0 & 2/3 & 1/3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right).$$

• The joint distribution is

$$G(t_1, t_2) = \frac{2}{3}F_{1,2:3}(t_1, t_2) + \frac{1}{3}F_{1,3:3}(t_1, t_2).$$

If X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub> are IID and F is abs. cont., then G is abs. cont. since Pr(T<sub>1</sub> = T<sub>2</sub>) = 0 and

$$Cov(X_{1:3}, T_2) = \frac{2}{3}\sigma_{1,2:3} + \frac{1}{3}\sigma_{1,3:3}$$

• If F is exponential, then

 $Cov(X_{1:3}, T_2) = \sigma_{1,1:3} = Var(X_{1:3}) = \frac{1}{9}\mu^2$ 

| Mixture representations | Example 1 |
|-------------------------|-----------|
| Ordering results        | Example 2 |
| Examples                | Example 3 |

• Let 
$$T_1 = X_{1:3}$$
 and  $T_2 = \max(X_1, \min(X_2, X_3))$ , then

$$P = \left(\begin{array}{rrr} 0 & 2/3 & 1/3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right).$$

• The joint distribution is

$$G(t_1, t_2) = rac{2}{3}F_{1,2:3}(t_1, t_2) + rac{1}{3}F_{1,3:3}(t_1, t_2).$$

If X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub> are IID and F is abs. cont., then G is abs. cont. since Pr(T<sub>1</sub> = T<sub>2</sub>) = 0 and

$$Cov(X_{1:3}, T_2) = \frac{2}{3}\sigma_{1,2:3} + \frac{1}{3}\sigma_{1,3:3}.$$

 $Cov(X_{1:3}, T_2) = \sigma_{1,1:3} = Var(X_{1:3}) = \frac{1}{2}\mu^2.$ 

• If F is exponential, then

| Mixture representations | Example 1 |
|-------------------------|-----------|
| Ordering results        | Example 2 |
| Examples                | Example 3 |

• Let 
$$T_1 = X_{1:3}$$
 and  $T_2 = \max(X_1, \min(X_2, X_3))$ , then

$$P = \left(\begin{array}{rrr} 0 & 2/3 & 1/3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right).$$

• The joint distribution is

$$G(t_1, t_2) = rac{2}{3}F_{1,2:3}(t_1, t_2) + rac{1}{3}F_{1,3:3}(t_1, t_2).$$

If X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub> are IID and F is abs. cont., then G is abs. cont. since Pr(T<sub>1</sub> = T<sub>2</sub>) = 0 and

$$Cov(X_{1:3}, T_2) = \frac{2}{3}\sigma_{1,2:3} + \frac{1}{3}\sigma_{1,3:3}.$$

• If F is exponential, then

$$Cov(X_{1:3}, T_2) = \sigma_{1,1:3} = Var(X_{1:3}) = \frac{1}{9}\mu^2$$

-1

|         | Mixture representations<br>Ordering results<br>Examples | Example 1<br>Example 2<br>Example 3 |  |
|---------|---------------------------------------------------------|-------------------------------------|--|
| ample 3 |                                                         |                                     |  |

• Let  $T_1 = X_{1:3}$  and  $T_2 = \max(X_1, \min(X_2, X_3))$ , then the BSM is  $P = \begin{pmatrix} 0 & 2/3 & 1/3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$ 

• Let 
$$T_1^* = \min(X_1^*, \max(X_2^*, X_3^*))$$
 and  
 $T_2^* = \max(X_1^*, \min(X_2^*, X_3^*))$ , then the BSM is

Ex

$$P^* = \left(\begin{array}{rrr} 0 & 1/6 & 1/6 \\ 0 & 1/2 & 1/6 \\ 0 & 0 & 0 \end{array}\right)$$

(1日) (日) (日)

æ

|         | Mixture representations<br>Ordering results<br>Examples | Example 1<br>Example 2<br>Example 3 |  |
|---------|---------------------------------------------------------|-------------------------------------|--|
| ample 3 |                                                         |                                     |  |

Ex

• Let  $T_1 = X_{1:3}$  and  $T_2 = \max(X_1, \min(X_2, X_3))$ , then the BSM is  $P = \begin{pmatrix} 0 & 2/3 & 1/3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$ • Let  $T_1^* = \min(X_1^*, \max(X_2^*, X_3^*))$  and  $T_2^* = \max(X_1^*, \min(X_2^*, X_3^*))$ , then the BSM is

$$P^*=\left(egin{array}{ccc} 0 & 1/6 & 1/6 \ 0 & 1/2 & 1/6 \ 0 & 0 & 0 \end{array}
ight).$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

| Mixture representations<br>Ordering results<br>Examples | Example 1<br>Example 2<br>Example 3 |  |
|---------------------------------------------------------|-------------------------------------|--|
|                                                         |                                     |  |

# Example 3

- As seen in (2.3), we have  $P \leq_{S/E \rightarrow} P^*$ .
- If  $X_1, X_2, X_3$  are IID and  $X_1^*, X_2^*, X_3^*$  are IID with  $X_1 \leq_{ST} X_1^*$ , then  $(T_1, T_2) \leq_{ST} (T_1^*, T_2^*)$ .
- If the components are dependent and EXC and

 $(X_1, X_2, X_3) \leq_{ST} (X_1^*, X_2^*, X_3^*),$ 

holds, then  $(T_1, T_2) \leq_{ST} (T_1^*, T_2^*)$ .

| Mixture representations<br>Ordering results<br>Examples | Example 1<br>Example 2<br>Example 3 |  |  |
|---------------------------------------------------------|-------------------------------------|--|--|
|                                                         |                                     |  |  |

# Example 3

- As seen in (2.3), we have  $P \leq_{S/E \rightarrow} P^*$ .
- If  $X_1, X_2, X_3$  are IID and  $X_1^*, X_2^*, X_3^*$  are IID with  $X_1 \leq_{ST} X_1^*$ , then  $(T_1, T_2) \leq_{ST} (T_1^*, T_2^*)$ .
- If the components are dependent and EXC and

 $(X_1, X_2, X_3) \leq_{ST} (X_1^*, X_2^*, X_3^*),$ 

holds, then  $(T_1, T_2) \leq_{ST} (T_1^*, T_2^*)$ .

| Mixture representations<br>Ordering results<br>Examples | Example 1<br>Example 2<br>Example 3 |  |  |
|---------------------------------------------------------|-------------------------------------|--|--|
|                                                         |                                     |  |  |

・ 同 ト ・ ヨ ト ・ ヨ ト

# Example 3

- As seen in (2.3), we have  $P \leq_{S/E \rightarrow} P^*$ .
- If  $X_1, X_2, X_3$  are IID and  $X_1^*, X_2^*, X_3^*$  are IID with  $X_1 \leq_{ST} X_1^*$ , then  $(T_1, T_2) \leq_{ST} (T_1^*, T_2^*)$ .
- If the components are dependent and EXC and

$$(X_1, X_2, X_3) \leq_{ST} (X_1^*, X_2^*, X_3^*),$$

holds, then  $(T_1, T_2) \leq_{ST} (T_1^*, T_2^*)$ .

| Mixture representations | Example 1 |
|-------------------------|-----------|
| Ordering results        | Example 2 |
| Examples                | Example 3 |

# Our Main References

- Navarro, J., Samaniego, F. J., Balakrishnan, N. and Bhattacharya, D. (2008). On the application and extension of system signatures in engineering reliability. *Naval Res. Logist.* 55, 313–327.
- Navarro, J., Samaniego, F. J. and Balakrishnan, N. (2010). Joint signature of coherent systems with shared components. *J. Appl. Prob.* **47**, 235–253.
- Navarro, J., Samaniego, F. J. and Balakrishnan, N. (2013). Mixture representations for the joint distribution of the lifetimes two coherent systems with shared components. *Adv. Appl. Prob.* 45 (4), 1011–1027.

・ロン ・回と ・ヨン ・ヨン

|            | Mixture representations<br>Ordering results<br>Examples | Example 1<br>Example 2<br>Example 3 |  |
|------------|---------------------------------------------------------|-------------------------------------|--|
| References |                                                         |                                     |  |

### • For the more references, please visit my personal web page:

https://webs.um.es/jorgenav/

A (1) > (1) > (1)

• Thank you for your attention!!

|           | Mixture representations<br>Ordering results<br>Examples | Example 1<br>Example 2<br>Example 3 |  |
|-----------|---------------------------------------------------------|-------------------------------------|--|
| eferences |                                                         |                                     |  |

• For the more references, please visit my personal web page:

https://webs.um.es/jorgenav/

• Thank you for your attention!!

R