Mixture representations for the joint distribution of lifetimes of two coherent systems with shared components

Jorge Navarro ${ }^{1}$,

Universidad de Murcia, Spain
E-mail: jorgenav@um.es

[^0]
Outline

(1) Mixture representations

- Coherent systems
- Bivariate Signature Matrix (BSM)
- Main results
(2) Ordering results
- Definitions
- Main result
(3) Examples
- Example 1
- Example 2
- Example 3

Coherent systems

- A coherent system is

$$
\psi=\psi\left(x_{1}, \ldots, x_{n}\right):\{0,1\}^{n} \rightarrow\{0,1\}
$$

where $x_{i} \in\{0,1\}$ (it represents the state of the i th component) and where ψ (which represents the state of the system) is increasing in x_{1}, \ldots, x_{n} and strictly increasing in x_{i} for at least a point $\left(x_{1}, \ldots, x_{n}\right)$, for all $i=1, \ldots, n$.
such that the system lifetime

Coherent systems

- A coherent system is

$$
\psi=\psi\left(x_{1}, \ldots, x_{n}\right):\{0,1\}^{n} \rightarrow\{0,1\}
$$

where $x_{i} \in\{0,1\}$ (it represents the state of the i th component) and where ψ (which represents the state of the system) is increasing in x_{1}, \ldots, x_{n} and strictly increasing in x_{i} for at least a point $\left(x_{1}, \ldots, x_{n}\right)$, for all $i=1, \ldots, n$.

- If X_{1}, \ldots, X_{n} are the component lifetimes, then there exists ϕ such that the system lifetime $T=\phi\left(X_{1}, \ldots, X_{n}\right)$.

Mixture representations

Order statistics (OS)

- X_{1}, \ldots, X_{n} IID $\sim F$ random variables.
- X_{1}, \ldots, X_{n} exchangeable (EXC), i.e., for any permutation σ

- Let $X_{1: n}, \ldots, X_{n: n}$ be the associated OS which represent the lifetimes of k-out-of- n systems.
- $X_{1: n}$ is the series system lifetime and $X_{n: n}$ is the parallel system lifetime.
- Let $F_{i: n}(t)=\operatorname{Pr}\left(X_{i n} \leq t\right)$ be the DF
- Let $\bar{F}_{i: n}(t)=\operatorname{Pr}\left(X_{i: n}>t\right)$ be the RF

Order statistics (OS)

- X_{1}, \ldots, X_{n} IID $\sim F$ random variables.
- X_{1}, \ldots, X_{n} exchangeable (EXC), i.e., for any permutation σ

$$
\left(X_{1}, \ldots, X_{n}\right)=\operatorname{st}\left(X_{\sigma(1)}, \ldots, X_{\sigma(n)}\right)
$$

- Let $X_{1: n}, \ldots, X_{n: n}$ be the associated OS which represent the lifetimes of k-out-of- n systems.
- $X_{1: n}$ is the series system lifetime and $X_{n: n}$ is the parallel system lifetime.
- Let $F_{i: n}(t)=\operatorname{Pr}\left(X_{i: n} \leq t\right)$ be the DF.
- Let $\bar{F}_{i: n}(t)=\operatorname{Pr}\left(X_{i: n}>t\right)$ be the RF

Order statistics (OS)

- X_{1}, \ldots, X_{n} IID $\sim F$ random variables.
- X_{1}, \ldots, X_{n} exchangeable (EXC), i.e., for any permutation σ

$$
\left(X_{1}, \ldots, X_{n}\right)=\operatorname{st}\left(X_{\sigma(1)}, \ldots, X_{\sigma(n)}\right)
$$

- Let $X_{1: n}, \ldots, X_{n: n}$ be the associated OS which represent the lifetimes of k-out-of- n systems.
- $X_{1: n}$ is the series system lifetime and $X_{n: n}$ is the parallel system lifetime.
- Let $F_{: n}(t)=\operatorname{Pr}\left(X_{i: n} \leq t\right)$ be the DF.
- Let $\bar{F}_{i: n}(t)=\operatorname{Pr}\left(X_{i: n}>t\right)$ be the RF.

Order statistics (OS)

- X_{1}, \ldots, X_{n} IID $\sim F$ random variables.
- X_{1}, \ldots, X_{n} exchangeable (EXC), i.e., for any permutation σ

$$
\left(X_{1}, \ldots, X_{n}\right)=\operatorname{st}\left(X_{\sigma(1)}, \ldots, X_{\sigma(n)}\right)
$$

- Let $X_{1: n}, \ldots, X_{n: n}$ be the associated OS which represent the lifetimes of k-out-of- n systems.
- $X_{1: n}$ is the series system lifetime and $X_{n: n}$ is the parallel system lifetime.
- Let $F_{i: n}(t)=\operatorname{Pr}\left(X_{i: n} \leq t\right)$ be the DF.

Order statistics (OS)

- X_{1}, \ldots, X_{n} IID $\sim F$ random variables.
- X_{1}, \ldots, X_{n} exchangeable (EXC), i.e., for any permutation σ

$$
\left(X_{1}, \ldots, X_{n}\right)=\operatorname{st}\left(X_{\sigma(1)}, \ldots, X_{\sigma(n)}\right)
$$

- Let $X_{1: n}, \ldots, X_{n: n}$ be the associated OS which represent the lifetimes of k-out-of- n systems.
- $X_{1: n}$ is the series system lifetime and $X_{n: n}$ is the parallel system lifetime.
- Let $F_{i: n}(t)=\operatorname{Pr}\left(X_{i: n} \leq t\right)$ be the DF.
- Let $\bar{F}_{i: n}(t)=\operatorname{Pr}\left(X_{i: n}>t\right)$ be the RF.

Order statistics (OS)

- X_{1}, \ldots, X_{n} IID $\sim F$ random variables.
- X_{1}, \ldots, X_{n} exchangeable (EXC), i.e., for any permutation σ

$$
\left(X_{1}, \ldots, X_{n}\right)=\operatorname{st}\left(X_{\sigma(1)}, \ldots, X_{\sigma(n)}\right)
$$

- Let $X_{1: n}, \ldots, X_{n: n}$ be the associated OS which represent the lifetimes of k-out-of- n systems.
- $X_{1: n}$ is the series system lifetime and $X_{n: n}$ is the parallel system lifetime.
- Let $F_{i: n}(t)=\operatorname{Pr}\left(X_{i: n} \leq t\right)$ be the DF.
- Let $\bar{F}_{i: n}(t)=\operatorname{Pr}\left(X_{i: n}>t\right)$ be the RF.

Mixture representation

- Samaniego (IEEE TR, 1985), IID case:

$$
\begin{equation*}
\bar{F}_{T}(t)=\sum_{i=1}^{n} p_{i} \bar{F}_{i: n}(t) \tag{1.1}
\end{equation*}
$$

where $p_{i}=\operatorname{Pr}\left(T=X_{i: n}\right)$ and $\bar{F}_{i: n}(t)=\operatorname{Pr}\left(X_{i: n}>t\right)$.

- $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ is the signature of the system.
- IID case: p_{i} only depends on ϕ

- Navarro, Samaniego, Balakrishnan and Bhathacharya (NRL, 2008), (1.1) holds for EXC r.v. when \mathbf{p} is given by (1.2).
\qquad

Mixture representation

- Samaniego (IEEE TR, 1985), IID case:

$$
\begin{equation*}
\bar{F}_{T}(t)=\sum_{i=1}^{n} p_{i} \bar{F}_{i: n}(t) \tag{1.1}
\end{equation*}
$$

where $p_{i}=\operatorname{Pr}\left(T=X_{i: n}\right)$ and $\bar{F}_{i: n}(t)=\operatorname{Pr}\left(X_{i: n}>t\right)$.

- $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ is the signature of the system.
- IID case: p_{i} only depends on ϕ

- Navarro, Samaniego, Balakrishnan and Bhathacharya (NRL, 2008), (1.1) holds for EXC r.v. when \mathbf{p} is given by (1.2).

Mixture representation

- Samaniego (IEEE TR, 1985), IID case:

$$
\begin{equation*}
\bar{F}_{T}(t)=\sum_{i=1}^{n} p_{i} \bar{F}_{i: n}(t) \tag{1.1}
\end{equation*}
$$

where $p_{i}=\operatorname{Pr}\left(T=X_{i: n}\right)$ and $\bar{F}_{i: n}(t)=\operatorname{Pr}\left(X_{i: n}>t\right)$.

- $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ is the signature of the system.
- IID case: p_{i} only depends on ϕ

$$
\begin{equation*}
p_{i}=\frac{\mid\left\{\sigma: \phi\left(x_{1}, \ldots, x_{n}\right)=x_{i: n}, \text { when } x_{\sigma(1)}<\ldots<x_{\sigma(n)}\right\} \mid}{n!} \tag{1.2}
\end{equation*}
$$

- Navarro, Samaniego, Balakrishnan and Bhathacharya (NRL, 2008), (1.1) holds for EXC r.v. when p is given by (1.2)

Mixture representation

- Samaniego (IEEE TR, 1985), IID case:

$$
\begin{equation*}
\bar{F}_{T}(t)=\sum_{i=1}^{n} p_{i} \bar{F}_{i: n}(t) \tag{1.1}
\end{equation*}
$$

where $p_{i}=\operatorname{Pr}\left(T=X_{i: n}\right)$ and $\bar{F}_{i: n}(t)=\operatorname{Pr}\left(X_{i: n}>t\right)$.

- $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ is the signature of the system.
- IID case: p_{i} only depends on ϕ

$$
\begin{equation*}
p_{i}=\frac{\mid\left\{\sigma: \phi\left(x_{1}, \ldots, x_{n}\right)=x_{i: n}, \text { when } x_{\sigma(1)}<\ldots<x_{\sigma(n)}\right\} \mid}{n!} \tag{1.2}
\end{equation*}
$$

- Navarro, Samaniego, Balakrishnan and Bhathacharya (NRL, 2008), (1.1) holds for EXC r.v. when \mathbf{p} is given by (1.2).

Generalized mixture representation

- Navarro, Ruiz and Sandoval (CSTM, 2007), EXC case:

$$
\begin{equation*}
\bar{F}_{T}(t)=\sum_{i=1}^{n} a_{i} \bar{F}_{1: i}(t) . \tag{1.3}
\end{equation*}
$$

- $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ is the minimal signature of T
- a_{i} only depends on ϕ but can be negative and so (1.3) is called a generalized mixture.
- In the IID case:

$\bar{q}_{\phi}(x)=\sum_{i=1}^{n} a_{i} x^{i}$ is the domination (reliability) polynomial

Generalized mixture representation

- Navarro, Ruiz and Sandoval (CSTM, 2007), EXC case:

$$
\begin{equation*}
\bar{F}_{T}(t)=\sum_{i=1}^{n} a_{i} \bar{F}_{1: i}(t) . \tag{1.3}
\end{equation*}
$$

- $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ is the minimal signature of T.
a_{i} only depends on ϕ but can be negative and so (1.3) is called a generalized mixture.
- In the IID case:

$\bar{q}_{\phi}(x)=\sum_{i=1}^{n} a_{i} x^{i}$ is the domination (reliability) polynomial

Generalized mixture representation

- Navarro, Ruiz and Sandoval (CSTM, 2007), EXC case:

$$
\begin{equation*}
\bar{F}_{T}(t)=\sum_{i=1}^{n} a_{i} \bar{F}_{1: i}(t) . \tag{1.3}
\end{equation*}
$$

- $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ is the minimal signature of T.
- a_{i} only depends on ϕ but can be negative and so (1.3) is called a generalized mixture.
- In the IID case:

$\bar{q}_{\phi}(x)=\sum_{i=1}^{n} a_{i} x^{i}$ is the domination (reliability) polynomial

Generalized mixture representation

- Navarro, Ruiz and Sandoval (CSTM, 2007), EXC case:

$$
\begin{equation*}
\bar{F}_{T}(t)=\sum_{i=1}^{n} a_{i} \bar{F}_{1: i}(t) \tag{1.3}
\end{equation*}
$$

- $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ is the minimal signature of T.
- a_{i} only depends on ϕ but can be negative and so (1.3) is called a generalized mixture.
- In the IID case:

$$
\begin{equation*}
\bar{F}_{T}(t)=\sum_{i=1}^{n} a_{i} \bar{F}^{i}(t)=\bar{q}_{\phi}(\bar{F}(t)) \tag{1.4}
\end{equation*}
$$

$\bar{q}_{\phi}(x)=\sum_{i=1}^{n} a_{i} x^{i}$ is the domination (reliability) polynomial.

Mixture representations order n

- Navarro et al.(NRL, 2008): If $T=\phi\left(X_{1}, \ldots, X_{m}\right)$ and $X_{1}, \ldots, X_{n}(m<n)$ are IID, then

$$
\begin{equation*}
\bar{F}_{T}(t)=\sum_{i=1}^{n} p_{i}^{(n)} \bar{F}_{i: n}(t) \tag{1.5}
\end{equation*}
$$

where $p_{i}^{(n)}=\operatorname{Pr}\left(T=X_{i: n}\right)$.

Mixture representations order n

- Navarro et al.(NRL, 2008): If $T=\phi\left(X_{1}, \ldots, X_{m}\right)$ and $X_{1}, \ldots, X_{n}(m<n)$ are IID, then

$$
\begin{equation*}
\bar{F}_{T}(t)=\sum_{i=1}^{n} p_{i}^{(n)} \bar{F}_{i: n}(t) \tag{1.5}
\end{equation*}
$$

where $p_{i}^{(n)}=\operatorname{Pr}\left(T=X_{i: n}\right)$.

- $\mathbf{p}^{(n)}=\left(p_{1}^{(n)}, \ldots, p_{n}^{(n)}\right)$ is the signature of order n.
only depends on ϕ

Mixture representations order n

- Navarro et al.(NRL, 2008): If $T=\phi\left(X_{1}, \ldots, X_{m}\right)$ and $X_{1}, \ldots, X_{n}(m<n)$ are IID, then

$$
\begin{equation*}
\bar{F}_{T}(t)=\sum_{i=1}^{n} p_{i}^{(n)} \bar{F}_{i: n}(t) \tag{1.5}
\end{equation*}
$$

where $p_{i}^{(n)}=\operatorname{Pr}\left(T=X_{i: n}\right)$.

- $\mathbf{p}^{(n)}=\left(p_{1}^{(n)}, \ldots, p_{n}^{(n)}\right)$ is the signature of order n.
- $p_{i}^{(n)}$ only depends on ϕ

$$
\begin{equation*}
p_{i}^{(n)}=\frac{\mid\left\{\sigma: \phi\left(x_{1}, \ldots, x_{n}\right)=x_{i: n}, \text { when } x_{\sigma(1)}<\ldots<x_{\sigma(n)}\right\} \mid}{n!} \tag{1.6}
\end{equation*}
$$

- Navarro et al. (NRL, 2008), (1.1) holds for EXC r.v. when $\mathbf{p}^{(n)}$ is given by (1.6).

Mixture representations order n

- Navarro et al.(NRL, 2008): If $T=\phi\left(X_{1}, \ldots, X_{m}\right)$ and $X_{1}, \ldots, X_{n}(m<n)$ are IID, then

$$
\begin{equation*}
\bar{F}_{T}(t)=\sum_{i=1}^{n} p_{i}^{(n)} \bar{F}_{i: n}(t) \tag{1.5}
\end{equation*}
$$

where $p_{i}^{(n)}=\operatorname{Pr}\left(T=X_{i: n}\right)$.

- $\mathbf{p}^{(n)}=\left(p_{1}^{(n)}, \ldots, p_{n}^{(n)}\right)$ is the signature of order n.
- $p_{i}^{(n)}$ only depends on ϕ

$$
\begin{equation*}
p_{i}^{(n)}=\frac{\mid\left\{\sigma: \phi\left(x_{1}, \ldots, x_{n}\right)=x_{i: n}, \text { when } x_{\sigma(1)}<\ldots<x_{\sigma(n)}\right\} \mid}{n!} \tag{1.6}
\end{equation*}
$$

- Navarro et al. (NRL, 2008), (1.1) holds for EXC r.v. when $\mathbf{p}^{(n)}$ is given by (1.6).

Mixture representations
Ordering results Examples

Coherent systems

Bivariate Signature Matrix (BSM) Main results

Example

つの^

Example

Coherent system lifetime $T=\min \left(X_{1}, \max \left(X_{2}, X_{3}\right)\right)$.

Mixture representations
Ordering results Examples

Example

$3!=6$ permutations.

Mixture representations
Ordering results Examples

Example

$$
X_{1}<X_{2}<X_{3} \Rightarrow T=X_{1}=X_{1: 3}
$$

Mixture representations
Ordering results Examples

Example

$$
X_{1}<X_{3}<X_{2} \Rightarrow T=X_{1}=X_{1: 3}
$$

Mixture representations
Ordering results Examples

Example

$$
X_{2}<X_{1}<X_{3} \Rightarrow T=X_{1}=X_{2: 3}
$$

Mixture representations
Ordering results Examples

Example

$$
X_{2}<X_{3}<X_{1} \Rightarrow T=X_{3}=X_{2: 3}
$$

Mixture representations
Ordering results Examples

Example

$$
X_{3}<X_{1}<X_{2} \Rightarrow T=X_{1}=X_{2: 3}
$$

Mixture representations
Ordering results Examples

Example

$$
X_{3}<X_{2}<X_{1} \Rightarrow T=X_{2}=X_{2: 3}
$$

Mixture representations
Ordering results Examples

Example

IID \bar{F} cont.: $\mathbf{p}=(2 / 6,4 / 6,0)=(1 / 3,2 / 3,0)$.

Example

IID or EXC: \bar{F} cont.: $\bar{F}_{T}(t)=\frac{1}{3} \bar{F}_{1: 3}(t)+\frac{2}{3} \bar{F}_{2: 3}(t)$.

Example

IID or EXC: $\bar{F}_{T}(t)=2 \bar{F}_{1: 2}(t)-\bar{F}_{1: 3}(t)$, where $\mathbf{a}=(0,2,-1)$ is the minimal signature.

Example

IID: $\bar{F}_{T}(t)=2 \bar{F}^{2}(t)-\bar{F}^{3}(t)=q_{\phi}(\bar{F}(t))$,
where $q_{\phi}(u)=2 u^{2}-u^{3}$.

Example

The minimal signatures for systems with $n \leq 5$ can be seen in: Navarro and Rubio (2010, Comm Stat Simul Comp 39, 68-84).

Signature of order n

Coherent system lifetime $T=\min \left(X_{1}, \max \left(X_{2}, X_{3}\right)\right)$ from $X_{1}, X_{2}, X_{3}, X_{4}$.

Mixture representations
Ordering results Examples

Signature of order n

$4!=24$ permutations.

Mixture representations

Signature of order n

$$
X_{1}<X_{2}<X_{3}<X_{4} \Rightarrow T=X_{1}=X_{1: 4}
$$

Signature of order n

$3!=6$ permutations lead to $T=X_{1}=X_{1: 4}$

Signature of order n

The signature of order 4 is $(6 / 24,10 / 24,8 / 24,0)=(1 / 4,5 / 12,1 / 3,0)$.

Signature of order n

The signatures of order 5 and minimal signatures for systems with $n \leq 5$ can be seen in: Navarro and Rubio (2010, Comm Stat Simul Comp 39, 68-84).

Bivariate Signature Matrix (BSM)

- T_{1} and T_{2} are the lifetimes of two coherent systems based on components with IID lifetimes X_{1}, \ldots, X_{n} with a continuous DF F.
- Then $\operatorname{Pr}\left(X_{1: n}<\ldots<X_{n: n}\right)=1$.
- The two systems may share one or more components.
- The systems may be of order less than n.
- We define the random vector $I=\left(I_{1}, I_{2}\right)$ by
$\mathbf{I}=(i, j)$ whenever $T_{1}=X_{i: n}$ and $T_{2}=X_{j: n}$.

Bivariate Signature Matrix (BSM)

- T_{1} and T_{2} are the lifetimes of two coherent systems based on components with IID lifetimes X_{1}, \ldots, X_{n} with a continuous DF F.
- Then $\operatorname{Pr}\left(X_{1: n}<\ldots<X_{n: n}\right)=1$.
- The two systems may share one or more components.
- The systems may be of order less than n.
- We define the random vector $\mathbf{I}=\left(I_{1}, I_{2}\right)$ by

$$
\mathbf{I}=(i, j) \text { whenever } T_{1}=X_{i: n} \text { and } T_{2}=X_{j: n} .
$$

Bivariate Signature Matrix (BSM)

- T_{1} and T_{2} are the lifetimes of two coherent systems based on components with IID lifetimes X_{1}, \ldots, X_{n} with a continuous DF F.
- Then $\operatorname{Pr}\left(X_{1: n}<\ldots<X_{n: n}\right)=1$.
- The two systems may share one or more components.
- The systems may be of order less than n.
- We define the random vector $\mathbf{I}=\left(I_{1}, I_{2}\right)$ by

$$
i=(i, j) \text { whenever } T_{1}=X_{i: n} \text { and } T_{2}=X_{j: n} .
$$

Bivariate Signature Matrix (BSM)

- T_{1} and T_{2} are the lifetimes of two coherent systems based on components with IID lifetimes X_{1}, \ldots, X_{n} with a continuous DF F.
- Then $\operatorname{Pr}\left(X_{1: n}<\ldots<X_{n: n}\right)=1$.
- The two systems may share one or more components.
- The systems may be of order less than n.
- We define the random vector $I=\left(I_{1}, l_{2}\right)$ by

$$
\mathbf{I}=(i, j) \text { whenever } T_{1}=X_{i: n} \text { and } T_{2}=X_{j: n} .
$$

Bivariate Signature Matrix (BSM)

- T_{1} and T_{2} are the lifetimes of two coherent systems based on components with IID lifetimes X_{1}, \ldots, X_{n} with a continuous DF F.
- Then $\operatorname{Pr}\left(X_{1: n}<\ldots<X_{n: n}\right)=1$.
- The two systems may share one or more components.
- The systems may be of order less than n.
- We define the random vector $\mathbf{I}=\left(I_{1}, I_{2}\right)$ by

$$
\begin{equation*}
\mathbf{I}=(i, j) \text { whenever } T_{1}=X_{i: n} \text { and } T_{2}=X_{j: n} \tag{1.7}
\end{equation*}
$$

Bivariate Signature Matrix (BSM)

- The bivariate probability mass function of \mathbf{I} is denoted by $p_{i, j}=\operatorname{Pr}(\mathbf{I}=(i, j))$, for $i, j=1, \ldots, n$.
- Note that
where $\left|A_{i, j}\right|$ is the size of the set
$A_{i, j}=\left\{\sigma \in \mathcal{P}_{n}: T_{1}=X_{i: n}\right.$ and $T_{2}=X_{j: n}$ when $\left.X_{\sigma(1)}<\cdots<X_{\sigma(n)}\right\}$ and \mathcal{P}_{n} is the set of permutations of the set $\{1, \ldots, n\}$
- The matrix $P=\left(p_{i j}\right)$ is called the bivariate signature matrix (BSM) associated with $\left(T_{1}, T_{2}\right)$.

$$
p_{i, j}=\left|A_{i, j}\right| / n!,
$$

Bivariate Signature Matrix (BSM)

- The bivariate probability mass function of \mathbf{I} is denoted by $p_{i, j}=\operatorname{Pr}(\mathbf{I}=(i, j))$, for $i, j=1, \ldots, n$.
- Note that

$$
\begin{equation*}
p_{i, j}=\left|A_{i, j}\right| / n!, \tag{1.8}
\end{equation*}
$$

where $\left|A_{i, j}\right|$ is the size of the set
$A_{i, j}=\left\{\sigma \in \mathcal{P}_{n}: T_{1}=X_{i: n}\right.$ and $T_{2}=X_{j: n}$ when $\left.X_{\sigma(1)}<\cdots<X_{\sigma(n)}\right\}$
and \mathcal{P}_{n} is the set of permutations of the set $\{1, \ldots, n\}$.

- The matrix $P=\left(p_{i, j}\right)$ is called the bivariate signature matrix (BSM) associated with $\left(T_{1}, T_{2}\right)$.

Bivariate Signature Matrix (BSM)

- The bivariate probability mass function of \mathbf{I} is denoted by

$$
p_{i, j}=\operatorname{Pr}(\mathbf{I}=(i, j)), \text { for } i, j=1, \ldots, n .
$$

- Note that

$$
\begin{equation*}
p_{i, j}=\left|A_{i, j}\right| / n!, \tag{1.8}
\end{equation*}
$$

where $\left|A_{i, j}\right|$ is the size of the set
$A_{i, j}=\left\{\sigma \in \mathcal{P}_{n}: T_{1}=X_{i: n}\right.$ and $T_{2}=X_{j: n}$ when $\left.X_{\sigma(1)}<\cdots<X_{\sigma(n)}\right\}$
and \mathcal{P}_{n} is the set of permutations of the set $\{1, \ldots, n\}$.

- The matrix $P=\left(p_{i, j}\right)$ is called the bivariate signature matrix (BSM) associated with (T_{1}, T_{2}).

Immediate properties

- The BSM $P=\left(p_{i, j}\right)$ does not depend on F and can be computed using (1.8).
- Of course, $p_{i, j} \geq 0$ and $\sum_{i=1}^{n} \sum_{j=1}^{n} p_{i, j}=1$.
- The univariate signature $\left(p_{1}, \ldots, p_{n}\right)$ of order n of T_{1}, can be computed from the BSM as $p_{i}=\sum_{j=1}^{n} p_{i, j}$. A similar result holds for T_{2}
 $j \neq k$. In this case, I_{1} and I_{2} are independent.

Immediate properties

- The BSM $P=\left(p_{i, j}\right)$ does not depend on F and can be computed using (1.8).
- Of course, $p_{i, j} \geq 0$ and $\sum_{i=1}^{n} \sum_{j=1}^{n} p_{i, j}=1$.
- The univariate signature $\left(p_{1}, \ldots, p_{n}\right)$ of order n of T_{1}, can be computed from the BSM as $p_{i}=\sum_{j=1}^{n} p_{i, j}$. A similar result holds for T_{2}
- If $T_{2}=X_{k: n}$ then $p_{i, k}=p_{i}$ and $p_{i, j}=0$ for $i=1, \ldots, n$ and $j \neq k$. In this case, I_{1} and I_{2} are independent.

Immediate properties

- The BSM $P=\left(p_{i, j}\right)$ does not depend on F and can be computed using (1.8).
- Of course, $p_{i, j} \geq 0$ and $\sum_{i=1}^{n} \sum_{j=1}^{n} p_{i, j}=1$.
- The univariate signature $\left(p_{1}, \ldots, p_{n}\right)$ of order n of T_{1}, can be computed from the BSM as $p_{i}=\sum_{j=1}^{n} p_{i, j}$. A similar result holds for T_{2}.
- If $T_{2}=X_{k: n}$ then $p_{i, k}=p_{i}$ and $p_{i, j}=0$ for $i=1, \ldots, n$ and $j \neq k$. In this case, I_{1} and I_{2} are independent.

Immediate properties

- The BSM $P=\left(p_{i, j}\right)$ does not depend on F and can be computed using (1.8).
- Of course, $p_{i, j} \geq 0$ and $\sum_{i=1}^{n} \sum_{j=1}^{n} p_{i, j}=1$.
- The univariate signature $\left(p_{1}, \ldots, p_{n}\right)$ of order n of T_{1}, can be computed from the BSM as $p_{i}=\sum_{j=1}^{n} p_{i, j}$. A similar result holds for T_{2}.
- If $T_{2}=X_{k: n}$ then $p_{i, k}=p_{i}$ and $p_{i, j}=0$ for $i=1, \ldots, n$ and $j \neq k$. In this case, I_{1} and I_{2} are independent.

Example

- Let $X_{1}, X_{2}, X_{3}, X_{4}$ be the IID lifetimes of four components.
- $T_{1}=X_{2: 3}=\min \left(\max \left(X_{1}, X_{2}\right), \max \left(X_{1}, X_{3}\right), \max \left(X_{2}, X_{3}\right)\right)$. - $T_{2}=\min \left(X_{3}, X_{4}\right)$.
- There are $4!=24$ permutations. Then:

Example

- Let $X_{1}, X_{2}, X_{3}, X_{4}$ be the IID lifetimes of four components.
- $T_{1}=X_{2: 3}=\min \left(\max \left(X_{1}, X_{2}\right), \max \left(X_{1}, X_{3}\right), \max \left(X_{2}, X_{3}\right)\right)$.
- $T_{2}=\min \left(X_{3}, X_{4}\right)$.
- There are $4!=24$ permutations. Then:

Example

- Let $X_{1}, X_{2}, X_{3}, X_{4}$ be the IID lifetimes of four components.
- $T_{1}=X_{2: 3}=\min \left(\max \left(X_{1}, X_{2}\right), \max \left(X_{1}, X_{3}\right), \max \left(X_{2}, X_{3}\right)\right)$.
- $T_{2}=\min \left(X_{3}, X_{4}\right)$.
- There are $4!=24$ permutations. Then:

Example

- Let $X_{1}, X_{2}, X_{3}, X_{4}$ be the IID lifetimes of four components.
- $T_{1}=X_{2: 3}=\min \left(\max \left(X_{1}, X_{2}\right), \max \left(X_{1}, X_{3}\right), \max \left(X_{2}, X_{3}\right)\right)$.
- $T_{2}=\min \left(X_{3}, X_{4}\right)$.
- There are $4!=24$ permutations. Then:

Equiprobable Orderings	$\left(I_{1}, I_{2}\right)$	Equiprobable Orderings	$\left(I_{1}, I_{2}\right)$
$X_{1}<X_{2}<X_{3}<X_{4}$	$(2,3)$	$X_{3}<X_{1}<X_{2}<X_{4}$	$(2,1)$
$X_{1}<X_{2}<X_{4}<X_{3}$	$(2,3)$	$X_{3}<X_{1}<X_{4}<X_{2}$	$(2,1)$
$X_{1}<X_{3}<X_{2}<X_{4}$	$(2,2)$	$X_{3}<X_{2}<X_{1}<X_{4}$	$(2,1)$
$X_{1}<X_{3}<X_{4}<X_{2}$	$(2,2)$	$X_{3}<X_{2}<X_{4}<X_{1}$	$(2,1)$
$X_{1}<X_{4}<X_{2}<X_{3}$	$(3,2)$	$X_{3}<X_{4}<X_{1}<X_{2}$	$(3,1)$
$X_{1}<X_{4}<X_{3}<X_{2}$	$(3,2)$	$X_{3}<X_{4}<X_{2}<X_{1}$	$(3,1)$
$X_{2}<X_{1}<X_{3}<X_{4}$	$(2,3)$	$X_{4}<X_{1}<X_{2}<X_{3}$	$(3,1)$
$X_{2}<X_{1}<X_{4}<X_{3}$	$(2,3)$	$X_{4}<X_{1}<X_{3}<X_{2}$	$(3,1)$
$X_{2}<X_{3}<X_{1}<X_{4}$	$(2,2)$	$X_{4}<X_{2}<X_{1}<X_{3}$	$(3,1)$
$X_{2}<X_{3}<X_{4}<X_{1}$	$(2,2)$	$X_{4}<X_{2}<X_{3}<X_{1}$	$(3,1)$
$X_{2}<X_{4}<X_{1}<X_{3}$	$(3,2)$	$X_{4}<X_{3}<X_{1}<X_{2}$	$(3,1)$
$X_{2}<X_{4}<X_{3}<X_{1}$	$(3,2)$	$X_{4}<X_{3}<X_{2}<X_{1}$	$(3,1)$

Example

- From the above, the bivariate signature matrix is

$$
P=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 / 6 & 1 / 6 & 1 / 6 & 0 \\
1 / 3 & 1 / 6 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

- The marginal probability mass function of I_{1} is $(0,1 / 2,1 / 2,0)$ and that of I_{2} is $(1 / 2,1 / 3,1 / 6,0)$.
- These values coincide with the signatures of order 4 of these systems.

Example

- From the above, the bivariate signature matrix is

$$
P=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 / 6 & 1 / 6 & 1 / 6 & 0 \\
1 / 3 & 1 / 6 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

- The marginal probability mass function of I_{1} is $(0,1 / 2,1 / 2,0)$ and that of I_{2} is $(1 / 2,1 / 3,1 / 6,0)$.
- These values coincide with the signatures of order 4 of these systems.

Example

- From the above, the bivariate signature matrix is

$$
P=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 / 6 & 1 / 6 & 1 / 6 & 0 \\
1 / 3 & 1 / 6 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

- The marginal probability mass function of I_{1} is $(0,1 / 2,1 / 2,0)$ and that of I_{2} is $(1 / 2,1 / 3,1 / 6,0)$.
- These values coincide with the signatures of order 4 of these systems.

Main results

Theorem (Navarro, Samaniego and Balakrishnan, Adv. Appl. Prob., 2013)

Let T_{1} and T_{2} be the lifetimes of two coherent systems based IID (or EXC) components with lifetimes X_{1}, \ldots, X_{n} with a common continuous DF F. Then, the joint distribution function $G\left(t_{1}, t_{2}\right)=\operatorname{Pr}\left(T_{1} \leq t_{1}, T_{2} \leq t_{2}\right)$ of $\left(T_{1}, T_{2}\right)$ can be written as

$$
\begin{equation*}
G\left(t_{1}, t_{2}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} p_{i, j} F_{i, j: n}\left(t_{1}, t_{2}\right) \tag{1.9}
\end{equation*}
$$

where $P=\left(p_{i, j}\right)$ is the bivariate signature matrix of $\left(T_{1}, T_{2}\right)$ and $F_{i, j: n}\left(t_{1}, t_{2}\right)=\operatorname{Pr}\left(X_{i: n} \leq t_{1}, X_{j: n} \leq t_{2}\right)$.

Main results

Theorem (Navarro, Samaniego and Balakrishnan, J. Appl. Prob., 2010)

The joint distribution G of T_{1} and T_{2} based on IID components with lifetimes X_{1}, \ldots, X_{n} can be written as

$$
\begin{align*}
& G\left(t_{1}, t_{2}\right)=\sum_{i=1}^{n} \sum_{j=0}^{n} s_{i, j} F_{i: n}\left(t_{1}\right) F_{j: n}\left(t_{2}\right) \text { for } t_{1} \leq t_{2} \tag{1.10}\\
& G\left(t_{1}, t_{2}\right)=\sum_{i=0}^{n} \sum_{j=1}^{n} s_{i, j}^{*} F_{i: n}\left(t_{1}\right) F_{j: n}\left(t_{2}\right) \text { for } t_{1}>t_{2} \tag{1.11}
\end{align*}
$$

where $F_{0: n}=1$ (by convention) and $\left\{s_{i, j}\right\}$ and $\left\{s_{i, j}^{*}\right\}$ are collections of coefficients (which do not depend on F) such that
$\sum_{i=1}^{n} \sum_{j=0}^{n} s_{i, j}=\sum_{i=0}^{n} \sum_{j=1}^{n} s_{i, j}^{*}=1$.

Consequences

- $\left(T_{1}, T_{2}\right)$ has a singular part whenever $\operatorname{Pr}\left(T_{1}=T_{2}\right)>0$.
- In the IID case, if F is absolutely continuous, then $F_{i: n}\left(t_{1}\right) F_{j: n}\left(t_{2}\right)$ and $F_{i, j: n}\left(t_{1}, t_{2}\right)$ are both absolutely continuous bivariate distributions when $i \neq j$.
- So, in the second theorem, we need two different linear combinations (one for $t_{1} \leq t_{2}$ and another one for $t_{1}>t_{2}$) based on $F_{i: n}\left(t_{1}\right) F_{j: n}\left(t_{2}\right)$
- However, in the first theorem, note that

is a singular bivariate distribution (the joint distribution of $\left.\left(X_{i: n}, X_{i: n}\right)\right)$

Consequences

- $\left(T_{1}, T_{2}\right)$ has a singular part whenever $\operatorname{Pr}\left(T_{1}=T_{2}\right)>0$.
- In the IID case, if F is absolutely continuous, then $F_{i: n}\left(t_{1}\right) F_{j: n}\left(t_{2}\right)$ and $F_{i, j: n}\left(t_{1}, t_{2}\right)$ are both absolutely continuous bivariate distributions when $i \neq j$.
- So, in the second theorem, we need two different linear combinations (one for $t_{1} \leq t_{2}$ and another one for $t_{1}>t_{2}$) based on $F_{i: n}\left(t_{1}\right) F_{j: n}\left(t_{2}\right)$
- However, in the first theorem, note that

is a singular bivariate distribution (the joint distribution of $\left.\left(X_{i: n}, X_{i: n}\right)\right)$

Consequences

- $\left(T_{1}, T_{2}\right)$ has a singular part whenever $\operatorname{Pr}\left(T_{1}=T_{2}\right)>0$.
- In the IID case, if F is absolutely continuous, then $F_{i: n}\left(t_{1}\right) F_{j: n}\left(t_{2}\right)$ and $F_{i, j: n}\left(t_{1}, t_{2}\right)$ are both absolutely continuous bivariate distributions when $i \neq j$.
- So, in the second theorem, we need two different linear combinations (one for $t_{1} \leq t_{2}$ and another one for $t_{1}>t_{2}$) based on $F_{i: n}\left(t_{1}\right) F_{j: n}\left(t_{2}\right)$.
- However, in the first theorem, note that

is a singular bivariate distribution (the joint distribution of $\left.\left(X_{i: n}, X_{i: n}\right)\right)$.

Consequences

- $\left(T_{1}, T_{2}\right)$ has a singular part whenever $\operatorname{Pr}\left(T_{1}=T_{2}\right)>0$.
- In the IID case, if F is absolutely continuous, then $F_{i: n}\left(t_{1}\right) F_{j: n}\left(t_{2}\right)$ and $F_{i, j: n}\left(t_{1}, t_{2}\right)$ are both absolutely continuous bivariate distributions when $i \neq j$.
- So, in the second theorem, we need two different linear combinations (one for $t_{1} \leq t_{2}$ and another one for $t_{1}>t_{2}$) based on $F_{i: n}\left(t_{1}\right) F_{j: n}\left(t_{2}\right)$.
- However, in the first theorem, note that

$$
F_{i, i: n}\left(t_{1}, t_{2}\right)=\operatorname{Pr}\left(X_{i: n} \leq t_{1}, X_{i: n} \leq t_{2}\right)=F_{i: n}\left(\min \left(t_{1}, t_{2}\right)\right)
$$

is a singular bivariate distribution (the joint distribution of $\left(X_{i: n}, X_{i: n}\right)$).

Consequences

- Therefore, inthe IID case, G is absolutely continuous if and only if $p_{i, i}=0$ for all $i=1, \ldots, n$.
- In this case, its PDF g can be written as

where $f_{i, j: n}$ is the PDF of $\left(X_{i: n}, X_{j: n}\right)$ for $i \neq j$
- A similar representation holds the joint reliability function of $\left(T_{1}, T_{2}\right)$ with the same coefficients.
- The functions $F_{i: n}, F_{i, j: n}, \bar{F}_{i, j: n}$ and $f_{i, j: n}$ can all be computed from F using the expressions known in the theory of order statistics.
- Replacing these expressions in the first theorem, we obtain the second.

Consequences

- Therefore, inthe IID case, G is absolutely continuous if and only if $p_{i, i}=0$ for all $i=1, \ldots, n$.
- In this case, its PDF g can be written as

$$
g\left(t_{1}, t_{2}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} p_{i, j} f_{i, j: n}\left(t_{1}, t_{2}\right)
$$

where $f_{i, j: n}$ is the PDF of $\left(X_{i: n}, X_{j: n}\right)$ for $i \neq j$.

- A similar representation holds the joint reliability function of (T_{1}, T_{2}) with the same coefficients.
- The functions $F_{i: n}, F_{i, j: n}, \bar{F}_{i, j: n}$ and $f_{i, j: n}$ can all be computed from F using the expressions known in the theory of order statistics.
- Replacing these expressions in the first theorem, we obtain the second.

Consequences

- Therefore, inthe IID case, G is absolutely continuous if and only if $p_{i, i}=0$ for all $i=1, \ldots, n$.
- In this case, its PDF g can be written as

$$
g\left(t_{1}, t_{2}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} p_{i, j} f_{i, j: n}\left(t_{1}, t_{2}\right)
$$

where $f_{i, j: n}$ is the PDF of $\left(X_{i: n}, X_{j: n}\right)$ for $i \neq j$.

- A similar representation holds the joint reliability function of (T_{1}, T_{2}) with the same coefficients.
- The functions $F_{i: n}, F_{i, j: n}, \bar{F}_{i, j: n}$ and $f_{i, j: n}$ can all be computed from F using the expressions known in the theory of order statistics.
- Replacing these expressions in the first theorem, we obtain the second.

Consequences

- Therefore, inthe IID case, G is absolutely continuous if and only if $p_{i, i}=0$ for all $i=1, \ldots, n$.
- In this case, its PDF g can be written as

$$
g\left(t_{1}, t_{2}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} p_{i, j} f_{i, j: n}\left(t_{1}, t_{2}\right)
$$

where $f_{i, j: n}$ is the PDF of $\left(X_{i: n}, X_{j: n}\right)$ for $i \neq j$.

- A similar representation holds the joint reliability function of (T_{1}, T_{2}) with the same coefficients.
- The functions $F_{i: n}, F_{i, j: n}, \bar{F}_{i, j: n}$ and $f_{i, j: n}$ can all be computed from F using the expressions known in the theory of order statistics.
- Replacing these expressions in the first theorem, we obtain the second

Consequences

- Therefore, inthe IID case, G is absolutely continuous if and only if $p_{i, i}=0$ for all $i=1, \ldots, n$.
- In this case, its PDF g can be written as

$$
g\left(t_{1}, t_{2}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} p_{i, j} f_{i, j: n}\left(t_{1}, t_{2}\right)
$$

where $f_{i, j: n}$ is the PDF of $\left(X_{i: n}, X_{j: n}\right)$ for $i \neq j$.

- A similar representation holds the joint reliability function of (T_{1}, T_{2}) with the same coefficients.
- The functions $F_{i: n}, F_{i, j: n}, \bar{F}_{i, j: n}$ and $f_{i, j: n}$ can all be computed from F using the expressions known in the theory of order statistics.
- Replacing these expressions in the first theorem, we obtain the second.

Consequences

Theorem

If T_{1} and T_{2} have respective signatures $\left(p_{1}, \ldots, p_{n}\right)$ and $\left(p_{1}^{*}, \ldots, p_{n}^{*}\right)$ of order n and BSM $P=\left(p_{i, j}\right)$, then

$$
E\left(T_{1} T_{2}\right)=\sum_{i=1}^{n} p_{i, i} \alpha_{i, i: n}+\sum_{i=1}^{n} \sum_{j=i+1}^{n}\left(p_{i, j}+p_{j, i}\right) \alpha_{i, j: n}
$$

$$
\operatorname{Cov}\left(T_{1}, T_{2}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} p_{i, j} \sigma_{i, j: n}+\sum_{i=1}^{n} \sum_{j=1}^{n}\left(p_{i, j}-p_{i} p_{j}^{*}\right) \mu_{i: n} \mu_{j: n}
$$

where $\mu_{i: n}=E\left(X_{i: n}\right), \alpha_{i, j: n}=E\left(X_{i: n} X_{j: n}\right), \sigma_{i, j: n}=\operatorname{Cov}\left(X_{i: n}, X_{j: n}\right)$ and $\sigma_{i, i: n}=\sigma_{i: n}^{2}=\operatorname{Var}\left(X_{i: n}\right)$ for $i, j=1, \ldots, n$.

Consequences

- If $T_{2}=X_{k: n}$, then

$$
\operatorname{Cov}\left(T_{1}, X_{k: n}\right)=\sum_{i=1}^{k-1} p_{i} \sigma_{i, k: n}+p_{j} \sigma_{k: n}^{2}+\sum_{i=k+1}^{n} p_{i} \sigma_{i, k: n}
$$

- If F is exponential and the signature of order n is $\left(0, \ldots, 0, p_{k}, \ldots, p_{n}\right)$, then

$$
\operatorname{Cov}\left(T_{1}, X_{j: n}\right)=\operatorname{Var}\left(X_{j: n}\right), \text { for } j=1,
$$

Consequences

- If $T_{2}=X_{k: n}$, then

$$
\operatorname{Cov}\left(T_{1}, X_{k: n}\right)=\sum_{i=1}^{k-1} p_{i} \sigma_{i, k: n}+p_{j} \sigma_{k: n}^{2}+\sum_{i=k+1}^{n} p_{i} \sigma_{i, k: n}
$$

- If F is exponential and the signature of order n is $\left(0, \ldots, 0, p_{k}, \ldots, p_{n}\right)$, then

$$
\begin{equation*}
\operatorname{Cov}\left(T_{1}, X_{j: n}\right)=\operatorname{Var}\left(X_{j: n}\right), \text { for } j=1, \ldots, k \tag{1.12}
\end{equation*}
$$

The multivariate stochastic order

- Let \mathbf{X} and \mathbf{Y} be two n-dimensional random vectors.
- We say that $\mathbf{X} \leq s T \mathbf{Y}$ if $E(\phi(\mathbf{X})) \leq E(\phi(\mathbf{Y}))$ for all increasing real-valued functions ϕ for which that these expectations exist.

(2.1)
(lower orthant ordering) and
(2.2)
(upper orthant ordering) for all x_{1}, \ldots, x_{n}.

The multivariate stochastic order

- Let \mathbf{X} and \mathbf{Y} be two n-dimensional random vectors.
- We say that $\mathbf{X} \leq s T \mathbf{Y}$ if $E(\phi(\mathbf{X})) \leq E(\phi(\mathbf{Y}))$ for all increasing real-valued functions ϕ for which that these expectations exist.
- $\mathrm{X} \leq_{\text {st }} \mathrm{Y}$ implies

(lower orthant ordering) and

(upper orthant ordering) for all x_{1}, \ldots, x_{n}.

The multivariate stochastic order

- Let \mathbf{X} and \mathbf{Y} be two n-dimensional random vectors.
- We say that $\mathbf{X} \leq s T \mathbf{Y}$ if $E(\phi(\mathbf{X})) \leq E(\phi(\mathbf{Y}))$ for all increasing real-valued functions ϕ for which that these expectations exist.
- $\mathbf{X} \leq_{S T} \mathbf{Y}$ implies

$$
\begin{equation*}
\operatorname{Pr}\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right) \geq \operatorname{Pr}\left(X_{1}^{*} \leq x_{1}, \ldots, X_{n}^{*} \leq x_{n}\right) \tag{2.1}
\end{equation*}
$$

(lower orthant ordering) and

$$
\begin{equation*}
\operatorname{Pr}\left(X_{1}>x_{1}, \ldots, X_{n}>x_{n}\right) \geq \operatorname{Pr}\left(X_{1}^{*}>x_{1}, \ldots, X_{n}^{*}>x_{n}\right) \tag{2.2}
\end{equation*}
$$

(upper orthant ordering) for all x_{1}, \ldots, x_{n}.

The south-east order

Definition

Let $A=\left(a_{i, j}\right)$ and $A^{*}=\left(a_{i, j}^{*}\right)$ be two $n \times m$ matrices with the same total mass, that is, with $\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i, j}=\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i, j}^{*}$. Then we say that A is less than A^{*} in the south-east shift order (shortly written as $A \leq_{S / E \rightarrow} A^{*}$) if A^{*} can be obtained from A through a finite sequence of transformations in which a positive mass $c>0$ is moved from the term $a_{i, j}$ to the term $a_{r, s}$ with $r \geq i$ and $s \geq j$ (i.e., the new terms are $a_{i, j}-c$ and $a_{r, s}+c$, respectively).

Example

The following matrices are $S / E \rightarrow$ ordered:

$$
\begin{align*}
\left(\begin{array}{ccc}
0 & 2 / 3 & 1 / 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) & \rightarrow\left(\begin{array}{ccc}
0 & 1 / 6 & 1 / 3 \\
0 & 1 / 2 & 0 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
0 & 1 / 6 & 1 / 6 \\
0 & 1 / 2 & 1 / 6 \\
0 & 0 & 0
\end{array}\right) \\
& \rightarrow\left(\begin{array}{ccc}
0 & 1 / 6 & 1 / 6 \\
0 & 1 / 6 & 1 / 2 \\
0 & 0 & 0
\end{array}\right) . \tag{2.3}
\end{align*}
$$

Main results

Theorem

Let T_{1} and T_{2} be the lifetimes of two coherent systems whose respective component lifetimes are subsets of $\left\{X_{1}, \ldots, X_{n}\right\}$ and $\left(X_{1}, \ldots, X_{n}\right)$ is an exchangeable random vector. Let T_{1}^{*} and T_{2}^{*} be the lifetimes of two coherent systems whose respective component lifetimes are subsets of $\left\{X_{1}^{*}, \ldots, X_{n}^{*}\right\}$ and $\left(X_{1}^{*}, \ldots, X_{n}^{*}\right)$ is an exchangeable random vector. If $P \leq_{S / E \rightarrow} P^{*}$ and

$$
\left(X_{1}, \ldots, X_{n}\right) \leq S T\left(X_{1}^{*}, \ldots, X_{n}^{*}\right)
$$

then $\left(T_{1}, T_{2}\right) \leq S T\left(T_{1}^{*}, T_{2}^{*}\right)$.

Example 1

Let $T_{1}=\min \left(X_{1}, \max \left(X_{2}, X_{3}\right)\right)$ and $T_{2}=\max \left(X_{1}, \min \left(X_{2}, X_{3}\right)\right)$. Then:

Equiprobable Orderings	T_{1}	T_{2}	\mathbf{I}
$X_{1}<X_{2}<X_{3}$	$X_{1}=X_{1: 3}$	$X_{2}=X_{2: 3}$	$(1,2)$
$X_{1}<X_{3}<X_{2}$	$X_{1}=X_{1: 3}$	$X_{3}=X_{2: 3}$	$(1,2)$
$X_{2}<X_{1}<X_{3}$	$X_{1}=X_{2: 3}$	$X_{1}=X_{2: 3}$	$(2,2)$
$X_{2}<X_{3}<X_{1}$	$X_{3}=X_{2: 3}$	$X_{1}=X_{3: 3}$	$(2,3)$
$X_{3}<X_{1}<X_{2}$	$X_{1}=X_{2: 3}$	$X_{1}=X_{2: 3}$	$(2,2)$
$X_{3}<X_{2}<X_{1}$	$X_{2}=X_{2: 3}$	$X_{1}=X_{3: 3}$	$(2,3)$

Example 1

- Hence, the bivariate signature of $\left(T_{1}, T_{2}\right)$ is

$$
P=\left(\begin{array}{ccc}
0 & 1 / 3 & 0 \\
0 & 1 / 3 & 1 / 3 \\
0 & 0 & 0
\end{array}\right)
$$

- The joint distribution is
$G\left(t_{1}, t_{2}\right)=\frac{1}{3} F_{1,2: 3}\left(t_{1}, t_{2}\right)+\frac{1}{3} F_{2,3: 3}\left(t_{1}, t_{2}\right)+\frac{1}{3} F_{2: 3}\left(\min \left(t_{1}, t_{2}\right)\right)$.
- G is not absolutely continuous since
$\operatorname{Pr}\left(T_{1}=T_{2}\right)=p_{2,2}=1 / 3$.
- The usual signatures are $(1 / 3,2 / 3,0)$ and $(0,2 / 3,1 / 3)$.

Example 1

- Hence, the bivariate signature of $\left(T_{1}, T_{2}\right)$ is

$$
P=\left(\begin{array}{ccc}
0 & 1 / 3 & 0 \\
0 & 1 / 3 & 1 / 3 \\
0 & 0 & 0
\end{array}\right)
$$

- The joint distribution is

$$
G\left(t_{1}, t_{2}\right)=\frac{1}{3} F_{1,2: 3}\left(t_{1}, t_{2}\right)+\frac{1}{3} F_{2,3: 3}\left(t_{1}, t_{2}\right)+\frac{1}{3} F_{2: 3}\left(\min \left(t_{1}, t_{2}\right)\right) .
$$

- G is not absolutely continuous since
$\operatorname{Pr}\left(T_{1}=T_{2}\right)=p_{2,2}=1 / 3$.
- The usual signatures are $(1 / 3,2 / 3,0)$ and $(0,2 / 3,1 / 3)$.

Example 1

- Hence, the bivariate signature of $\left(T_{1}, T_{2}\right)$ is

$$
P=\left(\begin{array}{ccc}
0 & 1 / 3 & 0 \\
0 & 1 / 3 & 1 / 3 \\
0 & 0 & 0
\end{array}\right)
$$

- The joint distribution is

$$
G\left(t_{1}, t_{2}\right)=\frac{1}{3} F_{1,2: 3}\left(t_{1}, t_{2}\right)+\frac{1}{3} F_{2,3: 3}\left(t_{1}, t_{2}\right)+\frac{1}{3} F_{2: 3}\left(\min \left(t_{1}, t_{2}\right)\right) .
$$

- G is not absolutely continuous since

$$
\operatorname{Pr}\left(T_{1}=T_{2}\right)=p_{2,2}=1 / 3
$$

Example 1

- Hence, the bivariate signature of $\left(T_{1}, T_{2}\right)$ is

$$
P=\left(\begin{array}{ccc}
0 & 1 / 3 & 0 \\
0 & 1 / 3 & 1 / 3 \\
0 & 0 & 0
\end{array}\right)
$$

- The joint distribution is

$$
G\left(t_{1}, t_{2}\right)=\frac{1}{3} F_{1,2: 3}\left(t_{1}, t_{2}\right)+\frac{1}{3} F_{2,3: 3}\left(t_{1}, t_{2}\right)+\frac{1}{3} F_{2: 3}\left(\min \left(t_{1}, t_{2}\right)\right) .
$$

- G is not absolutely continuous since

$$
\operatorname{Pr}\left(T_{1}=T_{2}\right)=p_{2,2}=1 / 3
$$

- The usual signatures are $(1 / 3,2 / 3,0)$ and $(0,2 / 3,1 / 3)$.

Example 2

- Let $T_{1}=X_{1: 3}$ and $T_{2}=\max \left(X_{1}, \min \left(X_{2}, X_{3}\right)\right)$, then

$$
P=\left(\begin{array}{ccc}
0 & 2 / 3 & 1 / 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

- The joint distribution is

- If X_{1}, X_{2}, X_{3} are IID and F is abs. cont., then G is abs. cont. since $\operatorname{Pr}\left(T_{1}=T_{2}\right)=0$ and

- If F is exponential, then

Example 2

- Let $T_{1}=X_{1: 3}$ and $T_{2}=\max \left(X_{1}, \min \left(X_{2}, X_{3}\right)\right)$, then

$$
P=\left(\begin{array}{ccc}
0 & 2 / 3 & 1 / 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

- The joint distribution is

$$
G\left(t_{1}, t_{2}\right)=\frac{2}{3} F_{1,2: 3}\left(t_{1}, t_{2}\right)+\frac{1}{3} F_{1,3: 3}\left(t_{1}, t_{2}\right) .
$$

- If X_{1}, X_{2}, X_{3} are IID and F is abs. cont., then G is abs. cont. since $\operatorname{Pr}\left(T_{1}=T_{2}\right)=0$ and

- If F is exponential, then

Example 2

- Let $T_{1}=X_{1: 3}$ and $T_{2}=\max \left(X_{1}, \min \left(X_{2}, X_{3}\right)\right)$, then

$$
P=\left(\begin{array}{ccc}
0 & 2 / 3 & 1 / 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

- The joint distribution is

$$
G\left(t_{1}, t_{2}\right)=\frac{2}{3} F_{1,2: 3}\left(t_{1}, t_{2}\right)+\frac{1}{3} F_{1,3: 3}\left(t_{1}, t_{2}\right) .
$$

- If X_{1}, X_{2}, X_{3} are IID and F is abs. cont., then G is abs. cont. since $\operatorname{Pr}\left(T_{1}=T_{2}\right)=0$ and

$$
\operatorname{Cov}\left(X_{1: 3}, T_{2}\right)=\frac{2}{3} \sigma_{1,2: 3}+\frac{1}{3} \sigma_{1,3: 3}
$$

- If F is exponential, then

Example 2

- Let $T_{1}=X_{1: 3}$ and $T_{2}=\max \left(X_{1}, \min \left(X_{2}, X_{3}\right)\right)$, then

$$
P=\left(\begin{array}{ccc}
0 & 2 / 3 & 1 / 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

- The joint distribution is

$$
G\left(t_{1}, t_{2}\right)=\frac{2}{3} F_{1,2: 3}\left(t_{1}, t_{2}\right)+\frac{1}{3} F_{1,3: 3}\left(t_{1}, t_{2}\right) .
$$

- If X_{1}, X_{2}, X_{3} are IID and F is abs. cont., then G is abs. cont. since $\operatorname{Pr}\left(T_{1}=T_{2}\right)=0$ and

$$
\operatorname{Cov}\left(X_{1: 3}, T_{2}\right)=\frac{2}{3} \sigma_{1,2: 3}+\frac{1}{3} \sigma_{1,3: 3}
$$

- If F is exponential, then

$$
\operatorname{Cov}\left(X_{1: 3}, T_{2}\right)=\sigma_{1,1: 3}=\operatorname{Var}\left(X_{1: 3}\right)=\frac{1}{9} \mu^{2}
$$

Example 3

- Let $T_{1}=X_{1: 3}$ and $T_{2}=\max \left(X_{1}, \min \left(X_{2}, X_{3}\right)\right)$, then the BSM is

$$
P=\left(\begin{array}{ccc}
0 & 2 / 3 & 1 / 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

- Let $T_{1}^{*}=\min \left(X_{1}^{*}, \max \left(X_{2}^{*}, X_{3}^{*}\right)\right)$ and

 $T_{2}^{*}=\max \left(X_{1}^{*}, \min \left(X_{2}^{*}, X_{3}^{*}\right)\right)$, then the BSM is

Example 3

- Let $T_{1}=X_{1: 3}$ and $T_{2}=\max \left(X_{1}, \min \left(X_{2}, X_{3}\right)\right)$, then the BSM is

$$
P=\left(\begin{array}{ccc}
0 & 2 / 3 & 1 / 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

- Let $T_{1}^{*}=\min \left(X_{1}^{*}, \max \left(X_{2}^{*}, X_{3}^{*}\right)\right)$ and $T_{2}^{*}=\max \left(X_{1}^{*}, \min \left(X_{2}^{*}, X_{3}^{*}\right)\right)$, then the BSM is

$$
P^{*}=\left(\begin{array}{ccc}
0 & 1 / 6 & 1 / 6 \\
0 & 1 / 2 & 1 / 6 \\
0 & 0 & 0
\end{array}\right) .
$$

Example 3

- As seen in (2.3), we have $P \leq_{S / E \rightarrow} P^{*}$.
- If X_{1}, X_{2}, X_{3} are IID and $X_{1}^{*}, X_{2}^{*}, X_{3}^{*}$ are IID with $X_{1} \leq S T X_{1}^{*}$, then $\left(T_{1}, T_{2}\right) \leq_{S T}\left(T_{1}^{*}, T_{2}^{*}\right)$
- If the components are dependent and EXC and

$$
\left(X_{1}, X_{2}, X_{3}\right) \leq_{S T}\left(X_{1}^{*}, X_{2}^{*}, X_{3}^{*}\right),
$$

holds, then $\left(T_{1}, T_{2}\right) \leq S T\left(T_{1}^{*}, T_{2}^{*}\right)$

Example 3

- As seen in (2.3), we have $P \leq_{S / E \rightarrow} P^{*}$.
- If X_{1}, X_{2}, X_{3} are IID and $X_{1}^{*}, X_{2}^{*}, X_{3}^{*}$ are IID with $X_{1} \leq S T X_{1}^{*}$, then $\left(T_{1}, T_{2}\right) \leq S T\left(T_{1}^{*}, T_{2}^{*}\right)$.
- If the components are dependent and EXC and

$$
\left(X_{1}, X_{2}, X_{3}\right) \leq_{S T}\left(X_{1}^{*}, X_{2}^{*}, X_{3}^{*}\right)
$$

holds, then $\left(T_{1}, T_{2}\right) \leq S T\left(T_{1}^{*}, T_{2}^{*}\right)$.

Example 3

- As seen in (2.3), we have $P \leq_{S / E \rightarrow} P^{*}$.
- If X_{1}, X_{2}, X_{3} are IID and $X_{1}^{*}, X_{2}^{*}, X_{3}^{*}$ are IID with $X_{1} \leq_{S T} X_{1}^{*}$, then $\left(T_{1}, T_{2}\right) \leq S T\left(T_{1}^{*}, T_{2}^{*}\right)$.
- If the components are dependent and EXC and

$$
\left(X_{1}, X_{2}, X_{3}\right) \leq_{S T}\left(X_{1}^{*}, X_{2}^{*}, X_{3}^{*}\right)
$$

holds, then $\left(T_{1}, T_{2}\right) \leq_{S T}\left(T_{1}^{*}, T_{2}^{*}\right)$.

Our Main References

- Navarro, J., Samaniego, F. J., Balakrishnan, N. and Bhattacharya, D. (2008). On the application and extension of system signatures in engineering reliability. Naval Res. Logist. 55, 313-327.
- Navarro, J., Samaniego, F. J. and Balakrishnan, N. (2010). Joint signature of coherent systems with shared components. J. Appl. Prob. 47, 235-253.
- Navarro, J., Samaniego, F. J. and Balakrishnan, N. (2013). Mixture representations for the joint distribution of the lifetimes two coherent systems with shared components. Adv. Appl. Prob. 45 (4), 1011-1027.

References

- For the more references, please visit my personal web page:

> https : //webs.um.es/jorgenav/

References

- For the more references, please visit my personal web page:

> https : //webs.um.es/jorgenav/

- Thank you for your attention!!

[^0]: ${ }^{1}$ Supported by Ministerio de Economía y Competitividad under grant MTM2012-34023-FEDER and Fundación Séneca under granも $08627 / \mathrm{PI} / 08$.

