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Coherent systems

A coherent system is

ψ = ψ(x1, . . . , xn) : {0, 1}n → {0, 1},

where xi ∈ {0, 1} (it represents the state of the ith
component) and where ψ (which represents the state of the
system) is increasing in x1, . . . , xn and strictly increasing in xi

for at least a point (x1, . . . , xn), for all i = 1, . . . , n.

If X1, . . . ,Xn are the component lifetimes, then there exists φ
such that the system lifetime T = φ(X1, . . . ,Xn).
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Order statistics (OS)

X1, . . . ,Xn IID∼ F random variables.

X1, . . . ,Xn exchangeable (EXC), i.e., for any permutation σ

(X1, . . . ,Xn) =ST (Xσ(1), . . . ,Xσ(n)).

Let X1:n, . . . ,Xn:n be the associated OS which represent the
lifetimes of k-out-of-n systems.

X1:n is the series system lifetime and Xn:n is the parallel
system lifetime.

Let Fi :n(t) = Pr(Xi :n ≤ t) be the DF.

Let F i :n(t) = Pr(Xi :n > t) be the RF.
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Mixture representation

Samaniego (IEEE TR, 1985), IID case:

FT (t) =
n∑

i=1

piF i :n(t), (1.1)

where pi = Pr(T = Xi :n) and F i :n(t) = Pr(Xi :n > t).

p = (p1, . . . , pn) is the signature of the system.

IID case: pi only depends on φ

pi =

∣∣{σ : φ(x1, . . . , xn) = xi :n, when xσ(1) < . . . < xσ(n)}
∣∣

n!
(1.2)

Navarro, Samaniego, Balakrishnan and Bhathacharya (NRL,
2008), (1.1) holds for EXC r.v. when p is given by (1.2).
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Generalized mixture representation

Navarro, Ruiz and Sandoval (CSTM, 2007), EXC case:

FT (t) =
n∑

i=1

aiF 1:i (t). (1.3)

a = (a1, . . . , an) is the minimal signature of T .

ai only depends on φ but can be negative and so (1.3) is
called a generalized mixture.

In the IID case:

FT (t) =
n∑

i=1

aiF
i
(t) = qφ(F (t)), (1.4)

qφ(x) =
∑n

i=1 aix
i is the domination (reliability) polynomial.
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Mixture representations order n

Navarro et al.(NRL, 2008): If T = φ(X1, . . . ,Xm) and
X1, . . . ,Xn (m < n) are IID, then

FT (t) =
n∑

i=1

p
(n)
i F i :n(t), (1.5)

where p
(n)
i = Pr(T = Xi :n).

p(n) = (p
(n)
1 , . . . , p

(n)
n ) is the signature of order n.

p
(n)
i only depends on φ

p
(n)
i =

∣∣{σ : φ(x1, . . . , xn) = xi :n, when xσ(1) < . . . < xσ(n)}
∣∣

n!
(1.6)

Navarro et al. (NRL, 2008), (1.1) holds for EXC r.v. when
p(n) is given by (1.6).
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Figure: Duglas DC 10
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2

Coherent system lifetime T = min(X1,max(X2,X3)).
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3! = 6 permutations.
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X1 < X2 < X3 ⇒ T = X1 = X1:3
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X2 < X1 < X3 ⇒ T = X1 = X2:3
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X2 < X3 < X1 ⇒ T = X3 = X2:3
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X3 < X2 < X1 ⇒ T = X2 = X2:3
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IID F cont.: p = (2/6, 4/6, 0) = (1/3, 2/3, 0).
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IID or EXC: F cont.: FT (t) = 1
3F 1:3(t) + 2

3F 2:3(t).
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IID or EXC: FT (t) = 2F 1:2(t)− F 1:3(t),
where a = (0, 2,−1) is the minimal signature.

Seventh International Workshop on Applied Probability Jorge Navarro, E-mail: jorgenav@um.es



Mixture representations
Ordering results

Examples

Coherent systems
Bivariate Signature Matrix (BSM)
Main results

Example

1��
��

��
��

3

��
��

2

IID: FT (t) = 2F
2
(t)− F

3
(t) = qφ(F (t)),

where qφ(u) = 2u2 − u3.
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The minimal signatures for systems with n ≤ 5 can be seen in:
Navarro and Rubio (2010, Comm Stat Simul Comp 39, 68–84).
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Coherent system lifetime T = min(X1,max(X2,X3)) from
X1,X2,X3,X4.
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4! = 24 permutations.
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X1 < X2 < X3 < X4 ⇒ T = X1 = X1:4
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Signature of order n
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3! = 6 permutations lead to T = X1 = X1:4
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The signature of order 4 is
(6/24, 10/24, 8/24, 0) = (1/4, 5/12, 1/3, 0).
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The signatures of order 5 and minimal signatures for systems with
n ≤ 5 can be seen in: Navarro and Rubio (2010, Comm Stat Simul
Comp 39, 68–84).
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Bivariate Signature Matrix (BSM)

T1 and T2 are the lifetimes of two coherent systems based on
components with IID lifetimes X1, . . . ,Xn with a continuous
DF F .

Then Pr(X1:n < . . . < Xn:n) = 1.

The two systems may share one or more components.

The systems may be of order less than n.

We define the random vector I = (I1, I2) by

I = (i , j) whenever T1 = Xi :n and T2 = Xj :n. (1.7)
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Bivariate Signature Matrix (BSM)

The bivariate probability mass function of I is denoted by
pi ,j = Pr(I = (i , j)), for i , j = 1, . . . , n.

Note that
pi ,j = |Ai ,j |/n!, (1.8)

where |Ai ,j | is the size of the set

Ai ,j = {σ ∈ Pn : T1 = Xi :n and T2 = Xj :n when Xσ(1) < · · · < Xσ(n)}

and Pn is the set of permutations of the set {1, . . . , n}.
The matrix P = (pi ,j) is called the bivariate signature matrix
(BSM) associated with (T1,T2).
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Immediate properties

The BSM P = (pi ,j) does not depend on F and can be
computed using (1.8).

Of course, pi ,j ≥ 0 and
∑n

i=1

∑n
j=1 pi ,j = 1.

The univariate signature (p1, . . . , pn) of order n of T1, can be
computed from the BSM as pi =

∑n
j=1 pi ,j . A similar result

holds for T2.

If T2 = Xk:n then pi ,k = pi and pi ,j = 0 for i = 1, . . . , n and
j 6= k. In this case, I1 and I2 are independent.
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Example

Let X1,X2,X3,X4 be the IID lifetimes of four components.

T1 = X2:3 = min(max(X1,X2),max(X1,X3),max(X2,X3)).

T2 = min(X3,X4).

There are 4! = 24 permutations. Then:
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Equiprobable Orderings (I1, I2) Equiprobable Orderings (I1, I2)

X1 < X2 < X3 < X4 (2, 3) X3 < X1 < X2 < X4 (2, 1)

X1 < X2 < X4 < X3 (2, 3) X3 < X1 < X4 < X2 (2, 1)

X1 < X3 < X2 < X4 (2, 2) X3 < X2 < X1 < X4 (2, 1)

X1 < X3 < X4 < X2 (2, 2) X3 < X2 < X4 < X1 (2, 1)

X1 < X4 < X2 < X3 (3, 2) X3 < X4 < X1 < X2 (3, 1)

X1 < X4 < X3 < X2 (3, 2) X3 < X4 < X2 < X1 (3, 1)

X2 < X1 < X3 < X4 (2, 3) X4 < X1 < X2 < X3 (3, 1)

X2 < X1 < X4 < X3 (2, 3) X4 < X1 < X3 < X2 (3, 1)

X2 < X3 < X1 < X4 (2, 2) X4 < X2 < X1 < X3 (3, 1)

X2 < X3 < X4 < X1 (2, 2) X4 < X2 < X3 < X1 (3, 1)

X2 < X4 < X1 < X3 (3, 2) X4 < X3 < X1 < X2 (3, 1)

X2 < X4 < X3 < X1 (3, 2) X4 < X3 < X2 < X1 (3, 1)
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Example

From the above, the bivariate signature matrix is

P =


0 0 0 0

1/6 1/6 1/6 0
1/3 1/6 0 0
0 0 0 0

 .

The marginal probability mass function of I1 is (0, 1/2, 1/2, 0)
and that of I2 is (1/2, 1/3, 1/6, 0).

These values coincide with the signatures of order 4 of these
systems.
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Main results

Theorem (Navarro, Samaniego and Balakrishnan, Adv. Appl.
Prob., 2013)

Let T1 and T2 be the lifetimes of two coherent systems based IID
(or EXC) components with lifetimes X1, . . . ,Xn with a common
continuous DF F . Then, the joint distribution function
G (t1, t2) = Pr(T1 ≤ t1,T2 ≤ t2) of (T1,T2) can be written as

G (t1, t2) =
n∑

i=1

n∑
j=1

pi ,jFi ,j :n(t1, t2), (1.9)

where P = (pi ,j) is the bivariate signature matrix of (T1,T2) and
Fi ,j :n(t1, t2) = Pr(Xi :n ≤ t1,Xj :n ≤ t2).
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Main results

Theorem (Navarro, Samaniego and Balakrishnan, J. Appl. Prob.,
2010)

The joint distribution G of T1 and T2 based on IID components
with lifetimes X1, . . . ,Xn can be written as

G (t1, t2) =
n∑

i=1

n∑
j=0

si ,jFi :n(t1)Fj :n(t2) for t1 ≤ t2 (1.10)

G (t1, t2) =
n∑

i=0

n∑
j=1

s∗i ,jFi :n(t1)Fj :n(t2) for t1 > t2, (1.11)

where F0:n = 1 (by convention) and {si ,j} and {s∗i ,j} are collections
of coefficients (which do not depend on F) such that∑n

i=1

∑n
j=0 si ,j =

∑n
i=0

∑n
j=1 s∗i ,j = 1.
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Consequences

(T1,T2) has a singular part whenever Pr(T1 = T2) > 0.

In the IID case, if F is absolutely continuous, then
Fi :n(t1)Fj :n(t2) and Fi ,j :n(t1, t2) are both absolutely
continuous bivariate distributions when i 6= j .

So, in the second theorem, we need two different linear
combinations (one for t1 ≤ t2 and another one for t1 > t2)
based on Fi :n(t1)Fj :n(t2).

However, in the first theorem, note that

Fi ,i :n(t1, t2) = Pr(Xi :n ≤ t1,Xi :n ≤ t2) = Fi :n(min(t1, t2))

is a singular bivariate distribution (the joint distribution of
(Xi :n,Xi :n)).
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Consequences

Therefore, inthe IID case, G is absolutely continuous if and
only if pi ,i = 0 for all i = 1, . . . , n.

In this case, its PDF g can be written as

g(t1, t2) =
n∑

i=1

n∑
j=1

pi ,j fi ,j :n(t1, t2),

where fi ,j :n is the PDF of (Xi :n,Xj :n) for i 6= j .

A similar representation holds the joint reliability function of
(T1,T2) with the same coefficients.

The functions Fi :n,Fi ,j :n,F i ,j :n and fi ,j :n can all be computed
from F using the expressions known in the theory of order
statistics.

Replacing these expressions in the first theorem, we obtain the
second.
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Theorem

If T1 and T2 have respective signatures (p1, ..., pn) and (p∗1 , ..., p
∗
n)

of order n and BSM P = (pi ,j), then

E (T1T2) =
n∑

i=1

pi ,iαi ,i :n +
n∑

i=1

n∑
j=i+1

(pi ,j + pj ,i )αi ,j :n

Cov(T1,T2) =
n∑

i=1

n∑
j=1

pi ,jσi ,j :n +
n∑

i=1

n∑
j=1

(pi ,j − pip
∗
j )µi :nµj :n,

where µi :n = E (Xi :n), αi ,j :n = E (Xi :nXj :n), σi ,j :n = Cov(Xi :n,Xj :n)
and σi ,i :n = σ2

i :n = Var(Xi :n) for i , j = 1, . . . , n.
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If T2 = Xk:n, then

Cov(T1,Xk:n) =
k−1∑
i=1

piσi ,k:n + pjσ
2
k:n +

n∑
i=k+1

piσi ,k:n.

If F is exponential and the signature of order n is
(0, . . . , 0, pk , . . . , pn), then

Cov(T1,Xj :n) = Var(Xj :n), for j = 1, . . . , k. (1.12)
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The multivariate stochastic order

Let X and Y be two n-dimensional random vectors.

We say that X ≤ST Y if E (φ(X)) ≤ E (φ(Y)) for all increasing
real-valued functions φ for which that these expectations exist.

X ≤ST Y implies

Pr(X1 ≤ x1, . . . ,Xn ≤ xn) ≥ Pr(X ∗1 ≤ x1, . . . ,X
∗
n ≤ xn)

(2.1)
(lower orthant ordering) and

Pr(X1 > x1, . . . ,Xn > xn) ≥ Pr(X ∗1 > x1, . . . ,X
∗
n > xn)

(2.2)
(upper orthant ordering) for all x1, . . . , xn.

Seventh International Workshop on Applied Probability Jorge Navarro, E-mail: jorgenav@um.es



Mixture representations
Ordering results

Examples

Definitions
Main result

The multivariate stochastic order

Let X and Y be two n-dimensional random vectors.

We say that X ≤ST Y if E (φ(X)) ≤ E (φ(Y)) for all increasing
real-valued functions φ for which that these expectations exist.
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The south-east order

Definition

Let A = (ai ,j) and A∗ = (a∗i ,j) be two n ×m matrices with the
same total mass, that is, with

∑n
i=1

∑m
j=1 ai ,j =

∑n
i=1

∑m
j=1 a∗i ,j .

Then we say that A is less than A∗ in the south-east shift order
(shortly written as A ≤S/E→ A∗) if A∗ can be obtained from A
through a finite sequence of transformations in which a positive
mass c > 0 is moved from the term ai ,j to the term ar ,s with r ≥ i
and s ≥ j (i.e., the new terms are ai ,j − c and ar ,s + c ,
respectively).

Seventh International Workshop on Applied Probability Jorge Navarro, E-mail: jorgenav@um.es



Mixture representations
Ordering results

Examples

Definitions
Main result

Example

The following matrices are S/E → ordered: 0 2/3 1/3
0 0 0
0 0 0

 →

 0 1/6 1/3
0 1/2 0
0 0 0

 →

 0 1/6 1/6
0 1/2 1/6
0 0 0



→

 0 1/6 1/6
0 1/6 1/2
0 0 0

 . (2.3)
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Theorem

Let T1 and T2 be the lifetimes of two coherent systems whose
respective component lifetimes are subsets of {X1, . . . ,Xn} and
(X1, . . . ,Xn) is an exchangeable random vector. Let T ∗1 and T ∗2 be
the lifetimes of two coherent systems whose respective component
lifetimes are subsets of {X ∗1 , . . . ,X ∗n } and (X ∗1 , . . . ,X

∗
n ) is an

exchangeable random vector. If P ≤S/E→ P∗ and

(X1, . . . ,Xn) ≤ST (X ∗1 , . . . ,X
∗
n ),

then (T1,T2) ≤ST (T ∗1 ,T
∗
2 ).
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Let T1 = min(X1,max(X2,X3)) and T2 = max(X1,min(X2,X3)).
Then:

Equiprobable Orderings T1 T2 I
X1 < X2 < X3 X1 = X1:3 X2 = X2:3 (1, 2)

X1 < X3 < X2 X1 = X1:3 X3 = X2:3 (1, 2)

X2 < X1 < X3 X1 = X2:3 X1 = X2:3 (2, 2)

X2 < X3 < X1 X3 = X2:3 X1 = X3:3 (2, 3)

X3 < X1 < X2 X1 = X2:3 X1 = X2:3 (2, 2)

X3 < X2 < X1 X2 = X2:3 X1 = X3:3 (2, 3)
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Hence, the bivariate signature of (T1,T2) is

P =

 0 1/3 0
0 1/3 1/3
0 0 0

 .

The joint distribution is

G (t1, t2) =
1

3
F1,2:3(t1, t2)+

1

3
F2,3:3(t1, t2)+

1

3
F2:3(min(t1, t2)).

G is not absolutely continuous since
Pr(T1 = T2) = p2,2 = 1/3.

The usual signatures are (1/3, 2/3, 0) and (0, 2/3, 1/3).
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Let T1 = X1:3 and T2 = max(X1,min(X2,X3)), then

P =

 0 2/3 1/3
0 0 0
0 0 0

 .

The joint distribution is

G (t1, t2) =
2

3
F1,2:3(t1, t2) +

1

3
F1,3:3(t1, t2).

If X1,X2,X3 are IID and F is abs. cont., then G is abs. cont.
since Pr(T1 = T2) = 0 and

Cov(X1:3,T2) =
2

3
σ1,2:3 +

1

3
σ1,3:3.

If F is exponential, then

Cov(X1:3,T2) = σ1,1:3 = Var(X1:3) =
1

9
µ2.
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Let T1 = X1:3 and T2 = max(X1,min(X2,X3)), then the BSM
is

P =

 0 2/3 1/3
0 0 0
0 0 0

 .

Let T ∗1 = min(X ∗1 ,max(X ∗2 ,X
∗
3 )) and

T ∗2 = max(X ∗1 ,min(X ∗2 ,X
∗
3 )), then the BSM is

P∗ =

 0 1/6 1/6
0 1/2 1/6
0 0 0

 .
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As seen in (2.3), we have P ≤S/E→ P∗.

If X1,X2,X3 are IID and X ∗1 ,X
∗
2 ,X

∗
3 are IID with X1 ≤ST X ∗1 ,

then (T1,T2) ≤ST (T ∗1 ,T
∗
2 ).

If the components are dependent and EXC and

(X1,X2,X3) ≤ST (X ∗1 ,X
∗
2 ,X

∗
3 ),

holds, then (T1,T2) ≤ST (T ∗1 ,T
∗
2 ).
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