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Definitions
Samaniego’s representation
A counterexample

Binary systems

I A (binary) system is a Boolean (structure) function
ψ : {0, 1}n → {0, 1}.

I Here xi = 0 means that the ith component does not work and
xi = 1 that it works.

I Then the system state ψ(x1, . . . , xn) ∈ {0, 1} is completely
determined by the structure function ψ and the component
states x1, . . . , xn ∈ {0, 1}.

I A system ψ is semi-coherent if it is increasing,
ψ(0, . . . , 0) = 0 and ψ(1, . . . , 1) = 1.
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Definitions
Samaniego’s representation
A counterexample

Coherent systems

I A system ψ is coherent if it is increasing and all the
components are relevant.

I The ith component is relevant if ψ is strictly increasing in at
least a point in the ith variable.

I In particular, if ψ is coherent, then ψ(0, . . . , 0) = 0 and
ψ(1, . . . , 1) = 1 (it is also semi-coherent).

I The system ψ(x1, x2) = x2 is semi-coherent but not coherent.
I Barlow and Proschan (1975). Statistical Theory of Reliability

and Life Testing. International Series in Decision Processes.
Holt, Rinehart and Winston, Inc., New York.
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Samaniego’s representation
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Minimal path sets

I A set P ⊆ {1, . . . , n} is a path set of ψ if ψ(x1, . . . , xn) = 1
when xi = 1 for all i ∈ P .

I A path set P is a minimal path set if it does not contain
other path sets.

I If P1, . . . ,Pr are the minimal path sets of a semi-coherent
system ψ, then

ψ(x1, . . . , xn) = max
i=1,...,r

min
j∈Pi

xj . (1.1)

I Here ψP = minj∈P xj represents the series system with
components in P .
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Definitions
Samaniego’s representation
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Lifetimes

I Let T be the system lifetime and let X1, . . . ,Xn be the
component lifetimes. Then

T = max
i=1,...,r

min
j∈Pi

Xj . (1.2)

I Let F̄T (t) = Pr(T > t) be the system reliability (or survival)
function and let F̄i (t) = Pr(Xi > t) for i = 1, . . . , n be the
component reliability functions.

I The purpose is to write

F̄T = Q̄(F̄1, . . . , F̄n). (1.3)
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Samaniego’s representation

I F.J. Samaniego (1985, IEEE Tr. Rel.) obtained the following
result:

I Theorem (Samaniego, 1985)
If T is the lifetime of a coherent system with IID component
lifetimes having a common continuous reliability function F̄ , then

F̄T (t) = s1F̄1:n(t) + · · ·+ snF̄n:n(t), (1.4)

where F̄1:n, . . . , F̄n:n are the reliability functions of the ordered
component lifetimes X1:n ≤ · · · ≤ Xn:n (order statistics) and
s1 + · · ·+ sn = 1.
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Definitions
Samaniego’s representation
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Signature vector

I The vector s = (s1, . . . , sn) with the coefficients in that
representation was called the signature of the system.

I Under these assumptions s only depends on the structure ψ.
I It can be computed as si = Pr(T = Xi :n), as

si =
|{σ : ψ(x1, . . . , xn) = xi :n when xσ(1) ≤ · · · ≤ xσ(n)}|

n!

or as

si =
1( n

n−i+1

) ∑
∑n

j=1 xj=n−i+1

ψ(x1, . . . xn)− 1( n
n−i
) ∑

∑n
j=1 xj=n−i

ψ(x1, . . . xn)

(1.5)
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Order statistics

I If X1, . . . ,Xn are IID∼ F , then

F̄i :n(t) =
i−1∑
j=0

(
n

j

)
F j(t)F̄ n−j(t). (1.6)

I Hence from Samaniego’s theorem

F̄T (t) =
n∑

i=1

si

i−1∑
j=0

(
n

j

)
F j(t)F̄ n−j(t). (1.7)
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Stochastic comparisons

Theorem (Kochar, Mukerjee and Samaniego, 1999)
Let T1 and T2 be the lifetimes of two coherent systems based on n
IID components with a common continuous distribution function F .
Let s1 and s2 be their respective signatures.
(i) If s1 ≤ST s2, then T1 ≤ST T2 for all F ;
(ii) If s1 ≤HR s2, then T1 ≤HR T2 for all F ;
(iii) If s1 ≤LR s2, then T1 ≤LR T2 for all abs. cont. F .
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Example 1

I X1,X2 IID Bernoulli with Pr(Xi = 1) = Pr(Xi = 0) = 1/2.

I T = X1:2 = min(X1,X2).
I s1 = Pr(T = X1:2) = 1 and s2 = Pr(T = X2:2) = 1/2.
I Samaniego’s representation does not hold

F̄1:2 6= 1F̄1:2 +
1
2
F̄2:2.

I However, if we use (1.5), then s1 = 1, s2 = 0 and Samaniego’s
representation holds.

Jorge Navarro, ISBIS KOCHI DEC 28-30, 2020 Universidad de Murcia. 12/36
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Coherent systems
Semi-coherent systems
A counterexample

Signatures

I In the general case we can define two signatures:

I The probabilistic signature p = (p1, . . . , pn) with
pi = Pr(T = Xi :n).

I The structural signature s = (s1, . . . , sn) with si obtained
from (1.5).

I The signature s only depends on ψ while p depends on both ψ
and the joint distribution of X1, . . . ,Xn.

I In the IID continuous case, they coincide.
I In the preceding example p = (1, 1/2) and s = (1, 0).
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I In the IID continuous case, they coincide.
I In the preceding example p = (1, 1/2) and s = (1, 0).
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First extension

I The first extension was obtained in Navarro and Rychlik
(JMVA, 2007) and it is based on the following concept.

I We say that (X1, . . . ,Xn) is exchangeable (EXC) if

(X1, . . . ,Xn) =ST (Xσ(1), . . . ,Xσ(n)).

I Theorem (Navarro and Rychlik, 2007)
If T is the lifetime of a coherent system with component lifetimes
having an absolutely continuous joint EXC distribution, then p = s
and

F̄T (t) = p1F̄1:n(t) + · · ·+ pnF̄n:n(t). (2.1)
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Second extension

I The second extension was obtained in Navarro, Samaniego,
Balakrishnan and Bhattacharya (NRL, 2008) as follows:

I Theorem (Navarro et al., 2008)
If T is the lifetime of a coherent system with component lifetimes
having a common EXC distribution and structural signature s, then

F̄T (t) = s1F̄1:n(t) + · · ·+ snF̄n:n(t). (2.2)

I It can be applied to the general IID case (as in the Bernoulli
example above).
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Third extension

I The third extension was also obtained in Navarro, Samaniego,
Balakrishnan and Bhattacharya (NRL, 2008).

I It will allow us to compare systems with different orders.
I It is based on the concept of signature of order n.

Theorem (Navarro et al., 2008)
If T = ψ(X1, . . . ,Xk) is the lifetime of a semi-coherent system with
component lifetimes (X1, . . . ,Xn) (k < n) having a common EXC
distribution, then

F̄T (t) = s
(n)
1 F̄1:n(t) + · · ·+ s

(n)
n F̄n:n(t) (2.3)

where s(n) = (s
(n)
1 , . . . , s

(n)
n ) is the structural signature of order n

(i.e. the signature obtained from (1.5) in dimension n).
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Theorem (Navarro et al., 2008)
Let T1 and T2 be the lifetimes of two semi-coherent systems with
component lifetimes (X1, . . . ,Xn) having an EXC joint distribution
F , and signatures of order n, s(n)1 and s(n)2 , respectively.

(i) If s(n)1 ≤ST s(n)2 , then T1 ≤ST T2 for all F ;

(ii) If s(n)1 ≤HR s(n)2 , then T1 ≤HR T2 for all F such that

X1:n ≤HR · · · ≤HR Xn:n; (2.4)

(iii) If s(n)1 ≤HR s(n)2 , then T1 ≤MRL T2 for all F such that

X1:n ≤MRL · · · ≤MRL Xn:n; (2.5)

(iv) If s(n)1 ≤LR s(n)2 , then T1 ≤LR T2 for all F such that

X1:n ≤LR · · · ≤LR Xn:n. (2.6)
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Example 2

I The following example extracted from Navarro, Samaniego,
Balakrishnan and Bhattacharya (NRL, 2008) shows that
Samaniego’s representation does not hold for a system with
independent non identically distributed components.

I Therefore, the ID assumption is necessary for that
representation.

I Let us consider the system T = min(X1,max(X1,X2)):

1m m3
m2

Figure: A coherent system of order 3.
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Example 2

I The minimal path sets are P1 = {1, 2} and P2 = {1, 3}.

I If XP1 = min(X1,X2) and XP2 = min(X1,X3), then

F̄T (t) = Pr({XP1 > t} ∪ {XP2 > t})
= Pr(XP1 > t) + Pr(XP2 > t)− Pr(XP1∪P2 > t)

= Pr(X1 > t,X2 > t) + Pr(X1 > t,X3 > t)

− Pr(X1 > t,X2 > t,X3 > t)

=IND F̄1(t)F̄2(t) + F̄1(t)F̄3(t)− F̄1(t)F̄2(t)F̄3(t)

I If F̄1(t) = e−2t and F̄2(t) = F̄3(t) = e−t , then

F̄T (t) = 2e−3t − e−4t , for t ≥ 0.
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Example 2

I Analogously, for the order statistics we get

F̄1:3(t) = e−4t ,

F̄2:3(t) = e−2t + 2e−3t − 2e−4t ,

F̄3:3(t) = 2e−t − 2e−3t + e−4t .

I Therefore F̄T = c1F̄1:3 + c2F̄2:3 + c3F̄3:3, that is,

2e−3t−e−4t = c1e
−4t+c2(e−2t+2e−3t−2e−4t)+c3(2e−t−2e−3t+e−4t)

does not hold for c1, c2, c3 ∈ R.
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Example 2

I Hence F̄T is not equal to the mixture obtained neither with
the structural signature s = (1/3, 2/3, 0) given by

F̄s :=
1
3
F̄1:3 +

2
3
F̄2:3

nor with that obtained with the probabilistic signature

F̄p := p1F̄1:3 + p2F̄2:3,

where pi = Pr(T = Xi :3) for i = 1, 2.

I In this example

p1 = Pr(X1 < min(X2,X3)),

where X1 and Y = min(X2,X3) are IID.
I Therefore, p1 = p2 = 1/2.
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Figure: Reliability functions F̄T (black), F̄s (blue), F̄p (red) and F̄k:3
(dashed lines) for k = 1, 2, 3.
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The fourth extension

I The first extension for the non-EXC case was given in
Marichal, Mathonet and Waldhauser (2011).

I It is based on the vector of the component states at time t,
(Z1(t), . . . ,Zn(t)), where Zi (t) = 1 (0) iff Xi > t (≤).

I It can be stated as follows:

Theorem (Marichal, Mathonet and Waldhauser, 2011)
If n > 2, the following conditons are equivalent:

(i) Samaniego’s representation holds with the structural signature
for all the coherent systems of order n;

(ii) (Z1(t), . . . ,Zn(t)) is EXC for all t ≥ 0.
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The fifth extension

I It was given in Navarro and Fernández-Sánchez (JAP, 2020).

I It is based on the copula representation for (X1, . . . ,Xn)

Pr(X1 ≤ x1, . . . ,Xn ≤ xn) = C (F1(x1), . . . ,Fn(xn)),

where C is a copula function (i.e. a distribution function with
uniform marginals on (0, 1)).

I The random vector (X1, . . . ,Xn) is EXC iff
(i) F1 = · · · = Fn (ID);
(ii) C is EXC.

I We have seen that the ID assumption cannot be relaxed.
I So let us to relax (ii).
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I It was given in Navarro and Fernández-Sánchez (JAP, 2020).
I It is based on the copula representation for (X1, . . . ,Xn)
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where C is a copula function (i.e. a distribution function with
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The fifth extension

I We say that a copula C es diagonal dependent (DD) if

C (u1, . . . , un) = C (uσ(1), . . . , uσ(n)) (3.1)

for all permutations σ and all 1 < k < n, where ui = u ∈ [0, 1]
for all i = 1, . . . , k and ui = 1 for i = k + 1, . . . , n.

I Eq. (3.1) holds for k = 1 and k = n.
I It means that all the copulas of the k-dimensional marginals

have the same diagonal sections.
I For example, if n = 3, then it is equivalent to

C (u, u, 1) = C (u, 1, u) = C (1, u, u), for all u ∈ [0, 1].
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The fifth extension

I Now we can state the following theorem:

Theorem (Navarro and Fernández-Sánchez, 2020)
If T is the lifetime of a coherent system and the following
conditions hold:

(i) F1 = · · · = Fn (ID);
(ii) C is DD;

then Samaniego’s representation holds for the structural signature.

I A similar property holds for semi-coherent systems with the
structural signature of order n.
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The fifth extension

I The proof is based on the representation of the system
reliability as a linear combination of series system reliability
functions of path sets and the fact that these functions can be
obtained from diagonal sections of dimension k of C and the
common distribution.

I This extension is not trivial since the set CDD of DD copulas is
dense in the set of copulas C while the set CEXC of EXC
copulas is not.

I Therefore, for any copula C we can find a “close” DD copula
C ∗.
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The last extension

I It was given in the paper Navarro, Rychlik and Spizzichino
(FSS, 2020) and it is based on the following concept.

I We say that a copula C es S-diagonal dependent (S-DD)
for S ⊆ [0, 1] if

C (u1, . . . , un) = C (uσ(1), . . . , uσ(n)) (3.2)

for all permutations σ and all 1 < k < n, where ui = u ∈ S for
all i = 1, . . . , k and ui = 1 for i = k + 1, . . . , n.

I If S = [0, 1], then it is DD.
I Now we can state the following theorem.
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Theorem (Navarro, Rychlik and Spizzichino, 2020)
If n > 2, the following conditions are equivalent:
(i) Samaniego’s representation holds with the structural signature

for all the coherent systems of order n;
(ii) If Ai = {Xi ≤ t} and Āi = {Xi > t}, then

Pr(A1∩· · ·∩Ak∩Āk+1∩· · ·∩Ān) = Pr(Aσ(1)∩· · ·∩Aσ(k)∩Āσ(k+1)∩· · ·∩Āσ(n))

for all permutation σ, all 1 < k < n and all t > 0;
(iii) The vector with the component states at time t is EXC for all

t ≥ 0;
(iv) The component lifetimes are ID F1 = · · · = Fn = F and its

copula is S-DD, where S = ImF = {u : F (t) = u for t > 0}.
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Example 3

I Let us consider again T = min(X1,max(X2,X3)) with

F̄ (t) = Pr(X1 > t,X2 > t)+Pr(X1 > t,X3 > t)−Pr(X1 > t,X2 > t,X3 > t).

I Let us assume

Pr(X1 > x1,X2 > x2,X3 > x3) = Ĉ (F̄1(x1), F̄2(x2), F̄3(x3)),

where Ĉ is the survival copula. C is DD iff Ĉ is DD.
I If we assume F̄1 = F̄2 = F̄3 = F̄ (ID), then

Pr(X1 > t,X2 > t) = Ĉ (F̄ (t), F̄ (t), 1)

Pr(X1 > t,X3 > t) = Ĉ (F̄ (t), 1, F̄ (t))

Pr(X1 > t,X2 > t,X3 > t) = Ĉ (F̄ (t), F̄ (t), F̄ (t))
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Example 3

I Therefore, F̄T (t) = q̄(F̄ (t)) with

q̄(u) = Ĉ (u, u, 1) + Ĉ (u, 1, u)− Ĉ (u, u, u).

I Analogously, it can be proved that F̄i :3(t) = q̄i :3(F̄ (t)) with

q̄1:3(u) = Ĉ (u, u, u)

q̄2:3(u) = Ĉ (u, u, 1) + Ĉ (u, 1, u) + Ĉ (1, u, u)− 2Ĉ (u, u, u)

I As the signature is s = (1/3, 2/3, 0) we do not need F̄3:3.
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Example 3: IID components

I If the components are IID, Ĉ (u1, u2, u3) = u1u2u3 and

q̄(u) = 2u2 − u3

q̄1:3(u) = u3

q̄2:3(u) = 3u2 − 2u3.

I Therefore
q̄(u) =

1
3
q̄1:3(u) +

2
3
q̄1:3(u)

holds since

2u2 − u3 =
1
3

(u3) +
2
3

(3u2 − 2u3).
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Example 3: ID components and DD copula

I If Ĉ is DD, then

q̄(u) = 2Ĉ (u, u, 1)− Ĉ (u, u, u)

q̄1:3(u) = Ĉ (u, u, u)

q̄2:3(u) = 3Ĉ (u, u, 1)− 2Ĉ (u, u, u).

I Therefore
q̄(u) =

1
3
q̄1:3(u) +

2
3
q̄1:3(u)

holds since

2Ĉ (u, u, 1)−Ĉ (u, u, u) =
1
3
Ĉ (u, u, u)+

2
3

(3Ĉ (u, u, 1)−2Ĉ (u, u, u)).
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Example 3: ID components and FGM copula

I If Ĉ is a FGM copula:

Ĉ (u1, u2, u3) = u1u2u3(1 + θ(1− u2)(1− u3))

for −1 ≤ θ ≤ 1, then

q̄(u) = 2u2 − Ĉ (u, u, u)

q̄1:3(u) = Ĉ (u, u, u)

q̄2:3(u) = 3u2 + θu2(1− u)2 − 2Ĉ (u, u, u).

I Therefore
q̄(u) =

1
3
q̄1:3(u) +

2
3
q̄1:3(u)

does hold for θ 6= 0 since

2u2−Ĉ (u, u, u) 6= 1
3
Ĉ (u, u, u)+

2
3

(3u2+θu2(1−u)2−2Ĉ (u, u, u)).
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Conclusions

I Samaniego’s representation is a very useful tool to study and
compare systems.

I However, it has some limitations.
I The first one is that we need to assume ID components.
I We also need to assume a DD copula.
I Fortunately, CDD is dense in C.
I For discrete distributions F , this assumption can be relaxed to

S-DD copulas.
I Moreover, the signature comparisons do not detect all the

orderings (see Rychlik, Navarro and Rubio JAP 2018, 55 (4),
1261–1271).
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I Can we obtain more extensions?

I I do not think so.
I The last theorem shows that the answer is negative if we want

to have the representation for all the coherent systems.
I In the general case, we can use the representations based on

distortions (see, e.g., Navarro and Spizzichino FSS, 2020).
I That’s all,

Thank you for your atention!!!

I The complete references can be seen in my webpage:

https : //webs.um.es/jorgenav/miwiki/doku.php

Jorge Navarro, ISBIS KOCHI DEC 28-30, 2020 Universidad de Murcia. 36/36



Samaniego’s signature representation
Extensions to the exchangeable case

Extensions to the non-exchangeable case

Two extensions
Equivalence
A counterexample

Conclusions

I Can we obtain more extensions?
I I do not think so.

I The last theorem shows that the answer is negative if we want
to have the representation for all the coherent systems.

I In the general case, we can use the representations based on
distortions (see, e.g., Navarro and Spizzichino FSS, 2020).

I That’s all,
Thank you for your atention!!!

I The complete references can be seen in my webpage:

https : //webs.um.es/jorgenav/miwiki/doku.php

Jorge Navarro, ISBIS KOCHI DEC 28-30, 2020 Universidad de Murcia. 36/36



Samaniego’s signature representation
Extensions to the exchangeable case

Extensions to the non-exchangeable case

Two extensions
Equivalence
A counterexample

Conclusions

I Can we obtain more extensions?
I I do not think so.
I The last theorem shows that the answer is negative if we want

to have the representation for all the coherent systems.

I In the general case, we can use the representations based on
distortions (see, e.g., Navarro and Spizzichino FSS, 2020).

I That’s all,
Thank you for your atention!!!

I The complete references can be seen in my webpage:

https : //webs.um.es/jorgenav/miwiki/doku.php

Jorge Navarro, ISBIS KOCHI DEC 28-30, 2020 Universidad de Murcia. 36/36



Samaniego’s signature representation
Extensions to the exchangeable case

Extensions to the non-exchangeable case

Two extensions
Equivalence
A counterexample

Conclusions

I Can we obtain more extensions?
I I do not think so.
I The last theorem shows that the answer is negative if we want

to have the representation for all the coherent systems.
I In the general case, we can use the representations based on

distortions (see, e.g., Navarro and Spizzichino FSS, 2020).

I That’s all,
Thank you for your atention!!!

I The complete references can be seen in my webpage:

https : //webs.um.es/jorgenav/miwiki/doku.php

Jorge Navarro, ISBIS KOCHI DEC 28-30, 2020 Universidad de Murcia. 36/36



Samaniego’s signature representation
Extensions to the exchangeable case

Extensions to the non-exchangeable case

Two extensions
Equivalence
A counterexample

Conclusions

I Can we obtain more extensions?
I I do not think so.
I The last theorem shows that the answer is negative if we want

to have the representation for all the coherent systems.
I In the general case, we can use the representations based on

distortions (see, e.g., Navarro and Spizzichino FSS, 2020).
I That’s all,

Thank you for your atention!!!

I The complete references can be seen in my webpage:

https : //webs.um.es/jorgenav/miwiki/doku.php

Jorge Navarro, ISBIS KOCHI DEC 28-30, 2020 Universidad de Murcia. 36/36


	Samaniego's signature representation
	Definitions
	Samaniego's representation
	A counterexample

	Extensions to the exchangeable case
	Coherent systems
	Semi-coherent systems
	A counterexample

	Extensions to the non-exchangeable case
	Two extensions
	Equivalence
	A counterexample


