Extensions of signature representations for coherent systems

Jorge Navarro ${ }^{1}$, Universidad de Murcia, Spain. E-mail: jorgenav@um.es.

${ }^{1}$ Supported by Ministerio de Ciencia e Innovación of Spain under grant PID2019-103971GB-I00.

References

The talk is based on the following references:

- Navarro J, Fernández-Sánchez J. (2020). On the extension of signature-based representations for coherent systems with dependent non-exchangeable components. Journal of Applied Probability 57, 429-440.
- Navarro J., Rychlik T., Spizzichino F. (2020). Conditions on marginals and copula of component lifetimes for signature representation of system lifetime. Fuzzy Sets and Systems. Available online November 12, 2020. https://doi.org/10.1016/j.fss.2020.11.006

Samaniego's signature representation

Definitions
Samaniego's representation
A counterexample

Extensions to the exchangeable case

Coherent systems
Semi-coherent systems
A counterexample

Extensions to the non-exchangeable case

Two extensions
Equivalence
A counterexample

Binary systems

- A (binary) system is a Boolean (structure) function $\psi:\{0,1\}^{n} \rightarrow\{0,1\}$.

Binary systems

- A (binary) system is a Boolean (structure) function $\psi:\{0,1\}^{n} \rightarrow\{0,1\}$.
- Here $x_{i}=0$ means that the i th component does not work and $x_{i}=1$ that it works.

Binary systems

- A (binary) system is a Boolean (structure) function $\psi:\{0,1\}^{n} \rightarrow\{0,1\}$.
- Here $x_{i}=0$ means that the i th component does not work and $x_{i}=1$ that it works.
- Then the system state $\psi\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}$ is completely determined by the structure function ψ and the component states $x_{1}, \ldots, x_{n} \in\{0,1\}$.

Binary systems

- A (binary) system is a Boolean (structure) function $\psi:\{0,1\}^{n} \rightarrow\{0,1\}$.
- Here $x_{i}=0$ means that the i th component does not work and $x_{i}=1$ that it works.
- Then the system state $\psi\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}$ is completely determined by the structure function ψ and the component states $x_{1}, \ldots, x_{n} \in\{0,1\}$.
- A system ψ is semi-coherent if it is increasing, $\psi(0, \ldots, 0)=0$ and $\psi(1, \ldots, 1)=1$.

Coherent systems

- A system ψ is coherent if it is increasing and all the components are relevant.

Coherent systems

- A system ψ is coherent if it is increasing and all the components are relevant.
- The ith component is relevant if ψ is strictly increasing in at least a point in the ith variable.

Coherent systems

- A system ψ is coherent if it is increasing and all the components are relevant.
- The i th component is relevant if ψ is strictly increasing in at least a point in the ith variable.
- In particular, if ψ is coherent, then $\psi(0, \ldots, 0)=0$ and $\psi(1, \ldots, 1)=1$ (it is also semi-coherent).

Coherent systems

- A system ψ is coherent if it is increasing and all the components are relevant.
- The i th component is relevant if ψ is strictly increasing in at least a point in the ith variable.
- In particular, if ψ is coherent, then $\psi(0, \ldots, 0)=0$ and $\psi(1, \ldots, 1)=1$ (it is also semi-coherent).
- The system $\psi\left(x_{1}, x_{2}\right)=x_{2}$ is semi-coherent but not coherent.

Coherent systems

- A system ψ is coherent if it is increasing and all the components are relevant.
- The i th component is relevant if ψ is strictly increasing in at least a point in the i th variable.
- In particular, if ψ is coherent, then $\psi(0, \ldots, 0)=0$ and $\psi(1, \ldots, 1)=1$ (it is also semi-coherent).
- The system $\psi\left(x_{1}, x_{2}\right)=x_{2}$ is semi-coherent but not coherent.
- Barlow and Proschan (1975). Statistical Theory of Reliability and Life Testing. International Series in Decision Processes. Holt, Rinehart and Winston, Inc., New York.

Minimal path sets

- A set $P \subseteq\{1, \ldots, n\}$ is a path set of ψ if $\psi\left(x_{1}, \ldots, x_{n}\right)=1$ when $x_{i}=1$ for all $i \in P$.

Minimal path sets

- A set $P \subseteq\{1, \ldots, n\}$ is a path set of ψ if $\psi\left(x_{1}, \ldots, x_{n}\right)=1$ when $x_{i}=1$ for all $i \in P$.
- A path set P is a minimal path set if it does not contain other path sets.

Minimal path sets

- A set $P \subseteq\{1, \ldots, n\}$ is a path set of ψ if $\psi\left(x_{1}, \ldots, x_{n}\right)=1$ when $x_{i}=1$ for all $i \in P$.
- A path set P is a minimal path set if it does not contain other path sets.
- If P_{1}, \ldots, P_{r} are the minimal path sets of a semi-coherent system ψ, then

$$
\begin{equation*}
\psi\left(x_{1}, \ldots, x_{n}\right)=\max _{i=1, \ldots, r} \min _{j \in P_{i}} x_{j} \tag{1.1}
\end{equation*}
$$

Minimal path sets

- A set $P \subseteq\{1, \ldots, n\}$ is a path set of ψ if $\psi\left(x_{1}, \ldots, x_{n}\right)=1$ when $x_{i}=1$ for all $i \in P$.
- A path set P is a minimal path set if it does not contain other path sets.
- If P_{1}, \ldots, P_{r} are the minimal path sets of a semi-coherent system ψ, then

$$
\begin{equation*}
\psi\left(x_{1}, \ldots, x_{n}\right)=\max _{i=1, \ldots, r} \min _{j \in P_{i}} x_{j} \tag{1.1}
\end{equation*}
$$

- Here $\psi_{P}=\min _{j \in P} x_{j}$ represents the series system with components in P.

Lifetimes

- Let T be the system lifetime and let X_{1}, \ldots, X_{n} be the component lifetimes. Then

$$
\begin{equation*}
T=\max _{i=1, \ldots, r} \min _{j \in P_{i}} X_{j} \tag{1.2}
\end{equation*}
$$

Lifetimes

- Let T be the system lifetime and let X_{1}, \ldots, X_{n} be the component lifetimes. Then

$$
\begin{equation*}
T=\max _{i=1, \ldots, r} \min _{j \in P_{i}} X_{j} \tag{1.2}
\end{equation*}
$$

- Let $\bar{F}_{T}(t)=\operatorname{Pr}(T>t)$ be the system reliability (or survival) function and let $\bar{F}_{i}(t)=\operatorname{Pr}\left(X_{i}>t\right)$ for $i=1, \ldots, n$ be the component reliability functions.

Lifetimes

- Let T be the system lifetime and let X_{1}, \ldots, X_{n} be the component lifetimes. Then

$$
\begin{equation*}
T=\max _{i=1, \ldots, r} \min _{j \in P_{i}} X_{j} \tag{1.2}
\end{equation*}
$$

- Let $\bar{F}_{T}(t)=\operatorname{Pr}(T>t)$ be the system reliability (or survival) function and let $\bar{F}_{i}(t)=\operatorname{Pr}\left(X_{i}>t\right)$ for $i=1, \ldots, n$ be the component reliability functions.
- The purpose is to write

$$
\begin{equation*}
\bar{F}_{T}=\bar{Q}\left(\bar{F}_{1}, \ldots, \bar{F}_{n}\right) \tag{1.3}
\end{equation*}
$$

Samaniego's representation

- F.J. Samaniego (1985, IEEE Tr. Rel.) obtained the following result:

Samaniego's representation

- F.J. Samaniego (1985, IEEE Tr. Rel.) obtained the following result:
- Theorem (Samaniego, 1985)

If T is the lifetime of a coherent system with IID component lifetimes having a common continuous reliability function \bar{F}, then

$$
\begin{equation*}
\bar{F}_{T}(t)=s_{1} \bar{F}_{1: n}(t)+\cdots+s_{n} \bar{F}_{n: n}(t) \tag{1.4}
\end{equation*}
$$

where $\bar{F}_{1: n}, \ldots, \bar{F}_{n: n}$ are the reliability functions of the ordered component lifetimes $X_{1: n} \leq \cdots \leq X_{n: n}$ (order statistics) and $s_{1}+\cdots+s_{n}=1$.

Signature vector

- The vector $s=\left(s_{1}, \ldots, s_{n}\right)$ with the coefficients in that representation was called the signature of the system.

Signature vector

- The vector $\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right)$ with the coefficients in that representation was called the signature of the system.
- Under these assumptions s only depends on the structure ψ.

Signature vector

- The vector $\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right)$ with the coefficients in that representation was called the signature of the system.
- Under these assumptions s only depends on the structure ψ.
- It can be computed as $s_{i}=\operatorname{Pr}\left(T=X_{i: n}\right)$, as

$$
s_{i}=\frac{\mid\left\{\sigma: \psi\left(x_{1}, \ldots, x_{n}\right)=x_{i: n} \text { when } x_{\sigma(1)} \leq \cdots \leq x_{\sigma(n)}\right\} \mid}{n!}
$$

or as

Order statistics

- If X_{1}, \ldots, X_{n} are IID $\sim F$, then

$$
\begin{equation*}
\bar{F}_{i: n}(t)=\sum_{j=0}^{i-1}\binom{n}{j} F^{j}(t) \bar{F}^{n-j}(t) . \tag{1.6}
\end{equation*}
$$

Order statistics

- If X_{1}, \ldots, X_{n} are IID $\sim F$, then

$$
\begin{equation*}
\bar{F}_{i: n}(t)=\sum_{j=0}^{i-1}\binom{n}{j} F^{j}(t) \bar{F}^{n-j}(t) . \tag{1.6}
\end{equation*}
$$

- Hence from Samaniego's theorem

$$
\begin{equation*}
\bar{F}_{T}(t)=\sum_{i=1}^{n} s_{i} \sum_{j=0}^{i-1}\binom{n}{j} F^{j}(t) \bar{F}^{n-j}(t) \tag{1.7}
\end{equation*}
$$

Stochastic comparisons

Theorem (Kochar, Mukerjee and Samaniego, 1999)

Let T_{1} and T_{2} be the lifetimes of two coherent systems based on n IID components with a common continuous distribution function F.
Let s_{1} and s_{2} be their respective signatures.
(i) If $\boldsymbol{s}_{1} \leq s T \boldsymbol{s}_{2}$, then $T_{1} \leq s T T_{2}$ for all F;
(ii) If $s_{1} \leq H R s_{2}$, then $T_{1} \leq H R T_{2}$ for all F;
(iii) If $\boldsymbol{s}_{1} \leq_{L R} \boldsymbol{s}_{2}$, then $T_{1} \leq_{L R} T_{2}$ for all abs. cont. F.

Example 1

- X_{1}, X_{2} IID Bernoulli with $\operatorname{Pr}\left(X_{i}=1\right)=\operatorname{Pr}\left(X_{i}=0\right)=1 / 2$.

Example 1

- X_{1}, X_{2} IID Bernoulli with $\operatorname{Pr}\left(X_{i}=1\right)=\operatorname{Pr}\left(X_{i}=0\right)=1 / 2$.
- $T=X_{1: 2}=\min \left(X_{1}, X_{2}\right)$.

Example 1

- X_{1}, X_{2} IID Bernoulli with $\operatorname{Pr}\left(X_{i}=1\right)=\operatorname{Pr}\left(X_{i}=0\right)=1 / 2$.
- $T=X_{1: 2}=\min \left(X_{1}, X_{2}\right)$.
- $s_{1}=\operatorname{Pr}\left(T=X_{1: 2}\right)=1$ and $s_{2}=\operatorname{Pr}\left(T=X_{2: 2}\right)=1 / 2$.

Example 1

- X_{1}, X_{2} IID Bernoulli with $\operatorname{Pr}\left(X_{i}=1\right)=\operatorname{Pr}\left(X_{i}=0\right)=1 / 2$.
- $T=X_{1: 2}=\min \left(X_{1}, X_{2}\right)$.
- $s_{1}=\operatorname{Pr}\left(T=X_{1: 2}\right)=1$ and $s_{2}=\operatorname{Pr}\left(T=X_{2: 2}\right)=1 / 2$.
- Samaniego's representation does not hold

$$
\bar{F}_{1: 2} \neq 1 \bar{F}_{1: 2}+\frac{1}{2} \bar{F}_{2: 2} .
$$

- However, if we use (1.5), then $s_{1}=1, s_{2}=0$ and Samaniego's representation holds.

Signatures

- In the general case we can define two signatures:

Signatures

- In the general case we can define two signatures:
- The probabilistic signature $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ with $p_{i}=\operatorname{Pr}\left(T=X_{i: n}\right)$.

Signatures

- In the general case we can define two signatures:
- The probabilistic signature $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ with $p_{i}=\operatorname{Pr}\left(T=X_{i: n}\right)$.
- The structural signature $\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right)$ with s_{i} obtained from (1.5).

Signatures

- In the general case we can define two signatures:
- The probabilistic signature $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ with $p_{i}=\operatorname{Pr}\left(T=X_{i: n}\right)$.
- The structural signature $\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right)$ with s_{i} obtained from (1.5).
- The signature s only depends on ψ while \mathbf{p} depends on both ψ and the joint distribution of X_{1}, \ldots, X_{n}.

Signatures

- In the general case we can define two signatures:
- The probabilistic signature $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ with $p_{i}=\operatorname{Pr}\left(T=X_{i: n}\right)$.
- The structural signature $\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right)$ with s_{i} obtained from (1.5).
- The signature s only depends on ψ while \mathbf{p} depends on both ψ and the joint distribution of X_{1}, \ldots, X_{n}.
- In the IID continuous case, they coincide.

Signatures

- In the general case we can define two signatures:
- The probabilistic signature $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ with $p_{i}=\operatorname{Pr}\left(T=X_{i: n}\right)$.
- The structural signature $\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right)$ with s_{i} obtained from (1.5).
- The signature s only depends on ψ while \mathbf{p} depends on both ψ and the joint distribution of X_{1}, \ldots, X_{n}.
- In the IID continuous case, they coincide.
- In the preceding example $\mathbf{p}=(1,1 / 2)$ and $\mathbf{s}=(1,0)$.

First extension

- The first extension was obtained in Navarro and Rychlik (JMVA, 2007) and it is based on the following concept.

First extension

- The first extension was obtained in Navarro and Rychlik (JMVA, 2007) and it is based on the following concept.
- We say that $\left(X_{1}, \ldots, X_{n}\right)$ is exchangeable (EXC) if

$$
\left(X_{1}, \ldots, X_{n}\right)=\operatorname{st}\left(X_{\sigma(1)}, \ldots, X_{\sigma(n)}\right)
$$

First extension

- The first extension was obtained in Navarro and Rychlik (JMVA, 2007) and it is based on the following concept.
- We say that $\left(X_{1}, \ldots, X_{n}\right)$ is exchangeable (EXC) if

$$
\left(X_{1}, \ldots, X_{n}\right)=\operatorname{st}\left(X_{\sigma(1)}, \ldots, X_{\sigma(n)}\right)
$$

- Theorem (Navarro and Rychlik, 2007)

If T is the lifetime of a coherent system with component lifetimes having an absolutely continuous joint EXC distribution, then $\mathbf{p}=\mathbf{s}$ and

$$
\begin{equation*}
\bar{F}_{T}(t)=p_{1} \bar{F}_{1: n}(t)+\cdots+p_{n} \bar{F}_{n: n}(t) \tag{2.1}
\end{equation*}
$$

Second extension

- The second extension was obtained in Navarro, Samaniego, Balakrishnan and Bhattacharya (NRL, 2008) as follows:

Second extension

- The second extension was obtained in Navarro, Samaniego, Balakrishnan and Bhattacharya (NRL, 2008) as follows:
- Theorem (Navarro et al., 2008)

If T is the lifetime of a coherent system with component lifetimes having a common EXC distribution and structural signature s, then

$$
\begin{equation*}
\bar{F}_{T}(t)=s_{1} \bar{F}_{1: n}(t)+\cdots+s_{n} \bar{F}_{n: n}(t) \tag{2.2}
\end{equation*}
$$

Second extension

- The second extension was obtained in Navarro, Samaniego, Balakrishnan and Bhattacharya (NRL, 2008) as follows:
- Theorem (Navarro et al., 2008)

If T is the lifetime of a coherent system with component lifetimes having a common EXC distribution and structural signature s, then

$$
\begin{equation*}
\bar{F}_{T}(t)=s_{1} \bar{F}_{1: n}(t)+\cdots+s_{n} \bar{F}_{n: n}(t) \tag{2.2}
\end{equation*}
$$

- It can be applied to the general IID case (as in the Bernoulli example above).

Third extension

- The third extension was also obtained in Navarro, Samaniego, Balakrishnan and Bhattacharya (NRL, 2008).

Third extension

- The third extension was also obtained in Navarro, Samaniego, Balakrishnan and Bhattacharya (NRL, 2008).
- It will allow us to compare systems with different orders.

Third extension

- The third extension was also obtained in Navarro, Samaniego, Balakrishnan and Bhattacharya (NRL, 2008).
- It will allow us to compare systems with different orders.
- It is based on the concept of signature of order n.

Theorem (Navarro et al., 2008)

If $T=\psi\left(X_{1}, \ldots, X_{k}\right)$ is the lifetime of a semi-coherent system with component lifetimes $\left(X_{1}, \ldots, X_{n}\right)(k<n)$ having a common EXC distribution, then

$$
\begin{equation*}
\bar{F}_{T}(t)=s_{1}^{(n)} \bar{F}_{1: n}(t)+\cdots+s_{n}^{(n)} \bar{F}_{n: n}(t) \tag{2.3}
\end{equation*}
$$

where $\mathbf{s}^{(n)}=\left(s_{1}^{(n)}, \ldots, s_{n}^{(n)}\right)$ is the structural signature of order n (i.e. the signature obtained from (1.5) in dimension n).

Theorem (Navarro et al., 2008)

Let T_{1} and T_{2} be the lifetimes of two semi-coherent systems with component lifetimes $\left(X_{1}, \ldots, X_{n}\right)$ having an EXC joint distribution \boldsymbol{F}, and signatures of order $n, s_{1}^{(n)}$ and $s_{2}^{(n)}$, respectively.
(i) If $\boldsymbol{s}_{1}^{(n)} \leq_{S T} \boldsymbol{s}_{2}^{(n)}$, then $T_{1} \leq_{S T} T_{2}$ for all \boldsymbol{F};
(ii) If $\boldsymbol{s}_{1}^{(n)} \leq_{H R} \boldsymbol{s}_{2}^{(n)}$, then $T_{1} \leq_{H R} T_{2}$ for all \boldsymbol{F} such that

$$
\begin{equation*}
X_{1: n} \leq_{H R} \cdots \leq_{H R} X_{n: n} \tag{2.4}
\end{equation*}
$$

(iii) If $\boldsymbol{s}_{1}^{(n)} \leq_{H R} \boldsymbol{s}_{2}^{(n)}$, then $T_{1} \leq_{M R L} T_{2}$ for all \boldsymbol{F} such that

$$
\begin{equation*}
X_{1: n} \leq_{M R L} \cdots \leq_{M R L} X_{n: n} \tag{2.5}
\end{equation*}
$$

(iv) If $\boldsymbol{s}_{1}^{(n)} \leq_{L R} \boldsymbol{s}_{2}^{(n)}$, then $T_{1} \leq_{L R} T_{2}$ for all \boldsymbol{F} such that

$$
\begin{equation*}
X_{1: n} \leq_{L R} \cdots \leq_{L R} X_{n: n} \tag{2.6}
\end{equation*}
$$

Example 2

- The following example extracted from Navarro, Samaniego, Balakrishnan and Bhattacharya (NRL, 2008) shows that Samaniego's representation does not hold for a system with independent non identically distributed components.

Example 2

- The following example extracted from Navarro, Samaniego, Balakrishnan and Bhattacharya (NRL, 2008) shows that Samaniego's representation does not hold for a system with independent non identically distributed components.
- Therefore, the ID assumption is necessary for that representation.

Example 2

- The following example extracted from Navarro, Samaniego, Balakrishnan and Bhattacharya (NRL, 2008) shows that Samaniego's representation does not hold for a system with independent non identically distributed components.
- Therefore, the ID assumption is necessary for that representation.
- Let us consider the system $T=\min \left(X_{1}, \max \left(X_{1}, X_{2}\right)\right)$:

Figure: A coherent system of order 3.

Example 2

- The minimal path sets are $P_{1}=\{1,2\}$ and $P_{2}=\{1,3\}$.

Example 2

- The minimal path sets are $P_{1}=\{1,2\}$ and $P_{2}=\{1,3\}$.
- If $X_{P_{1}}=\min \left(X_{1}, X_{2}\right)$ and $X_{P_{2}}=\min \left(X_{1}, X_{3}\right)$, then

$$
\begin{aligned}
\bar{F}_{T}(t)= & \operatorname{Pr}\left(\left\{X_{P_{1}}>t\right\} \cup\left\{X_{P_{2}}>t\right\}\right) \\
= & \operatorname{Pr}\left(X_{P_{1}}>t\right)+\operatorname{Pr}\left(X_{P_{2}}>t\right)-\operatorname{Pr}\left(X_{P_{1} \cup P_{2}}>t\right) \\
= & \operatorname{Pr}\left(X_{1}>t, X_{2}>t\right)+\operatorname{Pr}\left(X_{1}>t, X_{3}>t\right) \\
& -\operatorname{Pr}\left(X_{1}>t, X_{2}>t, X_{3}>t\right) \\
= & \text { IND } \bar{F}_{1}(t) \bar{F}_{2}(t)+\bar{F}_{1}(t) \bar{F}_{3}(t)-\bar{F}_{1}(t) \bar{F}_{2}(t) \bar{F}_{3}(t)
\end{aligned}
$$

Example 2

- The minimal path sets are $P_{1}=\{1,2\}$ and $P_{2}=\{1,3\}$.
- If $X_{P_{1}}=\min \left(X_{1}, X_{2}\right)$ and $X_{P_{2}}=\min \left(X_{1}, X_{3}\right)$, then

$$
\begin{aligned}
\bar{F}_{T}(t)= & \operatorname{Pr}\left(\left\{X_{P_{1}}>t\right\} \cup\left\{X_{P_{2}}>t\right\}\right) \\
= & \operatorname{Pr}\left(X_{P_{1}}>t\right)+\operatorname{Pr}\left(X_{P_{2}}>t\right)-\operatorname{Pr}\left(X_{P_{1} \cup P_{2}}>t\right) \\
= & \operatorname{Pr}\left(X_{1}>t, X_{2}>t\right)+\operatorname{Pr}\left(X_{1}>t, X_{3}>t\right) \\
& -\operatorname{Pr}\left(X_{1}>t, X_{2}>t, X_{3}>t\right) \\
= & \text { IND } \bar{F}_{1}(t) \bar{F}_{2}(t)+\bar{F}_{1}(t) \bar{F}_{3}(t)-\bar{F}_{1}(t) \bar{F}_{2}(t) \bar{F}_{3}(t)
\end{aligned}
$$

- If $\bar{F}_{1}(t)=e^{-2 t}$ and $\bar{F}_{2}(t)=\bar{F}_{3}(t)=e^{-t}$, then

$$
\bar{F}_{T}(t)=2 e^{-3 t}-e^{-4 t}, \text { for } t \geq 0
$$

Example 2

- Analogously, for the order statistics we get

$$
\begin{aligned}
& \bar{F}_{1: 3}(t)=e^{-4 t} \\
& \bar{F}_{2: 3}(t)=e^{-2 t}+2 e^{-3 t}-2 e^{-4 t} \\
& \bar{F}_{3: 3}(t)=2 e^{-t}-2 e^{-3 t}+e^{-4 t}
\end{aligned}
$$

Example 2

- Analogously, for the order statistics we get

$$
\begin{aligned}
& \bar{F}_{1: 3}(t)=e^{-4 t} \\
& \bar{F}_{2: 3}(t)=e^{-2 t}+2 e^{-3 t}-2 e^{-4 t} \\
& \bar{F}_{3: 3}(t)=2 e^{-t}-2 e^{-3 t}+e^{-4 t}
\end{aligned}
$$

- Therefore $\bar{F}_{T}=c_{1} \bar{F}_{1: 3}+c_{2} \bar{F}_{2: 3}+c_{3} \bar{F}_{3: 3}$, that is, $2 e^{-3 t}-e^{-4 t}=c_{1} e^{-4 t}+c_{2}\left(e^{-2 t}+2 e^{-3 t}-2 e^{-4 t}\right)+c_{3}\left(2 e^{-t}-2 e^{-3 t}+e^{-4 t}\right)$
does not hold for $c_{1}, c_{2}, c_{3} \in \mathbb{R}$.

Example 2

- Hence \bar{F}_{T} is not equal to the mixture obtained neither with the structural signature $\mathbf{s}=(1 / 3,2 / 3,0)$ given by

$$
\bar{F}_{s}:=\frac{1}{3} \bar{F}_{1: 3}+\frac{2}{3} \bar{F}_{2: 3}
$$

nor with that obtained with the probabilistic signature

$$
\bar{F}_{p}:=p_{1} \bar{F}_{1: 3}+p_{2} \bar{F}_{2: 3},
$$

where $p_{i}=\operatorname{Pr}\left(T=X_{i: 3}\right)$ for $i=1,2$.

Example 2

- Hence \bar{F}_{T} is not equal to the mixture obtained neither with the structural signature $\mathbf{s}=(1 / 3,2 / 3,0)$ given by

$$
\bar{F}_{s}:=\frac{1}{3} \bar{F}_{1: 3}+\frac{2}{3} \bar{F}_{2: 3}
$$

nor with that obtained with the probabilistic signature

$$
\bar{F}_{p}:=p_{1} \bar{F}_{1: 3}+p_{2} \bar{F}_{2: 3},
$$

where $p_{i}=\operatorname{Pr}\left(T=X_{i: 3}\right)$ for $i=1,2$.

- In this example

$$
p_{1}=\operatorname{Pr}\left(X_{1}<\min \left(X_{2}, X_{3}\right)\right)
$$

where X_{1} and $Y=\min \left(X_{2}, X_{3}\right)$ are IID.

Example 2

- Hence \bar{F}_{T} is not equal to the mixture obtained neither with the structural signature $\mathbf{s}=(1 / 3,2 / 3,0)$ given by

$$
\bar{F}_{s}:=\frac{1}{3} \bar{F}_{1: 3}+\frac{2}{3} \bar{F}_{2: 3}
$$

nor with that obtained with the probabilistic signature

$$
\bar{F}_{p}:=p_{1} \bar{F}_{1: 3}+p_{2} \bar{F}_{2: 3},
$$

where $p_{i}=\operatorname{Pr}\left(T=X_{i: 3}\right)$ for $i=1,2$.

- In this example

$$
p_{1}=\operatorname{Pr}\left(X_{1}<\min \left(X_{2}, X_{3}\right)\right)
$$

where X_{1} and $Y=\min \left(X_{2}, X_{3}\right)$ are IID.

- Therefore, $p_{1}=p_{2}=1 / 2$.

Figure: Reliability functions \bar{F}_{T} (black), \bar{F}_{s} (blue), \bar{F}_{p} (red) and $\bar{F}_{k: 3}$ (dashed lines) for $k=1,2,3$.

The fourth extension

- The first extension for the non-EXC case was given in Marichal, Mathonet and Waldhauser (2011).

The fourth extension

- The first extension for the non-EXC case was given in Marichal, Mathonet and Waldhauser (2011).
- It is based on the vector of the component states at time t, $\left(Z_{1}(t), \ldots, Z_{n}(t)\right)$, where $Z_{i}(t)=1(0)$ iff $X_{i}>t(\leq)$.

The fourth extension

- The first extension for the non-EXC case was given in Marichal, Mathonet and Waldhauser (2011).
- It is based on the vector of the component states at time t, $\left(Z_{1}(t), \ldots, Z_{n}(t)\right)$, where $Z_{i}(t)=1(0)$ iff $X_{i}>t(\leq)$.
- It can be stated as follows:

Theorem (Marichal, Mathonet and Waldhauser, 2011)
If $n>2$, the following conditons are equivalent:
(i) Samaniego's representation holds with the structural signature for all the coherent systems of order n;
(ii) $\left(Z_{1}(t), \ldots, Z_{n}(t)\right)$ is EXC for all $t \geq 0$.

Samaniego's signature representation

Two extensions

The fifth extension

- It was given in Navarro and Fernández-Sánchez (JAP, 2020).

The fifth extension

- It was given in Navarro and Fernández-Sánchez (JAP, 2020).
- It is based on the copula representation for $\left(X_{1}, \ldots, X_{n}\right)$

$$
\operatorname{Pr}\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right)=C\left(F_{1}\left(x_{1}\right), \ldots, F_{n}\left(x_{n}\right)\right)
$$

where C is a copula function (i.e. a distribution function with uniform marginals on $(0,1)$).

The fifth extension

- It was given in Navarro and Fernández-Sánchez (JAP, 2020).
- It is based on the copula representation for $\left(X_{1}, \ldots, X_{n}\right)$

$$
\operatorname{Pr}\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right)=C\left(F_{1}\left(x_{1}\right), \ldots, F_{n}\left(x_{n}\right)\right)
$$

where C is a copula function (i.e. a distribution function with uniform marginals on $(0,1)$).

- The random vector $\left(X_{1}, \ldots, X_{n}\right)$ is EXC iff
(i) $F_{1}=\cdots=F_{n}$ (ID);
(ii) C is EXC.
- We have seen that the ID assumption cannot be relaxed.

The fifth extension

- It was given in Navarro and Fernández-Sánchez (JAP, 2020).
- It is based on the copula representation for $\left(X_{1}, \ldots, X_{n}\right)$

$$
\operatorname{Pr}\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right)=C\left(F_{1}\left(x_{1}\right), \ldots, F_{n}\left(x_{n}\right)\right)
$$

where C is a copula function (i.e. a distribution function with uniform marginals on $(0,1)$).

- The random vector $\left(X_{1}, \ldots, X_{n}\right)$ is EXC iff
(i) $F_{1}=\cdots=F_{n}$ (ID);
(ii) C is EXC.
- We have seen that the ID assumption cannot be relaxed.
- So let us to relax (ii).

The fifth extension

- We say that a copula C es diagonal dependent (DD) if

$$
\begin{equation*}
C\left(u_{1}, \ldots, u_{n}\right)=C\left(u_{\sigma(1)}, \ldots, u_{\sigma(n)}\right) \tag{3.1}
\end{equation*}
$$

for all permutations σ and all $1<k<n$, where $u_{i}=u \in[0,1]$ for all $i=1, \ldots, k$ and $u_{i}=1$ for $i=k+1, \ldots, n$.

The fifth extension

- We say that a copula C es diagonal dependent (DD) if

$$
\begin{equation*}
C\left(u_{1}, \ldots, u_{n}\right)=C\left(u_{\sigma(1)}, \ldots, u_{\sigma(n)}\right) \tag{3.1}
\end{equation*}
$$

for all permutations σ and all $1<k<n$, where $u_{i}=u \in[0,1]$ for all $i=1, \ldots, k$ and $u_{i}=1$ for $i=k+1, \ldots, n$.

- Eq. (3.1) holds for $k=1$ and $k=n$.

The fifth extension

- We say that a copula C es diagonal dependent (DD) if

$$
\begin{equation*}
C\left(u_{1}, \ldots, u_{n}\right)=C\left(u_{\sigma(1)}, \ldots, u_{\sigma(n)}\right) \tag{3.1}
\end{equation*}
$$

for all permutations σ and all $1<k<n$, where $u_{i}=u \in[0,1]$ for all $i=1, \ldots, k$ and $u_{i}=1$ for $i=k+1, \ldots, n$.

- Eq. (3.1) holds for $k=1$ and $k=n$.
- It means that all the copulas of the k-dimensional marginals have the same diagonal sections.

The fifth extension

- We say that a copula C es diagonal dependent (DD) if

$$
\begin{equation*}
C\left(u_{1}, \ldots, u_{n}\right)=C\left(u_{\sigma(1)}, \ldots, u_{\sigma(n)}\right) \tag{3.1}
\end{equation*}
$$

for all permutations σ and all $1<k<n$, where $u_{i}=u \in[0,1]$ for all $i=1, \ldots, k$ and $u_{i}=1$ for $i=k+1, \ldots, n$.

- Eq. (3.1) holds for $k=1$ and $k=n$.
- It means that all the copulas of the k-dimensional marginals have the same diagonal sections.
- For example, if $n=3$, then it is equivalent to

$$
C(u, u, 1)=C(u, 1, u)=C(1, u, u), \text { for all } u \in[0,1] .
$$

The fifth extension

- Now we can state the following theorem:

Theorem (Navarro and Fernández-Sánchez, 2020)
If T is the lifetime of a coherent system and the following conditions hold:
(i) $F_{1}=\cdots=F_{n}$ (ID);
(ii) C is $D D$;
then Samaniego's representation holds for the structural signature.

The fifth extension

- Now we can state the following theorem:

Theorem (Navarro and Fernández-Sánchez, 2020)

If T is the lifetime of a coherent system and the following conditions hold:
(i) $F_{1}=\cdots=F_{n}$ (ID);
(ii) C is $D D$;
then Samaniego's representation holds for the structural signature.

- A similar property holds for semi-coherent systems with the structural signature of order n.

The fifth extension

- The proof is based on the representation of the system reliability as a linear combination of series system reliability functions of path sets and the fact that these functions can be obtained from diagonal sections of dimension k of C and the common distribution.

The fifth extension

- The proof is based on the representation of the system reliability as a linear combination of series system reliability functions of path sets and the fact that these functions can be obtained from diagonal sections of dimension k of C and the common distribution.
- This extension is not trivial since the set $\mathcal{C}_{D D}$ of DD copulas is dense in the set of copulas \mathcal{C} while the set $\mathcal{C}_{\text {EXC }}$ of EXC copulas is not.

The fifth extension

- The proof is based on the representation of the system reliability as a linear combination of series system reliability functions of path sets and the fact that these functions can be obtained from diagonal sections of dimension k of C and the common distribution.
- This extension is not trivial since the set $\mathcal{C}_{D D}$ of DD copulas is dense in the set of copulas \mathcal{C} while the set $\mathcal{C}_{\text {EXC }}$ of EXC copulas is not.
- Therefore, for any copula C we can find a "close" DD copula C^{*}.

The last extension

- It was given in the paper Navarro, Rychlik and Spizzichino (FSS, 2020) and it is based on the following concept.

The last extension

- It was given in the paper Navarro, Rychlik and Spizzichino (FSS, 2020) and it is based on the following concept.
- We say that a copula C es S-diagonal dependent (S-DD) for $S \subseteq[0,1]$ if

$$
\begin{equation*}
C\left(u_{1}, \ldots, u_{n}\right)=C\left(u_{\sigma(1)}, \ldots, u_{\sigma(n)}\right) \tag{3.2}
\end{equation*}
$$

for all permutations σ and all $1<k<n$, where $u_{i}=u \in S$ for all $i=1, \ldots, k$ and $u_{i}=1$ for $i=k+1, \ldots, n$.

The last extension

- It was given in the paper Navarro, Rychlik and Spizzichino (FSS, 2020) and it is based on the following concept.
- We say that a copula C es S-diagonal dependent (S-DD) for $S \subseteq[0,1]$ if

$$
\begin{equation*}
C\left(u_{1}, \ldots, u_{n}\right)=C\left(u_{\sigma(1)}, \ldots, u_{\sigma(n)}\right) \tag{3.2}
\end{equation*}
$$

for all permutations σ and all $1<k<n$, where $u_{i}=u \in S$ for all $i=1, \ldots, k$ and $u_{i}=1$ for $i=k+1, \ldots, n$.

- If $S=[0,1]$, then it is DD.

The last extension

- It was given in the paper Navarro, Rychlik and Spizzichino (FSS, 2020) and it is based on the following concept.
- We say that a copula C es S-diagonal dependent (S-DD) for $S \subseteq[0,1]$ if

$$
\begin{equation*}
C\left(u_{1}, \ldots, u_{n}\right)=C\left(u_{\sigma(1)}, \ldots, u_{\sigma(n)}\right) \tag{3.2}
\end{equation*}
$$

for all permutations σ and all $1<k<n$, where $u_{i}=u \in S$ for all $i=1, \ldots, k$ and $u_{i}=1$ for $i=k+1, \ldots, n$.

- If $S=[0,1]$, then it is DD.
- Now we can state the following theorem.

Theorem (Navarro, Rychlik and Spizzichino, 2020)

If $n>2$, the following conditions are equivalent:
(i) Samaniego's representation holds with the structural signature for all the coherent systems of order n;
(ii) If $A_{i}=\left\{X_{i} \leq t\right\}$ and $\bar{A}_{i}=\left\{X_{i}>t\right\}$, then
$\operatorname{Pr}\left(A_{1} \cap \cdots \cap A_{k} \cap \bar{A}_{k+1} \cap \cdots \cap \bar{A}_{n}\right)=\operatorname{Pr}\left(A_{\sigma(1)} \cap \cdots \cap A_{\sigma(k)} \cap \bar{A}_{\sigma(k+1)} \cap \cdots \cap \bar{A}_{\sigma(n)}\right)$
for all permutation σ, all $1<k<n$ and all $t>0$;
(iii) The vector with the component states at time t is EXC for all $t \geq 0$;
(iv) The component lifetimes are $I D F_{1}=\cdots=F_{n}=F$ and its copula is $S-D D$, where $S=\operatorname{ImF}=\{u: F(t)=u$ for $t>0\}$.

Example 3

- Let us consider again $T=\min \left(X_{1}, \max \left(X_{2}, X_{3}\right)\right)$ with

$$
\bar{F}(t)=\operatorname{Pr}\left(X_{1}>t, X_{2}>t\right)+\operatorname{Pr}\left(X_{1}>t, X_{3}>t\right)-\operatorname{Pr}\left(X_{1}>t, X_{2}>t, X_{3}>t\right)
$$

Example 3

- Let us consider again $T=\min \left(X_{1}, \max \left(X_{2}, X_{3}\right)\right)$ with

$$
\bar{F}(t)=\operatorname{Pr}\left(X_{1}>t, X_{2}>t\right)+\operatorname{Pr}\left(X_{1}>t, X_{3}>t\right)-\operatorname{Pr}\left(X_{1}>t, X_{2}>t, X_{3}>t\right)
$$

- Let us assume

$$
\operatorname{Pr}\left(X_{1}>x_{1}, X_{2}>x_{2}, X_{3}>x_{3}\right)=\hat{C}\left(\bar{F}_{1}\left(x_{1}\right), \bar{F}_{2}\left(x_{2}\right), \bar{F}_{3}\left(x_{3}\right)\right),
$$

where \hat{C} is the survival copula. C is DD iff \hat{C} is DD.

Example 3

- Let us consider again $T=\min \left(X_{1}, \max \left(X_{2}, X_{3}\right)\right)$ with

$$
\bar{F}(t)=\operatorname{Pr}\left(X_{1}>t, X_{2}>t\right)+\operatorname{Pr}\left(X_{1}>t, X_{3}>t\right)-\operatorname{Pr}\left(X_{1}>t, X_{2}>t, X_{3}>t\right)
$$

- Let us assume

$$
\operatorname{Pr}\left(X_{1}>x_{1}, X_{2}>x_{2}, X_{3}>x_{3}\right)=\hat{C}\left(\bar{F}_{1}\left(x_{1}\right), \bar{F}_{2}\left(x_{2}\right), \bar{F}_{3}\left(x_{3}\right)\right),
$$

where \hat{C} is the survival copula. C is DD iff \hat{C} is DD.

- If we assume $\bar{F}_{1}=\bar{F}_{2}=\bar{F}_{3}=\bar{F}$ (ID), then

$$
\begin{aligned}
\operatorname{Pr}\left(X_{1}>t, X_{2}>t\right) & =\hat{C}(\bar{F}(t), \bar{F}(t), 1) \\
\operatorname{Pr}\left(X_{1}>t, X_{3}>t\right) & =\hat{C}(\bar{F}(t), 1, \bar{F}(t)) \\
\operatorname{Pr}\left(X_{1}>t, X_{2}>t, X_{3}>t\right) & =\hat{C}(\bar{F}(t), \bar{F}(t), \bar{F}(t))
\end{aligned}
$$

Example 3

- Therefore, $\bar{F}_{T}(t)=\bar{q}(\bar{F}(t))$ with

$$
\bar{q}(u)=\hat{C}(u, u, 1)+\hat{C}(u, 1, u)-\hat{C}(u, u, u) .
$$

Example 3

- Therefore, $\bar{F}_{T}(t)=\bar{q}(\bar{F}(t))$ with

$$
\bar{q}(u)=\hat{C}(u, u, 1)+\hat{C}(u, 1, u)-\hat{C}(u, u, u) .
$$

- Analogously, it can be proved that $\bar{F}_{i: 3}(t)=\bar{q}_{i: 3}(\bar{F}(t))$ with

$$
\begin{aligned}
& \bar{q}_{1: 3}(u)=\hat{C}(u, u, u) \\
& \bar{q}_{2: 3}(u)=\hat{C}(u, u, 1)+\hat{C}(u, 1, u)+\hat{C}(1, u, u)-2 \hat{C}(u, u, u)
\end{aligned}
$$

Example 3

- Therefore, $\bar{F}_{T}(t)=\bar{q}(\bar{F}(t))$ with

$$
\bar{q}(u)=\hat{C}(u, u, 1)+\hat{C}(u, 1, u)-\hat{C}(u, u, u) .
$$

- Analogously, it can be proved that $\bar{F}_{i: 3}(t)=\bar{q}_{i: 3}(\bar{F}(t))$ with

$$
\begin{aligned}
& \bar{q}_{1: 3}(u)=\hat{C}(u, u, u) \\
& \bar{q}_{2: 3}(u)=\hat{C}(u, u, 1)+\hat{C}(u, 1, u)+\hat{C}(1, u, u)-2 \hat{C}(u, u, u)
\end{aligned}
$$

- As the signature is $s=(1 / 3,2 / 3,0)$ we do not need $\bar{F}_{3: 3}$.

Example 3: IID components

- If the components are IID, $\hat{C}\left(u_{1}, u_{2}, u_{3}\right)=u_{1} u_{2} u_{3}$ and

$$
\begin{aligned}
\bar{q}(u) & =2 u^{2}-u^{3} \\
\bar{q}_{1: 3}(u) & =u^{3} \\
\bar{q}_{2: 3}(u) & =3 u^{2}-2 u^{3} .
\end{aligned}
$$

Example 3: IID components

- If the components are IID, $\hat{C}\left(u_{1}, u_{2}, u_{3}\right)=u_{1} u_{2} u_{3}$ and

$$
\begin{aligned}
\bar{q}(u) & =2 u^{2}-u^{3} \\
\bar{q}_{1: 3}(u) & =u^{3} \\
\bar{q}_{2: 3}(u) & =3 u^{2}-2 u^{3} .
\end{aligned}
$$

- Therefore

$$
\bar{q}(u)=\frac{1}{3} \bar{q}_{1: 3}(u)+\frac{2}{3} \bar{q}_{1: 3}(u)
$$

holds since

$$
2 u^{2}-u^{3}=\frac{1}{3}\left(u^{3}\right)+\frac{2}{3}\left(3 u^{2}-2 u^{3}\right) .
$$

Example 3: ID components and DD copula

- If \hat{C} is DD, then

$$
\begin{aligned}
\bar{q}(u) & =2 \hat{C}(u, u, 1)-\hat{C}(u, u, u) \\
\bar{q}_{1: 3}(u) & =\hat{C}(u, u, u) \\
\bar{q}_{2: 3}(u) & =3 \hat{C}(u, u, 1)-2 \hat{C}(u, u, u) .
\end{aligned}
$$

Example 3: ID components and DD copula

- If \hat{C} is DD, then

$$
\begin{aligned}
\bar{q}(u) & =2 \hat{C}(u, u, 1)-\hat{C}(u, u, u) \\
\bar{q}_{1: 3}(u) & =\hat{C}(u, u, u) \\
\bar{q}_{2: 3}(u) & =3 \hat{C}(u, u, 1)-2 \hat{C}(u, u, u) .
\end{aligned}
$$

- Therefore

$$
\bar{q}(u)=\frac{1}{3} \bar{q}_{1: 3}(u)+\frac{2}{3} \bar{q}_{1: 3}(u)
$$

holds since

$$
2 \hat{C}(u, u, 1)-\hat{C}(u, u, u)=\frac{1}{3} \hat{C}(u, u, u)+\frac{2}{3}(3 \hat{C}(u, u, 1)-2 \hat{C}(u, u, u)) .
$$

Example 3: ID components and FGM copula

- If \hat{C} is a FGM copula:

$$
\hat{C}\left(u_{1}, u_{2}, u_{3}\right)=u_{1} u_{2} u_{3}\left(1+\theta\left(1-u_{2}\right)\left(1-u_{3}\right)\right)
$$

for $-1 \leq \theta \leq 1$, then

$$
\begin{aligned}
\bar{q}(u) & =2 u^{2}-\hat{C}(u, u, u) \\
\bar{q}_{1: 3}(u) & =\hat{C}(u, u, u) \\
\bar{q}_{2: 3}(u) & =3 u^{2}+\theta u^{2}(1-u)^{2}-2 \hat{C}(u, u, u) .
\end{aligned}
$$

Example 3: ID components and FGM copula

- If \hat{C} is a FGM copula:

$$
\hat{C}\left(u_{1}, u_{2}, u_{3}\right)=u_{1} u_{2} u_{3}\left(1+\theta\left(1-u_{2}\right)\left(1-u_{3}\right)\right)
$$

for $-1 \leq \theta \leq 1$, then

$$
\begin{aligned}
\bar{q}(u) & =2 u^{2}-\hat{C}(u, u, u) \\
\bar{q}_{1: 3}(u) & =\hat{C}(u, u, u) \\
\bar{q}_{2: 3}(u) & =3 u^{2}+\theta u^{2}(1-u)^{2}-2 \hat{C}(u, u, u) .
\end{aligned}
$$

- Therefore

$$
\bar{q}(u)=\frac{1}{3} \bar{q}_{1: 3}(u)+\frac{2}{3} \bar{q}_{1: 3}(u)
$$

does hold for $\theta \neq 0$ since

$$
2 u^{2}-\hat{C}(u, u, u) \neq \frac{1}{3} \hat{C}(u, u, u)+\frac{2}{3}\left(3 u^{2}+\theta u^{2}(1-u)^{2}-2 \hat{C}(u, u, u)\right) .
$$

Conclusions

- Samaniego's representation is a very useful tool to study and compare systems.

Conclusions

- Samaniego's representation is a very useful tool to study and compare systems.
- However, it has some limitations.

Conclusions

- Samaniego's representation is a very useful tool to study and compare systems.
- However, it has some limitations.
- The first one is that we need to assume ID components.

Conclusions

- Samaniego's representation is a very useful tool to study and compare systems.
- However, it has some limitations.
- The first one is that we need to assume ID components.
- We also need to assume a DD copula.

Conclusions

- Samaniego's representation is a very useful tool to study and compare systems.
- However, it has some limitations.
- The first one is that we need to assume ID components.
- We also need to assume a DD copula.
- Fortunately, $\mathcal{C}_{D D}$ is dense in \mathcal{C}.

Conclusions

- Samaniego's representation is a very useful tool to study and compare systems.
- However, it has some limitations.
- The first one is that we need to assume ID components.
- We also need to assume a DD copula.
- Fortunately, $\mathcal{C}_{D D}$ is dense in \mathcal{C}.
- For discrete distributions F, this assumption can be relaxed to S-DD copulas.

Conclusions

- Samaniego's representation is a very useful tool to study and compare systems.
- However, it has some limitations.
- The first one is that we need to assume ID components.
- We also need to assume a DD copula.
- Fortunately, $\mathcal{C}_{D D}$ is dense in \mathcal{C}.
- For discrete distributions F, this assumption can be relaxed to S-DD copulas.
- Moreover, the signature comparisons do not detect all the orderings (see Rychlik, Navarro and Rubio JAP 2018, 55 (4), 1261-1271).

Conclusions

- Can we obtain more extensions?

Conclusions

- Can we obtain more extensions?
- I do not think so.

Conclusions

- Can we obtain more extensions?
- I do not think so.
- The last theorem shows that the answer is negative if we want to have the representation for all the coherent systems.

Conclusions

- Can we obtain more extensions?
- I do not think so.
- The last theorem shows that the answer is negative if we want to have the representation for all the coherent systems.
- In the general case, we can use the representations based on distortions (see, e.g., Navarro and Spizzichino FSS, 2020).

Conclusions

- Can we obtain more extensions?
- I do not think so.
- The last theorem shows that the answer is negative if we want to have the representation for all the coherent systems.
- In the general case, we can use the representations based on distortions (see, e.g., Navarro and Spizzichino FSS, 2020).
- That's all,

Thank you for your atention!!!

- The complete references can be seen in my webpage:
https : //webs.um.es/jorgenav/miwiki/doku.php

