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Coherent systems and order statistics

X1, X2, . . . , Xn (positive) random variables.
X1, X2, . . . , Xn IID
X1, X2, . . . , Xn exchangeable (EXC), i.e., for any
permutation σ

(X1, X2, . . . , Xn) =ST (Xσ(1), Xσ(2), . . . , Xσ(n))

F (t) = Pr(Xi > t) reliability (survival) function.
X1:n, X2:n, . . . , Xn:n the associated OS.
Xk :n represents the lifetime of the k -out-of-n:F system.
T = φ(X1, X2, . . . , Xn) lifetime of a coherent system.
T = max1≤j≤r XPj ; Pj minimal path sets, XP = mini∈P Xi .
T = Xi:n with probability si = Pr(T = Xi:n).
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Mixture representations

Samaniego (1985), IID and F continuous, then

F T =
n∑

i=1

siF i:n. (1.1)

s = (s1, s2, . . . , sn) is the signature of T , si = Pr(T = Xi:n).
si does not depend on F and

si =
1
n!

∑
σ

1(σ ∈ Ai)

Ai = {σ : φ(x1, . . . , xn) = xi:n, when xσ(1) < ... < xσ(n)}.
Navarro and Rychlik (2007), (1.1) holds for EXC r.v. with
absolutely continuous joint distribution.
(1.1) does not necessarily hold if F is not a continuous
function (e.g. Bernoulli distribution).
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Mixture representations

Navarro et al. (2007), if T has EXC components, then

F T =
n∑

i=1

aiF 1:i . (1.2)

a = (a1, a2, . . . , an) is the minimal signature (or domination)
of T (ai does not depend on F but can be negative).
A similar representation holds in terms of parallel system.
In particular, for the OS:

F i:n =
n∑

j=n−i+1

(−1)j+i−n−1
(

j − 1
n − i

)(
n
j

)
F 1:j . (1.3)
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Mixture representations-General case

Recall that T = max1≤j≤r XPj

So: F t(t) = P(T > t) = P(∪r
j=1{XPj > t})

By using the inclusion-exclusion formula, we have

F T =
r∑

j=1

F Pj −
∑
i<j

F Pi∪Pj + . . .± F 1:n.
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Stochastic orderings

X ≤ST Y ⇔ F X (t) ≤ F Y (t) stochastic order.

X ≤HR Y ⇔ hX (t) ≥ hY (t), hazard rate order.

X ≤HR Y ⇔ (X − t |X > t) ≤ST (Y − t |Y > t) for all t .

X ≤MRL Y ⇔ mX (t) ≤ mY (t), mean residual life order.

X ≤LR Y ⇔ fY (t)/fX (t) is nondecreasing, likelihood ratio
order.

X ≤LR Y ⇔ (X |s < X < t) ≤ST (Y |s < Y < t) for s < t .
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Stochastic orderings relations

E(Xs,t) ≤ E(Ys,t) ⇒ E(Xt) ≤ E(Yt) ⇒ E(X ) ≤ E(Y )
m m m

X ≤DTM Y ⇒ X ≤MRL Y ⇒ X ≤M Y
⇑ ⇑ ⇑

X ≤LR Y ⇒ X ≤HR Y ⇒ X ≤ST Y
m m m

Xs,t ≤ST Ys,t ⇒ Xt ≤ST Yt ⇒ F X ≤ F Y

where Zt = (Z − t |Z > t) and Zs,t = (Z |s < Z < t) (see
Navarro, Belzunce and Ruiz 1997, PEIS).
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Stochastic comparisons using signatures

Theorem (Kochar, Mukerjee and Samaniego (1999))

Let s1 and s2 be the signatures of the two coherent systems of
order n, both based on components with IID lifetimes with
common continuous distribution F . Let T1 and T2 be their
respective lifetimes.
(a) If s1 ≤ST s2, then T1 ≤ST T2.
(b) If s1 ≤HR s2, then T1 ≤HR T2.
(c) If F is absolutely continuous and s1 ≤LR s2, then T1 ≤LR T2.
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Mixed systems

A mixed system of order n is a stochastic mixture of
coherent systems of order n (Boland and Samaniego
2004).

The mixed system which selects among n-component
systems with signatures s1, s2, . . . , sk according to the
mixing distribution p = (p1, p2, . . . , pk ) will have signature∑k

i=1 pis i .

From (1.1), any probability vector in the simplex
{s ∈ [0, 1]n :

∑n
i=1 si = 1} determine a mixed system and

viceversa.

Representation and preservation theorems above are
equally applicable to coherent and mixed systems.
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Some examples
Main result

The case n = 2

There are 2 coherent systems: X1:2 and X2:2.

F 1 + F 2 = F 1:2 + F 2:2.

IID or EXC cases: 2F 1 = F 1:2 + F 2:2.

So F 2:2 = 2F 1:1 − F 1:2.

The path sets of X2:2 are P1 = {1} and P2 = {2}.
General case: F 2:2 = F 1 + F 2 − F 1:2
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The case n = 3

There are 5 coherent systems: the OS (X1:3, X2:3,X3:3) and
T = min(X1, max(X2, X3)) and T D = max(X1, min(X2, X3)).

F 1:3 = F 1:3.

The path sets of X2:3 are {1, 2}, {1, 3} and {2, 3}.
So F 2:3 = F {1,2} + F {1,3} + F {2,3} − 2F 1:3.

IID or EXC: F 2:3 = 3F 1:2 − 2F 1:3

The minimal signature of X2:3 is (0, 3,−2).

For X3:3: F 3:3 = 3F 1:1 − 3F 2:3 + F 1:3.

The minimal signature of X3:3 is (3,−3, 1).
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The case n = 3

The minimal path sets of T = min(X1, max(X2, X3)) are
{1, 2} and {1, 3}.
So: F T = F {1,2} + F {1,3} − F 1:3

IID or EXC: F T = 2F 1:2 − F 1:3

The minimal signature of T is (0, 2,−1)

Recall that F 2:3 = 3F 1:2 − 2F 1:3

So: F 1:2 = 2
3F 1:3 + 1

3F 2:3 (Triangle rule)

So: F T = 1
3F 1:3 + 2

3F 2:3

(1/3, 2/3, 0) is the signature of T in the IID cont. case

However, P(T = X1:3) is not necessarily equal to 1/3.
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Main result-exchangeable case

Theorem

If (X1, X2, . . . , Xn) is exchangeable and T = φ(X1, X2, . . . , Xn),
then

F T =
n∑

i=1

siF i:n, (2.1)

where (s1, s2, . . . , sn) is the signature of T in IID cont. case.

Note that si 6= P(T = Xi:n) but that

si =
1
n!

∑
σ

1(σ ∈ Ai)

Ai = {σ : φ(x1, . . . , xn) = xi:n, when xσ(1) < ... < xσ(1)}.
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Main result-exchangeable case-Proof

From (1.3): (F 1:n, . . . , F n:n)
′ = An(F 1:1, . . . , F 1:n)

′

An is a triangular matrix.

So |An| 6= 0 and A−1
n exists.

From (1.2): F T can be written as a linear combination of
F 1:i , i = 1, 2, . . . , n.

So: F T can be written as a linear combination of F i:n,
i = 1, 2, . . . , n.

The coefficients do not depend on F . So they are the
same as that obtained in the IID cont. case.

Jorge Navarro, MMR2009 Recent advances using signatures



Introduction
Representations in the exchangeable case

Representations of systems with different size
Comparison of systems with 1-4 components
Conclusions, open questions and references

Some examples
Main result

Main result-exchangeable case-Proof

From (1.3): (F 1:n, . . . , F n:n)
′ = An(F 1:1, . . . , F 1:n)

′

An is a triangular matrix.

So |An| 6= 0 and A−1
n exists.

From (1.2): F T can be written as a linear combination of
F 1:i , i = 1, 2, . . . , n.

So: F T can be written as a linear combination of F i:n,
i = 1, 2, . . . , n.

The coefficients do not depend on F . So they are the
same as that obtained in the IID cont. case.

Jorge Navarro, MMR2009 Recent advances using signatures



Introduction
Representations in the exchangeable case

Representations of systems with different size
Comparison of systems with 1-4 components
Conclusions, open questions and references

Some examples
Main result

Main result-exchangeable case-Proof

From (1.3): (F 1:n, . . . , F n:n)
′ = An(F 1:1, . . . , F 1:n)

′

An is a triangular matrix.

So |An| 6= 0 and A−1
n exists.

From (1.2): F T can be written as a linear combination of
F 1:i , i = 1, 2, . . . , n.

So: F T can be written as a linear combination of F i:n,
i = 1, 2, . . . , n.

The coefficients do not depend on F . So they are the
same as that obtained in the IID cont. case.

Jorge Navarro, MMR2009 Recent advances using signatures



Introduction
Representations in the exchangeable case

Representations of systems with different size
Comparison of systems with 1-4 components
Conclusions, open questions and references

Some examples
Main result

Main result-exchangeable case-Proof

From (1.3): (F 1:n, . . . , F n:n)
′ = An(F 1:1, . . . , F 1:n)

′

An is a triangular matrix.

So |An| 6= 0 and A−1
n exists.

From (1.2): F T can be written as a linear combination of
F 1:i , i = 1, 2, . . . , n.

So: F T can be written as a linear combination of F i:n,
i = 1, 2, . . . , n.

The coefficients do not depend on F . So they are the
same as that obtained in the IID cont. case.

Jorge Navarro, MMR2009 Recent advances using signatures



Introduction
Representations in the exchangeable case

Representations of systems with different size
Comparison of systems with 1-4 components
Conclusions, open questions and references

Some examples
Main result

Main result-exchangeable case-Proof

From (1.3): (F 1:n, . . . , F n:n)
′ = An(F 1:1, . . . , F 1:n)

′

An is a triangular matrix.

So |An| 6= 0 and A−1
n exists.

From (1.2): F T can be written as a linear combination of
F 1:i , i = 1, 2, . . . , n.

So: F T can be written as a linear combination of F i:n,
i = 1, 2, . . . , n.

The coefficients do not depend on F . So they are the
same as that obtained in the IID cont. case.

Jorge Navarro, MMR2009 Recent advances using signatures



Introduction
Representations in the exchangeable case

Representations of systems with different size
Comparison of systems with 1-4 components
Conclusions, open questions and references

Some examples
Main result

Main result-exchangeable case-Proof

From (1.3): (F 1:n, . . . , F n:n)
′ = An(F 1:1, . . . , F 1:n)

′

An is a triangular matrix.

So |An| 6= 0 and A−1
n exists.

From (1.2): F T can be written as a linear combination of
F 1:i , i = 1, 2, . . . , n.

So: F T can be written as a linear combination of F i:n,
i = 1, 2, . . . , n.

The coefficients do not depend on F . So they are the
same as that obtained in the IID cont. case.

Jorge Navarro, MMR2009 Recent advances using signatures



Introduction
Representations in the exchangeable case

Representations of systems with different size
Comparison of systems with 1-4 components
Conclusions, open questions and references

Examples
Main result
Consequences

Representations of systems with different size

Recall that IID case: 2F 1:1 = F 1:2 + F 2:2.

So: F 1:1 = 1
2F 1:2 + 1

2F 2:2.

In general, as F 1 + . . . + F n = F 1:n + . . . + F n:n, then

F 1:1 =
1
n

F 1:n + . . . +
1
n

F n:n. (3.1)

Recall that F 1:2 = 2
3F 1:3 + 1

3F 2:3 (Triangle rule).

Analogously, F 2:2 = 1
3F 2:3 + 2

3F 3:3.
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Representations of order n

Theorem

If (X1, X2, . . . , Xn) is exchangeable and T = φ(X1, X2, . . . , Xk )
(k < n), then

F T =
n∑

i=1

si(n)F i:n (3.2)

where the vector s(n) = (s1(n), s2(n), . . . , sn(n)) does not
depend on F. s(n) is called the signature of order n of T .
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Representations of order n-Proof
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n exists.
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Relations between signatures.

If s = (s1, s2, . . . , sn) is the signature of order n of T , then
T is equal in law to the mixed system with
(n + 1)-components with signature vector

s(n+1) =

(
ns1

n + 1
,
s1 + (n − 1)s2

n + 1
,
2s2 + (n − 2)s3

n + 1
, . . . ,

nsn

n + 1

)
(3.3)

Repeated application of (3.3) leads to the general
expression for s(m) as a function of s(n) (n < m).

The theorem on ordering results based on signatures can
now by applied to compare systems of different order in the
general exchangeable case.
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Table: Signatures of order 4 of coherent systems of order 1-4.

T = Φ(X1, X2, X3, X4) Signature

1 X1:1 = X1 (1
4 , 1

4 , 1
4 , 1

4)

2 X1:2 = min(X1, X2) (2-series) (1
2 , 1

3 , 1
6 , 0)

3 X2:2 = max(X1, X2) (2-parallel) (0, 1
6 , 1

3 , 1
2)

4 X1:3 = min(X1, X2, X3) (3-series) (3
4 , 1

4 , 0, 0)

5 min(X2, max(X1, X3)) (1
4 , 5

12 , 1
3 , 0)

6 X2:3 (2-out-of-3) (0, 1
2 , 1

2 , 0)

7 max(X2, min(X1, X3)) (0, 1
3 , 5

12 , 1
4)

8 X3:3 = max(X1, X2, X3) (3-parallel) (0, 0, 1
4 , 3

4)
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Table: Signatures of order 4 of coherent systems of order 1-4.

T = Φ(X1, X2, X3, X4) Signature

9 X1:4 = min(X1, X2, X3, X4) (series) (1, 0, 0, 0)

10 max(min(X1, X2, X3), min(X2, X3, X4)) (1
2 , 1

2 , 0, 0)

11 min(X2:3, X4) (1
4 , 3

4 , 0, 0)

12 min(X1, max(X2, X3), max(X3, X4)) (1
4 , 7

12 , 1
6 , 0)

13 min(X1, max(X2, X3, X4)) (1
4 , 1

4 , 1
2 , 0)

14 X2:4 (2-out-of-4) (0, 1, 0, 0)

15 max(min(X1, X2), mini=1,3,4(Xi), mini=2,3,4(Xi)) (0, 5
6 , 1

6 , 0)

16 max(min(X1, X2), min(X3, X4)) (0, 2
3 , 1

3 , 0)

17 max(min(X1, X2), min(X1, X3), min(X2, X3, X4)) (0, 2
3 , 1

3 , 0)

18 max(min(X1, X2), min(X2, X3), min(X3, X4)) (0, 1
2 , 1

2 , 0)
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Table: Signatures of order 4 of coherent systems of order 1-4.

T = Φ(X1, X2, X3, X4) Signature

19 min(max(X1, X2), max(X2, X3), max(X3, X4)) (0, 1
2 , 1

2 , 0)

20 min(max(X1, X2), max(X1, X3), max(X2, X3, X4)) (0, 1
3 , 2

3 , 0)

21 min(max(X1, X2), max(X3, X4)) (0, 1
3 , 2

3 , 0)

22 min(max(X1, X2), maxi=1,3,4(Xi), maxi=2,3,4(Xi)) (0, 1
6 , 5

6 , 0)

23 X3:4 (3-out-of-4) (0, 0, 1, 0)

24 max(X1, min(X2, X3, X4)) (0, 1
2 , 1

4 , 1
4)

25 max(X1, min(X2, X3), min(X3, X4)) (0, 1
6 , 7

12 , 1
4)

26 max(X2:3, X4) (0, 0, 3
4 , 1

4)

27 min(max(X1, X2, X3), max(X2, X3, X4)) (0, 0, 1
2 , 1

2)

28 X4:4 = max(X1, X2, X3, X4) (parallel) (0, 0, 0, 1)
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Main result
Stochastic ordering
Hazard rate ordering
Likelihood ratio ordering

Assumptions

In the general case, we have:

X1:n ≤ST X2:n ≤ST . . . ≤ST Xn:n (4.1)

However, the similar relations for the HR-order:

X1:n ≤HR X2:n ≤HR . . . ≤HR Xn:n, (4.2)

the MRL-order:

X1:n ≤MRL X2:n ≤MRL . . . ≤MRL Xn:n, (4.3)

and the LR-order:

X1:n ≤LR X2:n ≤LR . . . ≤LR Xn:n, (4.4)

are not necessarily true in the exchangeable case; see
Navarro and Shaked (JAP 2006), Navarro and Hernandez
(Metrika 2008) and Navarro (JSPI 2008).
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Stochastic comparisons using signatures

Theorem

Let s1(n) and s2(n) be the signatures of order n of two
coherent or mixed systems of order n1 and n2, both based on
components with IID or EXC lifetimes with the same joint
distribution. Let T1 and T2 be their respective lifetimes.
(a) If s1(n) ≤ST s2(n), then T1 ≤ST T2.
(b) If s1(n) ≤HR s2(n) and (4.2) hold, then T1 ≤HR T2.
(c) If s1(n) ≤HR s2(n) and (4.3) hold, then T1 ≤MRL T2.
(d) If s1(n) ≤LR s2(n) and (4.4) hold, then T1 ≤LR T2.
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Figure: Comparisons based on the ST-order.
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Figure: Comparisons based on the HR or MRL-orders.
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Figure: Comparisons based on the LR-order.
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Conclusions

The mixture representations based on order statistics are
good tools to study systems.

The new representations allow us to manage both the
general exchangeable case and the case of systems with
different size.

Some new ordering results are obtained but we need to
assume that the order statistics are HR, MRL or LR
ordered.
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