## On comparing coherent systems with homogeneous and heterogeneous components

Jorge Navarro ${ }^{1}$<br>Universidad de Murcia, Murcia, Spain.<br>E-mail: jorgenav@um.es.



Grenoble, France

${ }^{1}$ Supported by Ministerio de Economía, Industria y Competitividad under Grant MTM2016-79943-P (AEI/FEDER).

## Notation

- $T$ lifetime of a (semi) coherent system.


## Notation

- $T$ lifetime of a (semi) coherent system.
- $X_{1}, \ldots, X_{n}$ component lifetimes.


## Notation

- $T$ lifetime of a (semi) coherent system.
- $X_{1}, \ldots, X_{n}$ component lifetimes.
- $P_{1}, \ldots, P_{r}$ minimal path sets of the system.


## Notation

- $T$ lifetime of a (semi) coherent system.
- $X_{1}, \ldots, X_{n}$ component lifetimes.
- $P_{1}, \ldots, P_{r}$ minimal path sets of the system.
$\downarrow T=\phi\left(X_{1}, \ldots, X_{n}\right)=\max _{i=1, \ldots, r} X_{P_{i}}, X_{P}=\min _{j \in P} X_{j}$.


## Notation

- $T$ lifetime of a (semi) coherent system.
- $X_{1}, \ldots, X_{n}$ component lifetimes.
- $P_{1}, \ldots, P_{r}$ minimal path sets of the system.
- $T=\phi\left(X_{1}, \ldots, X_{n}\right)=\max _{i=1, \ldots, r} X_{P_{i}}, X_{P}=\min _{j \in P} X_{j}$.
- $X_{1: n}, \ldots, X_{n: n}$ ordered component lifetimes (OS).


## Notation

- $T$ lifetime of a (semi) coherent system.
- $X_{1}, \ldots, X_{n}$ component lifetimes.
- $P_{1}, \ldots, P_{r}$ minimal path sets of the system.
- $T=\phi\left(X_{1}, \ldots, X_{n}\right)=\max _{i=1, \ldots, r} X_{P_{i}}, X_{P}=\min _{j \in P} X_{j}$.
- $X_{1: n}, \ldots, X_{n: n}$ ordered component lifetimes (OS).
- Then $T=X_{i: n}$ for a $i \in\{1, \ldots, n\}$.


## Notation

- The component lifetimes $X_{1}, \ldots, X_{n}$ can be:


## Notation

- The component lifetimes $X_{1}, \ldots, X_{n}$ can be:
- IID: Independent and Identically Distributed.


## Notation

- The component lifetimes $X_{1}, \ldots, X_{n}$ can be:
- IID: Independent and Identically Distributed.
- EXC: Exchangeable, that is,
$\left(X_{1}, \ldots, X_{n}\right)=s t\left(X_{\sigma(1)}, \ldots, X_{\sigma(n)}\right)$, for any permutation $\sigma$


## Notation

- The component lifetimes $X_{1}, \ldots, X_{n}$ can be:
- IID: Independent and Identically Distributed.
- EXC: Exchangeable, that is,
$\left(X_{1}, \ldots, X_{n}\right)=\operatorname{st}\left(X_{\sigma(1)}, \ldots, X_{\sigma(n)}\right)$, for any permutation $\sigma$
- DID: Dependent and Identically Distributed.


## Notation

- The component lifetimes $X_{1}, \ldots, X_{n}$ can be:
- IID: Independent and Identically Distributed.
- EXC: Exchangeable, that is,
$\left(X_{1}, \ldots, X_{n}\right)=S T\left(X_{\sigma(1)}, \ldots, X_{\sigma(n)}\right)$, for any permutation $\sigma$
- DID: Dependent and Identically Distributed.
- INID: Independent and Non-Identically Distributed.


## Notation

- The component lifetimes $X_{1}, \ldots, X_{n}$ can be:
- IID: Independent and Identically Distributed.
- EXC: Exchangeable, that is,
$\left(X_{1}, \ldots, X_{n}\right)=s t\left(X_{\sigma(1)}, \ldots, X_{\sigma(n)}\right)$, for any permutation $\sigma$
- DID: Dependent and Identically Distributed.
- INID: Independent and Non-Identically Distributed.
- DNID: Dependent and Non-Identically Distributed.


## Comparisons for systems with IID and EXC components

Representations
Comparisons

## Examples

Comparisons for systems with DID components
Representations
Comparisons
Examples

## Comparisons for systems with NID components

Representations
Comparisons
Examples

## Systems with IID components

- Samaniego's representation: $T=\phi\left(X_{1}, \ldots, X_{n}\right)$ with IID components with a continuous distribution $F$, then

$$
F_{T}=s_{1} F_{1: n}+\cdots+s_{n} F_{n: n}
$$

where $s_{i}=\operatorname{Pr}\left(T=X_{i: n}\right)$.

## Systems with IID components

- Samaniego's representation: $T=\phi\left(X_{1}, \ldots, X_{n}\right)$ with IID components with a continuous distribution $F$, then

$$
F_{T}=s_{1} F_{1: n}+\cdots+s_{n} F_{n: n}
$$

where $s_{i}=\operatorname{Pr}\left(T=X_{i: n}\right)$.

- $\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right)$ is the signature (or D-spectrum) of $T$.


## Systems with IID components

- Samaniego's representation: $T=\phi\left(X_{1}, \ldots, X_{n}\right)$ with IID components with a continuous distribution $F$, then

$$
F_{T}=s_{1} F_{1: n}+\cdots+s_{n} F_{n: n},
$$

where $s_{i}=\operatorname{Pr}\left(T=X_{i: n}\right)$.

- $\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right)$ is the signature (or D-spectrum) of $T$.
- $\mathbf{s}$ does not depend on $F$ and

$$
\begin{equation*}
s_{i}=\frac{\text { number of } \sigma: x_{\sigma(1)}<\cdots<x_{\sigma(n)} \Rightarrow \phi\left(x_{1}, \ldots, x_{n}\right)=x_{i: n}}{n!} \tag{1.1}
\end{equation*}
$$

Comparisons for systems with IID and EXC components
Comparisons for systems with DID components Comparisons for systems with NID components

## Main stochastic orderings

- $X \leq_{S T} Y \Leftrightarrow \bar{F}_{X}(t) \leq \bar{F}_{Y}(t)$, stochastic order.


## Main stochastic orderings

- $X \leq_{S T} Y \Leftrightarrow \bar{F}_{X}(t) \leq \bar{F}_{Y}(t)$, stochastic order.
- $X \leq_{H R} Y \Leftrightarrow \bar{F}_{Y} / \bar{F}_{X}$ increases, hazard rate order.


## Main stochastic orderings

- $X \leq_{S T} Y \Leftrightarrow \bar{F}_{X}(t) \leq \bar{F}_{Y}(t)$, stochastic order.
- $X \leq_{H R} Y \Leftrightarrow \bar{F}_{Y} / \bar{F}_{X}$ increases, hazard rate order.
- $X \leq_{H R} Y \Leftrightarrow(X-t \mid X>t) \leq_{s t}(Y-t \mid Y>t)$ for all $t$.


## Main stochastic orderings

- $X \leq_{S T} Y \Leftrightarrow \bar{F}_{X}(t) \leq \bar{F}_{Y}(t)$, stochastic order.
- $X \leq_{H R} Y \Leftrightarrow \bar{F}_{Y} / \bar{F}_{X}$ increases, hazard rate order.
- $X \leq_{\text {HR }} Y \Leftrightarrow(X-t \mid X>t) \leq_{s t}(Y-t \mid Y>t)$ for all $t$.
- $X \leq_{M R L} Y \Leftrightarrow E(X-t \mid X>t) \leq E(Y-t \mid Y>t)$ for all $t$.


## Main stochastic orderings

- $X \leq_{s T} Y \Leftrightarrow \bar{F}_{X}(t) \leq \bar{F}_{Y}(t)$, stochastic order.
- $X \leq_{H R} Y \Leftrightarrow \bar{F}_{Y} / \bar{F}_{X}$ increases, hazard rate order.
- $X \leq_{H R} Y \Leftrightarrow(X-t \mid X>t) \leq_{s T}(Y-t \mid Y>t)$ for all $t$.
- $X \leq_{\text {MRL }} Y \Leftrightarrow E(X-t \mid X>t) \leq E(Y-t \mid Y>t)$ for all $t$.
- $X \leq_{L R} Y \Leftrightarrow f_{Y}(t) / f_{X}(t)$ increases, likelihood ratio order.


## Main stochastic orderings

- $X \leq_{s T} Y \Leftrightarrow \bar{F}_{X}(t) \leq \bar{F}_{Y}(t)$, stochastic order.
- $X \leq_{H R} Y \Leftrightarrow \bar{F}_{Y} / \bar{F}_{X}$ increases, hazard rate order.
- $X \leq_{H R} Y \Leftrightarrow(X-t \mid X>t) \leq_{s T}(Y-t \mid Y>t)$ for all $t$.
- $X \leq_{\text {MRL }} Y \Leftrightarrow E(X-t \mid X>t) \leq E(Y-t \mid Y>t)$ for all $t$.
- $X \leq_{L R} Y \Leftrightarrow f_{Y}(t) / f_{X}(t)$ increases, likelihood ratio order.
- $X \leq_{R H R} Y \Leftrightarrow F_{Y} / F_{X}$ decreases, reversed hazard rate order.


## Main stochastic orderings

- $X \leq_{s T} Y \Leftrightarrow \bar{F}_{X}(t) \leq \bar{F}_{Y}(t)$, stochastic order.
- $X \leq_{\text {HR }} Y \Leftrightarrow \bar{F}_{Y} / \bar{F}_{X}$ increases, hazard rate order.
- $X \leq_{H R} Y \Leftrightarrow(X-t \mid X>t) \leq_{s T}(Y-t \mid Y>t)$ for all $t$.
- $X \leq$ mRL $Y \Leftrightarrow E(X-t \mid X>t) \leq E(Y-t \mid Y>t)$ for all $t$.
- $X \leq_{L R} Y \Leftrightarrow f_{Y}(t) / f_{X}(t)$ increases, likelihood ratio order.
- $X \leq_{R H R} Y \Leftrightarrow F_{Y} / F_{X}$ decreases, reversed hazard rate order.
- $X \leq_{R H R} Y \Leftrightarrow(t-X \mid X<t) \geq_{S T}(t-Y \mid Y<t)$ for all $t$.

$$
\begin{aligned}
& \begin{array}{c}
X \leq L R \\
\Downarrow
\end{array} \quad \Rightarrow \quad \begin{array}{c}
X \leq_{H R} Y \\
\Downarrow
\end{array} \quad \Rightarrow \quad X \underset{\text { MRL }}{\Downarrow} Y \\
& X \leq_{R H R} Y \quad \Rightarrow \quad X \leq_{S T} Y \quad \Rightarrow \quad E(X) \leq E(Y)
\end{aligned}
$$

## Comparisons of systems with IID components

Theorem (Kochar, Mukerjee and Samaniego, NRL 1999)
If $T_{1}$ and $T_{2}$ have IID components and signatures $\mathbf{s}_{1}$ and $\mathbf{s}_{2}$, then:
(i) If $\mathbf{s}_{1} \leq s T \mathbf{s}_{2}$, then $T_{1} \leq s T T_{2}$ for all cont. $F$.
(ii) If $\mathbf{s}_{1} \leq H R \mathbf{s}_{2}$, then $T_{1} \leq H R T_{2}$ for all cont. F.
(iii) If $\mathbf{s}_{1} \leq L R \mathbf{s}_{2}$, then $T_{1} \leq L R T_{2}$ for all abs. cont. $F$.

## Systems with EXC components

- Navarro et al. (2008): $T=\phi\left(X_{1}, \ldots, X_{r}\right)$ from ( $X_{1}, \ldots, X_{n}$ ) EXC components ( $r \leq n$ ), then

$$
F_{T}=s_{1}^{(n)} F_{1: n}+\cdots+s_{n}^{(n)} F_{n: n},
$$

for some coefficients $s_{1}^{(n)}, \ldots, s_{n}^{(n)}$.

## Systems with EXC components

- Navarro et al. (2008): $T=\phi\left(X_{1}, \ldots, X_{r}\right)$ from $\left(X_{1}, \ldots, X_{n}\right)$ EXC components $(r \leq n)$, then

$$
F_{T}=s_{1}^{(n)} F_{1: n}+\cdots+s_{n}^{(n)} F_{n: n},
$$

for some coefficients $s_{1}^{(n)}, \ldots, s_{n}^{(n)}$.
$\triangleright \mathbf{s}^{(n)}=\left(s_{1}^{(n)}, \ldots, s_{n}^{(n)}\right)$ is the signature of order $n$ of $T$.

## Systems with EXC components

- Navarro et al. (2008): $T=\phi\left(X_{1}, \ldots, X_{r}\right)$ from $\left(X_{1}, \ldots, X_{n}\right)$ EXC components $(r \leq n)$, then

$$
F_{T}=s_{1}^{(n)} F_{1: n}+\cdots+s_{n}^{(n)} F_{n: n},
$$

for some coefficients $s_{1}^{(n)}, \ldots, s_{n}^{(n)}$.
$\triangleright \mathbf{s}^{(n)}=\left(s_{1}^{(n)}, \ldots, s_{n}^{(n)}\right)$ is the signature of order $n$ of $T$.

- $\mathbf{s}^{(n)}$ does not depend on $F$ and can be computed from (1.1).


## Systems with EXC components

- Navarro et al. (2008): $T=\phi\left(X_{1}, \ldots, X_{r}\right)$ from $\left(X_{1}, \ldots, X_{n}\right)$ EXC components $(r \leq n)$, then

$$
F_{T}=s_{1}^{(n)} F_{1: n}+\cdots+s_{n}^{(n)} F_{n: n},
$$

for some coefficients $s_{1}^{(n)}, \ldots, s_{n}^{(n)}$.
$\triangleright \mathbf{s}^{(n)}=\left(s_{1}^{(n)}, \ldots, s_{n}^{(n)}\right)$ is the signature of order $n$ of $T$.

- $\mathbf{s}^{(n)}$ does not depend on $F$ and can be computed from (1.1).
- If $r=n$, then $\mathbf{s}^{(n)}=\mathbf{s}$.


## Systems with EXC components

- Navarro et al. (2008): $T=\phi\left(X_{1}, \ldots, X_{r}\right)$ from $\left(X_{1}, \ldots, X_{n}\right)$ EXC components $(r \leq n)$, then

$$
F_{T}=s_{1}^{(n)} F_{1: n}+\cdots+s_{n}^{(n)} F_{n: n},
$$

for some coefficients $s_{1}^{(n)}, \ldots, s_{n}^{(n)}$.
$\triangleright \mathbf{s}^{(n)}=\left(s_{1}^{(n)}, \ldots, s_{n}^{(n)}\right)$ is the signature of order $n$ of $T$.

- $\mathbf{s}^{(n)}$ does not depend on $F$ and can be computed from (1.1).
- If $r=n$, then $\mathbf{s}^{(n)}=\mathbf{s}$.
- If $\left(X_{1}, \ldots, X_{n}\right)$ has an abs. cont. joint dist. $\mathbf{F}$, then $s_{i}^{(n)}=\operatorname{Pr}\left(T=X_{i: n}\right)$.


## Comparisons of systems with EXC components

## Theorem (Navarro et al., NRL 2008)

If $T_{1}$ and $T_{2}$ are semicoherent systems from $\left(X_{1}, \ldots, X_{n}\right)$ EXC and with signatures of order $n \mathbf{s}_{1}^{(n)}$ and $\mathbf{s}_{2}^{(n)}$, then:
(i) If $\mathrm{s}_{1}^{(n)} \leq s T \mathbf{s}_{2}^{(n)}$, then $T_{1} \leq s T T_{2}$ for all $\mathbf{F}$.
(ii) If $\mathbf{s}_{1}^{(n)} \leq_{H R} \mathbf{s}_{2}^{(n)}$ and $X_{1: n} \leq_{H R} \cdots \leq_{H R} X_{n: n}$, then $T_{1} \leq_{H R} T_{2}$ for all $\mathbf{F}$.
(iii) If $\mathbf{s}_{1}^{(n)} \leq H R \mathbf{s}_{2}^{(n)}$ and

$$
\begin{equation*}
X_{1: n} \leq_{M R L} \cdots \leq_{M R L} X_{n: n}, \tag{1.2}
\end{equation*}
$$

then $T_{1} \leq_{M R L} T_{2}$ for all $\mathbf{F}$.
(iv) If $\mathbf{s}_{1}^{(\bar{n})} \leq_{L R} \mathbf{s}_{2}^{(n)}$ and $X_{1: n} \leq_{L R} \cdots \leq_{L R} X_{n: n}$, then $T_{1} \leq_{L R} T_{2}$ for all $\mathbf{F}$.

## Comparisons of systems with EXC components

## Theorem (Navarro and Rubio, NRL 2011)

If $T_{1}$ and $T_{2}$ are semicoherent systems from $\left(X_{1}, \ldots, X_{n}\right)$ with signatures of order $n \mathbf{s}_{1}^{(n)}$ and $\mathbf{s}_{2}^{(n)}$, then:
(i) $\mathbf{s}_{1}^{(n)} \leq_{S T} \mathbf{s}_{2}^{(n)}$ if and only if $T_{1} \leq_{S T} T_{2}$ for all EXC F.
(ii) $\mathbf{s}_{1}^{(n)} \leq_{H R} \mathbf{s}_{2}^{(n)}$ if and only if $T_{1} \leq_{H R} T_{2}$ for all EXC $\mathbf{F}$ such that

$$
\begin{equation*}
X_{1: n} \leq H R \cdots \leq H R X_{n: n} . \tag{1.3}
\end{equation*}
$$

(iii) $\mathbf{s}_{1}^{(n)} \leq_{L R} \mathbf{s}_{2}^{(n)}$ if and only if $T_{1} \leq_{L R} T_{2}$ for all EXC $\mathbf{F}$ such that

$$
\begin{equation*}
X_{1: n} \leq_{L R} \cdots \leq_{L R} X_{n: n} . \tag{1.4}
\end{equation*}
$$

Table: Signatures of order 4 for all the systems with 1-4 components.

| N | $T_{N}=\phi\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ | $\mathbf{s}^{(4)}$ |
| :---: | :---: | :---: |
| 1 | $X_{1: 1}=X_{1}$ | $\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$ |
| 2 | $X_{1: 2}=\min \left(X_{1}, X_{2}\right)$ | $\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{6}, 0\right)$ |
| 3 | $X_{2: 2}=\max \left(X_{1}, X_{2}\right)$ | $\left(0, \frac{1}{6}, \frac{1}{3}, \frac{1}{2}\right)$ |
| 4 | $X_{1: 3}=\min \left(X_{1}, X_{2}, X_{3}\right)$ | $\left(\frac{3}{4}, \frac{1}{4}, 0,0\right)$ |
| 5 | $\min \left(X_{1}, \max \left(X_{2}, X_{3}\right)\right)$ | $\left(\frac{1}{4}, \frac{5}{12}, \frac{1}{3}, 0\right)$ |
| 6 | $X_{2: 3}$ | $\left(0, \frac{1}{2}, \frac{1}{2}, 0\right)$ |
| 7 | $\max \left(X_{1}, \min \left(X_{2}, X_{3}\right)\right)$ | $\left(0, \frac{1}{3}, \frac{5}{12}, \frac{1}{4}\right)$ |
| 8 | $X_{3: 3}=\max \left(X_{1}, X_{2}, X_{3}\right)$ | $\left(0,0, \frac{1}{4}, \frac{3}{4}\right)$ |
| 9 | $X_{1: 4}=\min \left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ | $(1,0,0,0)$ |
| 10 | $\max \left(\min \left(X_{1}, X_{2}, X_{3}\right), \min \left(X_{2}, X_{3}, X_{4}\right)\right)$ | $\left(\frac{1}{2}, \frac{1}{2}, 0,0\right)$ |
| 11 | $\min \left(X_{2: 3}, X_{4}\right)$ | $\left(\frac{1}{4}, \frac{3}{4}, 0,0\right)$ |
| 12 | $\min \left(X_{1}, \max \left(X_{2}, X_{3}\right), \max \left(X_{3}, X_{4}\right)\right)$ | $\left(\frac{1}{4}, \frac{7}{12}, \frac{1}{6}, 0\right)$ |
| 13 | $\min \left(X_{1}, \max \left(X_{2}, X_{3}, X_{4}\right)\right)$ | $\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{2}, 0\right)$ |


| 14 | $X_{2: 4}$ | $(0,1,0,0)$ |
| :---: | :---: | :---: |
| 15 | $\max \left(\min \left(X_{1}, X_{2}\right), \min \left(X_{1}, X_{3}, X_{4}\right), \min \left(X_{2}, X_{3}, X_{4}\right)\right)$ | $\left(0, \frac{5}{6}, \frac{1}{6}, 0\right)$ |
| 16 | $\max \left(\min \left(X_{1}, X_{2}\right), \min \left(X_{3}, X_{4}\right)\right)$ | $\left(0, \frac{2}{3}, \frac{1}{3}, 0\right)$ |
| 17 | $\max \left(\min \left(X_{1}, X_{2}\right), \min \left(X_{1}, X_{3}\right), \min \left(X_{2}, X_{3}, X_{4}\right)\right)$ | $\left(0, \frac{2}{3}, \frac{1}{3}, 0\right)$ |
| 18 | $\max \left(\min \left(X_{1}, X_{2}\right), \min \left(X_{2}, X_{3}\right), \min \left(X_{3}, X_{4}\right)\right)$ | $\left(0, \frac{1}{2}, \frac{1}{2}, 0\right)$ |
| 19 | $\min \left(\max \left(X_{1}, X_{2}\right), \max \left(X_{2}, X_{3}\right), \max \left(X_{3}, X_{4}\right)\right)$ | $\left(0, \frac{1}{2}, \frac{1}{2}, 0\right)$ |
| 20 | $\min \left(\max \left(X_{1}, X_{2}\right), \max \left(X_{1}, X_{3}\right), \max \left(X_{2}, X_{3}, X_{4}\right)\right)$ | $\left(0, \frac{1}{3}, \frac{2}{3}, 0\right)$ |
| 21 | $\min \left(\max \left(X_{1}, X_{2}\right), \max \left(X_{3}, X_{4}\right)\right)$ | $\left(0, \frac{1}{3} \frac{2}{3}, 0\right)$ |
| 22 | $\min \left(\max \left(X_{1}, X_{2}\right), \max \left(X_{1}, X_{3}, X_{4}\right), \max \left(X_{2}, X_{3}, X_{4}\right)\right)$ | $\left(0, \frac{1}{6}, \frac{5}{6}, 0\right)$ |
| 23 | $X_{3: 4}$ | $(0,0,1,0)$ |
| 24 | $\max \left(X_{1}, \min \left(X_{2}, X_{3}, X_{4}\right)\right)$ | $\left(0, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right)$ |
| 25 | $\max \left(X_{1}, \min \left(X_{2}, X_{3}\right), \min \left(X_{3}, X_{4}\right)\right)$ | $\left(0, \frac{1}{6}, \frac{7}{12}, \frac{1}{4}\right)$ |
| 26 | $\max \left(X_{2: 3}, X_{4}\right)$ | $\left(0,0, \frac{3}{4}, \frac{1}{4}\right)$ |
| 27 | $\min \left(\max \left(X_{1}, X_{2}, X_{3}\right), \max \left(X_{2}, X_{3}, X_{4}\right)\right)$ | $\left(0,0, \frac{1}{2}, \frac{1}{2}\right)$ |
| 28 | $X_{4: 4}=\max \left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ | $(0,0,0,1)$ |



Figure: ST orderings for EXC F (IID case).


Figure: HR (MRL) orderings for EXC $\mathbf{F}$ under (1.3) (resp. (1.2)).


Figure: LR orderings for EXC F under (1.4).

## Comparisons for systems with DID components

- If $T=\phi\left(X_{1}, \ldots, X_{n}\right)$, we can define two signatures:


## Comparisons for systems with DID components

- If $T=\phi\left(X_{1}, \ldots, X_{n}\right)$, we can define two signatures:
- The probabilistic signature ( $p_{1}, \ldots, p_{n}$ ) with $p_{i}=\operatorname{Pr}\left(T=X_{i: n}\right)$, for $i=1, \ldots, n($ which depends on $\mathbf{F})$.


## Comparisons for systems with DID components

- If $T=\phi\left(X_{1}, \ldots, X_{n}\right)$, we can define two signatures:
- The probabilistic signature $\left(p_{1}, \ldots, p_{n}\right)$ with $p_{i}=\operatorname{Pr}\left(T=X_{i: n}\right)$, for $i=1, \ldots, n$ (which depends on $\mathbf{F}$ ).
- The structural signature $\left(s_{1}, \ldots, s_{n}\right)$ with
$s_{i}=\frac{\text { number of } \sigma: x_{\sigma(1)}<\cdots<x_{\sigma(n)} \Rightarrow \phi\left(x_{1}, \ldots, x_{n}\right)=x_{i: n}}{n!}$
for $i=1, \ldots, n$, (which does not depend on $\mathbf{F}$ ).


## Comparisons for systems with DID components

- If $T=\phi\left(X_{1}, \ldots, X_{n}\right)$, we can define two signatures:
- The probabilistic signature $\left(p_{1}, \ldots, p_{n}\right)$ with $p_{i}=\operatorname{Pr}\left(T=X_{i: n}\right)$, for $i=1, \ldots, n$ (which depends on $\mathbf{F}$ ).
- The structural signature $\left(s_{1}, \ldots, s_{n}\right)$ with

$$
s_{i}=\frac{\text { number of } \sigma: x_{\sigma(1)}<\cdots<x_{\sigma(n)} \Rightarrow \phi\left(x_{1}, \ldots, x_{n}\right)=x_{i: n}}{n!}
$$

for $i=1, \ldots, n$, (which does not depend on $\mathbf{F}$ ).

- However, if $\left(X_{1}, \ldots X_{n}\right)$ is not EXC, then

$$
F_{T} \neq w_{1} F_{1: n}+\cdots+w_{n} F_{n: n} .
$$

## Distortion functions

- The distorted distributions were introduced in Yaari's dual theory of choice under risk (Econometrica 55 (1987):95-115).


## Distortion functions

- The distorted distributions were introduced in Yaari's dual theory of choice under risk (Econometrica 55 (1987):95-115).
- The distorted distribution (DD) associated to a distribution function (DF) $F$ and to a distortion function $q$ (i.e., to an increasing continuous function $q:[0,1] \rightarrow[0,1]$ such that $q(0)=0$ and $q(1)=1)$ is

$$
\begin{equation*}
F_{q}(t)=q(F(t)) . \tag{2.1}
\end{equation*}
$$

## Distortion functions

- The distorted distributions were introduced in Yaari's dual theory of choice under risk (Econometrica 55 (1987):95-115).
- The distorted distribution (DD) associated to a distribution function (DF) $F$ and to a distortion function $q$ (i.e., to an increasing continuous function $q:[0,1] \rightarrow[0,1]$ such that $q(0)=0$ and $q(1)=1)$ is

$$
\begin{equation*}
F_{q}(t)=q(F(t)) . \tag{2.1}
\end{equation*}
$$

- For the reliability functions (RF) $\bar{F}=1-F, \bar{F}_{q}=1-F_{q}$, we have

$$
\begin{equation*}
\bar{F}_{q}(t)=\bar{q}(\bar{F}(t)), \tag{2.2}
\end{equation*}
$$

where $\bar{q}(u)=1-q(1-u)$ is called the dual distortion function in Hürlimann (2004, N Am Actuarial J).

## Multivariate distortion functions

- The generalized distorted distribution (GDD) associated to $n$ DF $F_{1}, \ldots, F_{n}$ and to an increasing continuous multivariate distortion function $Q:[0,1]^{n} \rightarrow[0,1]$ such that $Q(0, \ldots, 0)=0$ and $Q(1, \ldots, 1)=1$, is

$$
\begin{equation*}
F_{Q}(t)=Q\left(F_{1}(t), \ldots, F_{n}(t)\right) \tag{2.3}
\end{equation*}
$$

## Multivariate distortion functions

- The generalized distorted distribution (GDD) associated to $n$ DF $F_{1}, \ldots, F_{n}$ and to an increasing continuous multivariate distortion function $Q:[0,1]^{n} \rightarrow[0,1]$ such that $Q(0, \ldots, 0)=0$ and $Q(1, \ldots, 1)=1$, is

$$
\begin{equation*}
F_{Q}(t)=Q\left(F_{1}(t), \ldots, F_{n}(t)\right) \tag{2.3}
\end{equation*}
$$

- For the RF we have

$$
\begin{equation*}
\bar{F}_{Q}(t)=\bar{Q}\left(\bar{F}_{1}(t), \ldots, \bar{F}_{n}(t)\right), \tag{2.4}
\end{equation*}
$$

where $\bar{F}=1-F, \bar{F}_{Q}=1-F_{Q}$ and $\bar{Q}\left(u_{1}, \ldots, u_{n}\right)=1-Q\left(1-u_{1}, \ldots, 1-u_{n}\right)$ is the multivariate dual distortion function; see Navarro et al. (JAP, 2011).

## Multivariate distortion functions

- The generalized distorted distribution (GDD) associated to $n$ DF $F_{1}, \ldots, F_{n}$ and to an increasing continuous multivariate distortion function $Q:[0,1]^{n} \rightarrow[0,1]$ such that $Q(0, \ldots, 0)=0$ and $Q(1, \ldots, 1)=1$, is

$$
\begin{equation*}
F_{Q}(t)=Q\left(F_{1}(t), \ldots, F_{n}(t)\right) \tag{2.3}
\end{equation*}
$$

- For the RF we have

$$
\begin{equation*}
\bar{F}_{Q}(t)=\bar{Q}\left(\bar{F}_{1}(t), \ldots, \bar{F}_{n}(t)\right), \tag{2.4}
\end{equation*}
$$

where $\bar{F}=1-F, \bar{F}_{Q}=1-F_{Q}$ and $\bar{Q}\left(u_{1}, \ldots, u_{n}\right)=1-Q\left(1-u_{1}, \ldots, 1-u_{n}\right)$ is the multivariate dual distortion function; see Navarro et al. (JAP, 2011).

- $Q$ and $\bar{Q}$ are continuous aggregation functions.


## Coherent systems- General case

$\downarrow T=\phi\left(X_{1}, \ldots, X_{n}\right)=\max _{i=1, \ldots, r} \min _{j \in P_{i}} X_{j}$ where $P_{1}, \ldots, P_{r}$ are the minimal path sets of the system.

## Coherent systems- General case

- $T=\phi\left(X_{1}, \ldots, X_{n}\right)=\max _{i=1, \ldots, r} \min _{j \in P_{i}} X_{j}$ where $P_{1}, \ldots, P_{r}$ are the minimal path sets of the system.
- Then, by using the inclusion-exclusion formula

$$
\begin{aligned}
\bar{F}_{T}(t)= & \operatorname{Pr}(T>t)=\operatorname{Pr}\left(\max _{i=1, \ldots, r} \min _{j \in P_{i}} X_{j}>t\right) \\
= & \operatorname{Pr}\left(\cup_{i=1}^{r}\left\{\min _{j \in P_{i}} X_{j}>t\right\}\right) \\
= & \sum_{i=1}^{r} \operatorname{Pr}\left(\min _{j \in P_{i}} X_{j}>t\right)-\sum_{i<k} \operatorname{Pr}\left(\min _{j \in P_{i} \cap P_{k}} X_{j}>t\right)+\ldots \\
& +(-1)^{r+1} \sum_{i=1}^{r} \operatorname{Pr}\left(\min _{j \in P_{1} \cap \cdots \cap P_{r}} X_{j}>t\right) .
\end{aligned}
$$

## Coherent systems- General case

- If $\operatorname{Pr}\left(X_{1}>x_{1}, \ldots, X_{n}>x_{n}\right)=\mathbf{K}\left(\bar{F}_{1}\left(x_{1}\right), \ldots, \bar{F}_{n}\left(x_{n}\right)\right)$, where
$\mathbf{K}$ is the survival copula, then:

$$
\begin{aligned}
\operatorname{Pr}\left(X_{1: i}>t\right) & =\operatorname{Pr}\left(X_{1}>t, \ldots, X_{i}>t, X_{i+1}>-\infty, \ldots, X_{n}>-\infty\right) \\
& =\mathbf{K}\left(\bar{F}_{1}(t), \ldots, \bar{F}_{i}(t), 1, \ldots, 1\right)
\end{aligned}
$$

## Coherent systems- General case

- If $\operatorname{Pr}\left(X_{1}>x_{1}, \ldots, X_{n}>x_{n}\right)=\mathbf{K}\left(\bar{F}_{1}\left(x_{1}\right), \ldots, \bar{F}_{n}\left(x_{n}\right)\right)$, where $\mathbf{K}$ is the survival copula, then:

$$
\begin{aligned}
\operatorname{Pr}\left(X_{1: i}>t\right) & =\operatorname{Pr}\left(X_{1}>t, \ldots, X_{i}>t, X_{i+1}>-\infty, \ldots, X_{n}>-\infty\right) \\
& =\mathbf{K}\left(\bar{F}_{1}(t), \ldots, \bar{F}_{i}(t), 1, \ldots, 1\right)
\end{aligned}
$$

- If $\bar{F}_{P}(t)=\operatorname{Pr}\left(X_{P}>t\right)$ for $X_{P}=\min _{j \in P} X_{j}$, then

$$
\bar{F}_{P}(t)=K_{P}\left(\bar{F}_{1}(t), \ldots, \bar{F}_{n}(t)\right)
$$

where $K_{P}\left(u_{1}, \ldots, u_{n}\right)=\mathbf{K}\left(u_{1}^{P}, \ldots, u_{n}^{P}\right)$ and $u_{j}^{P}=u_{j}$ if $j \in P$ and $u_{j}^{P}=1$ if $j \notin P$.

## Coherent systems- General case

- If $\operatorname{Pr}\left(X_{1}>x_{1}, \ldots, X_{n}>x_{n}\right)=\mathbf{K}\left(\bar{F}_{1}\left(x_{1}\right), \ldots, \bar{F}_{n}\left(x_{n}\right)\right)$, where $\mathbf{K}$ is the survival copula, then:

$$
\begin{aligned}
\operatorname{Pr}\left(X_{1: i}>t\right) & =\operatorname{Pr}\left(X_{1}>t, \ldots, X_{i}>t, X_{i+1}>-\infty, \ldots, X_{n}>-\infty\right) \\
& =\mathbf{K}\left(\bar{F}_{1}(t), \ldots, \bar{F}_{i}(t), 1, \ldots, 1\right)
\end{aligned}
$$

- If $\bar{F}_{P}(t)=\operatorname{Pr}\left(X_{P}>t\right)$ for $X_{P}=\min _{j \in P} X_{j}$, then

$$
\bar{F}_{P}(t)=K_{P}\left(\bar{F}_{1}(t), \ldots, \bar{F}_{n}(t)\right)
$$

where $K_{P}\left(u_{1}, \ldots, u_{n}\right)=\mathbf{K}\left(u_{1}^{P}, \ldots, u_{n}^{P}\right)$ and $u_{j}^{P}=u_{j}$ if $j \in P$ and $u_{j}^{P}=1$ if $j \notin P$.

- Therefore, from the inclusion-exclusion representation

$$
\left.\bar{F}_{T}(t)=\bar{Q}^{( } \bar{F}_{1}(t), \ldots, \bar{F}_{n}(t)\right)
$$

where $\bar{Q}$ is a multivariate dual distortion function.

## Coherent systems- particular cases

- If $\bar{F}_{1}=\cdots=\bar{F}_{n}=\bar{F}$, then

$$
\bar{F}_{T}(t)=\bar{Q}(\bar{F}(t), \ldots, \bar{F}(t))=\bar{q}(\bar{F}),
$$

where $\bar{q}(u)=\bar{Q}(u, \ldots, u)$ is a distortion function.

## Coherent systems- particular cases

- If $\bar{F}_{1}=\cdots=\bar{F}_{n}=\bar{F}$, then

$$
\bar{F}_{T}(t)=\bar{Q}(\bar{F}(t), \ldots, \bar{F}(t))=\bar{q}(\bar{F}),
$$

where $\bar{q}(u)=\bar{Q}(u, \ldots, u)$ is a distortion function.

- If $X_{1}, \ldots, X_{n}$ are independent, then $\bar{Q}$ is a polynomial and it is called structure reliability function in Barlow and Proschan (1975).


## Coherent systems- particular cases

- If $\bar{F}_{1}=\cdots=\bar{F}_{n}=\bar{F}$, then

$$
\bar{F}_{T}(t)=\bar{Q}(\bar{F}(t), \ldots, \bar{F}(t))=\bar{q}(\bar{F}),
$$

where $\bar{q}(u)=\bar{Q}(u, \ldots, u)$ is a distortion function.

- If $X_{1}, \ldots, X_{n}$ are independent, then $\bar{Q}$ is a polynomial and it is called structure reliability function in Barlow and Proschan (1975).
- In particular, in the IID case, $\bar{F}_{T}=a_{1} \bar{F}_{1: 1}+\cdots+a_{n} \bar{F}_{1: n}$ and

$$
\bar{q}(u)=a_{1} u+\cdots+a_{n} u^{n}
$$

where $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ is the minimal signature of the system (see, e.g. Navarro et al., ASMBI 2013).

## Comparisons of distorted distributions

- If $T_{i}$ has the $\operatorname{RF} \bar{q}_{i}(\bar{F}(t)), i=1,2$, then:


## Comparisons of distorted distributions

- If $T_{i}$ has the $\operatorname{RF} \bar{q}_{i}(\bar{F}(t)), i=1,2$, then:
- $T_{1} \leq S T T_{2}$ for all $F$ if and only if $\bar{q}_{2}-\bar{q}_{1} \geq 0$ in $(0,1)$.


## Comparisons of distorted distributions

- If $T_{i}$ has the RF $\bar{q}_{i}(\bar{F}(t)), i=1,2$, then:
- $T_{1} \leq S T T_{2}$ for all $F$ if and only if $\bar{q}_{2}-\bar{q}_{1} \geq 0$ in $(0,1)$.
- $T_{1} \leq{ }_{H R} T_{2}$ for all $F$ if and only if $\bar{q}_{2} / \bar{q}_{1}$ decreases in $(0,1)$.


## Comparisons of distorted distributions

- If $T_{i}$ has the $\operatorname{RF} \bar{q}_{i}(\bar{F}(t)), i=1,2$, then:
- $T_{1} \leq S T T_{2}$ for all $F$ if and only if $\bar{q}_{2}-\bar{q}_{1} \geq 0$ in $(0,1)$.
- $T_{1} \leq{ }_{H R} T_{2}$ for all $F$ if and only if $\bar{q}_{2} / \bar{q}_{1}$ decreases in $(0,1)$.
- $T_{1} \leq_{R H R} T_{2}$ for all $F$ if and only if $q_{2} / q_{1}$ increases in $(0,1)$.


## Comparisons of distorted distributions

- If $T_{i}$ has the $\operatorname{RF} \bar{q}_{i}(\bar{F}(t)), i=1,2$, then:
- $T_{1} \leq S T T_{2}$ for all $F$ if and only if $\bar{q}_{2}-\bar{q}_{1} \geq 0$ in $(0,1)$.
- $T_{1} \leq{ }_{H R} T_{2}$ for all $F$ if and only if $\bar{q}_{2} / \bar{q}_{1}$ decreases in $(0,1)$.
- $T_{1} \leq_{R H R} T_{2}$ for all $F$ if and only if $q_{2} / q_{1}$ increases in $(0,1)$.
- $T_{1} \leq_{L R} T_{2}$ for all $F$ if and only if $\bar{q}_{2}^{\prime} / \bar{q}_{1}^{\prime}$ decreases in $(0,1)$.


## Comparisons of distorted distributions

- If $T_{i}$ has the $\operatorname{RF} \bar{q}_{i}(\bar{F}(t)), i=1,2$, then:
- $T_{1} \leq S T T_{2}$ for all $F$ if and only if $\bar{q}_{2}-\bar{q}_{1} \geq 0$ in $(0,1)$.
- $T_{1} \leq{ }_{H R} T_{2}$ for all $F$ if and only if $\bar{q}_{2} / \bar{q}_{1}$ decreases in $(0,1)$.
- $T_{1} \leq_{R H R} T_{2}$ for all $F$ if and only if $q_{2} / q_{1}$ increases in $(0,1)$.
- $T_{1} \leq_{L R} T_{2}$ for all $F$ if and only if $\bar{q}_{2}^{\prime} / \bar{q}_{1}^{\prime}$ decreases in $(0,1)$.
- $T_{1} \leq_{M R L} T_{2}$ for all $F$ such that $E\left(T_{1}\right) \leq E\left(T_{2}\right)$ if $\bar{q}_{2} / \bar{q}_{1}$ is bathtub in $(0,1)$.


## Comparisons of distorted distributions

- If $T_{i}$ has the $\operatorname{RF} \bar{q}_{i}(\bar{F}(t)), i=1,2$, then:
- $T_{1} \leq S T T_{2}$ for all $F$ if and only if $\bar{q}_{2}-\bar{q}_{1} \geq 0$ in $(0,1)$.
- $T_{1} \leq{ }_{H R} T_{2}$ for all $F$ if and only if $\bar{q}_{2} / \bar{q}_{1}$ decreases in $(0,1)$.
- $T_{1} \leq_{R H R} T_{2}$ for all $F$ if and only if $q_{2} / q_{1}$ increases in $(0,1)$.
- $T_{1} \leq_{L R} T_{2}$ for all $F$ if and only if $\bar{q}_{2}^{\prime} / \bar{q}_{1}^{\prime}$ decreases in $(0,1)$.
- $T_{1} \leq_{M R L} T_{2}$ for all $F$ such that $E\left(T_{1}\right) \leq E\left(T_{2}\right)$ if $\bar{q}_{2} / \bar{q}_{1}$ is bathtub in $(0,1)$.
- Navarro et al. ASMBI, 2013 and Navarro and Gomis ASMBI, 2016.


## Example 1



Figure: System with lifetime $T=\min \left(X_{1}, \max \left(X_{2}, X_{3}\right)\right)$.

## Example 1

- The minimal path sets are $\{1,2\}$ and $\{1,3\}$


## Example 1

- The minimal path sets are $\{1,2\}$ and $\{1,3\}$
- Hence, the system reliability is

$$
\begin{aligned}
\bar{F}_{T}(t) & =\operatorname{Pr}\left(\left\{\min \left(X_{1}, X_{2}\right)>t\right\} \cup\left\{\min \left(X_{1}, X_{3}\right)>t\right\}\right) \\
& =\operatorname{Pr}\left(X_{\{1,2\}}>t\right)+\operatorname{Pr}\left(X_{\{1,3\}}>t\right)-\operatorname{Pr}\left(X_{\{1,2,3\}}>t\right) \\
& =K(\bar{F}(t), \bar{F}(t), 1)+K(\bar{F}(t), 1, \bar{F}(t))-K(\bar{F}(t), \bar{F}(t), \bar{F}(t)) \\
& =\bar{q}(\bar{F}(t))
\end{aligned}
$$

where $\bar{q}(u)=K(u, u, 1)+K(u, 1, u)-K(u, u, u)$.

## Example 1

- The minimal path sets are $\{1,2\}$ and $\{1,3\}$
- Hence, the system reliability is

$$
\begin{aligned}
\bar{F}_{T}(t) & =\operatorname{Pr}\left(\left\{\min \left(X_{1}, X_{2}\right)>t\right\} \cup\left\{\min \left(X_{1}, X_{3}\right)>t\right\}\right) \\
& =\operatorname{Pr}\left(X_{\{1,2\}}>t\right)+\operatorname{Pr}\left(X_{\{1,3\}}>t\right)-\operatorname{Pr}\left(X_{\{1,2,3\}}>t\right) \\
& =K(\bar{F}(t), \bar{F}(t), 1)+K(\bar{F}(t), 1, \bar{F}(t))-K(\bar{F}(t), \bar{F}(t), \bar{F}(t)) \\
& =\bar{q}(\bar{F}(t))
\end{aligned}
$$

where $\bar{q}(u)=K(u, u, 1)+K(u, 1, u)-K(u, u, u)$.

- If $K\left(u_{1}, u_{2}, u_{3}\right)=u_{1} u_{2} u_{3}\left(1+\alpha\left(2-u_{1}-u_{2}\right)\left(1-u_{3}\right)\right)$, for $\alpha \in[-0.5,0.5]$, then

$$
\bar{q}_{\alpha}(u)=u^{2}+u^{2}\left(1+\alpha(1-u)^{2}\right)-u^{3}\left(1+2 \alpha(1-u)^{2}\right) .
$$

## Example 1

- If we want to compare $T=\min \left(X_{1}, \max \left(X_{2}, X_{3}\right)\right)$ and $X_{1}$ in the HR order we plot $\bar{q}_{\alpha}(u) / u$ in $(0,1)$ for $\alpha=-0.5,-0.25,0,0.25,0.5$.


Figure: Ratio of the dual distortion functions of $T$ and $X_{1}$ when $\alpha=-0.5,-0.25,0,0.25,0.5$.

## Example 1

- If we want to compare $T=\min \left(X_{1}, \max \left(X_{2}, X_{3}\right)\right)$ and $X_{1}$ in the HR order we plot $\bar{q}_{\alpha}(u) / u$ for
$\alpha=-0.5,-0.25,0,0.25,0.5$.
- As it is increasing for $\alpha=-0.5,-0.25,0,0.25,0.5$, then $T \leq_{H R} X_{1}$ for all $F$.


## Example 1

- If we want to compare $T=\min \left(X_{1}, \max \left(X_{2}, X_{3}\right)\right)$ for different values of $\alpha$, we should study $g=\bar{q}_{\beta} / \bar{q}_{\alpha}$ for $-0.5 \leq \alpha<\beta \leq 0.5$.


## Example 1

- If we want to compare $T=\min \left(X_{1}, \max \left(X_{2}, X_{3}\right)\right)$ for different values of $\alpha$, we should study $g=\bar{q}_{\beta} / \bar{q}_{\alpha}$ for $-0.5 \leq \alpha<\beta \leq 0.5$.
- A straightforward calculation shows that $g$ is strictly decreasing in $\left(0, u_{0}\right)$ and strictly increasing in $\left(u_{0}, 1\right)$ for

$$
u_{0}=\frac{13}{8}-\frac{1}{8} \sqrt{57} \cong 0.681270
$$



Figure: Ratio $\bar{q}_{\beta} / \bar{q}_{\alpha}$ of the dual distortion functions of $T$ when $(\alpha, \beta)=(-0.5,-0.25)$ (blue), $(-0.25,0)$ (green), $(0,0.25)$ (black) and $(0.25,0.5)(\mathrm{red})$.

## Example 1

- If we want to compare $T=\min \left(X_{1}, \max \left(X_{2}, X_{3}\right)\right)$ for different values of $\alpha$, we should study $g=\bar{q}_{\beta} / \bar{q}_{\alpha}$ for $-0.5 \leq \alpha<\beta \leq 0.5$.
- A straightforward calculation shows that $g$ is strictly decreasing in $\left(0, u_{0}\right)$ and strictly increasing in $\left(u_{0}, 1\right)$ for

$$
u_{0}=\frac{13}{8}-\frac{1}{8} \sqrt{57} \cong 0.681270
$$

## Example 1

- If we want to compare $T=\min \left(X_{1}, \max \left(X_{2}, X_{3}\right)\right)$ for different values of $\alpha$, we should study $g=\bar{q}_{\beta} / \bar{q}_{\alpha}$ for $-0.5 \leq \alpha<\beta \leq 0.5$.
- A straightforward calculation shows that $g$ is strictly decreasing in $\left(0, u_{0}\right)$ and strictly increasing in $\left(u_{0}, 1\right)$ for

$$
u_{0}=\frac{13}{8}-\frac{1}{8} \sqrt{57} \cong 0.681270
$$

- Therefore $T_{\alpha} \leq_{M R L} T_{\beta}$ for all $F$ such that $E\left(T_{\alpha}\right) \leq E\left(T_{\beta}\right)$.


## Example 1

- If we want to compare $T=\min \left(X_{1}, \max \left(X_{2}, X_{3}\right)\right)$ for different values of $\alpha$, we should study $g=\bar{q}_{\beta} / \bar{q}_{\alpha}$ for $-0.5 \leq \alpha<\beta \leq 0.5$.
- A straightforward calculation shows that $g$ is strictly decreasing in $\left(0, u_{0}\right)$ and strictly increasing in $\left(u_{0}, 1\right)$ for

$$
u_{0}=\frac{13}{8}-\frac{1}{8} \sqrt{57} \cong 0.681270
$$

- Therefore $T_{\alpha} \leq_{M R L} T_{\beta}$ for all $F$ such that $E\left(T_{\alpha}\right) \leq E\left(T_{\beta}\right)$.
- If $X_{i} \equiv \operatorname{Exp}(\mu)$, then

$$
E(T)=\frac{2 \mu}{3}+\frac{\mu}{60} \alpha
$$

which is an increasing function of $\alpha$. So $T_{\alpha} \leq_{M R L} T_{\beta}$ holds.

## Example 1

- If we want to compare $T=\min \left(X_{1}, \max \left(X_{2}, X_{3}\right)\right)$ for different values of $\alpha$, we should study $g=\bar{q}_{\beta} / \bar{q}_{\alpha}$ for $-0.5 \leq \alpha<\beta \leq 0.5$.
- A straightforward calculation shows that $g$ is strictly decreasing in $\left(0, u_{0}\right)$ and strictly increasing in $\left(u_{0}, 1\right)$ for

$$
u_{0}=\frac{13}{8}-\frac{1}{8} \sqrt{57} \cong 0.681270
$$

- Therefore $T_{\alpha} \leq_{M R L} T_{\beta}$ for all $F$ such that $E\left(T_{\alpha}\right) \leq E\left(T_{\beta}\right)$.
- If $X_{i} \equiv \operatorname{Exp}(\mu)$, then

$$
E(T)=\frac{2 \mu}{3}+\frac{\mu}{60} \alpha
$$

which is an increasing function of $\alpha$. So $T_{\alpha} \leq_{M R L} T_{\beta}$ holds.

- These systems are not ST ordered since $g$ takes values greater and smaller than 1.

Comparisons for systems with IID and EXC components

## Comparisons IID case-Navarro (Test, 2016)

- $T_{1}$ with minimal signature $\left(p_{1}, \ldots, p_{n}\right)$ IID $\sim F$ comp.


## Comparisons IID case-Navarro (Test, 2016)

- $T_{1}$ with minimal signature $\left(p_{1}, \ldots, p_{n}\right)$ IID $\sim F$ comp.
- $T_{2}$ with minimal signature $\left(q_{1}, \ldots, q_{n}\right)$ IID $\sim F$ comp.


## Comparisons IID case-Navarro (Test, 2016)

- $T_{1}$ with minimal signature $\left(p_{1}, \ldots, p_{n}\right)$ IID $\sim F$ comp.
- $T_{2}$ with minimal signature $\left(q_{1}, \ldots, q_{n}\right)$ IID $\sim F$ comp.
- $T_{1} \leq_{S T} T_{2}$ holds for all $F$ if and only if

$$
\sum_{i=1}^{n}\left(q_{i}-p_{i}\right) x^{i} \geq 0 \text { for all } x \in(0,1)
$$

## Comparisons IID case-Navarro (Test, 2016)

- $T_{1}$ with minimal signature $\left(p_{1}, \ldots, p_{n}\right)$ IID $\sim F$ comp.
- $T_{2}$ with minimal signature $\left(q_{1}, \ldots, q_{n}\right)$ IID $\sim F$ comp.
- $T_{1} \leq_{S T} T_{2}$ holds for all $F$ if and only if

$$
\sum_{i=1}^{n}\left(q_{i}-p_{i}\right) x^{i} \geq 0 \text { for all } x \in(0,1)
$$

- $T_{1} \leq_{H R} T_{2}$ holds for all $F$ if and only if

$$
\sum_{i=1}^{n-1} \sum_{j=i+1}^{n}(j-i)\left(p_{j} q_{i}-p_{i} q_{j}\right) x^{i+j-2} \geq 0 \text { for all } x \in(0,1)
$$

## Comparisons IID case-Navarro (Test, 2016)

- $T_{1}$ with minimal signature $\left(p_{1}, \ldots, p_{n}\right)$ IID $\sim F$ comp.
- $T_{2}$ with minimal signature $\left(q_{1}, \ldots, q_{n}\right)$ IID $\sim F$ comp.
- $T_{1} \leq_{S T} T_{2}$ holds for all $F$ if and only if

$$
\sum_{i=1}^{n}\left(q_{i}-p_{i}\right) x^{i} \geq 0 \text { for all } x \in(0,1)
$$

- $T_{1} \leq H R T_{2}$ holds for all $F$ if and only if

$$
\sum_{i=1}^{n-1} \sum_{j=i+1}^{n}(j-i)\left(p_{j} q_{i}-p_{i} q_{j}\right) x^{i+j-2} \geq 0 \text { for all } x \in(0,1)
$$

- $T_{1} \leq_{L R} T_{2}$ holds for all $F$ if and only if

$$
\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} i j(j-i)\left(p_{j} q_{i}-p_{i} q_{j}\right) x^{i+j-2} \geq 0 \text { for all } x \in(0,1) .
$$



Figure: HR orderings for IID components from signatures.


Figure: All the HR orderings for IID components.


Figure: LR orderings for IID components from signatures.


Figure: All the LR orderings for IID components.

## Coherent systems- General case

- From the preceding section, we have

$$
\bar{F}_{T}(t)=\bar{Q}\left(\bar{F}_{1}(t), \ldots, \bar{F}_{n}(t)\right),
$$

where $\bar{Q}$ is a multivariate dual distortion function.

## Coherent systems- General case

- From the preceding section, we have

$$
\bar{F}_{T}(t)=\bar{Q}\left(\bar{F}_{1}(t), \ldots, \bar{F}_{n}(t)\right),
$$

where $\bar{Q}$ is a multivariate dual distortion function.

- Therefore we can use the following results obtained in Navarro et al. (Methodology and Computing in Applied Probability, 2016) and in Navarro and del Águila (Metrika, 2017) to compare generalized distorted distributions.


## Comparisons of GDD

- If $T_{i}$ has $\operatorname{RF} \bar{Q}_{i}\left(\bar{F}_{1}, \ldots, \bar{F}_{r}\right), i=1,2$, then:


## Comparisons of GDD

- If $T_{i}$ has RF $\bar{Q}_{i}\left(\bar{F}_{1}, \ldots, \bar{F}_{r}\right), i=1,2$, then:
- $T_{1} \leq_{S T} T_{2}$ for all $\bar{F}_{1}, \ldots, \bar{F}_{r}$ if and only if $\bar{Q}_{2}-\bar{Q}_{1} \geq 0$ in $(0,1)^{r}$.


## Comparisons of GDD

- If $T_{i}$ has $\operatorname{RF} \bar{Q}_{i}\left(\bar{F}_{1}, \ldots, \bar{F}_{r}\right), i=1,2$, then:
- $T_{1} \leq s T T_{2}$ for all $\bar{F}_{1}, \ldots, \bar{F}_{r}$ if and only if $\bar{Q}_{2}-\bar{Q}_{1} \geq 0$ in $(0,1)^{r}$.
- $T_{1} \leq_{H R} T_{2}$ for all $\bar{F}_{1}, \ldots, \bar{F}_{r}$ if and only if $\bar{Q}_{2} / Q_{1}$ is decreasing in $(0,1)^{r}$.


## Comparisons of GDD

- If $T_{i}$ has $\operatorname{RF} \bar{Q}_{i}\left(\bar{F}_{1}, \ldots, \bar{F}_{r}\right), i=1,2$, then:
- $T_{1} \leq{ }_{s T} T_{2}$ for all $\bar{F}_{1}, \ldots, \bar{F}_{r}$ if and only if $\bar{Q}_{2}-\bar{Q}_{1} \geq 0$ in $(0,1)^{r}$.
- $T_{1} \leq_{H R} T_{2}$ for all $\bar{F}_{1}, \ldots, \bar{F}_{r}$ if and only if $\bar{Q}_{2} / \bar{Q}_{1}$ is decreasing in $(0,1)^{r}$.
- $T_{1} \leq_{R H R} T_{2}$ for all $\bar{F}_{1}, \ldots, \bar{F}_{r}$ if and only if $Q_{2} / Q_{1}$ is increasing in $(0,1)^{r}$.


## Comparisons of GDD with ordered components

- If $T_{i}$ has $\operatorname{RF} \bar{Q}_{i}\left(\bar{F}_{1}, \ldots, \bar{F}_{r}\right), i=1,2$, then:


## Comparisons of GDD with ordered components

- If $T_{i}$ has $\operatorname{RF} \bar{Q}_{i}\left(\bar{F}_{1}, \ldots, \bar{F}_{r}\right), i=1,2$, then:
- $T_{1} \leq S T T_{2}$ for all $\bar{F}_{1}, \ldots, \bar{F}_{r}$ such that

$$
F_{1} \geq_{S T} \cdots \geq_{S T} F_{n}
$$

holds if and only if $\bar{Q}_{1} \leq \bar{Q}_{2}$ in
$D=\left\{\left(u_{1}, \ldots, u_{n}\right) \in[0,1]^{n}: u_{1} \geq \cdots \geq u_{n}\right\}$.

## Comparisons of GDD with ordered components

- If $T_{i}$ has RF $\bar{Q}_{i}\left(\bar{F}_{1}, \ldots, \bar{F}_{r}\right), i=1,2$, then:
- $T_{1} \leq S T T_{2}$ for all $\bar{F}_{1}, \ldots, \bar{F}_{r}$ such that

$$
F_{1} \geq_{S T} \cdots \geq_{S T} F_{n}
$$

holds if and only if $\bar{Q}_{1} \leq \bar{Q}_{2}$ in
$D=\left\{\left(u_{1}, \ldots, u_{n}\right) \in[0,1]^{n}: u_{1} \geq \cdots \geq u_{n}\right\}$.

- $T_{1} \leq H R T_{2}$ for all $\bar{F}_{1}, \ldots, \bar{F}_{r}$ such that

$$
\begin{equation*}
F_{1} \geq_{H R} \cdots \geq{ }_{H R} F_{n} \tag{3.1}
\end{equation*}
$$

holds if and only if the function

$$
\begin{equation*}
H\left(v_{1}, \ldots, v_{n}\right)=\frac{\bar{Q}_{2}\left(v_{1}, v_{1} v_{2}, \ldots, v_{1} \ldots v_{n}\right)}{\bar{Q}_{1}\left(v_{1}, v_{1} v_{2}, \ldots, v_{1} \ldots v_{n}\right)} \tag{3.2}
\end{equation*}
$$

is decreasing in $[0,1]^{n}$.

## Comparisons of GDD with ordered components

- If $T_{i}$ has RF $\bar{Q}_{i}\left(\bar{F}_{1}, \ldots, \bar{F}_{r}\right), i=1,2$, then:
- $T_{1} \leq_{S T} T_{2}$ for all $\bar{F}_{1}, \ldots, \bar{F}_{r}$ such that

$$
F_{1} \geq_{S T} \cdots \geq_{S T} F_{n}
$$

holds if and only if $\bar{Q}_{1} \leq \bar{Q}_{2}$ in
$D=\left\{\left(u_{1}, \ldots, u_{n}\right) \in[0,1]^{n}: u_{1} \geq \cdots \geq u_{n}\right\}$.

- $T_{1} \leq{ }_{H R} T_{2}$ for all $\bar{F}_{1}, \ldots, \bar{F}_{r}$ such that

$$
\begin{equation*}
F_{1} \geq_{H R} \cdots \geq_{H R} F_{n} \tag{3.1}
\end{equation*}
$$

holds if and only if the function

$$
\begin{equation*}
H\left(v_{1}, \ldots, v_{n}\right)=\frac{\bar{Q}_{2}\left(v_{1}, v_{1} v_{2}, \ldots, v_{1} \ldots v_{n}\right)}{\bar{Q}_{1}\left(v_{1}, v_{1} v_{2}, \ldots, v_{1} \ldots v_{n}\right)} \tag{3.2}
\end{equation*}
$$

is decreasing in $[0,1]^{n}$.

- A similar result is obtained for the RHR order.


## Example 2

- $T=X_{2: 2}=\max \left(X_{1}, X_{2}\right), X_{1}, X_{2}$ INID.


## Example 2

- $T=X_{2: 2}=\max \left(X_{1}, X_{2}\right), X_{1}, X_{2}$ INID.
- Then the system reliability is

$$
\bar{F}_{T}(t)=\bar{F}_{1}(t)+\bar{F}_{2}(t)-\bar{F}_{1}(t) \bar{F}_{2}(t)=\bar{Q}\left(\bar{F}_{1}(t), \bar{F}_{2}(t)\right),
$$

where $\bar{Q}\left(u_{1}, u_{2}\right)=u_{1}+u_{2}-u_{1} u_{2}$.

## Example 2

- $T=X_{2: 2}=\max \left(X_{1}, X_{2}\right), X_{1}, X_{2}$ INID.
- Then the system reliability is

$$
\bar{F}_{T}(t)=\bar{F}_{1}(t)+\bar{F}_{2}(t)-\bar{F}_{1}(t) \bar{F}_{2}(t)=\bar{Q}\left(\bar{F}_{1}(t), \bar{F}_{2}(t)\right),
$$

where $\bar{Q}\left(u_{1}, u_{2}\right)=u_{1}+u_{2}-u_{1} u_{2}$.

- The reliability of the series system $X_{1: 2}$ is

$$
\bar{F}_{1: 2}(t)=\bar{F}_{1}(t) \bar{F}_{2}(t)=\bar{Q}_{1: 2}\left(\bar{F}_{1}(t), \bar{F}_{2}(t)\right),
$$

where $\bar{Q}_{1: 2}\left(u_{1}, u_{2}\right)=u_{1} u_{2}$.

## Example 2

- $T=X_{2: 2}=\max \left(X_{1}, X_{2}\right), X_{1}, X_{2}$ INID.
- Then the system reliability is

$$
\bar{F}_{T}(t)=\bar{F}_{1}(t)+\bar{F}_{2}(t)-\bar{F}_{1}(t) \bar{F}_{2}(t)=\bar{Q}\left(\bar{F}_{1}(t), \bar{F}_{2}(t)\right),
$$

where $\bar{Q}\left(u_{1}, u_{2}\right)=u_{1}+u_{2}-u_{1} u_{2}$.

- The reliability of the series system $X_{1: 2}$ is

$$
\bar{F}_{1: 2}(t)=\bar{F}_{1}(t) \bar{F}_{2}(t)=\bar{Q}_{1: 2}\left(\bar{F}_{1}(t), \bar{F}_{2}(t)\right)
$$

where $\bar{Q}_{1: 2}\left(u_{1}, u_{2}\right)=u_{1} u_{2}$.

- Then $X_{1: 2} \leq H R X_{2: 2}$ holds for all $\bar{F}_{1}, \bar{F}_{2}$ since

$$
\frac{\bar{Q}\left(u_{1}, u_{2}\right)}{u_{1} u_{2}}=\frac{u_{1}+u_{2}-u_{1} u_{2}}{u_{1} u_{2}}=\frac{1}{u_{1}}+\frac{1}{u_{2}}-1
$$

is decreasing in $(0,1)^{2}$.

## Example 2

- If we want to compare $T=X_{2: 2}=\max \left(X_{1}, X_{2}\right)$ with $X_{1}$, we should study

$$
\frac{\bar{Q}\left(u_{1}, u_{2}\right)}{u_{1}}=\frac{u_{1}+u_{2}-u_{1} u_{2}}{u_{1}}=1+\frac{u_{2}}{u_{1}}-u_{2}=1+u_{2}\left(\frac{1}{u_{1}}-1\right) .
$$

## Example 2

- If we want to compare $T=X_{2: 2}=\max \left(X_{1}, X_{2}\right)$ with $X_{1}$, we should study

$$
\frac{\bar{Q}\left(u_{1}, u_{2}\right)}{u_{1}}=\frac{u_{1}+u_{2}-u_{1} u_{2}}{u_{1}}=1+\frac{u_{2}}{u_{1}}-u_{2}=1+u_{2}\left(\frac{1}{u_{1}}-1\right) .
$$

- As it is is decreasing in $u_{1}$ and increasing in $u_{2}$ in $(0,1)^{2}, T$ and $X_{1}$ are not HR ordered. The same happen for $X_{2}$.


## Example 2

- If we want to compare $T=X_{2: 2}=\max \left(X_{1}, X_{2}\right)$ with $X_{1}$, we should study

$$
\frac{\bar{Q}\left(u_{1}, u_{2}\right)}{u_{1}}=\frac{u_{1}+u_{2}-u_{1} u_{2}}{u_{1}}=1+\frac{u_{2}}{u_{1}}-u_{2}=1+u_{2}\left(\frac{1}{u_{1}}-1\right) .
$$

- As it is is decreasing in $u_{1}$ and increasing in $u_{2}$ in $(0,1)^{2}, T$ and $X_{1}$ are not HR ordered. The same happen for $X_{2}$.
- If we assume $X_{1} \geq H R X_{2}$, we should study

$$
H\left(v_{1}, v_{2}\right)=\frac{\bar{Q}_{2}\left(v_{1}, v_{1} v_{2}\right)}{\bar{Q}_{1}\left(v_{1}, v_{1} v_{2}\right)}=\frac{v_{1}+v_{1} v_{2}-v_{1}^{2} v_{2}}{v_{1}}=1+v_{2}-v_{1} v_{2} .
$$

## Example 2

- If we want to compare $T=X_{2: 2}=\max \left(X_{1}, X_{2}\right)$ with $X_{1}$, we should study

$$
\frac{\bar{Q}\left(u_{1}, u_{2}\right)}{u_{1}}=\frac{u_{1}+u_{2}-u_{1} u_{2}}{u_{1}}=1+\frac{u_{2}}{u_{1}}-u_{2}=1+u_{2}\left(\frac{1}{u_{1}}-1\right) .
$$

- As it is is decreasing in $u_{1}$ and increasing in $u_{2}$ in $(0,1)^{2}, T$ and $X_{1}$ are not HR ordered. The same happen for $X_{2}$.
- If we assume $X_{1} \geq H R X_{2}$, we should study

$$
H\left(v_{1}, v_{2}\right)=\frac{\bar{Q}_{2}\left(v_{1}, v_{1} v_{2}\right)}{\bar{Q}_{1}\left(v_{1}, v_{1} v_{2}\right)}=\frac{v_{1}+v_{1} v_{2}-v_{1}^{2} v_{2}}{v_{1}}=1+v_{2}-v_{1} v_{2} .
$$

- As it is is decreasing in $v_{1}$ and increasing in $v_{2}$ in $(0,1)^{2}, T$ and $X_{1}$ are not HR ordered.


## Example 2

- However, to compare $T$ and $X_{2}$, we should study

$$
H\left(v_{1}, v_{2}\right)=\frac{\bar{Q}_{2}\left(v_{1}, v_{1} v_{2}\right)}{\bar{Q}_{1}\left(v_{1}, v_{1} v_{2}\right)}=\frac{v_{1}+v_{1} v_{2}-v_{1}^{2} v_{2}}{v_{1} v_{2}}=1+\frac{1}{v_{2}}-v_{1} .
$$

## Example 2

- However, to compare $T$ and $X_{2}$, we should study

$$
H\left(v_{1}, v_{2}\right)=\frac{\bar{Q}_{2}\left(v_{1}, v_{1} v_{2}\right)}{\bar{Q}_{1}\left(v_{1}, v_{1} v_{2}\right)}=\frac{v_{1}+v_{1} v_{2}-v_{1}^{2} v_{2}}{v_{1} v_{2}}=1+\frac{1}{v_{2}}-v_{1} .
$$

- As it is is decreasing in $(0,1)^{2}$, then $X_{2} \leq H R T$ for all $\bar{F}_{1}, \bar{F}_{2}$ such that $X_{2} \leq_{H R} X_{1}$.


## Example 2

- However, to compare $T$ and $X_{2}$, we should study

$$
H\left(v_{1}, v_{2}\right)=\frac{\bar{Q}_{2}\left(v_{1}, v_{1} v_{2}\right)}{\bar{Q}_{1}\left(v_{1}, v_{1} v_{2}\right)}=\frac{v_{1}+v_{1} v_{2}-v_{1}^{2} v_{2}}{v_{1} v_{2}}=1+\frac{1}{v_{2}}-v_{1} .
$$

- As it is is decreasing in $(0,1)^{2}$, then $X_{2} \leq H R T$ for all $\bar{F}_{1}, \bar{F}_{2}$ such that $X_{2} \leq_{H R} X_{1}$.
- That is, if $X_{2} \leq_{H R} X_{1}$, then

$$
X_{1: 2} \leq_{H R} X_{2} \leq_{H R} X_{2: 2}
$$

and

$$
X_{1: 2} \leq_{H R} X_{2} \leq_{H R} X_{1} \not \leq H R X_{2: 2} .
$$



Figure: Hazard rate functions of $X_{i}$ (red), $X_{1: 2}$ (blue) and $X_{2: 2}$ (black) when $X_{i} \equiv \operatorname{Exp}(\mu=1 / i), i=1,2$.

## Further examples

- By using the preceding techniques, we have ordered all the coherent systems with 1-3 independent components in Navarro and del Aguila (Metrika, 2017) in both cases (i.e., with and without ordered components).

Table: Dual distortions functions of systems with 1-3 INID components.

| N | $T=\psi\left(X_{1}, X_{2}, X_{3}\right)$ | $\bar{Q}\left(u_{1}, u_{2}, u_{3}\right)$ |
| :---: | :---: | :---: |
| 1 | $X_{1: 3}=\min \left(X_{1}, X_{2}, X_{3}\right)$ | $u_{1} u_{2} u_{3}$ |
| 2 | $\min \left(X_{2}, X_{3}\right)$ | $u_{2} u_{3}$ |
| 3 | $\min \left(X_{1}, X_{3}\right)$ | $u_{1} u_{3}$ |
| 4 | $\min \left(X_{1}, X_{2}\right)$ | $u_{1} u_{2}$ |
| 5 | $\min \left(X_{3}, \max \left(X_{1}, X_{2}\right)\right)$ | $u_{1} u_{3}+u_{2} u_{3}-u_{1} u_{2} u_{3}$ |
| 6 | $\min \left(X_{2}, \max \left(X_{1}, X_{3}\right)\right)$ | $u_{1} u_{2}+u_{2} u_{3}-u_{1} u_{2} u_{3}$ |
| 7 | $\min \left(X_{1}, \max \left(X_{2}, X_{3}\right)\right)$ | $u_{1} u_{2}+u_{1} u_{3}-u_{1} u_{2} u_{3}$ |
| 8 | $X_{3}$ | $u_{3}$ |
| 9 | $X_{2}$ | $u_{2}$ |
| 10 | $X_{1}$ | $u_{1}$ |

Table: Dual distortions functions of systems with 1-3 INID components.

| N | $T=\psi\left(X_{1}, X_{2}, X_{3}\right)$ | $\bar{Q}\left(u_{1}, u_{2}, u_{3}\right)$ |
| :---: | :---: | :---: |
| 11 | $X_{2: 3}$ | $u_{1} u_{2}+u_{1} u_{3}+u_{2} u_{3}-2 u_{1} u_{2} u_{3}$ |
| 12 | $\max \left(X_{3}, \min \left(X_{1}, X_{2}\right)\right)$ | $u_{3}+u_{1} u_{2}-u_{1} u_{2} u_{3}$ |
| 13 | $\max \left(X_{2}, \min \left(X_{1}, X_{3}\right)\right)$ | $u_{2}+u_{1} u_{3}-u_{1} u_{2} u_{3}$ |
| 14 | $\max \left(X_{1}, \min \left(X_{2}, X_{3}\right)\right)$ | $u_{1}+u_{2} u_{3}-u_{1} u_{2} u_{3}$ |
| 15 | $\max \left(X_{2}, X_{3}\right)$ | $u_{2}+u_{3}-u_{2} u_{3}$ |
| 16 | $\max \left(X_{1}, X_{3}\right)$ | $u_{1}+u_{3}-u_{1} u_{3}$ |
| 17 | $\max \left(X_{1}, X_{2}\right)$ | $u_{1}+u_{2}-u_{1} u_{2}$ |
| 18 | $X_{3: 3}=\max \left(X_{1}, X_{2}, X_{3}\right)$ | $u_{1}+u_{2}+u_{3}-u_{1} u_{2}-u_{1} u_{3}$ |
|  |  | $-u_{2} u_{3}+u_{1} u_{2} u_{3}$ |

Comparisons for systems with IID and EXC components
Comparisons for systems with DID components Comparisons for systems with NID components


## Example 3

- $T=X_{2: 2}=\max \left(X_{1}, X_{2}\right), X_{1}, X_{2}$ DEP $\sim K$.


## Example 3

- $T=X_{2: 2}=\max \left(X_{1}, X_{2}\right), X_{1}, X_{2}$ DEP $\sim K$.
- Then the system reliability is

$$
\bar{F}_{T}(t)=\bar{F}_{1}(t)+\bar{F}_{2}(t)-K\left(\bar{F}_{1}(t), \bar{F}_{2}(t)\right)=\bar{Q}\left(\bar{F}_{1}(t), \bar{F}_{2}(t)\right),
$$

where $\bar{Q}\left(u_{1}, u_{2}\right)=u_{1}+u_{2}-K\left(u_{1}, u_{2}\right)$.

## Example 3

- $T=X_{2: 2}=\max \left(X_{1}, X_{2}\right), X_{1}, X_{2}$ DEP $\sim K$.
- Then the system reliability is

$$
\bar{F}_{T}(t)=\bar{F}_{1}(t)+\bar{F}_{2}(t)-K\left(\bar{F}_{1}(t), \bar{F}_{2}(t)\right)=\bar{Q}\left(\bar{F}_{1}(t), \bar{F}_{2}(t)\right),
$$

where $Q\left(u_{1}, u_{2}\right)=u_{1}+u_{2}-K\left(u_{1}, u_{2}\right)$.

- The reliability of the series system $X_{1: 2}$ is

$$
\bar{F}_{1: 2}(t)=K\left(\bar{F}_{1}(t), \bar{F}_{2}(t)\right)=\bar{Q}_{1: 2}\left(\bar{F}_{1}(t), \bar{F}_{2}(t)\right)
$$

where $\bar{Q}_{1: 2}\left(u_{1}, u_{2}\right)=K\left(u_{1}, u_{2}\right)$.

## Example 3

- $T=X_{2: 2}=\max \left(X_{1}, X_{2}\right), X_{1}, X_{2}$ DEP $\sim K$.
- Then the system reliability is
$\bar{F}_{T}(t)=\bar{F}_{1}(t)+\bar{F}_{2}(t)-K\left(\bar{F}_{1}(t), \bar{F}_{2}(t)\right)=\bar{Q}\left(\bar{F}_{1}(t), \bar{F}_{2}(t)\right)$,
where $\bar{Q}\left(u_{1}, u_{2}\right)=u_{1}+u_{2}-K\left(u_{1}, u_{2}\right)$.
- The reliability of the series system $X_{1: 2}$ is

$$
\bar{F}_{1: 2}(t)=K\left(\bar{F}_{1}(t), \bar{F}_{2}(t)\right)=\bar{Q}_{1: 2}\left(\bar{F}_{1}(t), \bar{F}_{2}(t)\right)
$$

where $\bar{Q}_{1: 2}\left(u_{1}, u_{2}\right)=K\left(u_{1}, u_{2}\right)$.

- Then $X_{1: 2} \leq H R X_{2: 2}$ holds for all $\bar{F}_{1}, \bar{F}_{2}$ if and only if

$$
\frac{\bar{Q}\left(u_{1}, u_{2}\right)}{K\left(u_{1}, u_{2}\right)}=\frac{u_{1}+u_{2}-K\left(u_{1}, u_{2}\right)}{K\left(u_{1}, u_{2}\right)}=\frac{u_{1}+u_{2}}{K\left(u_{1}, u_{2}\right)}-1
$$

is decreasing in $(0,1)^{2}$.

## Example 3

- $T=X_{2: 2}=\max \left(X_{1}, X_{2}\right), X_{1}, X_{2}$ DEP $\sim K$.
- Then the system reliability is
$\bar{F}_{T}(t)=\bar{F}_{1}(t)+\bar{F}_{2}(t)-K\left(\bar{F}_{1}(t), \bar{F}_{2}(t)\right)=\bar{Q}\left(\bar{F}_{1}(t), \bar{F}_{2}(t)\right)$,
where $\bar{Q}\left(u_{1}, u_{2}\right)=u_{1}+u_{2}-K\left(u_{1}, u_{2}\right)$.
- The reliability of the series system $X_{1: 2}$ is

$$
\bar{F}_{1: 2}(t)=K\left(\bar{F}_{1}(t), \bar{F}_{2}(t)\right)=\bar{Q}_{1: 2}\left(\bar{F}_{1}(t), \bar{F}_{2}(t)\right)
$$

where $\bar{Q}_{1: 2}\left(u_{1}, u_{2}\right)=K\left(u_{1}, u_{2}\right)$.

- Then $X_{1: 2} \leq H R X_{2: 2}$ holds for all $\bar{F}_{1}, \bar{F}_{2}$ if and only if

$$
\frac{\bar{Q}\left(u_{1}, u_{2}\right)}{K\left(u_{1}, u_{2}\right)}=\frac{u_{1}+u_{2}-K\left(u_{1}, u_{2}\right)}{K\left(u_{1}, u_{2}\right)}=\frac{u_{1}+u_{2}}{K\left(u_{1}, u_{2}\right)}-1
$$

is decreasing in $(0,1)^{2}$.

- This property is not necessarily true for all K (see Navarro, Torrado and del Águila 2017).


Figure: Hazard rate functions of $X_{i}$ (red), $X_{1: 2}$ (blue) and $X_{2: 2}$ (black) when $\bar{F}_{1}(t)=\exp (-t)$ (Exponential), $\bar{F}_{2}(t)=1 /(1+5 t)$ (Pareto) and $K\left(u_{1}, u_{2}\right)=u_{1} u_{2} /\left(u_{1}+u_{2}-u_{1} u_{2}\right)$ (Clayton-Oakes).

## Our Main References: Coherent systems

- Navarro, Samaniego, Balakrishnan and Bhattacharya (2008). Applications and extensions of system signatures in engineering reliability. Naval Research Logistics 55, 313-327.
- Navarro (2016). Stochastic comparisons of generalized mixtures and coherent systems. Test 25, 150-169.
- Navarro and del Águila (2017). Stochastic comparisons of distorted distributions, coherent systems and mixtures. To appear in Metrika. DOI 10.1007/s00184-017-0619-y.
- Navarro, Torrado, del Águila (2017). Comparisons between largest order statistics from multiple-outlier models with dependence. Published online first in Methodology and Computing in Applied Probability. DOI: 10.1007/s11009-017-9562-7.


## Our Main References: Distorted distributions

- Navarro, del Águila, Sordo and Suárez-Llorens (2013). Stochastic ordering properties for systems with dependent identically distributed components. Appl Stoch Mod Bus Ind 29, 264-278.
- Navarro, del Águila, Sordo, Suárez-Llorens (2016). Preservation of stochastic orders under the formation of generalized distorted distributions. Applications to coherent systems. Methodology and Computing in Applied Probability 18, 529-545.
- Navarro and Gomis (2016). Comparisons in the mean residual life order of coherent systems with identically distributed components. Applied Stochastic Models in Business and Industry 32, 33-47.


## References

- For the more references, please visit my personal web page:
https : //webs.um.es/jorgenav/


## References

- For the more references, please visit my personal web page:
https: //webs.um.es/jorgenav/
- Thank you for your attention!!

