Main results Applications References

A very short proof of the Multivariate Chebyshev's Inequality. Applications to order statistics and data sets.

J. Navarro¹, Universidad de Murcia (Spain).

¹Supported by Ministerio de Economía y Competitividad under Grant MTM2012-34023-FEDER.

OSD2016, Piraeus, Greece J. Navarro, E-mail: jorgenav@um.es

Notation

- $\mathbf{X} = (X_1, \dots, X_k)'$ a random vector.
- $\boldsymbol{\mu} = E(\mathbf{X}) = (\mu_1, \dots, \mu_k)'$ mean vector.
- $V = Cov(\mathbf{X}) = E((\mathbf{X} \mu)(\mathbf{X} \mu)')$ covariance matrix.
- $\mathbf{x} = (x_1, \ldots, x_k)' \in \mathbb{R}^k$.
- Mahalanobis distance from **x** to μ :

$$\Delta_V(\mathbf{x},\boldsymbol{\mu}) = \sqrt{(\mathbf{x}-\boldsymbol{\mu})'V^{-1}(\mathbf{x}-\boldsymbol{\mu})}.$$

Notation

- $\mathbf{X} = (X_1, \dots, X_k)'$ a random vector.
- $\boldsymbol{\mu} = E(\mathbf{X}) = (\mu_1, \dots, \mu_k)'$ mean vector.
- $V = Cov(\mathbf{X}) = E((\mathbf{X} \mu)(\mathbf{X} \mu)')$ covariance matrix.
- $\mathbf{x} = (x_1, \ldots, x_k)' \in \mathbb{R}^k$.
- Mahalanobis distance from \mathbf{x} to $\boldsymbol{\mu}$:

$$\Delta_V(\mathbf{x},\boldsymbol{\mu}) = \sqrt{(\mathbf{x}-\boldsymbol{\mu})' V^{-1}(\mathbf{x}-\boldsymbol{\mu})}.$$

Notation

- $\mathbf{X} = (X_1, \dots, X_k)'$ a random vector.
- $\boldsymbol{\mu} = E(\mathbf{X}) = (\mu_1, \dots, \mu_k)'$ mean vector.
- $V = Cov(\mathbf{X}) = E((\mathbf{X} \mu)(\mathbf{X} \mu)')$ covariance matrix.
- $\mathbf{x} = (x_1, \ldots, x_k)' \in \mathbb{R}^k$.
- Mahalanobis distance from **x** to μ :

$$\Delta_V(\mathbf{x},\boldsymbol{\mu}) = \sqrt{(\mathbf{x}-\boldsymbol{\mu})' V^{-1}(\mathbf{x}-\boldsymbol{\mu})}.$$

イロト 不得 トイヨト イヨト

Notation

- $\mathbf{X} = (X_1, \dots, X_k)'$ a random vector.
- $\boldsymbol{\mu} = E(\mathbf{X}) = (\mu_1, \dots, \mu_k)'$ mean vector.
- $V = Cov(\mathbf{X}) = E((\mathbf{X} \mu)(\mathbf{X} \mu)')$ covariance matrix.

•
$$\mathbf{x} = (x_1, \ldots, x_k)' \in \mathbb{R}^k$$
.

• Mahalanobis distance from **x** to μ :

$$\Delta_V(\mathbf{x},\boldsymbol{\mu}) = \sqrt{(\mathbf{x}-\boldsymbol{\mu})'V^{-1}(\mathbf{x}-\boldsymbol{\mu})}.$$

Notation

- $\mathbf{X} = (X_1, \dots, X_k)'$ a random vector.
- $\boldsymbol{\mu} = E(\mathbf{X}) = (\mu_1, \dots, \mu_k)'$ mean vector.
- $V = Cov(\mathbf{X}) = E((\mathbf{X} \mu)(\mathbf{X} \mu)')$ covariance matrix.

•
$$\mathbf{x} = (x_1, \ldots, x_k)' \in \mathbb{R}^k$$
.

• Mahalanobis distance from **x** to μ :

$$\Delta_V(\mathbf{x}, \boldsymbol{\mu}) = \sqrt{(\mathbf{x} - \boldsymbol{\mu})' V^{-1}(\mathbf{x} - \boldsymbol{\mu})}.$$

The (univariate) Markov's inequality.

 If Z is a non-negative random variable with finite mean E(Z) and ε > 0, then

$$\varepsilon \Pr(Z \ge \varepsilon) = \varepsilon \int_{[\varepsilon,\infty)} dF_Z(x) \le \int_{[\varepsilon,\infty)} x dF_Z(x) \le \int_{[0,\infty)} x dF_Z(x) = E(Z)$$

where $F_Z(x) = \Pr(Z \le x)$.

It can be stated as

$$\Pr(Z \ge \varepsilon) \le \frac{E(Z)}{\varepsilon}.$$
 (1)

The (univariate) Markov's inequality.

 If Z is a non-negative random variable with finite mean E(Z) and ε > 0, then

$$\varepsilon \Pr(Z \ge \varepsilon) = \varepsilon \int_{[\varepsilon,\infty)} dF_Z(x) \le \int_{[\varepsilon,\infty)} x dF_Z(x) \le \int_{[0,\infty)} x dF_Z(x) = E(Z)$$

where $F_Z(x) = \Pr(Z \leq x)$.

It can be stated as

$$\Pr(Z \ge \varepsilon) \le \frac{E(Z)}{\varepsilon}.$$
 (1)

The univariate Chebyshev's inequality.

• If X is a random variable with finite mean $\mu = E(X)$ and variance $\sigma^2 = Var(X) > 0$, then by taking $Z = (X - \mu)^2 / \sigma^2$ in (1), we get

$$\Pr\left(\frac{(X-\mu)^2}{\sigma^2} \ge \varepsilon\right) \le \frac{1}{\varepsilon}$$
 (2)

イロト 不得 トイヨト イヨト

for all $\varepsilon > 0$.

It can also be written as

$$\mathsf{Pr}((X-\mu)^2 < arepsilon \sigma^2) \geq 1 - rac{1}{arepsilon}$$

or as

$$\Pr(|X - \mu| < r) \le 1 - \frac{\sigma^2}{r^2}$$

for all r > 0

Main results	The univariate Chebyshev's inequality
Applications	
References	

The univariate Chebyshev's inequality.

• If X is a random variable with finite mean $\mu = E(X)$ and variance $\sigma^2 = Var(X) > 0$, then by taking $Z = (X - \mu)^2 / \sigma^2$ in (1), we get

$$\Pr\left(\frac{(X-\mu)^2}{\sigma^2} \ge \varepsilon\right) \le \frac{1}{\varepsilon}$$
 (2)

for all $\varepsilon > 0$.

• It can also be written as

$$\mathsf{Pr}((X-\mu)^2 < arepsilon \sigma^2) \geq 1 - rac{1}{arepsilon}$$

or as

$$\Pr(|X - \mu| < r) \le 1 - \frac{\sigma^2}{r^2}$$

for all r > 0.

The multivariate Chebyshev's inequality (MCI).

- If **X** is a random vector with finite mean $\mu = E(\mathbf{X})'$ and positive definite covariance matrix $V = Cov(\mathbf{X})$.
- Then

$$\Pr((\mathbf{X} - \boldsymbol{\mu})' V^{-1}(\mathbf{X} - \boldsymbol{\mu}) \ge \varepsilon) \le \frac{k}{\varepsilon}$$

for all $\varepsilon > 0$.

• Chen, X. (2011). A new generalization of Chebyshev inequality for random vectors. arXiv:0707.0805v2.

The multivariate Chebyshev's inequality (MCI).

- If **X** is a random vector with finite mean $\mu = E(\mathbf{X})'$ and positive definite covariance matrix $V = Cov(\mathbf{X})$.
- Then

$$\Pr((\mathbf{X} - \boldsymbol{\mu})' V^{-1}(\mathbf{X} - \boldsymbol{\mu}) \ge \varepsilon) \le \frac{k}{\varepsilon}$$
 (3)

for all $\varepsilon > 0$.

• Chen, X. (2011). A new generalization of Chebyshev inequality for random vectors. arXiv:0707.0805v2.

The multivariate Chebyshev's inequality (MCI).

- If **X** is a random vector with finite mean $\mu = E(\mathbf{X})'$ and positive definite covariance matrix $V = Cov(\mathbf{X})$.
- Then

$$\Pr((\mathbf{X} - \boldsymbol{\mu})' V^{-1}(\mathbf{X} - \boldsymbol{\mu}) \ge \varepsilon) \le \frac{k}{\varepsilon}$$
 (3)

for all $\varepsilon > 0$.

• Chen, X. (2011). A new generalization of Chebyshev inequality for random vectors. arXiv:0707.0805v2.

The multivariate Chebyshev's inequality.

• The inequality in (3) can also be written as

$$\Pr((\mathbf{X} - \boldsymbol{\mu})' V^{-1}(\mathbf{X} - \boldsymbol{\mu}) < \varepsilon) \ge 1 - \frac{k}{\varepsilon}$$
 (4)

for all $\varepsilon > 0$.

This inequality says that the ellipsoid

$$\Xi_{\varepsilon} = \{ \mathbf{x} \in \mathbb{R}^k : (\mathbf{x} - \boldsymbol{\mu})' V^{-1} (\mathbf{x} - \boldsymbol{\mu}) < \varepsilon \}$$
(5)

contains at least the $100(1 - k/\varepsilon)\%$ of the population.

The inequality can also be written as

$$\Pr(\Delta_V(\mathbf{X}, \boldsymbol{\mu}) < r) \ge 1 - \frac{k}{r^2}.$$
(6)

 Hence (6) gives a lower bound for the percentage of points from X in spheres "around" the mean μ in the Mahalanobis distance based on V.

The multivariate Chebyshev's inequality.

• The inequality in (3) can also be written as

$$\Pr((\mathbf{X} - \boldsymbol{\mu})' V^{-1}(\mathbf{X} - \boldsymbol{\mu}) < \varepsilon) \ge 1 - \frac{k}{\varepsilon}$$
 (4)

for all $\varepsilon > 0$.

• This inequality says that the ellipsoid

$$\mathsf{E}_{\varepsilon} = \{ \mathsf{x} \in \mathbb{R}^k : (\mathsf{x} - \boldsymbol{\mu})' V^{-1} (\mathsf{x} - \boldsymbol{\mu}) < \varepsilon \}$$
 (5)

contains at least the $100(1 - k/\varepsilon)\%$ of the population.

The inequality can also be written as

$$\Pr(\Delta_V(\mathbf{X}, \mu) < r) \ge 1 - \frac{k}{r^2}.$$
(6)

 Hence (6) gives a lower bound for the percentage of points from X in spheres "around" the mean µ in the Mahalanobis distance based on V.

The multivariate Chebyshev's inequality.

• The inequality in (3) can also be written as

$$\Pr((\mathbf{X} - \boldsymbol{\mu})' V^{-1}(\mathbf{X} - \boldsymbol{\mu}) < \varepsilon) \ge 1 - \frac{k}{\varepsilon}$$
 (4)

for all $\varepsilon > 0$.

• This inequality says that the ellipsoid

$$E_{\varepsilon} = \{ \mathbf{x} \in \mathbb{R}^k : (\mathbf{x} - \boldsymbol{\mu})' V^{-1} (\mathbf{x} - \boldsymbol{\mu}) < \varepsilon \}$$
(5)

contains at least the $100(1 - k/\varepsilon)\%$ of the population.

• The inequality can also be written as

$$\Pr(\Delta_V(\mathbf{X}, \boldsymbol{\mu}) < r) \ge 1 - \frac{k}{r^2}.$$
 (6)

 Hence (6) gives a lower bound for the percentage of points from X in spheres "around" the mean μ in the Mahalanobis distance based on V.

The multivariate Chebyshev's inequality.

• The inequality in (3) can also be written as

$$\Pr((\mathbf{X} - \boldsymbol{\mu})' V^{-1}(\mathbf{X} - \boldsymbol{\mu}) < \varepsilon) \ge 1 - \frac{k}{\varepsilon}$$
 (4)

for all $\varepsilon > 0$.

• This inequality says that the ellipsoid

$$E_{\varepsilon} = \{ \mathbf{x} \in \mathbb{R}^k : (\mathbf{x} - \boldsymbol{\mu})' V^{-1} (\mathbf{x} - \boldsymbol{\mu}) < \varepsilon \}$$
(5)

contains at least the $100(1 - k/\varepsilon)\%$ of the population.

• The inequality can also be written as

$$\Pr(\Delta_V(\mathbf{X}, \boldsymbol{\mu}) < r) \ge 1 - \frac{k}{r^2}.$$
 (6)

 Hence (6) gives a lower bound for the percentage of points from X in spheres "around" the mean μ in the Mahalanobis distance based on V.

A very short proof.

Let us consider the random variable

$$Z = (\mathbf{X} - \boldsymbol{\mu})' V^{-1} (\mathbf{X} - \boldsymbol{\mu}).$$

- As V is positive definite, then $Z \ge 0$.
- Moreover, there exist symmetric matrices $V^{1/2}$ and $V^{-1/2}$ such that $V^{1/2}V^{1/2} = V$, $V^{-1/2}V^{-1/2} = V^{-1}$ and $V^{1/2}V^{-1/2} = V^{-1/2}V^{1/2} = I_k$, where I_k is the identity matrix of dimension k.
- Therefore

$$Z = (\mathbf{X} - \boldsymbol{\mu})' V^{-1/2} V^{-1/2} (\mathbf{X} - \boldsymbol{\mu}) = \mathbf{Y}' \mathbf{Y},$$

where $\mathbf{Y} = (Y_1, ..., Y_k)' = V^{-1/2} (\mathbf{X} - \boldsymbol{\mu}).$

$$Cov(\mathbf{Y}) = V^{-1/2}Cov(\mathbf{X})V^{-1/2} = V^{-1/2}VV^{-1/2} = I_k.$$

A very short proof.

Let us consider the random variable

$$Z = (\mathbf{X} - \boldsymbol{\mu})' V^{-1} (\mathbf{X} - \boldsymbol{\mu}).$$

- As V is positive definite, then $Z \ge 0$.
- Moreover, there exist symmetric matrices $V^{1/2}$ and $V^{-1/2}$ such that $V^{1/2}V^{1/2} = V$, $V^{-1/2}V^{-1/2} = V^{-1}$ and $V^{1/2}V^{-1/2} = V^{-1/2}V^{1/2} = I_k$, where I_k is the identity matrix of dimension k.
- Therefore

$$Z = (\mathbf{X} - \boldsymbol{\mu})' V^{-1/2} V^{-1/2} (\mathbf{X} - \boldsymbol{\mu}) = \mathbf{Y}' \mathbf{Y},$$

where $\mathbf{Y} = (Y_1, ..., Y_k)' = V^{-1/2} (\mathbf{X} - \boldsymbol{\mu}).$

$$Cov(\mathbf{Y}) = V^{-1/2}Cov(\mathbf{X})V^{-1/2} = V^{-1/2}VV^{-1/2} = I_k.$$

A very short proof.

Let us consider the random variable

$$Z = (\mathbf{X} - \boldsymbol{\mu})' V^{-1} (\mathbf{X} - \boldsymbol{\mu}).$$

- As V is positive definite, then $Z \ge 0$.
- Moreover, there exist symmetric matrices $V^{1/2}$ and $V^{-1/2}$ such that $V^{1/2}V^{1/2} = V$, $V^{-1/2}V^{-1/2} = V^{-1}$ and $V^{1/2}V^{-1/2} = V^{-1/2}V^{1/2} = I_k$, where I_k is the identity matrix of dimension k.

• Therefore

$$Z = (\mathbf{X} - \boldsymbol{\mu})' V^{-1/2} V^{-1/2} (\mathbf{X} - \boldsymbol{\mu}) = \mathbf{Y}' \mathbf{Y},$$

where $\mathbf{Y} = (Y_1, ..., Y_k)' = V^{-1/2} (\mathbf{X} - \boldsymbol{\mu}).$

$$Cov(\mathbf{Y}) = V^{-1/2}Cov(\mathbf{X})V^{-1/2} = V^{-1/2}VV^{-1/2} = I_k.$$

A very short proof.

• Let us consider the random variable

$$Z = (\mathbf{X} - \boldsymbol{\mu})' V^{-1} (\mathbf{X} - \boldsymbol{\mu}).$$

- As V is positive definite, then $Z \ge 0$.
- Moreover, there exist symmetric matrices $V^{1/2}$ and $V^{-1/2}$ such that $V^{1/2}V^{1/2} = V$, $V^{-1/2}V^{-1/2} = V^{-1}$ and $V^{1/2}V^{-1/2} = V^{-1/2}V^{1/2} = I_k$, where I_k is the identity matrix of dimension k.
- Therefore

$$Z = (\mathbf{X} - \boldsymbol{\mu})' V^{-1/2} V^{-1/2} (\mathbf{X} - \boldsymbol{\mu}) = \mathbf{Y}' \mathbf{Y},$$

where $\mathbf{Y} = (Y_1, \dots, Y_k)' = V^{-1/2} (\mathbf{X} - \boldsymbol{\mu}).$

$$Cov(\mathbf{Y}) = V^{-1/2}Cov(\mathbf{X})V^{-1/2} = V^{-1/2}VV^{-1/2} = I_k.$$

A very short proof.

Let us consider the random variable

$$Z = (\mathbf{X} - \boldsymbol{\mu})' V^{-1} (\mathbf{X} - \boldsymbol{\mu}).$$

- As V is positive definite, then $Z \ge 0$.
- Moreover, there exist symmetric matrices $V^{1/2}$ and $V^{-1/2}$ such that $V^{1/2}V^{1/2} = V$, $V^{-1/2}V^{-1/2} = V^{-1}$ and $V^{1/2}V^{-1/2} = V^{-1/2}V^{1/2} = I_k$, where I_k is the identity matrix of dimension k.
- Therefore

$$Z = (\mathbf{X} - \mu)' V^{-1/2} V^{-1/2} (\mathbf{X} - \mu) = \mathbf{Y}' \mathbf{Y},$$

where $\mathbf{Y} = (Y_1, \dots, Y_k)' = V^{-1/2} (\mathbf{X} - \boldsymbol{\mu}).$

$$Cov(\mathbf{Y}) = V^{-1/2} Cov(\mathbf{X}) V^{-1/2} = V^{-1/2} V V^{-1/2} = I_k.$$

A very short proof.

• Therefore $E(Y_i) = 0$, $Var(Y_i) = 1$ and

$$E(Z) = E(\mathbf{Y}'\mathbf{Y}) = E\left(\sum_{i=1}^{k} Y_i^2\right) = \sum_{i=1}^{k} E(Y_i^2) = \sum_{i=1}^{k} Var(Y_i) = k.$$

Hence, from Markov's inequality (1), we get

$$\Pr(Z \ge \varepsilon) = \Pr((\mathbf{X} - \mu)' V^{-1} (\mathbf{X} - \mu) \ge \varepsilon) \le \frac{E(Z)}{\varepsilon} = \frac{k}{\varepsilon}$$

and therefore (3) holds for all $\varepsilon > 0$.

A very short proof.

• Therefore $E(Y_i) = 0$, $Var(Y_i) = 1$ and

$$E(Z) = E(\mathbf{Y}'\mathbf{Y}) = E\left(\sum_{i=1}^{k} Y_i^2\right) = \sum_{i=1}^{k} E(Y_i^2) = \sum_{i=1}^{k} Var(Y_i) = k.$$

• Hence, from Markov's inequality (1), we get

$$\Pr(Z \ge \varepsilon) = \Pr((\mathbf{X} - \mu)' V^{-1}(\mathbf{X} - \mu) \ge \varepsilon) \le \frac{E(Z)}{\varepsilon} = \frac{k}{\varepsilon}$$

and therefore (3) holds for all $\varepsilon > 0$.

• That's all, thank you for your attention!!

It's a joke, let's see something more (if you want).

- That's all, thank you for your attention!!
- It's a joke, let's see something more (if you want).

Another short proof.

• Let us consider the random variable

$$Z = (\mathbf{X} - \boldsymbol{\mu})' V^{-1} (\mathbf{X} - \boldsymbol{\mu}) \geq 0.$$

- As V is positive definite and symmetric, there exists an ortogonal matrix T such that $TT' = T'T = I_k$ and T'VT = D and $D = diag(\lambda_1, \ldots, \lambda_k)$ is the diagonal matrix with the ordered eigenvalues $\lambda_1 \ge \cdots \ge \lambda_k > 0$.
- Then V = TDT' and $V^{-1} = TD^{-1}T'$.
- Therefore

$$Z = (\mathbf{X} - \mu)' T D^{-1} T' (\mathbf{X} - \mu)$$

= $[D^{-1/2} T' (\mathbf{X} - \mu)]' [D^{-1/2} T' (\mathbf{X} - \mu)]$
= $\mathbf{Z}' \mathbf{Z}$,

where
$$\mathbf{Z} = (Z_1, \dots, Z_n)' = D^{-1/2} T' (\mathbf{X} - \boldsymbol{\mu})$$
 and
 $D^{-1/2} = diag(\lambda_1^{-1/2}, \dots, \lambda_k^{-1/2}).$

Another short proof.

• Let us consider the random variable

$$Z = (\mathbf{X} - \boldsymbol{\mu})' V^{-1} (\mathbf{X} - \boldsymbol{\mu}) \geq 0.$$

As V is positive definite and symmetric, there exists an ortogonal matrix T such that TT' = T'T = I_k and T'VT = D and D = diag(λ₁,...,λ_k) is the diagonal matrix with the ordered eigenvalues λ₁ ≥ ··· ≥ λ_k > 0.
Then V = TDT' and V⁻¹ = TD⁻¹T'.

• Therefore

$$Z = (\mathbf{X} - \mu)' T D^{-1} T' (\mathbf{X} - \mu)$$

= $[D^{-1/2} T' (\mathbf{X} - \mu)]' [D^{-1/2} T' (\mathbf{X} - \mu)]$
= $\mathbf{Z}' \mathbf{Z}$,

where $\mathbf{Z} = (Z_1, \dots, Z_n)' = D^{-1/2} T'(\mathbf{X} - \boldsymbol{\mu})$ and $D^{-1/2} = diag(\lambda_1^{-1/2}, \dots, \lambda_k^{-1/2}).$

Another short proof.

• Let us consider the random variable

$$Z = (\mathbf{X} - \boldsymbol{\mu})' V^{-1} (\mathbf{X} - \boldsymbol{\mu}) \geq 0.$$

- As V is positive definite and symmetric, there exists an ortogonal matrix T such that $TT' = T'T = I_k$ and T'VT = D and $D = diag(\lambda_1, \ldots, \lambda_k)$ is the diagonal matrix with the ordered eigenvalues $\lambda_1 \ge \cdots \ge \lambda_k > 0$.
- Then V = TDT' and $V^{-1} = TD^{-1}T'$.

• Therefore

$$Z = (\mathbf{X} - \mu)' T D^{-1} T' (\mathbf{X} - \mu)$$

= $[D^{-1/2} T' (\mathbf{X} - \mu)]' [D^{-1/2} T' (\mathbf{X} - \mu)]$
= $\mathbf{Z}' \mathbf{Z}$,

where $\mathbf{Z} = (Z_1, \ldots, Z_n)' = D^{-1/2} T'(\mathbf{X} - \boldsymbol{\mu})$ and $D^{-1/2} = diag(\lambda_1^{-1/2}, \ldots, \lambda_k^{-1/2}).$

Another short proof.

Let us consider the random variable

$$Z = (\mathbf{X} - \boldsymbol{\mu})' V^{-1} (\mathbf{X} - \boldsymbol{\mu}) \geq 0.$$

- As V is positive definite and symmetric, there exists an ortogonal matrix T such that $TT' = T'T = I_k$ and T'VT = D and $D = diag(\lambda_1, \ldots, \lambda_k)$ is the diagonal matrix with the ordered eigenvalues $\lambda_1 \geq \cdots \geq \lambda_k > 0$.
- Then V = TDT' and $V^{-1} = TD^{-1}T'$.
- Therefore

$$Z = (\mathbf{X} - \mu)' T D^{-1} T' (\mathbf{X} - \mu)$$

= $[D^{-1/2} T' (\mathbf{X} - \mu)]' [D^{-1/2} T' (\mathbf{X} - \mu)]$
= $\mathbf{Z}' \mathbf{Z}$,

where $\mathbf{Z} = (Z_1, ..., Z_n)' = D^{-1/2} T' (\mathbf{X} - \mu)$ and $D^{-1/2} = diag(\lambda_1^{-1/2}, \dots, \lambda_k^{-1/2}).$ OSD2016. Piraeus. Greece

Another short proof.

• The random vector **Z** satisfies $E(\mathbf{Z}) = \mathbf{0}_k$ and

 $Cov(\mathbf{Z}) = Cov(D^{-1/2}T'(\mathbf{X}-\mu)) = D^{-1/2}T'VTD^{-1/2} = D^{-1/2}DD^{-1/2} = I_k.$

• Therefore $E(Z_i) = 0$, $Var(Z_i) = 1$ and

$$E(Z) = E(\mathbf{Z}'\mathbf{Z}) = E\left(\sum_{i=1}^{k} Z_i^2\right) = \sum_{i=1}^{k} E(Z_i^2) = \sum_{i=1}^{k} Var(Z_i) = k.$$

Hence, from Markov's inequality (1), we get

$$\Pr(Z \ge \varepsilon) = \Pr((\mathbf{X} - \mu)' V^{-1}(\mathbf{X} - \mu) \ge \varepsilon) \le \frac{E(Z)}{\varepsilon} = \frac{k}{\varepsilon}$$

for all $\varepsilon > 0$.

< 由 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Another short proof.

• The random vector **Z** satisfies $E(\mathbf{Z}) = \mathbf{0}_k$ and

 $Cov(\mathbf{Z}) = Cov(D^{-1/2}T'(\mathbf{X}-\boldsymbol{\mu})) = D^{-1/2}T'VTD^{-1/2} = D^{-1/2}DD^{-1/2} = I_k.$

• Therefore $E(Z_i) = 0$, $Var(Z_i) = 1$ and

$$E(Z) = E(\mathbf{Z}'\mathbf{Z}) = E\left(\sum_{i=1}^{k} Z_{i}^{2}\right) = \sum_{i=1}^{k} E(Z_{i}^{2}) = \sum_{i=1}^{k} Var(Z_{i}) = k.$$

Hence, from Markov's inequality (1), we get

$$\Pr(Z \ge \varepsilon) = \Pr((\mathbf{X} - \boldsymbol{\mu})' V^{-1}(\mathbf{X} - \boldsymbol{\mu}) \ge \varepsilon) \le \frac{E(Z)}{\varepsilon} = \frac{k}{\varepsilon}$$

for all $\varepsilon > 0$.

< 由 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Another short proof.

• The random vector **Z** satisfies $E(\mathbf{Z}) = \mathbf{0}_k$ and

 $Cov(\mathbf{Z}) = Cov(D^{-1/2}T'(\mathbf{X}-\mu)) = D^{-1/2}T'VTD^{-1/2} = D^{-1/2}DD^{-1/2} = I_k.$

• Therefore $E(Z_i) = 0$, $Var(Z_i) = 1$ and

$$E(Z) = E(\mathbf{Z}'\mathbf{Z}) = E\left(\sum_{i=1}^{k} Z_i^2\right) = \sum_{i=1}^{k} E(Z_i^2) = \sum_{i=1}^{k} Var(Z_i) = k.$$

• Hence, from Markov's inequality (1), we get

$$\Pr(Z \ge \varepsilon) = \Pr((\mathbf{X} - \mu)' V^{-1}(\mathbf{X} - \mu) \ge \varepsilon) \le \frac{E(Z)}{\varepsilon} = \frac{k}{\varepsilon}$$

for all $\varepsilon > 0$.

< 由 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Bounds for singular covariance matrices.

• $\mathbf{Z} = D^{-1/2} T' (\mathbf{X} - \boldsymbol{\mu})$ is the vector of the standardized principal components of \mathbf{X} .

Then (3) can be written as

$$\Pr(\mathbf{Z}'\mathbf{Z} < \varepsilon) \ge 1 - \frac{k}{\varepsilon} \tag{7}$$

where $\mathbf{Z}'\mathbf{Z} = \sum_{i=1}^{k} Z_i^2$.

- If V is singular, then $\lambda_1 \geq \cdots \geq \lambda_m > \lambda_{m+1} = \cdots = \lambda_k = 0$.
- Then (7) can be replaced with

$$\Pr\left(\sum_{i=1}^{m} Z_i^2 < \varepsilon\right) \ge 1 - \frac{m}{\varepsilon} \tag{8}$$

for all $\varepsilon > 0$, where $Z_i = \lambda_i^{-1/2} \mathbf{t}'_i (\mathbf{X} - \mu)$ is the *i*th standardized principal components of **X** and \mathbf{t}_i is the normalized eigenvector associated with the eigenvalue λ_i .

Bounds for singular covariance matrices.

- $\mathbf{Z} = D^{-1/2} T' (\mathbf{X} \boldsymbol{\mu})$ is the vector of the standardized principal components of \mathbf{X} .
- Then (3) can be written as

$$\Pr(\mathbf{Z}'\mathbf{Z} < \varepsilon) \ge 1 - \frac{k}{\varepsilon}$$
 (7)

where $\mathbf{Z}'\mathbf{Z} = \sum_{i=1}^{k} Z_i^2$.

If V is singular, then λ₁ ≥ · · · ≥ λ_m > λ_{m+1} = · · · = λ_k = 0.
Then (7) can be replaced with

$$\Pr\left(\sum_{i=1}^{m} Z_i^2 < \varepsilon\right) \ge 1 - \frac{m}{\varepsilon} \tag{8}$$

for all $\varepsilon > 0$, where $Z_i = \lambda_i^{-1/2} \mathbf{t}'_i (\mathbf{X} - \mu)$ is the *i*th standardized principal components of **X** and \mathbf{t}_i is the normalized eigenvector associated with the eigenvalue λ_i .

Bounds for singular covariance matrices.

- $\mathbf{Z} = D^{-1/2} T' (\mathbf{X} \boldsymbol{\mu})$ is the vector of the standardized principal components of \mathbf{X} .
- Then (3) can be written as

$$\Pr(\mathbf{Z}'\mathbf{Z} < \varepsilon) \ge 1 - \frac{k}{\varepsilon}$$
 (7)

where $\mathbf{Z}'\mathbf{Z} = \sum_{i=1}^{k} Z_i^2$. • If V is singular, then $\lambda_1 \ge \cdots \ge \lambda_m > \lambda_{m+1} = \cdots = \lambda_k = 0$. • Then (7) can be replaced with

$$\Pr\left(\sum_{i=1}^{m} Z_i^2 < \varepsilon\right) \ge 1 - \frac{m}{\varepsilon} \tag{8}$$

for all $\varepsilon > 0$, where $Z_i = \lambda_i^{-1/2} \mathbf{t}'_i (\mathbf{X} - \mu)$ is the *i*th standardized principal components of **X** and \mathbf{t}_i is the normalized eigenvector associated with the eigenvalue λ_i .
Bounds for singular covariance matrices.

- $\mathbf{Z} = D^{-1/2} T' (\mathbf{X} \boldsymbol{\mu})$ is the vector of the standardized principal components of \mathbf{X} .
- Then (3) can be written as

$$\Pr(\mathbf{Z}'\mathbf{Z} < \varepsilon) \ge 1 - \frac{k}{\varepsilon}$$
 (7)

where $\mathbf{Z}'\mathbf{Z} = \sum_{i=1}^{k} Z_i^2$.

- If V is singular, then $\lambda_1 \geq \cdots \geq \lambda_m > \lambda_{m+1} = \cdots = \lambda_k = 0$.
- Then (7) can be replaced with

$$\Pr\left(\sum_{i=1}^{m} Z_i^2 < \varepsilon\right) \ge 1 - \frac{m}{\varepsilon} \tag{8}$$

for all $\varepsilon > 0$, where $Z_i = \lambda_i^{-1/2} \mathbf{t}'_i (\mathbf{X} - \mu)$ is the *i*th standardized principal components of **X** and \mathbf{t}_i is the normalized eigenvector associated with the eigenvalue λ_i .

An example.

• $(X_1, X_3, X_3) \equiv Multinomial(p_1 = 1/3, p_2 = 1/3, p_3 = 1/3, n).$ • Then $\mu = E(X) = (n/3, n/3, n/3)'$ and

$$V = \frac{n}{9} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}.$$

- As $X_1 + X_2 + X_3 = n$, we of course have |V| = 0,
- The eigenvalues are $\lambda_1 = \lambda_2 = n/3$ and $\lambda_3 = 0$.
- Some two first standardized principal components are

$$Z_1 = rac{X_1 - X_2}{\sqrt{2n/3}}, \quad Z_2 = rac{X_1 + X_2 - 2X_3}{\sqrt{2n}}$$

$$\Pr\left(\sqrt{(X_1 - X_2)^2 + (X_1 + X_2 - 2X_3)^2/3} < \delta\right) \ge 1 - \frac{4n}{3\delta^2}.$$

Main results	
Applications	The multivariate Chebyshev's inequality
References	

(X₁, X₃, X₃) ≡ Multinomial(p₁ = 1/3, p₂ = 1/3, p₃ = 1/3, n).
Then μ = E(X) = (n/3, n/3, n/3)' and

$$V = \frac{n}{9} \left(\begin{array}{rrr} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{array} \right).$$

• As $X_1 + X_2 + X_3 = n$, we of course have |V| = 0,

- The eigenvalues are $\lambda_1 = \lambda_2 = n/3$ and $\lambda_3 = 0$.
- Some two first standardized principal components are

$$Z_1 = rac{X_1 - X_2}{\sqrt{2n/3}}, \quad Z_2 = rac{X_1 + X_2 - 2X_3}{\sqrt{2n}}$$

$$\Pr\left(\sqrt{(X_1 - X_2)^2 + (X_1 + X_2 - 2X_3)^2/3} < \delta\right) \ge 1 - \frac{4n}{3\delta^2}.$$

Main results	
Applications	The multivariate Chebyshev's inequality
References	

(X₁, X₃, X₃) ≡ Multinomial(p₁ = 1/3, p₂ = 1/3, p₃ = 1/3, n).
Then μ = E(X) = (n/3, n/3, n/3)' and

$$V = \frac{n}{9} \left(\begin{array}{rrr} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{array} \right).$$

- As $X_1 + X_2 + X_3 = n$, we of course have |V| = 0,
- The eigenvalues are $\lambda_1 = \lambda_2 = n/3$ and $\lambda_3 = 0$.
- Some two first standardized principal components are

$$Z_1 = rac{X_1 - X_2}{\sqrt{2n/3}}, \quad Z_2 = rac{X_1 + X_2 - 2X_3}{\sqrt{2n}}$$

$$\Pr\left(\sqrt{(X_1 - X_2)^2 + (X_1 + X_2 - 2X_3)^2/3} < \delta\right) \ge 1 - \frac{4n}{3\delta^2}.$$

Main results	The univariate Chebyshev's inequality
Applications	The multivariate Chebyshev's inequality
References	The bounds are sharp

(X₁, X₃, X₃) ≡ Multinomial(p₁ = 1/3, p₂ = 1/3, p₃ = 1/3, n).
Then μ = E(X) = (n/3, n/3, n/3)' and

$$V = \frac{n}{9} \left(\begin{array}{rrr} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{array} \right).$$

- As $X_1 + X_2 + X_3 = n$, we of course have |V| = 0,
- The eigenvalues are $\lambda_1 = \lambda_2 = n/3$ and $\lambda_3 = 0$.
- Some two first standardized principal components are

$$Z_1 = rac{X_1 - X_2}{\sqrt{2n/3}}, \quad Z_2 = rac{X_1 + X_2 - 2X_3}{\sqrt{2n}}$$

$$\Pr\left(\sqrt{(X_1 - X_2)^2 + (X_1 + X_2 - 2X_3)^2/3} < \delta\right) \ge 1 - \frac{4n}{3\delta^2}.$$

Main results	The univariate Chebyshev's inequality
Applications	The multivariate Chebyshev's inequality
References	The bounds are sharp

• $(X_1, X_3, X_3) \equiv Multinomial(p_1 = 1/3, p_2 = 1/3, p_3 = 1/3, n).$ • Then $\mu = E(\mathbf{X}) = (n/3, n/3, n/3)'$ and

$$V = \frac{n}{9} \left(\begin{array}{rrr} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{array} \right).$$

- As $X_1 + X_2 + X_3 = n$, we of course have |V| = 0,
- The eigenvalues are $\lambda_1 = \lambda_2 = n/3$ and $\lambda_3 = 0$.
- Some two first standardized principal components are

$$Z_1 = rac{X_1 - X_2}{\sqrt{2n/3}}, \quad Z_2 = rac{X_1 + X_2 - 2X_3}{\sqrt{2n}}$$

$$\Pr\left(\sqrt{(X_1 - X_2)^2 + (X_1 + X_2 - 2X_3)^2/3} < \delta\right) \ge 1 - \frac{4n}{3\delta^2}.$$

The univariate Chebyshev's inequality The multivariate Chebyshev's inequality **The bounds are sharp**

The bounds are sharp.

Theorem (Navarro SPL 2014)

Let $\mathbf{X} = (X_1, \ldots, X_k)'$ be a random vector with finite mean vector $\mu = E(\mathbf{X})$ and positive definite covariance matrix $V = Cov(\mathbf{X})$ and let $\varepsilon \ge k$. Then there exists a sequence $\mathbf{X}^{(n)} = (X_1^{(n)}, \ldots, X_k^{(n)})'$ of random vectors with mean vector μ and covariance matrix V such that

$$\lim_{n\to\infty} \Pr((\mathbf{X}^{(n)} - \mu)' V^{-1} (\mathbf{X}^{(n)} - \mu) \ge \varepsilon) = \frac{k}{\varepsilon}.$$
 (9)

The univariate Chebyshev's inequality The multivariate Chebyshev's inequality The bounds are sharp

The bounds are sharp (proof).

• For $\varepsilon \geq k$, let us consider

$$D_n = \begin{cases} \sqrt{Z_n + \varepsilon} & \text{with probability } (p - 1/n)/2 \\ -\sqrt{Z_n + \varepsilon} & \text{with probability } (p - 1/n)/2 \\ 0 & \text{with probability } 1 - p + 1/n \end{cases}$$

for
$$n > \varepsilon/k$$
, where $p = k/\varepsilon \le 1$ and
 $Z_n \equiv Exp(\mu_n = \frac{\varepsilon/n}{p-1/n} > 0).$
• Note that $\Pr(D_n^2 \ge \varepsilon) = p - 1/n.$
• $E(D_n) = \frac{(p-1/n)}{2}E(\sqrt{Z_n + \varepsilon}) - \frac{(p-1/n)}{2}E(\sqrt{Z_n + \varepsilon}) = 0$
• $E(D_n^2) = (p - 1/n)E(Z_n + \varepsilon) = (p - 1/n)(\frac{\varepsilon/n}{p-1/n} + \varepsilon) = 0$

The univariate Chebyshev's inequality The multivariate Chebyshev's inequality The bounds are sharp

The bounds are sharp (proof).

• For $\varepsilon \geq k$, let us consider

$$D_n = \left\{ egin{array}{ll} \sqrt{Z_n + arepsilon} & ext{with probability } (p - 1/n)/2 \ -\sqrt{Z_n + arepsilon} & ext{with probability } (p - 1/n)/2 \ 0 & ext{with probability } 1 - p + 1/n \end{array}
ight.$$

for
$$n > \varepsilon/k$$
, where $p = k/\varepsilon \le 1$ and $Z_n \equiv Exp(\mu_n = \frac{\varepsilon/n}{p-1/n} > 0)$.

- Note that $\Pr(D_n^2 \ge \varepsilon) = p 1/n$.
- $E(D_n) = \frac{(p-1/n)}{2} E\left(\sqrt{Z_n + \varepsilon}\right) \frac{(p-1/n)}{2} E\left(\sqrt{Z_n + \varepsilon}\right) = 0.$ • $E(D_n^2) = (p-1/n) E(Z_n + \varepsilon) = (p-1/n) \left(\frac{\varepsilon/n}{p-1/n} + \varepsilon\right) = k.$

The univariate Chebyshev's inequality The multivariate Chebyshev's inequality The bounds are sharp

イロト 不得 トイヨト イヨト

The bounds are sharp (proof).

• For $\varepsilon \geq k$, let us consider

$$D_n = \left\{ egin{array}{ll} \sqrt{Z_n + arepsilon} & ext{with probability } (p - 1/n)/2 \ -\sqrt{Z_n + arepsilon} & ext{with probability } (p - 1/n)/2 \ 0 & ext{with probability } 1 - p + 1/n \end{array}
ight.$$

for
$$n > \varepsilon/k$$
, where $p = k/\varepsilon \le 1$ and $Z_n \equiv Exp(\mu_n = \frac{\varepsilon/n}{p-1/n} > 0)$.

- Note that $\Pr(D_n^2 \ge \varepsilon) = p 1/n$.
- $E(D_n) = \frac{(p-1/n)}{2} E\left(\sqrt{Z_n + \varepsilon}\right) \frac{(p-1/n)}{2} E\left(\sqrt{Z_n + \varepsilon}\right) = 0.$

• $E(D_n^2) = (p - 1/n)E(Z_n + \varepsilon) = (p - 1/n)\left(\frac{\varepsilon/n}{p - 1/n} + \varepsilon\right) = k.$

The bounds are sharp

١

The bounds are sharp (proof).

• For $\varepsilon \geq k$, let us consider

$$D_n = \begin{cases} \sqrt{Z_n + \varepsilon} & \text{with probability } (p - 1/n)/2 \\ -\sqrt{Z_n + \varepsilon} & \text{with probability } (p - 1/n)/2 \\ 0 & \text{with probability } 1 - p + 1/n \end{cases}$$

for
$$n > \varepsilon/k$$
, where $p = k/\varepsilon \le 1$ and
 $Z_n \equiv Exp(\mu_n = \frac{\varepsilon/n}{p-1/n} > 0).$
• Note that $\Pr(D_n^2 \ge \varepsilon) = p - 1/n.$
• $E(D_n) = \frac{(p-1/n)}{2}E(\sqrt{Z_n + \varepsilon}) - \frac{(p-1/n)}{2}E(\sqrt{Z_n + \varepsilon}) = 0.$

•
$$E(D_n^2) = (p-1/n)E(Z_n+\varepsilon) = (p-1/n)\left(\frac{\varepsilon/n}{p-1/n}+\varepsilon\right) = k.$$

The bounds are sharp (proof).

- Let U_n be a r.v., independent of Z_n, with a uniform distribution over {1,..., k}.
- Let Y⁽ⁿ⁾ = (Y⁽ⁿ⁾₁,...,Y⁽ⁿ⁾_k)' defined by Y⁽ⁿ⁾_i = D_n and Y⁽ⁿ⁾_j = 0 for j = 1,..., i 1, i + 1,..., k when U_n = i.
 Hence E(Y⁽ⁿ⁾_i) = ¹/_kE(D_n) = 0 and

$$Var(Y_i^{(n)}) = E((Y_i^{(n)})^2) = \frac{1}{k}E(D_n^2) = 1.$$

- Moreover, $Y_i^{(n)} Y_j^{(n)} = 0$ and $E(Y_i^{(n)} Y_j^{(n)}) = 0$ for all $i \neq j$.
- Then $E(\mathbf{Y}^{(n)}) = \mathbf{0}_k$ and $Cov(\mathbf{Y}^{(n)}) = I_k$.
- Then $\mathbf{X}^{(n)} = \mu + V^{1/2} \mathbf{Y}^{(n)}$ has mean $E(\mathbf{X}^{(n)}) = \mu$ and

$$Cov(\mathbf{X}^{(n)}) = Cov(V^{1/2}\mathbf{Y}^{(n)}) = V^{1/2}V^{1/2} = V$$

The bounds are sharp (proof).

- Let U_n be a r.v., independent of Z_n , with a uniform distribution over $\{1, \ldots, k\}$.
- Let Y⁽ⁿ⁾ = (Y⁽ⁿ⁾₁,...,Y⁽ⁿ⁾_k)' defined by Y⁽ⁿ⁾_i = D_n and Y⁽ⁿ⁾_j = 0 for j = 1,..., i 1, i + 1,..., k when U_n = i.
 Hence E(Y⁽ⁿ⁾_i) = ¹/_kE(D_n) = 0 and

$$Var(Y_i^{(n)}) = E((Y_i^{(n)})^2) = \frac{1}{k}E(D_n^2) = 1.$$

- Moreover, $Y_i^{(n)}Y_j^{(n)} = 0$ and $E(Y_i^{(n)}Y_j^{(n)}) = 0$ for all $i \neq j$.
- Then $E(\mathbf{Y}^{(n)}) = \mathbf{0}_k$ and $Cov(\mathbf{Y}^{(n)}) = I_k$.
- Then $\mathbf{X}^{(n)} = \mu + V^{1/2} \mathbf{Y}^{(n)}$ has mean $E(\mathbf{X}^{(n)}) = \mu$ and

$$Cov(\mathbf{X}^{(n)}) = Cov(V^{1/2}\mathbf{Y}^{(n)}) = V^{1/2}V^{1/2} = V$$

The bounds are sharp (proof).

- Let U_n be a r.v., independent of Z_n , with a uniform distribution over $\{1, \ldots, k\}$.
- Let $\mathbf{Y}^{(n)} = (Y_1^{(n)}, \dots, Y_k^{(n)})'$ defined by $Y_i^{(n)} = D_n$ and $Y_j^{(n)} = 0$ for $j = 1, \dots, i 1, i + 1, \dots, k$ when $U_n = i$.

• Hence
$$E(Y_i^{(n)}) = \frac{1}{k}E(D_n) = 0$$
 and

$$Var(Y_i^{(n)}) = E((Y_i^{(n)})^2) = \frac{1}{k}E(D_n^2) = 1.$$

• Moreover, $Y_i^{(n)} Y_j^{(n)} = 0$ and $E(Y_i^{(n)} Y_j^{(n)}) = 0$ for all $i \neq j$.

- Then $E(\mathbf{Y}^{(n)}) = \mathbf{0}_k$ and $Cov(\mathbf{Y}^{(n)}) = I_k$.
- Then $\mathbf{X}^{(n)} = \mu + V^{1/2} \mathbf{Y}^{(n)}$ has mean $E(\mathbf{X}^{(n)}) = \mu$ and

$$Cov(\mathbf{X}^{(n)}) = Cov(V^{1/2}\mathbf{Y}^{(n)}) = V^{1/2}V^{1/2} = V$$

The bounds are sharp (proof).

- Let U_n be a r.v., independent of Z_n , with a uniform distribution over $\{1, \ldots, k\}$.
- Let $\mathbf{Y}^{(n)} = (Y_1^{(n)}, \dots, Y_k^{(n)})'$ defined by $Y_i^{(n)} = D_n$ and $Y_j^{(n)} = 0$ for $j = 1, \dots, i 1, i + 1, \dots, k$ when $U_n = i$.

• Hence
$$E(Y_i^{(n)}) = \frac{1}{k}E(D_n) = 0$$
 and

$$Var(Y_i^{(n)}) = E((Y_i^{(n)})^2) = \frac{1}{k}E(D_n^2) = 1.$$

- Moreover, $Y_i^{(n)}Y_j^{(n)} = 0$ and $E(Y_i^{(n)}Y_j^{(n)}) = 0$ for all $i \neq j$.
- Then $E(\mathbf{Y}^{(n)}) = \mathbf{0}_k$ and $Cov(\mathbf{Y}^{(n)}) = I_k$.
- Then $\mathbf{X}^{(n)} = \mu + V^{1/2} \mathbf{Y}^{(n)}$ has mean $E(\mathbf{X}^{(n)}) = \mu$ and

$$Cov(\mathbf{X}^{(n)}) = Cov(V^{1/2}\mathbf{Y}^{(n)}) = V^{1/2}V^{1/2} = V$$

The bounds are sharp (proof).

- Let U_n be a r.v., independent of Z_n , with a uniform distribution over $\{1, \ldots, k\}$.
- Let $\mathbf{Y}^{(n)} = (Y_1^{(n)}, \dots, Y_k^{(n)})'$ defined by $Y_i^{(n)} = D_n$ and $Y_j^{(n)} = 0$ for $j = 1, \dots, i 1, i + 1, \dots, k$ when $U_n = i$.

• Hence
$$E(Y_i^{(n)}) = \frac{1}{k}E(D_n) = 0$$
 and

$$Var(Y_i^{(n)}) = E((Y_i^{(n)})^2) = \frac{1}{k}E(D_n^2) = 1.$$

- Moreover, $Y_i^{(n)}Y_j^{(n)} = 0$ and $E(Y_i^{(n)}Y_j^{(n)}) = 0$ for all $i \neq j$.
- Then $E(\mathbf{Y}^{(n)}) = \mathbf{0}_k$ and $Cov(\mathbf{Y}^{(n)}) = I_k$.
- Then $\mathbf{X}^{(n)} = \mu + V^{1/2} \mathbf{Y}^{(n)}$ has mean $E(\mathbf{X}^{(n)}) = \mu$ and

$$Cov(\mathbf{X}^{(n)}) = Cov(V^{1/2}\mathbf{Y}^{(n)}) = V^{1/2}V^{1/2} = V$$

The bounds are sharp (proof).

- Let U_n be a r.v., independent of Z_n , with a uniform distribution over $\{1, \ldots, k\}$.
- Let $\mathbf{Y}^{(n)} = (Y_1^{(n)}, \dots, Y_k^{(n)})'$ defined by $Y_i^{(n)} = D_n$ and $Y_j^{(n)} = 0$ for $j = 1, \dots, i 1, i + 1, \dots, k$ when $U_n = i$.

• Hence
$$E(Y_i^{(n)}) = \frac{1}{k}E(D_n) = 0$$
 and

$$Var(Y_i^{(n)}) = E((Y_i^{(n)})^2) = \frac{1}{k}E(D_n^2) = 1.$$

- Moreover, $Y_i^{(n)}Y_j^{(n)} = 0$ and $E(Y_i^{(n)}Y_j^{(n)}) = 0$ for all $i \neq j$.
- Then $E(\mathbf{Y}^{(n)}) = \mathbf{0}_k$ and $Cov(\mathbf{Y}^{(n)}) = I_k$.
- Then $\mathbf{X}^{(n)} = \mu + V^{1/2} \mathbf{Y}^{(n)}$ has mean $E(\mathbf{X}^{(n)}) = \mu$ and

$$Cov(\mathbf{X}^{(n)}) = Cov(V^{1/2}\mathbf{Y}^{(n)}) = V^{1/2}V^{1/2} = V$$

The univariate Chebyshev's inequality The multivariate Chebyshev's inequality The bounds are sharp

The bounds are sharp (proof).

• Moreover,

$$\begin{aligned} \mathsf{Pr}((\mathbf{X}^{(n)} - \mu)' V^{-1}(\mathbf{X}^{(n)} - \mu) &\geq \varepsilon) \\ &= \mathsf{Pr}((V^{1/2}\mathbf{Y}^{(n)})' V^{-1}(V^{1/2}\mathbf{Y}^{(n)}) \geq \varepsilon) \\ &= \mathsf{Pr}((\mathbf{Y}^{(n)})' V^{1/2} V^{-1} V^{1/2} \mathbf{Y}^{(n)} \geq \varepsilon) \\ &= \mathsf{Pr}((\mathbf{Y}^{(n)})' \mathbf{Y}^{(n)} \geq \varepsilon) \\ &= \mathsf{Pr}\left(\sum_{i=1}^{k} (Y_i^{(n)})^2 \geq \varepsilon\right) \\ &= \mathsf{Pr}(D_n^2 \geq \varepsilon) \\ &= p - \frac{1}{n} \to p = \frac{k}{\varepsilon}, \text{ as } n \to \infty \end{aligned}$$

Case k = 2. Order statistics Data sets

Applications. Case k = 2.

Theorem

$$\begin{aligned} (X, Y)' \text{ with } E(X) &= \mu_X, \ E(Y) = \mu_Y, \ Var(X) = \sigma_X^2 > 0, \\ Var(Y) &= \sigma_Y^2 > 0 \text{ and } \rho = Cor(X, Y) \in (-1, 1). \text{ Then} \\ & \Pr((X^* - Y^*)^2 + 2(1 - \rho)X^*Y^* < \delta) \ge 1 - 2\frac{1 - \rho^2}{\delta} \quad (10) \\ & \text{for all } \delta > 0, \text{ where } X^* = (X - \mu_X)/\sigma_X \text{ and } Y^* = (X - \mu_Y)/\sigma_Y. \\ & \overline{Z_1} = (X^* + Y^*)/\sqrt{2(1 + \rho)}, \ Z_2 = (X^* - Y^*)/\sqrt{2(1 - \rho)} \text{ and} \\ & \Pr\left(\frac{(X^* + Y^*)^2}{2(1 + \rho)} + \frac{(X^* - Y^*)^2}{2(1 - \rho)} < \varepsilon\right) \ge 1 - \frac{2}{\varepsilon}. \end{aligned}$$

lain results	Case $k = 2$.
pplications	
References	

•
$$(X, Y)$$
 with $E(X) = E(Y) = 1$, $Var(X) = Var(Y) = 1$ and $\rho = Cor(X, Y) = 0.9$. Then

$$\Pr(5(X - Y)^2 + (X - 1)(Y - 1) < 5\delta) \ge 1 - 2\frac{0.19}{\delta},$$

that is,

$$\Pr(5X^2 - 9XY + 5Y^2 - X - Y + 1 < arepsilon) \geq 1 - rac{1.9}{arepsilon}$$

for all $\varepsilon > 1.9$.

• The distribution-free confidence regions for $\varepsilon = 3, 4, 5, 10$ containing respectively at least the 36.6666%, 52.5%, 62% and the 81% of the values of (X, Y) can be seen in the following figure.

Figure: Confidence regions for $\varepsilon = 3, 4, 5, 10$ containing at least the 36.66%, 52.5%, 62% and the 81% of the values of (X, Y).

Order statistics

- Let $X_{1:k}, \ldots, X_{k:k}$ be the OS from (X_1, \ldots, X_k) .
- For k = 2 we have

$$\rho_{1,2:2} = Cor(X_{1:2}, X_{2:2}) = \rho \frac{\sigma_1 \sigma_2}{\sigma_{1:2} \sigma_{1:2}} + \frac{(\mu_1 - \mu_{1:2})(\mu_2 - \mu_{1:2})}{\sigma_{1:2} \sigma_{1:2}},$$

where
$$\mu_i = E(X_i)$$
, $\mu_{i:2} = E(X_{i:2})$, $\sigma_i^2 = Var(X_i)$,
 $\sigma_{i:2}^2 = Var(X_{i:2})$, for $i = 1, 2$, and $\rho = Cor(X_1, X_2)$.
Then

$$\Pr((X_{2:2}^* - X_{1:2}^*)^2 + 2(1 - \rho_{1,2:2})X_{2:2}^*X_{1:2}^* < \delta) \ge 1 - 2\frac{1 - \rho_{1,2:2}^2}{\delta},$$
where $X_{i:2}^* = (X_{i:2} - \mu_{i:2})/\sigma_{i:2}, i = 1, 2.$
(12)

Order statistics

- Let $X_{1:k}, \ldots, X_{k:k}$ be the OS from (X_1, \ldots, X_k) .
- For k = 2 we have

$$\rho_{1,2:2} = Cor(X_{1:2}, X_{2:2}) = \rho \frac{\sigma_1 \sigma_2}{\sigma_{1:2} \sigma_{1:2}} + \frac{(\mu_1 - \mu_{1:2})(\mu_2 - \mu_{1:2})}{\sigma_{1:2} \sigma_{1:2}},$$

where
$$\mu_i = E(X_i)$$
, $\mu_{i:2} = E(X_{i:2})$, $\sigma_i^2 = Var(X_i)$,
 $\sigma_{i:2}^2 = Var(X_{i:2})$, for $i = 1, 2$, and $\rho = Cor(X_1, X_2)$.
Then

$$\Pr((X_{2:2}^* - X_{1:2}^*)^2 + 2(1 - \rho_{1,2:2})X_{2:2}^*X_{1:2}^* < \delta) \ge 1 - 2\frac{1 - \rho_{1,2:2}^2}{\delta},$$
where $X_{i:2}^* = (X_{i:2} - \mu_{i:2})/\sigma_{i:2}, i = 1, 2.$
(12)

Order statistics

- Let $X_{1:k}, \ldots, X_{k:k}$ be the OS from (X_1, \ldots, X_k) .
- For k = 2 we have

$$\rho_{1,2:2} = Cor(X_{1:2}, X_{2:2}) = \rho \frac{\sigma_1 \sigma_2}{\sigma_{1:2} \sigma_{1:2}} + \frac{(\mu_1 - \mu_{1:2})(\mu_2 - \mu_{1:2})}{\sigma_{1:2} \sigma_{1:2}},$$

where
$$\mu_i = E(X_i)$$
, $\mu_{i:2} = E(X_{i:2})$, $\sigma_i^2 = Var(X_i)$,
 $\sigma_{i:2}^2 = Var(X_{i:2})$, for $i = 1, 2$, and $\rho = Cor(X_1, X_2)$.

Then

$$\Pr((X_{2:2}^* - X_{1:2}^*)^2 + 2(1 - \rho_{1,2:2})X_{2:2}^*X_{1:2}^* < \delta) \ge 1 - 2\frac{1 - \rho_{1,2:2}^2}{\delta},$$
where $X_{i:2}^* = (X_{i:2} - \mu_{i:2})/\sigma_{i:2}, i = 1, 2.$
(12)

Main results Cas Applications Ord References Dat

Case k = 2. Order statistics Data sets

Order statistics. Example 1.

• (X_1, X_2) has a Pareto distribution with

$$\overline{F}(x,y) = \Pr(X_1 > x, X_2 > y) = (1 + \lambda x + \lambda y)^{-\theta}$$

for $x, y \ge 0$, where $\lambda > 0$ and $\theta > 2$.

• Then $\mu = 1/(\lambda \theta - \lambda)$, $\sigma^2 = \mu^2/(1 - 2\rho)$, $\rho = 1/\theta$, $\mu_{1:2} = \mu/2$, $\mu_{2:2} = 3\mu/2$

$$\sigma_{1:2}^2 = \frac{\mu^2}{4(1-2\rho)}, \quad \sigma_{2:2}^2 = \frac{\mu^2(6+3\rho)}{4(1-2\rho)}, \quad \rho_{1,2:2} = \frac{1+2\rho}{\sqrt{6+3\rho}}.$$

• If $\lambda = 0.5$ and $\theta = 3$, then $\mu = 1$, $\rho = 1/3$, $\mu_{1:2} = 1/2$, $\mu_{2:2} = 3/2$, $\sigma_{1:2} = 0.866$, $\sigma_{2:2} = 2.291 \ \rho_{1,2:2} = 0.6299$ and

$$\Pr\left(\left[\frac{X_{2:2} - \frac{3}{2}}{2.291} - \frac{X_{1:2} - \frac{1}{2}}{0.866}\right]^2 + 0.74\frac{X_{2:2} - \frac{3}{2}}{2.291}\frac{X_{1:2} - \frac{1}{2}}{0.866} < \delta\right) \ge 1 - \frac{1.206}{\delta}.$$

Main results Case Applications Order References Data

Order statistics Data sets

Order statistics. Example 1.

• (X_1, X_2) has a Pareto distribution with

$$\overline{F}(x,y) = \mathsf{Pr}(X_1 > x, X_2 > y) = (1 + \lambda x + \lambda y)^{-6}$$

for $x, y \ge 0$, where $\lambda > 0$ and $\theta > 2$.

• Then $\mu = 1/(\lambda \theta - \lambda)$, $\sigma^2 = \mu^2/(1 - 2\rho)$, $\rho = 1/\theta$, $\mu_{1:2} = \mu/2$, $\mu_{2:2} = 3\mu/2$

$$\sigma_{1:2}^2 = \frac{\mu^2}{4(1-2\rho)}, \quad \sigma_{2:2}^2 = \frac{\mu^2(6+3\rho)}{4(1-2\rho)}, \quad \rho_{1,2:2} = \frac{1+2\rho}{\sqrt{6+3\rho}}.$$

• If $\lambda = 0.5$ and $\theta = 3$, then $\mu = 1$, $\rho = 1/3$, $\mu_{1:2} = 1/2$, $\mu_{2:2} = 3/2$, $\sigma_{1:2} = 0.866$, $\sigma_{2:2} = 2.291 \ \rho_{1,2:2} = 0.6299$ and

$$\Pr\left(\left[\frac{X_{2:2} - \frac{3}{2}}{2.291} - \frac{X_{1:2} - \frac{1}{2}}{0.866}\right]^2 + 0.74\frac{X_{2:2} - \frac{3}{2}}{2.291}\frac{X_{1:2} - \frac{1}{2}}{0.866} < \delta\right) \ge 1 - \frac{1.206}{\delta}.$$

Order statistics Data sets

Order statistics. Example 1.

• (X_1, X_2) has a Pareto distribution with

$$\overline{F}(x,y) = \mathsf{Pr}(X_1 > x, X_2 > y) = (1 + \lambda x + \lambda y)^{-6}$$

for $x, y \ge 0$, where $\lambda > 0$ and $\theta > 2$.

• Then
$$\mu = 1/(\lambda \theta - \lambda)$$
, $\sigma^2 = \mu^2/(1 - 2\rho)$, $\rho = 1/\theta$, $\mu_{1:2} = \mu/2$, $\mu_{2:2} = 3\mu/2$

$$\sigma_{1:2}^2 = \frac{\mu^2}{4(1-2\rho)}, \quad \sigma_{2:2}^2 = \frac{\mu^2(6+3\rho)}{4(1-2\rho)}, \quad \rho_{1,2:2} = \frac{1+2\rho}{\sqrt{6+3\rho}}.$$

• If $\lambda = 0.5$ and $\theta = 3$, then $\mu = 1$, $\rho = 1/3$, $\mu_{1:2} = 1/2$, $\mu_{2:2} = 3/2$, $\sigma_{1:2} = 0.866$, $\sigma_{2:2} = 2.291 \ \rho_{1,2:2} = 0.6299$ and

$$\Pr\left(\left[\frac{X_{2:2} - \frac{3}{2}}{2.291} - \frac{X_{1:2} - \frac{1}{2}}{0.866}\right]^2 + 0.74\frac{X_{2:2} - \frac{3}{2}}{2.291}\frac{X_{1:2} - \frac{1}{2}}{0.866} < \delta\right) \ge 1 - \frac{1.206}{\delta}$$

Figure: Confidence regions for $\delta = 2, 4, 6$ containing at least the 39.68%, the 69.84% and the 79.89% of the values of $(X_{1:2}, X_{2:2})$.

Case k = 2. Order statistics Data sets

Order statistics. Example 2.

•
$$X_1,\ldots,X_k$$
 iid $Exp(\mu=1)$, then

$$\mu_{i:k} = \sum_{j=k-i+1}^{k} \frac{1}{j}, \quad \sigma_{i:k}^2 = \sum_{j=k-i+1}^{k} \frac{1}{j^2}$$

and

$$\rho_{i,j:k} = Cor(X_{i:k}, X_{j:k}) = \frac{\sigma_{i:k}}{\sigma_{j:k}}, \quad 1 \le i < j \le k$$

• If k = 3, i = 2 and j = 3, then $\mu_{2:3} = 5/6$, $\mu_{3:3} = 11/6$, $\sigma_{2:3} = 0.6009$, $\sigma_{3:3} = 1.1667$, and $\rho_{2,3:3} = 0.5151$.

Hence

$$\Pr\left(\left[\frac{X_{3:3} - \frac{11}{6}}{1.1667} - \frac{X_{2:3} - \frac{5}{6}}{0.6009}\right]^2 + 0.969\frac{X_{3:3} - \frac{11}{6}}{1.1667}\frac{X_{2:3} - \frac{5}{6}}{0.6009} < \delta\right) \ge 1 - \frac{1.469}{\delta}.$$

Case k = 2. Order statistics Data sets

Order statistics. Example 2.

•
$$X_1,\ldots,X_k$$
 iid $\textit{Exp}(\mu=1)$, then

$$\mu_{i:k} = \sum_{j=k-i+1}^{k} \frac{1}{j}, \quad \sigma_{i:k}^2 = \sum_{j=k-i+1}^{k} \frac{1}{j^2}$$

and

$$\rho_{i,j:k} = Cor(X_{i:k}, X_{j:k}) = \frac{\sigma_{i:k}}{\sigma_{j:k}}, \quad 1 \le i < j \le k$$

• If k = 3, i = 2 and j = 3, then $\mu_{2:3} = 5/6$, $\mu_{3:3} = 11/6$, $\sigma_{2:3} = 0.6009$, $\sigma_{3:3} = 1.1667$, and $\rho_{2,3:3} = 0.5151$.

Hence

$$\Pr\left(\left[\frac{X_{3:3} - \frac{11}{6}}{1.1667} - \frac{X_{2:3} - \frac{5}{6}}{0.6009}\right]^2 + 0.969 \frac{X_{3:3} - \frac{11}{6}}{1.1667} \frac{X_{2:3} - \frac{5}{6}}{0.6009} < \delta\right) \ge 1 - \frac{1.469}{\delta}.$$

Case k = 2. Order statistics Data sets

Order statistics. Example 2.

•
$$X_1,\ldots,X_k$$
 iid $Exp(\mu=1)$, then

$$\mu_{i:k} = \sum_{j=k-i+1}^{k} \frac{1}{j}, \quad \sigma_{i:k}^2 = \sum_{j=k-i+1}^{k} \frac{1}{j^2}$$

and

$$\rho_{i,j:k} = Cor(X_{i:k}, X_{j:k}) = \frac{\sigma_{i:k}}{\sigma_{j:k}}, \quad 1 \le i < j \le k$$

• If k = 3, i = 2 and j = 3, then $\mu_{2:3} = 5/6$, $\mu_{3:3} = 11/6$, $\sigma_{2:3} = 0.6009$, $\sigma_{3:3} = 1.1667$, and $\rho_{2,3:3} = 0.5151$.

Hence

$$\Pr\left(\left[\frac{X_{3:3} - \frac{11}{6}}{1.1667} - \frac{X_{2:3} - \frac{5}{6}}{0.6009}\right]^2 + 0.969\frac{X_{3:3} - \frac{11}{6}}{1.1667}\frac{X_{2:3} - \frac{5}{6}}{0.6009} < \delta\right) \ge 1 - \frac{1.469}{\delta}$$

< 由 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Figure: Confidence regions for $\delta = 2, 3, 4$ containing at least 63.26%, the 75.51% and the 81.63% of the values of $(X_{2:3}, X_{3:3})$.

Order statistics. Example 2.

• For $(X_{1:3}, X_{2:3}, X_{3:3})'$ we obtain the confidence region

$$R_{\varepsilon} = \{(x, y, z): 1.444x^2 - 1.602xy + 1.805y^2 - 1.402yz + 1.361z^2 < \varepsilon\}$$

containing $(X_{1:3}^*, X_{2:3}^*, X_{3:3}^*)'$ with a probability greater than $1 - 3/\varepsilon$, where $X_{i:k}^* = (X_{i:k} - \mu_{i:k})/\sigma_{i:k}$ for i = 1, 2, 3.

If we use the two principal components

$$\Pr\left(\frac{Y_1^2}{1.9129431} + \frac{Y_2^2}{0.77153779} < \varepsilon\right) \ge 1 - \frac{2}{\varepsilon}$$
(13)

for all $\varepsilon > 0$, where

 $Y_1 = 0.5548133X_{1:3}^* + 0.6382230X_{2:3}^* + 0.5337169X_{3:3}^*$

and

 $Y_2 = 0.66914423X_{1:3}^* + 0.03890251X_{2:3}^* - 0.7421136X_{3:3}^*$

Order statistics. Example 2.

• For $(X_{1:3}, X_{2:3}, X_{3:3})'$ we obtain the confidence region

$$R_{\varepsilon} = \{(x, y, z): 1.444x^2 - 1.602xy + 1.805y^2 - 1.402yz + 1.361z^2 < \varepsilon\}$$

containing $(X_{1:3}^*, X_{2:3}^*, X_{3:3}^*)'$ with a probability greater than $1 - 3/\varepsilon$, where $X_{i:k}^* = (X_{i:k} - \mu_{i:k})/\sigma_{i:k}$ for i = 1, 2, 3.

• If we use the two principal components

$$\Pr\left(\frac{Y_1^2}{1.9129431} + \frac{Y_2^2}{0.77153779} < \varepsilon\right) \ge 1 - \frac{2}{\varepsilon}$$
(13)

for all $\varepsilon > 0$, where

 $Y_1 = 0.5548133X_{1:3}^* + 0.6382230X_{2:3}^* + 0.5337169X_{3:3}^*$

and

 $Y_2 = 0.66914423X_{1:3}^* + 0.03890251X_{2:3}^* - 0.7421136X_{3:3}^*.$

Figure: Confidence regions for $\varepsilon = 4, 6, 8$ containing at least the 50%, the 66.6667% and the 75% of the scores of $(X_{1:3}, X_{2:3}, X_{3:3})$.

Data sets.

• If we have a data set $O_i = (X_i, Y_i)'$, i = 1, ..., n, the mean is

$$\overline{O} = \frac{1}{n} \sum_{i=1}^{n} O_i = (\overline{X}, \overline{Y})$$

and its covariance matrix is

$$\widehat{V} = \frac{1}{n} \sum_{m=1}^{n} (O_m - \overline{O})(O_m - \overline{O})' = (\widehat{V}_{i,j}),$$

ullet The correlation is $r=\widehat{V}_{1,2}/\sqrt{\widehat{V}_{1,1}\widehat{V}_{2,2}}$ and

$$\Pr((X_l^* - Y_l^*)^2 + 2(1 - r)X_l^*Y_l^* < \delta) \ge 1 - 2\frac{1 - r^2}{\delta}, \quad (14)$$

where
$$X_I^* = (X_I - \overline{X}) / \sqrt{\widehat{V}_{1,1}}$$
, $Y_I^* = (Y_I - \overline{Y}) / \sqrt{\widehat{V}_{2,2}}$ and $I = i$ with probability $1/n$.
Main resultsCase k = 2.ApplicationsOrder statisticsReferencesData sets

Data sets.

• If we have a data set $O_i = (X_i, Y_i)'$, i = 1, ..., n, the mean is

$$\overline{O} = \frac{1}{n} \sum_{i=1}^{n} O_i = (\overline{X}, \overline{Y})$$

and its covariance matrix is

$$\widehat{V} = rac{1}{n}\sum_{m=1}^{n}(O_m-\overline{O})(O_m-\overline{O})' = (\widehat{V}_{i,j}),$$

• The correlation is $r=\widehat{V}_{1,2}/\sqrt{\widehat{V}_{1,1}\widehat{V}_{2,2}}$ and

$$\Pr((X_I^* - Y_I^*)^2 + 2(1 - r)X_I^*Y_I^* < \delta) \ge 1 - 2\frac{1 - r^2}{\delta}, \quad (14)$$

where $X_I^* = (X_I - \overline{X})/\sqrt{\widehat{V}_{1,1}}$, $Y_I^* = (Y_I - \overline{Y})/\sqrt{\widehat{V}_{2,2}}$ and I = i with probability 1/n.

lain results	
pplications	
References	Data sets

Data sets.

• Then, by taking
$$\delta=4(1-r^2)$$

$$R_1 = \{(x, y) \in \mathbb{R}^2 : (x^* - y^*)^2 + 2(1 - r)x^*y^* < 4(1 - r^2)\},\$$

contains (for sure) at least the 50% of the data.

• By taking
$$\delta = 8(1 - r^2)$$

$$R_2 = \{(x,y) \in \mathbb{R}^2 : (x^* - y^*)^2 + 2(1 - r)x^*y^* < 8(1 - r^2)\},\$$

contains (for sure) at least the 75% of the data and the complementary region

$$\overline{R}_2 = \{(x,y) \in \mathbb{R}^2 : (x^* - y^*)^2 + 2(1 - r)x^*y^* \ge 8(1 - r^2)\},\$$

contains (for sure) at most the 25% of the data.

• These regions are similar to (univariate) box plots.

lain results	Case $k = 2$.
pplications	Order statistics
References	Data sets

Data sets.

• Then, by taking
$$\delta=4(1-r^2)$$

$$R_1 = \{(x, y) \in \mathbb{R}^2 : (x^* - y^*)^2 + 2(1 - r)x^*y^* < 4(1 - r^2)\},\$$

contains (for sure) at least the 50% of the data.

• By taking
$$\delta=8(1-r^2)$$

$$R_2 = \{(x,y) \in \mathbb{R}^2 : (x^* - y^*)^2 + 2(1-r)x^*y^* < 8(1-r^2)\},\$$

contains (for sure) at least the 75% of the data and the complementary region

$$\overline{R}_2 = \{(x,y) \in \mathbb{R}^2 : (x^* - y^*)^2 + 2(1-r)x^*y^* \ge 8(1-r^2)\},\$$

contains (for sure) at most the 25% of the data.

These regions are similar to (univariate) box plots.

lain results	Case $k = 2$.
pplications	Order statistics
References	Data sets

Data sets.

• Then, by taking
$$\delta = 4(1-r^2)$$

$$R_1 = \{(x, y) \in \mathbb{R}^2 : (x^* - y^*)^2 + 2(1 - r)x^*y^* < 4(1 - r^2)\},\$$

contains (for sure) at least the 50% of the data.

• By taking
$$\delta=8(1-r^2)$$

$$R_2 = \{(x,y) \in \mathbb{R}^2 : (x^* - y^*)^2 + 2(1-r)x^*y^* < 8(1-r^2)\},\$$

contains (for sure) at least the 75% of the data and the complementary region

$$\overline{R}_2 = \{(x,y) \in \mathbb{R}^2 : (x^* - y^*)^2 + 2(1-r)x^*y^* \ge 8(1-r^2)\},\$$

contains (for sure) at most the 25% of the data.

• These regions are similar to (univariate) box plots.

Main resultsCase k = 2.ApplicationsOrder statisticReferencesData sets

Data sets. An example.

- Consider in the data set "*iris*" from R (Fisher, 1936), the variables *X* = *Petal.Length* and *Y* = *Petal.Width*.
- We obtain r = 0.9628654 and R_1 and R_2 determined by

$$\left(\frac{x-3.758}{1.759} - \frac{y-1.199}{0.759}\right)^2 + 2(1-r)\frac{x-3.758}{1.759}\frac{y-1.199}{0.759} < 0.292$$

and

$$\left(\frac{x-3.758}{1.759} - \frac{y-1.199}{0.759}\right)^2 + 2(1-r)\frac{x-3.758}{1.759}\frac{y-1.199}{0.759} < 0.583,$$

respectively.

• These regions contain more than the 50% and the 75% of the data (i.e. more than 75 and 113 data in this case).

- Consider in the data set "*iris*" from R (Fisher, 1936), the variables *X* = *Petal.Length* and *Y* = *Petal.Width*.
- We obtain r = 0.9628654 and R_1 and R_2 determined by

$$\left(\frac{x-3.758}{1.759} - \frac{y-1.199}{0.759}\right)^2 + 2(1-r)\frac{x-3.758}{1.759}\frac{y-1.199}{0.759} < 0.292$$

and

$$\left(\frac{x-3.758}{1.759}-\frac{y-1.199}{0.759}\right)^2+2(1-r)\frac{x-3.758}{1.759}\frac{y-1.199}{0.759}<0.583,$$

respectively.

• These regions contain more than the 50% and the 75% of the data (i.e. more than 75 and 113 data in this case).

- Consider in the data set "*iris*" from R (Fisher, 1936), the variables *X* = *Petal.Length* and *Y* = *Petal.Width*.
- We obtain r = 0.9628654 and R_1 and R_2 determined by

$$\left(\frac{x-3.758}{1.759}-\frac{y-1.199}{0.759}\right)^2+2(1-r)\frac{x-3.758}{1.759}\frac{y-1.199}{0.759}<0.292$$

and

$$\left(\frac{x-3.758}{1.759}-\frac{y-1.199}{0.759}\right)^2+2(1-r)\frac{x-3.758}{1.759}\frac{y-1.199}{0.759}<0.583,$$

respectively.

• These regions contain more than the 50% and the 75% of the data (i.e. more than 75 and 113 data in this case).

Figure: Regions R_1 and R_2 containing (for sure) at least the 50% and 75% of the data from X = Petal.Length and Y = Petal.Width.

Figure: Regions R_1 and R_2 by species containing (for sure) at least the 50% and 75% of the data from X = Petal.Length and Y = Petal.Width.

• The two first principal components Y₁ and Y₂ of the four variables in this data set are

$$Y_1 = 0.521X_1^* - 0.269X_2^* + 0.580X_3^* + 0.565X_4^*$$

and

$$Y_{2} = -0.377X_{1}^{*} - 0.923X_{2}^{*} - 0.025X_{3}^{*} - 0.067X_{4}^{*},$$

where $X_{i}^{*} = (X_{i} - \overline{X}_{i})/\sqrt{\widehat{V}_{i,i}}$, $i = 1, 2, 3, 4.$
In this case, $\overline{Y}_{1} = \overline{Y}_{2} = 0$ and $r = 0$ and hence
 $R_{1} = \{(x, y) : \frac{x^{2}}{2,018} + \frac{y^{2}}{0,014} < 4\}$

and

$$R_2 = \{(x, y) : \frac{1}{2.918} + \frac{1}{0.914} < 8\}.$$

• The two first principal components Y₁ and Y₂ of the four variables in this data set are

$$Y_1 = 0.521X_1^* - 0.269X_2^* + 0.580X_3^* + 0.565X_4^*$$

and

$$Y_2 = -0.377X_1^* - 0.923X_2^* - 0.025X_3^* - 0.067X_4^*$$

where $X_i^* = (X_i - \overline{X}_i) / \sqrt{\widehat{V}_{i,i}}$, i = 1, 2, 3, 4.

• In this case, $\overline{Y}_1 = \overline{Y}_2 = 0$ and r = 0 and hence

$$R_1 = \{(x, y) : \frac{x^2}{2.918} + \frac{y^2}{0.914} < 4\}$$

and

$$R_2 = \{(x, y) : \frac{x^2}{2.918} + \frac{y^2}{0.914} < 8\}$$

Figure: Regions R_1 and R_2 for the scores in the two first principal components containing (for sure) at least the 50% and 75% of the data scores.

Main results Applications References

References

- Chen, X. (2011). A new generalization of Chebyshev inequality for random vectors. arXiv:0707.0805v2.
- Navarro, J. (2013). A very simple proof of the multivariate Chebyshev's inequality. To appear in *Communications in Statistics – Theory and Methods*. Published online first Dec 2013. DOI:10.1080/03610926.2013.873135.
- Navarro, J. (2014). Can the bounds in the multivariate Chebyshev inequality be attained? *Statistics and Probability Letters* 91, 1–5.
- Navarro, J. (2014). A note on confidence regions based on the bivariate Chebyshev inequality. Applications to order statistics and data sets. *ISTATISTIK, Journal of the Turkish Statistical Association* 7, 1–14.

Main results Applications References

References

• Thank you for your attention!!