A very short proof of the Multivariate Chebyshev's Inequality. Applications to order statistics and data sets.

J. Navarro ${ }^{1}$, Universidad de Murcia (Spain).

${ }^{1}$ Supported by Ministerio de Economía y Competitividad under Grant MTM2012-34023-FEDER.

Notation

- $\mathbf{X}=\left(X_{1}, \ldots, X_{k}\right)^{\prime}$ a random vector.
- $\mu=E(X)=\left(\mu_{1}, \ldots, \mu_{k}\right)^{\prime}$ mean vector.
- $V=\operatorname{Cov}(\mathbf{X})=E\left((\mathbf{X}-\mu)(\mathbf{X}-\mu)^{\prime}\right)$ covariance matrix.
- $\mathbf{x}=\left(x_{1}, \ldots, x_{k}\right)^{\prime} \in \mathbb{R}^{k}$.
- Mahalanobis distance from x to μ :

$$
\Delta_{V}(\mathbf{x}, \mu)=\sqrt{(\mathrm{x}-\mu)^{\prime} V^{-1}(\mathrm{x}-\mu)}
$$

Notation

- $\mathbf{X}=\left(X_{1}, \ldots, X_{k}\right)^{\prime}$ a random vector.
- $\boldsymbol{\mu}=E(\mathbf{X})=\left(\mu_{1}, \ldots, \mu_{k}\right)^{\prime}$ mean vector.
- $V=\operatorname{Cov}(\mathbf{X})=E\left((\mathbf{X}-\mu)(\mathbf{X}-\mu)^{\prime}\right)$ covariance matrix.
- $\mathbf{x}=\left(x_{1}, \ldots, x_{k}\right)^{\prime} \in \mathbb{R}^{k}$.
- Mahalanobis distance from x to μ :

$$
\Delta_{V}(\mathbf{x}, \mu)=\sqrt{(\mathbf{x}-\mu)^{\prime} V^{-1}(\mathbf{x}-\mu)}
$$

Notation

- $\mathbf{X}=\left(X_{1}, \ldots, X_{k}\right)^{\prime}$ a random vector.
- $\boldsymbol{\mu}=E(\mathbf{X})=\left(\mu_{1}, \ldots, \mu_{k}\right)^{\prime}$ mean vector.
- $V=\operatorname{Cov}(\mathbf{X})=E\left((\mathbf{X}-\mu)(\mathbf{X}-\mu)^{\prime}\right)$ covariance matrix.
- Mahalanobis distance from x to $\boldsymbol{\mu}$:

$$
\Delta_{V}(x, \mu)=\sqrt{(x-\mu)^{\prime} V}-1(x-\mu)
$$

Notation

- $\mathbf{X}=\left(X_{1}, \ldots, X_{k}\right)^{\prime}$ a random vector.
- $\boldsymbol{\mu}=E(\mathbf{X})=\left(\mu_{1}, \ldots, \mu_{k}\right)^{\prime}$ mean vector.
- $V=\operatorname{Cov}(\mathbf{X})=E\left((\mathbf{X}-\mu)(\mathbf{X}-\mu)^{\prime}\right)$ covariance matrix.
- $\mathbf{x}=\left(x_{1}, \ldots, x_{k}\right)^{\prime} \in \mathbb{R}^{k}$.
- Mahalanobis distance from x to μ :

$$
\Delta_{V}(\mathrm{x}, \mu)=\sqrt{(\mathrm{x}-\mu)^{\prime} V^{-1}(\mathrm{x}-\mu)}
$$

Notation

- $\mathbf{X}=\left(X_{1}, \ldots, X_{k}\right)^{\prime}$ a random vector.
- $\boldsymbol{\mu}=E(\mathbf{X})=\left(\mu_{1}, \ldots, \mu_{k}\right)^{\prime}$ mean vector.
- $V=\operatorname{Cov}(\mathbf{X})=E\left((\mathbf{X}-\mu)(\mathbf{X}-\mu)^{\prime}\right)$ covariance matrix.
- $\mathbf{x}=\left(x_{1}, \ldots, x_{k}\right)^{\prime} \in \mathbb{R}^{k}$.
- Mahalanobis distance from \mathbf{x} to $\boldsymbol{\mu}$:

$$
\Delta_{V}(\mathbf{x}, \mu)=\sqrt{(\mathbf{x}-\mu)^{\prime} V^{-1}(\mathbf{x}-\mu)}
$$

The (univariate) Markov's inequality.

- If Z is a non-negative random variable with finite mean $E(Z)$ and $\varepsilon>0$, then

$$
\varepsilon \operatorname{Pr}(Z \geq \varepsilon)=\varepsilon \int_{[\varepsilon, \infty)} d F_{Z}(x) \leq \int_{[\varepsilon, \infty)} x d F_{Z}(x) \leq \int_{[0, \infty)} x d F_{Z}(x)=E(Z)
$$

where $F_{Z}(x)=\operatorname{Pr}(Z \leq x)$.

- It can be stated as

The (univariate) Markov's inequality.

- If Z is a non-negative random variable with finite mean $E(Z)$ and $\varepsilon>0$, then

$$
\varepsilon \operatorname{Pr}(Z \geq \varepsilon)=\varepsilon \int_{[\varepsilon, \infty)} d F_{Z}(x) \leq \int_{[\varepsilon, \infty)} x d F_{Z}(x) \leq \int_{[0, \infty)} x d F_{Z}(x)=E(Z)
$$

where $F_{Z}(x)=\operatorname{Pr}(Z \leq x)$.

- It can be stated as

$$
\begin{equation*}
\operatorname{Pr}(Z \geq \varepsilon) \leq \frac{E(Z)}{\varepsilon} \tag{1}
\end{equation*}
$$

The univariate Chebyshev's inequality.

- If X is a random variable with finite mean $\mu=E(X)$ and variance $\sigma^{2}=\operatorname{Var}(X)>0$, then by taking $Z=(X-\mu)^{2} / \sigma^{2}$ in (1), we get

$$
\begin{equation*}
\operatorname{Pr}\left(\frac{(X-\mu)^{2}}{\sigma^{2}} \geq \varepsilon\right) \leq \frac{1}{\varepsilon} \tag{2}
\end{equation*}
$$

for all $\varepsilon>0$.

- It can also be written as

The univariate Chebyshev's inequality.

- If X is a random variable with finite mean $\mu=E(X)$ and variance $\sigma^{2}=\operatorname{Var}(X)>0$, then by taking $Z=(X-\mu)^{2} / \sigma^{2}$ in (1), we get

$$
\begin{equation*}
\operatorname{Pr}\left(\frac{(X-\mu)^{2}}{\sigma^{2}} \geq \varepsilon\right) \leq \frac{1}{\varepsilon} \tag{2}
\end{equation*}
$$

for all $\varepsilon>0$.

- It can also be written as

$$
\operatorname{Pr}\left((X-\mu)^{2}<\varepsilon \sigma^{2}\right) \geq 1-\frac{1}{\varepsilon}
$$

or as

$$
\operatorname{Pr}(|X-\mu|<r) \leq 1-\frac{\sigma^{2}}{r^{2}}
$$

for all $r>0$.

The multivariate Chebyshev's inequality (MCI).

- If \mathbf{X} is a random vector with finite mean $\boldsymbol{\mu}=E(\mathbf{X})^{\prime}$ and positive definite covariance matrix $V=\operatorname{Cov}(\mathbf{X})$.
- Then

- Chen, X. (2011). A new generalization of Chebyshev inequality for random vectors. arXiv:0707.0805v2.

The multivariate Chebyshev's inequality (MCI).

- If \mathbf{X} is a random vector with finite mean $\boldsymbol{\mu}=E(\mathbf{X})^{\prime}$ and positive definite covariance matrix $V=\operatorname{Cov}(\mathbf{X})$.
- Then

$$
\begin{equation*}
\operatorname{Pr}\left((\mathbf{X}-\boldsymbol{\mu})^{\prime} \boldsymbol{V}^{-1}(\mathbf{X}-\boldsymbol{\mu}) \geq \varepsilon\right) \leq \frac{k}{\varepsilon} \tag{3}
\end{equation*}
$$

for all $\varepsilon>0$.
Chen, X. (2011). A new generalization of Chebyshev inequality for random vectors. arXiv:0707.0805v2.

The multivariate Chebyshev's inequality (MCI).

- If \mathbf{X} is a random vector with finite mean $\boldsymbol{\mu}=E(\mathbf{X})^{\prime}$ and positive definite covariance matrix $V=\operatorname{Cov}(\mathbf{X})$.
- Then

$$
\begin{equation*}
\operatorname{Pr}\left((\mathbf{X}-\boldsymbol{\mu})^{\prime} \boldsymbol{V}^{-1}(\mathbf{X}-\boldsymbol{\mu}) \geq \varepsilon\right) \leq \frac{k}{\varepsilon} \tag{3}
\end{equation*}
$$

for all $\varepsilon>0$.

- Chen, X. (2011). A new generalization of Chebyshev inequality for random vectors. arXiv:0707.0805v2.

The multivariate Chebyshev's inequality.

- The inequality in (3) can also be written as

$$
\begin{equation*}
\operatorname{Pr}\left((\mathbf{X}-\boldsymbol{\mu})^{\prime} \boldsymbol{V}^{-1}(\mathbf{X}-\boldsymbol{\mu})<\varepsilon\right) \geq 1-\frac{k}{\varepsilon} \tag{4}
\end{equation*}
$$

for all $\varepsilon>0$.

- This inequality says that the ellipsoid

$$
\begin{equation*}
E_{\varepsilon}=\left\{\mathbf{x} \in \mathbb{R}^{k}:(\mathbf{x}-\mu)^{\prime} V^{-1}(\mathbf{x}-\mu)<\varepsilon\right\} \tag{5}
\end{equation*}
$$

contains at least the $100(1-k / \varepsilon) \%$ of the population.

- The inequality can also be written as

$$
\operatorname{Pr}\left(\Delta_{V}(\mathbf{X}, \mu)<r\right) \geq 1-\frac{k}{r^{2}}
$$

- Hence (6) gives a lower bound for the percentage of points from X in spheres "around" the mean $\boldsymbol{\mu}$ in the Mahalanobis distance based on V.

The multivariate Chebyshev's inequality.

- The inequality in (3) can also be written as

$$
\begin{equation*}
\operatorname{Pr}\left((\mathbf{X}-\boldsymbol{\mu})^{\prime} \boldsymbol{V}^{-1}(\mathbf{X}-\boldsymbol{\mu})<\varepsilon\right) \geq 1-\frac{k}{\varepsilon} \tag{4}
\end{equation*}
$$

for all $\varepsilon>0$.

- This inequality says that the ellipsoid

$$
\begin{equation*}
E_{\varepsilon}=\left\{\mathbf{x} \in \mathbb{R}^{k}:(\mathbf{x}-\boldsymbol{\mu})^{\prime} V^{-1}(\mathbf{x}-\boldsymbol{\mu})<\varepsilon\right\} \tag{5}
\end{equation*}
$$

contains at least the $100(1-k / \varepsilon) \%$ of the population.

$$
\operatorname{Pr}\left(\Delta_{V}(\mathbf{X}, \boldsymbol{\mu})<r\right) \geq 1-\frac{k}{r^{2}}
$$

- Hence (6) gives a lower bound for the percentage of points from X in spheres "around" the mean $\boldsymbol{\mu}$ in the Mahalanobis distance based on V.

The multivariate Chebyshev's inequality.

- The inequality in (3) can also be written as

$$
\begin{equation*}
\operatorname{Pr}\left((\mathbf{X}-\boldsymbol{\mu})^{\prime} \boldsymbol{V}^{-1}(\mathbf{X}-\boldsymbol{\mu})<\varepsilon\right) \geq 1-\frac{k}{\varepsilon} \tag{4}
\end{equation*}
$$

for all $\varepsilon>0$.

- This inequality says that the ellipsoid

$$
\begin{equation*}
E_{\varepsilon}=\left\{\mathbf{x} \in \mathbb{R}^{k}:(\mathbf{x}-\boldsymbol{\mu})^{\prime} \boldsymbol{V}^{-1}(\mathbf{x}-\boldsymbol{\mu})<\varepsilon\right\} \tag{5}
\end{equation*}
$$

contains at least the $100(1-k / \varepsilon) \%$ of the population.

- The inequality can also be written as

$$
\begin{equation*}
\operatorname{Pr}\left(\Delta_{V}(\mathbf{X}, \boldsymbol{\mu})<r\right) \geq 1-\frac{k}{r^{2}} \tag{6}
\end{equation*}
$$

- Hence (6) gives a lower bound for the percentage of points from X in spheres "around" the mean $\boldsymbol{\mu}$ in the Mahalanobis distance based on V.

The multivariate Chebyshev's inequality.

- The inequality in (3) can also be written as

$$
\begin{equation*}
\operatorname{Pr}\left((\mathbf{X}-\boldsymbol{\mu})^{\prime} V^{-1}(\mathbf{X}-\boldsymbol{\mu})<\varepsilon\right) \geq 1-\frac{k}{\varepsilon} \tag{4}
\end{equation*}
$$

for all $\varepsilon>0$.

- This inequality says that the ellipsoid

$$
\begin{equation*}
E_{\varepsilon}=\left\{\mathbf{x} \in \mathbb{R}^{k}:(\mathbf{x}-\boldsymbol{\mu})^{\prime} V^{-1}(\mathbf{x}-\boldsymbol{\mu})<\varepsilon\right\} \tag{5}
\end{equation*}
$$

contains at least the $100(1-k / \varepsilon) \%$ of the population.

- The inequality can also be written as

$$
\begin{equation*}
\operatorname{Pr}\left(\Delta_{V}(\mathbf{X}, \boldsymbol{\mu})<r\right) \geq 1-\frac{k}{r^{2}} \tag{6}
\end{equation*}
$$

- Hence (6) gives a lower bound for the percentage of points from \mathbf{X} in spheres "around" the mean $\boldsymbol{\mu}$ in the Mahalanobis distance based on V.

A very short proof.

- Let us consider the random variable

$$
Z=(\mathbf{X}-\boldsymbol{\mu})^{\prime} V^{-1}(\mathbf{X}-\boldsymbol{\mu})
$$

- As V is positive definite, then $Z \geq 0$.
- Moreover, there exist symmetric matrices $V^{1 / 2}$ and $V^{-1 / 2}$ such that $V^{1 / 2} V^{1 / 2}=V, V^{-1 / 2} V^{-1 / 2}=V^{-1}$ and $V^{1 / 2} V^{-1 / 2}=V^{-1 / 2} V^{1 / 2}=I_{k}$, where I_{k} is the identity matrix of dimension k.
- Therefore

$$
Z=(\mathbf{X}-\boldsymbol{\mu})^{\prime} V^{-1 / 2} V^{-1 / 2}(\mathbf{X}-\boldsymbol{\mu})=\mathbf{Y}^{\prime} \mathbf{Y}
$$

$$
\text { where } \mathbf{Y}=\left(Y_{1}, \ldots, Y_{k}\right)^{\prime}=V^{-1 / 2}(\mathbf{X}-\boldsymbol{\mu})
$$

- Hence $E(\mathbf{Y})=\mathbf{0}_{k}$ and

A very short proof.

- Let us consider the random variable

$$
Z=(\mathbf{X}-\boldsymbol{\mu})^{\prime} V^{-1}(\mathbf{X}-\boldsymbol{\mu})
$$

- As V is positive definite, then $Z \geq 0$.
- Moreover, there exist symmetric matrices $V^{1 / 2}$ and $V^{-1 / 2}$ such that $V^{1 / 2} V^{1 / 2}=V, V^{-1 / 2} V^{-1 / 2}=V^{-1}$ and $V^{1 / 2} V^{-1 / 2}=V^{-1 / 2} V^{1 / 2}=I_{k}$, where I_{k} is the identity matrix of dimension k.
- Therefore

where $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{k}\right)^{\prime}=V^{-1 / 2}(\mathbf{X}-\mu)$.
- Hence $E(\mathbf{Y})=\mathbf{0}_{k}$ and

A very short proof.

- Let us consider the random variable

$$
Z=(\mathbf{X}-\boldsymbol{\mu})^{\prime} V^{-1}(\mathbf{X}-\boldsymbol{\mu})
$$

- As V is positive definite, then $Z \geq 0$.
- Moreover, there exist symmetric matrices $V^{1 / 2}$ and $V^{-1 / 2}$ such that $V^{1 / 2} V^{1 / 2}=V, V^{-1 / 2} V^{-1 / 2}=V^{-1}$ and $V^{1 / 2} V^{-1 / 2}=V^{-1 / 2} V^{1 / 2}=I_{k}$, where I_{k} is the identity matrix of dimension k.
- Therefore

where $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{k}\right)^{\prime}=V^{-1 / 2}(\mathbf{X}-\boldsymbol{\mu})$.
- Hence $E(\mathbf{Y})=\mathbf{0}_{k}$ and

A very short proof.

- Let us consider the random variable

$$
Z=(\mathbf{X}-\boldsymbol{\mu})^{\prime} V^{-1}(\mathbf{X}-\boldsymbol{\mu})
$$

- As V is positive definite, then $Z \geq 0$.
- Moreover, there exist symmetric matrices $V^{1 / 2}$ and $V^{-1 / 2}$ such that $V^{1 / 2} V^{1 / 2}=V, V^{-1 / 2} V^{-1 / 2}=V^{-1}$ and $V^{1 / 2} V^{-1 / 2}=V^{-1 / 2} V^{1 / 2}=I_{k}$, where I_{k} is the identity matrix of dimension k.
- Therefore

$$
\begin{aligned}
& \quad Z=(\mathbf{X}-\boldsymbol{\mu})^{\prime} V^{-1 / 2} V^{-1 / 2}(\mathbf{X}-\boldsymbol{\mu})=\mathbf{Y}^{\prime} \mathbf{Y} \\
& \text { where } \mathbf{Y}=\left(Y_{1}, \ldots, Y_{k}\right)^{\prime}=V^{-1 / 2}(\mathbf{X}-\boldsymbol{\mu})
\end{aligned}
$$

A very short proof.

- Let us consider the random variable

$$
Z=(\mathbf{X}-\boldsymbol{\mu})^{\prime} V^{-1}(\mathbf{X}-\boldsymbol{\mu})
$$

- As V is positive definite, then $Z \geq 0$.
- Moreover, there exist symmetric matrices $V^{1 / 2}$ and $V^{-1 / 2}$ such that $V^{1 / 2} V^{1 / 2}=V, V^{-1 / 2} V^{-1 / 2}=V^{-1}$ and $V^{1 / 2} V^{-1 / 2}=V^{-1 / 2} V^{1 / 2}=I_{k}$, where I_{k} is the identity matrix of dimension k.
- Therefore

$$
Z=(\mathbf{X}-\boldsymbol{\mu})^{\prime} V^{-1 / 2} V^{-1 / 2}(\mathbf{X}-\boldsymbol{\mu})=\mathbf{Y}^{\prime} \mathbf{Y}
$$

$$
\text { where } \mathbf{Y}=\left(Y_{1}, \ldots, Y_{k}\right)^{\prime}=V^{-1 / 2}(\mathbf{X}-\boldsymbol{\mu})
$$

- Hence $E(\mathbf{Y})=\mathbf{0}_{k}$ and

$$
\operatorname{Cov}(\mathbf{Y})=V^{-1 / 2} \operatorname{Cov}(\mathbf{X}) V^{-1 / 2}=V^{-1 / 2} V V^{-1 / 2}=I_{k}
$$

A very short proof.

- Therefore $E\left(Y_{i}\right)=0, \operatorname{Var}\left(Y_{i}\right)=1$ and

$$
E(Z)=E\left(\mathbf{Y}^{\prime} \mathbf{Y}\right)=E\left(\sum_{i=1}^{k} Y_{i}^{2}\right)=\sum_{i=1}^{k} E\left(Y_{i}^{2}\right)=\sum_{i=1}^{k} \operatorname{Var}\left(Y_{i}\right)=k
$$

- Hence, from Markov's inequality (1), we get

and therefore (3) holds for all $\varepsilon>0$.

A very short proof.

- Therefore $E\left(Y_{i}\right)=0, \operatorname{Var}\left(Y_{i}\right)=1$ and

$$
E(Z)=E\left(\mathbf{Y}^{\prime} \mathbf{Y}\right)=E\left(\sum_{i=1}^{k} Y_{i}^{2}\right)=\sum_{i=1}^{k} E\left(Y_{i}^{2}\right)=\sum_{i=1}^{k} \operatorname{Var}\left(Y_{i}\right)=k
$$

- Hence, from Markov's inequality (1), we get

$$
\operatorname{Pr}(Z \geq \varepsilon)=\operatorname{Pr}\left((\mathbf{X}-\boldsymbol{\mu})^{\prime} V^{-1}(\mathbf{X}-\boldsymbol{\mu}) \geq \varepsilon\right) \leq \frac{E(Z)}{\varepsilon}=\frac{k}{\varepsilon}
$$

and therefore (3) holds for all $\varepsilon>0$.

- That's all, thank you for your attention!!
- It's a joke, let's see something more (if you want).
- That's all, thank you for your attention!!
- It's a joke, let's see something more (if you want).

Another short proof.

- Let us consider the random variable

$$
Z=(\mathbf{X}-\boldsymbol{\mu})^{\prime} V^{-1}(\mathbf{X}-\boldsymbol{\mu}) \geq 0
$$

- As V is positive definite and symmetric, there exists an ortogonal matrix T such that $T T^{\prime}=T^{\prime} T=I_{k}$ and $T^{\prime} V T=D$ and $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ is the diagonal matrix with the ordered eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{k}>0$. - Then $V=T D T^{\prime}$ and $V^{-1}=T D^{-1} T^{\prime}$.
- Therefore

$$
\begin{aligned}
\mathbf{Z} & =(\mathbf{X}-\mu)^{\prime} T D^{-1} T^{\prime}(\mathbf{X}-\boldsymbol{\mu}) \\
& =\left[D^{-1 / 2} T^{\prime}(\mathbf{X}-\mu)\right]^{\prime}\left[D^{-1 / 2} T^{\prime}(\mathbf{X}-\mu)\right] \\
& =\mathbf{Z}^{\prime} \mathbf{Z}
\end{aligned}
$$

where $\mathbf{Z}=\left(Z_{1}, \ldots, Z_{n}\right)^{\prime}=D^{-1 / 2} T^{\prime}(\mathbf{X}-\boldsymbol{\mu})$ and

Another short proof.

- Let us consider the random variable

$$
Z=(\mathbf{X}-\boldsymbol{\mu})^{\prime} V^{-1}(\mathbf{X}-\boldsymbol{\mu}) \geq 0
$$

- As V is positive definite and symmetric, there exists an ortogonal matrix T such that $T T^{\prime}=T^{\prime} T=I_{k}$ and $T^{\prime} V T=D$ and $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ is the diagonal matrix with the ordered eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{k}>0$.

where $\mathbf{Z}=\left(Z_{1}, \ldots, Z_{n}\right)^{\prime}=D^{-1 / 2} T^{\prime}(\mathbf{X}-\boldsymbol{\mu})$ and

Another short proof.

- Let us consider the random variable

$$
Z=(\mathbf{X}-\boldsymbol{\mu})^{\prime} V^{-1}(\mathbf{X}-\boldsymbol{\mu}) \geq 0
$$

- As V is positive definite and symmetric, there exists an ortogonal matrix T such that $T T^{\prime}=T^{\prime} T=I_{k}$ and $T^{\prime} V T=D$ and $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ is the diagonal matrix with the ordered eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{k}>0$.
- Then $V=T D T^{\prime}$ and $V^{-1}=T D^{-1} T^{\prime}$.
- Therefore

where $\mathbf{Z}=\left(Z_{1}, \ldots, Z_{n}\right)^{\prime}=D^{-1 / 2} T^{\prime}(\mathbf{X}-\boldsymbol{\mu})$ and

Another short proof.

- Let us consider the random variable

$$
Z=(\mathbf{X}-\boldsymbol{\mu})^{\prime} V^{-1}(\mathbf{X}-\boldsymbol{\mu}) \geq 0
$$

- As V is positive definite and symmetric, there exists an ortogonal matrix T such that $T T^{\prime}=T^{\prime} T=I_{k}$ and $T^{\prime} V T=D$ and $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ is the diagonal matrix with the ordered eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{k}>0$.
- Then $V=T D T^{\prime}$ and $V^{-1}=T D^{-1} T^{\prime}$.
- Therefore

$$
\begin{aligned}
Z & =(\mathbf{X}-\mu)^{\prime} T D^{-1} T^{\prime}(\mathbf{X}-\boldsymbol{\mu}) \\
& =\left[D^{-1 / 2} T^{\prime}(\mathbf{X}-\boldsymbol{\mu})\right]^{\prime}\left[D^{-1 / 2} T^{\prime}(\mathbf{X}-\boldsymbol{\mu})\right] \\
& =\mathbf{Z}^{\prime} \mathbf{Z}
\end{aligned}
$$

where $\mathbf{Z}=\left(Z_{1}, \ldots, Z_{n}\right)^{\prime}=D^{-1 / 2} T^{\prime}(\mathbf{X}-\boldsymbol{\mu})$ and
$D^{-1 / 2}=\operatorname{diag}\left(\lambda_{1}^{-1 / 2}, \ldots, \lambda_{k}^{-1 / 2}\right)$.

Another short proof.

- The random vector \mathbf{Z} satisfies $E(\mathbf{Z})=\mathbf{0}_{k}$ and

$$
\operatorname{Cov}(\mathbf{Z})=\operatorname{Cov}\left(D^{-1 / 2} T^{\prime}(\mathbf{X}-\boldsymbol{\mu})\right)=D^{-1 / 2} T^{\prime} V T D^{-1 / 2}=D^{-1 / 2} D D^{-1 / 2}=I_{k}
$$

$$
\text { Therefore } E\left(Z_{i}\right)=0, \operatorname{Var}\left(Z_{i}\right)=1 \text { and }
$$

$$
E(Z)=E\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)=E\left(\sum_{i=1}^{k} Z_{i}^{2}\right)=\sum_{i=1}^{k} E\left(Z_{i}^{2}\right)=\sum_{i=1}^{k} \operatorname{Var}\left(Z_{i}\right)=k
$$

- Hence, from Markov's inequality (1), we get

Another short proof.

- The random vector \mathbf{Z} satisfies $E(\mathbf{Z})=\mathbf{0}_{k}$ and
$\operatorname{Cov}(\mathbf{Z})=\operatorname{Cov}\left(D^{-1 / 2} T^{\prime}(\mathbf{X}-\boldsymbol{\mu})\right)=D^{-1 / 2} T^{\prime} V T D^{-1 / 2}=D^{-1 / 2} D D^{-1 / 2}=I_{k}$.
- Therefore $E\left(Z_{i}\right)=0, \operatorname{Var}\left(Z_{i}\right)=1$ and

$$
E(Z)=E\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)=E\left(\sum_{i=1}^{k} Z_{i}^{2}\right)=\sum_{i=1}^{k} E\left(Z_{i}^{2}\right)=\sum_{i=1}^{k} \operatorname{Var}\left(Z_{i}\right)=k
$$

- Hence, from Markov's inequality (1), we get

Another short proof.

- The random vector \mathbf{Z} satisfies $E(\mathbf{Z})=\mathbf{0}_{k}$ and
$\operatorname{Cov}(\mathbf{Z})=\operatorname{Cov}\left(D^{-1 / 2} T^{\prime}(\mathbf{X}-\boldsymbol{\mu})\right)=D^{-1 / 2} T^{\prime} V T D^{-1 / 2}=D^{-1 / 2} D D^{-1 / 2}=I_{k}$.
- Therefore $E\left(Z_{i}\right)=0, \operatorname{Var}\left(Z_{i}\right)=1$ and

$$
E(Z)=E\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)=E\left(\sum_{i=1}^{k} Z_{i}^{2}\right)=\sum_{i=1}^{k} E\left(Z_{i}^{2}\right)=\sum_{i=1}^{k} \operatorname{Var}\left(Z_{i}\right)=k
$$

- Hence, from Markov's inequality (1), we get

$$
\operatorname{Pr}(Z \geq \varepsilon)=\operatorname{Pr}\left((\mathbf{X}-\boldsymbol{\mu})^{\prime} V^{-1}(\mathbf{X}-\boldsymbol{\mu}) \geq \varepsilon\right) \leq \frac{E(Z)}{\varepsilon}=\frac{k}{\varepsilon}
$$

for all $\varepsilon>0$.

Bounds for singular covariance matrices.

- $\mathbf{Z}=D^{-1 / 2} T^{\prime}(\mathbf{X}-\boldsymbol{\mu})$ is the vector of the standardized principal components of \mathbf{X}.
- Then (3) can be written as

where $\mathbf{Z}^{\prime} \mathbf{Z}=\sum_{i=1}^{k} Z_{i}^{2}$.
- If V is singular, then $\lambda_{1} \geq \cdots \geq \lambda_{m}>\lambda_{m+1}=\cdots=\lambda_{k}=0$.
- Then (7) can be replaced with

for all $\varepsilon>0$, where $Z_{i}=\lambda_{i}^{-1 / 2} \mathbf{t}_{i}^{\prime}(\mathbf{X}-\mu)$ is the i th
standardized principal components of \mathbf{X} and \mathbf{t}_{i} is the
normalized eigenvector associated with the eigenvalue λ_{i}.

Bounds for singular covariance matrices.

- $\mathbf{Z}=D^{-1 / 2} T^{\prime}(\mathbf{X}-\boldsymbol{\mu})$ is the vector of the standardized principal components of \mathbf{X}.
- Then (3) can be written as

$$
\begin{equation*}
\operatorname{Pr}\left(\mathbf{Z}^{\prime} \mathbf{Z}<\varepsilon\right) \geq 1-\frac{k}{\varepsilon} \tag{7}
\end{equation*}
$$

where $\mathbf{Z}^{\prime} \mathbf{Z}=\sum_{i=1}^{k} Z_{i}^{2}$.

- Then (7) can be replaced with

for all $\varepsilon>0$, where $Z_{i}=\lambda_{i}^{-1 / 2} \mathbf{t}_{i}^{\prime}(\mathbf{X}-\mu)$ is the i th
standardized principal components of \mathbf{X} and \mathbf{t}_{i} is the
normalized eigenvector associated with the eigenvalue λ_{i}.

Bounds for singular covariance matrices.

- $\mathbf{Z}=D^{-1 / 2} T^{\prime}(\mathbf{X}-\boldsymbol{\mu})$ is the vector of the standardized principal components of \mathbf{X}.
- Then (3) can be written as

$$
\begin{equation*}
\operatorname{Pr}\left(\mathbf{Z}^{\prime} \mathbf{Z}<\varepsilon\right) \geq 1-\frac{k}{\varepsilon} \tag{7}
\end{equation*}
$$

where $\mathbf{Z}^{\prime} \mathbf{Z}=\sum_{i=1}^{k} Z_{i}^{2}$.

- If V is singular, then $\lambda_{1} \geq \cdots \geq \lambda_{m}>\lambda_{m+1}=\cdots=\lambda_{k}=0$.
- Then (7) can be replaced with

for all $\varepsilon>0$, where $Z_{i}=\lambda_{i}^{-1 / 2} \mathbf{t}_{i}^{\prime}(\mathbf{X}-\mu)$ is the i th
standardized principal components of \mathbf{X} and \mathbf{t}_{i} is the
normalized eigenvector associated with the eigenvalue

Bounds for singular covariance matrices.

- $\mathbf{Z}=D^{-1 / 2} T^{\prime}(\mathbf{X}-\boldsymbol{\mu})$ is the vector of the standardized principal components of \mathbf{X}.
- Then (3) can be written as

$$
\begin{equation*}
\operatorname{Pr}\left(\mathbf{Z}^{\prime} \mathbf{Z}<\varepsilon\right) \geq 1-\frac{k}{\varepsilon} \tag{7}
\end{equation*}
$$

where $\mathbf{Z}^{\prime} \mathbf{Z}=\sum_{i=1}^{k} Z_{i}^{2}$.

- If V is singular, then $\lambda_{1} \geq \cdots \geq \lambda_{m}>\lambda_{m+1}=\cdots=\lambda_{k}=0$.
- Then (7) can be replaced with

$$
\begin{equation*}
\operatorname{Pr}\left(\sum_{i=1}^{m} Z_{i}^{2}<\varepsilon\right) \geq 1-\frac{m}{\varepsilon} \tag{8}
\end{equation*}
$$

for all $\varepsilon>0$, where $Z_{i}=\lambda_{i}^{-1 / 2} \mathbf{t}_{i}^{\prime}(\mathbf{X}-\mu)$ is the i th standardized principal components of \mathbf{X} and \mathbf{t}_{i} is the normalized eigenvector associated with the eigenvalue λ_{i}.

An example.

- $\left(X_{1}, X_{3}, X_{3}\right) \equiv \operatorname{Multinomial}\left(p_{1}=1 / 3, p_{2}=1 / 3, p_{3}=1 / 3, n\right)$.
- Then $\mu=E(\mathbf{X})=(n / 3, n / 3, n / 3)^{\prime}$ and

$$
V=\frac{n}{9}\left(\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right)
$$

- As $X_{1}+X_{2}+X_{3}=n$, we of course have $|V|=0$,
- The eigenvalues are $\lambda_{1}=\lambda_{2}=n / 3$ and $\lambda_{3}=0$.
- Some two first standardized principal components are

and the multivariate Chebyshev's inequality given in (8) gives

An example.

- $\left(X_{1}, X_{3}, X_{3}\right) \equiv \operatorname{Multinomial}\left(p_{1}=1 / 3, p_{2}=1 / 3, p_{3}=1 / 3, n\right)$.
- Then $\mu=E(\mathbf{X})=(n / 3, n / 3, n / 3)^{\prime}$ and

$$
V=\frac{n}{9}\left(\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right)
$$

- As $X_{1}+X_{2}+X_{3}=n$, we of course have $|V|=0$,
- The eigenvalues are $\lambda_{1}=\lambda_{2}=n / 3$ and $\lambda_{3}=0$.
- Some two first standardized principal components are

and the multivariate Chebyshev's inequality given in (8) gives

An example.

- $\left(X_{1}, X_{3}, X_{3}\right) \equiv \operatorname{Multinomial}\left(p_{1}=1 / 3, p_{2}=1 / 3, p_{3}=1 / 3, n\right)$.
- Then $\mu=E(\mathbf{X})=(n / 3, n / 3, n / 3)^{\prime}$ and

$$
V=\frac{n}{9}\left(\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right)
$$

- As $X_{1}+X_{2}+X_{3}=n$, we of course have $|V|=0$,
- The eigenvalues are $\lambda_{1}=\lambda_{2}=n / 3$ and $\lambda_{3}=0$.
- Some two first standardized principal components are

and the multivariate Chebyshev's inequality given in (8) gives

An example.

- $\left(X_{1}, X_{3}, X_{3}\right) \equiv \operatorname{Multinomial}\left(p_{1}=1 / 3, p_{2}=1 / 3, p_{3}=1 / 3, n\right)$.
- Then $\mu=E(\mathbf{X})=(n / 3, n / 3, n / 3)^{\prime}$ and

$$
V=\frac{n}{9}\left(\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right)
$$

- As $X_{1}+X_{2}+X_{3}=n$, we of course have $|V|=0$,
- The eigenvalues are $\lambda_{1}=\lambda_{2}=n / 3$ and $\lambda_{3}=0$.
- Some two first standardized principal components are

and the multivariate Chebyshev's inequality given in (8) gives

An example.

- $\left(X_{1}, X_{3}, X_{3}\right) \equiv \operatorname{Multinomial}\left(p_{1}=1 / 3, p_{2}=1 / 3, p_{3}=1 / 3, n\right)$.
- Then $\mu=E(\mathbf{X})=(n / 3, n / 3, n / 3)^{\prime}$ and

$$
V=\frac{n}{9}\left(\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right)
$$

- As $X_{1}+X_{2}+X_{3}=n$, we of course have $|V|=0$,
- The eigenvalues are $\lambda_{1}=\lambda_{2}=n / 3$ and $\lambda_{3}=0$.
- Some two first standardized principal components are

$$
Z_{1}=\frac{X_{1}-X_{2}}{\sqrt{2 n / 3}}, \quad Z_{2}=\frac{X_{1}+X_{2}-2 X_{3}}{\sqrt{2 n}}
$$

and the multivariate Chebyshev's inequality given in (8) gives

$$
\operatorname{Pr}\left(\sqrt{\left(X_{1}-X_{2}\right)^{2}+\left(X_{1}+X_{2}-2 X_{3}\right)^{2} / 3}<\delta\right) \geq 1-\frac{4 n}{3 \delta^{2}}
$$

The bounds are sharp.

Theorem (Navarro SPL 2014)

Let $\mathbf{X}=\left(X_{1}, \ldots, X_{k}\right)^{\prime}$ be a random vector with finite mean vector $\mu=E(\mathbf{X})$ and positive definite covariance matrix $V=\operatorname{Cov}(\mathbf{X})$ and let $\varepsilon \geq k$. Then there exists a sequence $\mathbf{X}^{(n)}=\left(X_{1}^{(n)}, \ldots, X_{k}^{(n)}\right)^{\prime}$ of random vectors with mean vector μ and covariance matrix V such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\left(\mathbf{X}^{(n)}-\mu\right)^{\prime} V^{-1}\left(\mathbf{X}^{(n)}-\mu\right) \geq \varepsilon\right)=\frac{k}{\varepsilon} \tag{9}
\end{equation*}
$$

The bounds are sharp (proof).

- For $\varepsilon \geq k$, let us consider

$$
D_{n}=\left\{\begin{array}{cl}
\sqrt{Z_{n}+\varepsilon} & \text { with probability }(p-1 / n) / 2 \\
-\sqrt{Z_{n}+\varepsilon} & \text { with probability }(p-1 / n) / 2 \\
0 & \text { with probability } 1-p+1 / n
\end{array}\right.
$$

for $n>\varepsilon / k$, where $p=k / \varepsilon \leq 1$ and
$Z_{n} \equiv \operatorname{Exp}\left(\mu_{n}=\frac{\varepsilon / n}{p-1 / n}>0\right)$.

- Note that $\operatorname{Pr}\left(D_{n}^{2} \geq \varepsilon\right)=p-1 / n$.
- $E\left(D_{n}\right)=\frac{(p-1 / n)}{2} E\left(\sqrt{Z_{n}+\varepsilon}\right)-\frac{(p-1 / n)}{2} E\left(\sqrt{Z_{n}+\varepsilon}\right)=0$.
- $E\left(D_{n}^{2}\right)=(p-1 / n) E\left(Z_{n}+\varepsilon\right)=(p-1 / n)\left(\frac{\varepsilon / n}{p-1 / n}+\varepsilon\right)=k$

The bounds are sharp (proof).

- For $\varepsilon \geq k$, let us consider

$$
D_{n}=\left\{\begin{array}{cl}
\sqrt{Z_{n}+\varepsilon} & \text { with probability }(p-1 / n) / 2 \\
-\sqrt{Z_{n}+\varepsilon} & \text { with probability }(p-1 / n) / 2 \\
0 & \text { with probability } 1-p+1 / n
\end{array}\right.
$$

for $n>\varepsilon / k$, where $p=k / \varepsilon \leq 1$ and
$Z_{n} \equiv \operatorname{Exp}\left(\mu_{n}=\frac{\varepsilon / n}{p-1 / n}>0\right)$.

- Note that $\operatorname{Pr}\left(D_{n}^{2} \geq \varepsilon\right)=p-1 / n$.

The bounds are sharp (proof).

- For $\varepsilon \geq k$, let us consider

$$
D_{n}=\left\{\begin{array}{cl}
\sqrt{Z_{n}+\varepsilon} & \text { with probability }(p-1 / n) / 2 \\
-\sqrt{Z_{n}+\varepsilon} & \text { with probability }(p-1 / n) / 2 \\
0 & \text { with probability } 1-p+1 / n
\end{array}\right.
$$

for $n>\varepsilon / k$, where $p=k / \varepsilon \leq 1$ and
$Z_{n} \equiv \operatorname{Exp}\left(\mu_{n}=\frac{\varepsilon / n}{p-1 / n}>0\right)$.

- Note that $\operatorname{Pr}\left(D_{n}^{2} \geq \varepsilon\right)=p-1 / n$.
- $E\left(D_{n}\right)=\frac{(p-1 / n)}{2} E\left(\sqrt{Z_{n}+\varepsilon}\right)-\frac{(p-1 / n)}{2} E\left(\sqrt{Z_{n}+\varepsilon}\right)=0$.
- $E\left(D_{n}^{2}\right)=(p-1 / n) E\left(Z_{n}+\varepsilon\right)=(p-1 / n)\left(\frac{\varepsilon / n}{p-1 / n}+\varepsilon\right)=k$

The bounds are sharp (proof).

- For $\varepsilon \geq k$, let us consider

$$
D_{n}=\left\{\begin{array}{cl}
\sqrt{Z_{n}+\varepsilon} & \text { with probability }(p-1 / n) / 2 \\
-\sqrt{Z_{n}+\varepsilon} & \text { with probability }(p-1 / n) / 2 \\
0 & \text { with probability } 1-p+1 / n
\end{array}\right.
$$

for $n>\varepsilon / k$, where $p=k / \varepsilon \leq 1$ and

$$
Z_{n} \equiv \operatorname{Exp}\left(\mu_{n}=\frac{\varepsilon / n}{p-1 / n}>0\right)
$$

- Note that $\operatorname{Pr}\left(D_{n}^{2} \geq \varepsilon\right)=p-1 / n$.
- $E\left(D_{n}\right)=\frac{(p-1 / n)}{2} E\left(\sqrt{Z_{n}+\varepsilon}\right)-\frac{(p-1 / n)}{2} E\left(\sqrt{Z_{n}+\varepsilon}\right)=0$.
- $E\left(D_{n}^{2}\right)=(p-1 / n) E\left(Z_{n}+\varepsilon\right)=(p-1 / n)\left(\frac{\varepsilon / n}{p-1 / n}+\varepsilon\right)=k$.

The bounds are sharp (proof).

- Let U_{n} be a r.v., independent of Z_{n}, with a uniform distribution over $\{1, \ldots, k\}$.
- Let $Y^{(n)}=\left(Y_{1}^{(n)}, \ldots, Y_{k}^{(n)}\right)^{\prime}$ defined by $Y_{i}^{(n)}=D_{n}$ and $Y_{j}^{(n)}=0$ for $j=1, \ldots, i-1, i+1, \ldots, k$ when $U_{n}=i$.
- Hence $E\left(Y_{i}^{(n)}\right)=\frac{1}{k} E\left(D_{n}\right)=0$ and

$$
\operatorname{Var}\left(Y_{i}^{(n)}\right)=E\left(\left(Y_{i}^{(n)}\right)^{2}\right)=\frac{1}{k} E\left(D_{n}^{2}\right)=1 .
$$

- Moreover, $Y_{i}^{(n)} Y_{j}^{(n)}=0$ and $E\left(Y_{i}^{(n)} Y_{j}^{(n)}\right)=0$ for all $i \neq j$
- Then $E\left(\mathbf{Y}^{(n)}\right)=\mathbf{0}_{k}$ and $\operatorname{Cov}\left(\mathbf{Y}^{(n)}\right)=I_{k}$
- Then $\mathbf{X}^{(n)}=\mu+V^{1 / 2} \mathbf{Y}^{(n)}$ has mean $E\left(\mathbf{X}^{(n)}\right)=\mu$ and
$\operatorname{Cov}\left(\mathbf{X}^{(n)}\right)=\operatorname{Cov}\left(V^{1 / 2} \mathbf{Y}^{(n)}\right)=V^{1 / 2} V^{1 / 2}=V$.

The bounds are sharp (proof).

- Let U_{n} be a r.v., independent of Z_{n}, with a uniform distribution over $\{1, \ldots, k\}$.
- Let $\mathbf{Y}^{(n)}=\left(Y_{1}^{(n)}, \ldots, Y_{k}^{(n)}\right)^{\prime}$ defined by $Y_{i}^{(n)}=D_{n}$ and $Y_{j}^{(n)}=0$ for $j=1, \ldots, i-1, i+1, \ldots, k$ when $U_{n}=i$.
- Hence $E\left(Y_{i}^{(n)}\right)=\frac{1}{k} E\left(D_{n}\right)=0$ and

$$
\operatorname{Var}\left(Y_{i}^{(n)}\right)=E\left(\left(Y_{i}^{(n)}\right)^{2}\right)=\frac{1}{k} E\left(D_{n}^{2}\right)=1
$$

- Moreover, $Y_{i}^{(n)} Y_{j}^{(n)}=0$ and $E\left(Y_{i}^{(n)} Y_{j}^{(n)}\right)=0$ for all $i \neq j$.
- Then $E\left(\mathbf{Y}^{(n)}\right)=\mathbf{0}_{k}$ and $\operatorname{Cov}\left(\mathbf{Y}^{(n)}\right)=I_{k}$
- Then $\mathbf{X}^{(n)}=\mu+V^{1 / 2} \mathbf{Y}^{(n)}$ has mean $E\left(\mathbf{X}^{(n)}\right)=\mu$ and
$\operatorname{Cov}\left(\mathbf{X}^{(n)}\right)=\operatorname{Cov}\left(V^{1 / 2} \mathbf{Y}^{(n)}\right)=V^{1 / 2} V^{1 / 2}=V$.

The bounds are sharp (proof).

- Let U_{n} be a r.v., independent of Z_{n}, with a uniform distribution over $\{1, \ldots, k\}$.
- Let $\mathbf{Y}^{(n)}=\left(Y_{1}^{(n)}, \ldots, Y_{k}^{(n)}\right)^{\prime}$ defined by $Y_{i}^{(n)}=D_{n}$ and $Y_{j}^{(n)}=0$ for $j=1, \ldots, i-1, i+1, \ldots, k$ when $U_{n}=i$.
- Hence $E\left(Y_{i}^{(n)}\right)=\frac{1}{k} E\left(D_{n}\right)=0$ and

$$
\operatorname{Var}\left(Y_{i}^{(n)}\right)=E\left(\left(Y_{i}^{(n)}\right)^{2}\right)=\frac{1}{k} E\left(D_{n}^{2}\right)=1
$$

- Moreover, $Y_{i}^{(n)} Y_{j}^{(n)}=0$ and $E\left(Y_{i}^{(n)} Y_{j}^{(n)}\right)=0$ for all $i \neq j$.
- Then $E\left(\mathbf{Y}^{(n)}\right)=\mathbf{0}_{k}$ and $\operatorname{Cov}\left(\mathbf{Y}^{(n)}\right)=I_{k}$
- Then $\mathbf{X}^{(n)}=\mu+V^{1 / 2} \mathbf{Y}^{(n)}$ has mean $E\left(\mathbf{X}^{(n)}\right)=\mu$ and

The bounds are sharp (proof).

- Let U_{n} be a r.v., independent of Z_{n}, with a uniform distribution over $\{1, \ldots, k\}$.
- Let $\mathbf{Y}^{(n)}=\left(Y_{1}^{(n)}, \ldots, Y_{k}^{(n)}\right)^{\prime}$ defined by $Y_{i}^{(n)}=D_{n}$ and $Y_{j}^{(n)}=0$ for $j=1, \ldots, i-1, i+1, \ldots, k$ when $U_{n}=i$.
- Hence $E\left(Y_{i}^{(n)}\right)=\frac{1}{k} E\left(D_{n}\right)=0$ and

$$
\operatorname{Var}\left(Y_{i}^{(n)}\right)=E\left(\left(Y_{i}^{(n)}\right)^{2}\right)=\frac{1}{k} E\left(D_{n}^{2}\right)=1
$$

- Moreover, $Y_{i}^{(n)} Y_{j}^{(n)}=0$ and $E\left(Y_{i}^{(n)} Y_{j}^{(n)}\right)=0$ for all $i \neq j$.

$$
\begin{aligned}
& \text { Then } E\left(\mathbf{Y}^{(n)}\right)=\mathbf{0}_{k} \text { and } \operatorname{Cov}\left(\mathbf{Y}^{(n)}\right)=I_{k} . \\
& \text { Then } \mathbf{X}^{(n)}=\mu+V^{1 / 2} \mathbf{Y}^{(n)} \text { has mean } E\left(\mathbf{X}^{(n)}\right)=\mu \text { and } \\
& \qquad \operatorname{Cov}\left(\mathbf{X}^{(n)}\right)=\operatorname{Cov}\left(V^{1 / 2} \mathbf{Y}^{(n)}\right)=V^{1 / 2} V^{1 / 2}=V .
\end{aligned}
$$

The bounds are sharp (proof).

- Let U_{n} be a r.v., independent of Z_{n}, with a uniform distribution over $\{1, \ldots, k\}$.
- Let $\mathbf{Y}^{(n)}=\left(Y_{1}^{(n)}, \ldots, Y_{k}^{(n)}\right)^{\prime}$ defined by $Y_{i}^{(n)}=D_{n}$ and $Y_{j}^{(n)}=0$ for $j=1, \ldots, i-1, i+1, \ldots, k$ when $U_{n}=i$.
- Hence $E\left(Y_{i}^{(n)}\right)=\frac{1}{k} E\left(D_{n}\right)=0$ and

$$
\operatorname{Var}\left(Y_{i}^{(n)}\right)=E\left(\left(Y_{i}^{(n)}\right)^{2}\right)=\frac{1}{k} E\left(D_{n}^{2}\right)=1
$$

- Moreover, $Y_{i}^{(n)} Y_{j}^{(n)}=0$ and $E\left(Y_{i}^{(n)} Y_{j}^{(n)}\right)=0$ for all $i \neq j$.
- Then $E\left(\mathbf{Y}^{(n)}\right)=\mathbf{0}_{k}$ and $\operatorname{Cov}\left(\mathbf{Y}^{(n)}\right)=I_{k}$.

The bounds are sharp (proof).

- Let U_{n} be a r.v., independent of Z_{n}, with a uniform distribution over $\{1, \ldots, k\}$.
- Let $\mathbf{Y}^{(n)}=\left(Y_{1}^{(n)}, \ldots, Y_{k}^{(n)}\right)^{\prime}$ defined by $Y_{i}^{(n)}=D_{n}$ and $Y_{j}^{(n)}=0$ for $j=1, \ldots, i-1, i+1, \ldots, k$ when $U_{n}=i$.
- Hence $E\left(Y_{i}^{(n)}\right)=\frac{1}{k} E\left(D_{n}\right)=0$ and

$$
\operatorname{Var}\left(Y_{i}^{(n)}\right)=E\left(\left(Y_{i}^{(n)}\right)^{2}\right)=\frac{1}{k} E\left(D_{n}^{2}\right)=1
$$

- Moreover, $Y_{i}^{(n)} Y_{j}^{(n)}=0$ and $E\left(Y_{i}^{(n)} Y_{j}^{(n)}\right)=0$ for all $i \neq j$.
- Then $E\left(\mathbf{Y}^{(n)}\right)=\mathbf{0}_{k}$ and $\operatorname{Cov}\left(\mathbf{Y}^{(n)}\right)=I_{k}$.
- Then $\mathbf{X}^{(n)}=\mu+V^{1 / 2} \mathbf{Y}^{(n)}$ has mean $E\left(\mathbf{X}^{(n)}\right)=\mu$ and

$$
\operatorname{Cov}\left(\mathbf{X}^{(n)}\right)=\operatorname{Cov}\left(V^{1 / 2} \mathbf{Y}^{(n)}\right)=V^{1 / 2} V^{1 / 2}=V
$$

The bounds are sharp (proof).

- Moreover,

$$
\begin{aligned}
\operatorname{Pr}\left(\left(\mathbf{X}^{(n)}-\mu\right)^{\prime} V^{-1}\right. & \left.\left(\mathbf{X}^{(n)}-\mu\right) \geq \varepsilon\right) \\
& =\operatorname{Pr}\left(\left(V^{1 / 2} \mathbf{Y}^{(n)}\right)^{\prime} V^{-1}\left(V^{1 / 2} \mathbf{Y}^{(n)}\right) \geq \varepsilon\right) \\
& =\operatorname{Pr}\left(\left(\mathbf{Y}^{(n)}\right)^{\prime} V^{1 / 2} V^{-1} V^{1 / 2} \mathbf{Y}^{(n)} \geq \varepsilon\right) \\
& =\operatorname{Pr}\left(\left(\mathbf{Y}^{(n)}\right)^{\prime} \mathbf{Y}^{(n)} \geq \varepsilon\right) \\
& =\operatorname{Pr}\left(\sum_{i=1}^{k}\left(Y_{i}^{(n)}\right)^{2} \geq \varepsilon\right) \\
& =\operatorname{Pr}\left(D_{n}^{2} \geq \varepsilon\right) \\
& =p-\frac{1}{n} \rightarrow p=\frac{k}{\varepsilon}, \text { as } n \rightarrow \infty
\end{aligned}
$$

Applications. Case $k=2$.

Theorem

$(X, Y)^{\prime}$ with $E(X)=\mu_{X}, E(Y)=\mu_{Y}, \operatorname{Var}(X)=\sigma_{X}^{2}>0$, $\operatorname{Var}(Y)=\sigma_{Y}^{2}>0$ and $\rho=\operatorname{Cor}(X, Y) \in(-1,1)$. Then

$$
\begin{equation*}
\operatorname{Pr}\left(\left(X^{*}-Y^{*}\right)^{2}+2(1-\rho) X^{*} Y^{*}<\delta\right) \geq 1-2 \frac{1-\rho^{2}}{\delta} \tag{10}
\end{equation*}
$$

for all $\delta>0$, where $X^{*}=\left(X-\mu_{X}\right) / \sigma_{X}$ and $Y^{*}=\left(X-\mu_{Y}\right) / \sigma_{Y}$.

$$
\begin{gather*}
Z_{1}=\left(X^{*}+Y^{*}\right) / \sqrt{2(1+\rho)}, Z_{2}=\left(X^{*}-Y^{*}\right) / \sqrt{2(1-\rho)} \text { and } \\
\operatorname{Pr}\left(\frac{\left(X^{*}+Y^{*}\right)^{2}}{2(1+\rho)}+\frac{\left(X^{*}-Y^{*}\right)^{2}}{2(1-\rho)}<\varepsilon\right) \geq 1-\frac{2}{\varepsilon} . \tag{11}
\end{gather*}
$$

An example

- (X, Y) with $E(X)=E(Y)=1, \operatorname{Var}(X)=\operatorname{Var}(Y)=1$ and $\rho=\operatorname{Cor}(X, Y)=0.9$. Then

$$
\operatorname{Pr}\left(5(X-Y)^{2}+(X-1)(Y-1)<5 \delta\right) \geq 1-2 \frac{0.19}{\delta}
$$

that is,

$$
\operatorname{Pr}\left(5 X^{2}-9 X Y+5 Y^{2}-X-Y+1<\varepsilon\right) \geq 1-\frac{1.9}{\varepsilon}
$$

for all $\varepsilon>1.9$.

- The distribution-free confidence regions for $\varepsilon=3,4,5,10$ containing respectively at least the $36.6666 \%, 52.5 \%, 62 \%$ and the 81% of the values of (X, Y) can be seen in the following figure.

Figure: Confidence regions for $\varepsilon=3,4,5,10$ containing at least the $36.66 \%, 52.5 \%, 62 \%$ and the 81% of the values of (X, Y).

Order statistics

- Let $X_{1: k}, \ldots, X_{k: k}$ be the OS from $\left(X_{1}, \ldots, X_{k}\right)$.
- For $k=2$ we have
$\rho_{1,2: 2}=\operatorname{Cor}\left(X_{1: 2}, X_{2: 2}\right)=\rho \frac{\sigma_{1} \sigma_{2}}{\sigma_{1: 2} \sigma_{1: 2}}+\frac{\left(\mu_{1}-\mu_{1: 2}\right)\left(\mu_{2}-\mu_{1: 2}\right)}{\sigma_{1: 2} \sigma_{1: 2}}$,
where $\mu_{i}=E\left(X_{i}\right), \mu_{i: 2}=E\left(X_{i: 2}\right), \sigma_{i}^{2}=\operatorname{Var}\left(X_{i}\right)$, $\sigma_{i: 2}^{2}=\operatorname{Var}\left(X_{i: 2}\right)$, for $i=1,2$, and $\rho=\operatorname{Cor}\left(X_{1}, X_{2}\right)$.
- Then

where $X_{i: 2}^{*}=\left(X_{i: 2}-\mu_{i: 2}\right) / \sigma_{i: 2}, i=1,2$.

Order statistics

- Let $X_{1: k}, \ldots, X_{k: k}$ be the OS from $\left(X_{1}, \ldots, X_{k}\right)$.
- For $k=2$ we have

$$
\begin{aligned}
& \rho_{1,2: 2}=\operatorname{Cor}\left(X_{1: 2}, X_{2: 2}\right)=\rho \frac{\sigma_{1} \sigma_{2}}{\sigma_{1: 2} \sigma_{1: 2}}+\frac{\left(\mu_{1}-\mu_{1: 2}\right)\left(\mu_{2}-\mu_{1: 2}\right)}{\sigma_{1: 2} \sigma_{1: 2}}, \\
& \text { where } \mu_{i}=E\left(X_{i}\right), \mu_{i: 2}=E\left(X_{i: 2}\right), \sigma_{i}^{2}=\operatorname{Var}\left(X_{i}\right) \\
& \sigma_{i: 2}^{2}=\operatorname{Var}\left(X_{i: 2}\right), \text { for } i=1,2 \text {, and } \rho=\operatorname{Cor}\left(X_{1}, X_{2}\right)
\end{aligned}
$$

Then

where $X_{i: 2}^{*}=\left(X_{i: 2}-\mu_{i: 2}\right) / \sigma_{i: 2}, i=1,2$.

Order statistics

- Let $X_{1: k}, \ldots, X_{k: k}$ be the OS from $\left(X_{1}, \ldots, X_{k}\right)$.
- For $k=2$ we have

$$
\rho_{1,2: 2}=\operatorname{Cor}\left(X_{1: 2}, X_{2: 2}\right)=\rho \frac{\sigma_{1} \sigma_{2}}{\sigma_{1: 2} \sigma_{1: 2}}+\frac{\left(\mu_{1}-\mu_{1: 2}\right)\left(\mu_{2}-\mu_{1: 2}\right)}{\sigma_{1: 2} \sigma_{1: 2}},
$$

where $\mu_{i}=E\left(X_{i}\right), \mu_{i: 2}=E\left(X_{i: 2}\right), \sigma_{i}^{2}=\operatorname{Var}\left(X_{i}\right)$, $\sigma_{i: 2}^{2}=\operatorname{Var}\left(X_{i: 2}\right)$, for $i=1,2$, and $\rho=\operatorname{Cor}\left(X_{1}, X_{2}\right)$.

- Then

$$
\begin{equation*}
\operatorname{Pr}\left(\left(X_{2: 2}^{*}-X_{1: 2}^{*}\right)^{2}+2\left(1-\rho_{1,2: 2}\right) X_{2: 2}^{*} X_{1: 2}^{*}<\delta\right) \geq 1-2 \frac{1-\rho_{1,2: 2}^{2}}{\delta} \tag{12}
\end{equation*}
$$

where $X_{i: 2}^{*}=\left(X_{i: 2}-\mu_{i: 2}\right) / \sigma_{i: 2}, i=1,2$.

Order statistics. Example 1.

- $\left(X_{1}, X_{2}\right)$ has a Pareto distribution with

$$
\bar{F}(x, y)=\operatorname{Pr}\left(X_{1}>x, X_{2}>y\right)=(1+\lambda x+\lambda y)^{-\theta}
$$

for $x, y \geq 0$, where $\lambda>0$ and $\theta>2$.

- Then $\mu=1 /(\lambda \theta-\lambda), \sigma^{2}=\mu^{2} /(1-2 \rho), \rho=1 / \theta$, $\mu_{1: 2}=\mu / 2, \mu_{2: 2}=3 \mu / 2$

- If $\lambda=0.5$ and $\theta=3$, then $\mu=1, \rho=1 / 3, \mu_{1: 2}=1 / 2$, $\mu_{2: 2}=3 / 2, \sigma_{1: 2}=0.866, \sigma_{2: 2}=2.291 \rho_{1,2: 2}=0.6299$ and

Order statistics. Example 1.

- $\left(X_{1}, X_{2}\right)$ has a Pareto distribution with

$$
\bar{F}(x, y)=\operatorname{Pr}\left(X_{1}>x, X_{2}>y\right)=(1+\lambda x+\lambda y)^{-\theta}
$$

for $x, y \geq 0$, where $\lambda>0$ and $\theta>2$.

- Then $\mu=1 /(\lambda \theta-\lambda), \sigma^{2}=\mu^{2} /(1-2 \rho), \rho=1 / \theta$, $\mu_{1: 2}=\mu / 2, \mu_{2: 2}=3 \mu / 2$

$$
\sigma_{1: 2}^{2}=\frac{\mu^{2}}{4(1-2 \rho)}, \quad \sigma_{2: 2}^{2}=\frac{\mu^{2}(6+3 \rho)}{4(1-2 \rho)}, \quad \rho_{1,2: 2}=\frac{1+2 \rho}{\sqrt{6+3 \rho}} .
$$

Order statistics. Example 1.

- $\left(X_{1}, X_{2}\right)$ has a Pareto distribution with

$$
\bar{F}(x, y)=\operatorname{Pr}\left(X_{1}>x, X_{2}>y\right)=(1+\lambda x+\lambda y)^{-\theta}
$$

for $x, y \geq 0$, where $\lambda>0$ and $\theta>2$.

- Then $\mu=1 /(\lambda \theta-\lambda), \sigma^{2}=\mu^{2} /(1-2 \rho), \rho=1 / \theta$,

$$
\mu_{1: 2}=\mu / 2, \mu_{2: 2}=3 \mu / 2
$$

$$
\sigma_{1: 2}^{2}=\frac{\mu^{2}}{4(1-2 \rho)}, \quad \sigma_{2: 2}^{2}=\frac{\mu^{2}(6+3 \rho)}{4(1-2 \rho)}, \quad \rho_{1,2: 2}=\frac{1+2 \rho}{\sqrt{6+3 \rho}}
$$

- If $\lambda=0.5$ and $\theta=3$, then $\mu=1, \rho=1 / 3, \mu_{1: 2}=1 / 2$, $\mu_{2: 2}=3 / 2, \sigma_{1: 2}=0.866, \sigma_{2: 2}=2.291 \rho_{1,2: 2}=0.6299$ and
$\operatorname{Pr}\left(\left[\frac{X_{2: 2}-\frac{3}{2}}{2.291}-\frac{X_{1: 2}-\frac{1}{2}}{0.866}\right]^{2}+0.74 \frac{X_{2: 2}-\frac{3}{2}}{2.291} \frac{X_{1: 2}-\frac{1}{2}}{0.866}<\delta\right) \geq 1-\frac{1.206}{\delta}$.

Figure: Confidence regions for $\delta=2,4,6$ containing at least the 39.68\%, the 69.84% and the 79.89% of the values of $\left(X_{1: 2}, X_{2: 2}\right)$.

Order statistics. Example 2.

- X_{1}, \ldots, X_{k} iid $\operatorname{Exp}(\mu=1)$, then

$$
\mu_{i: k}=\sum_{j=k-i+1}^{k} \frac{1}{j}, \quad \sigma_{i: k}^{2}=\sum_{j=k-i+1}^{k} \frac{1}{j^{2}}
$$

and

$$
\rho_{i, j: k}=\operatorname{Cor}\left(X_{i: k}, X_{j: k}\right)=\frac{\sigma_{i: k}}{\sigma_{j: k}}, \quad 1 \leq i<j \leq k
$$

- If $k=3, i=2$ and $j=3$, then $\mu_{2: 3}=5 / 6, \mu_{3: 3}=11 / 6$,
$\sigma_{2: 3}=0.6009, \sigma_{3: 3}=1.1667$, and $\rho_{2,3: 3}=0.5151$.
- Hence

Order statistics. Example 2.

- X_{1}, \ldots, X_{k} iid $\operatorname{Exp}(\mu=1)$, then

$$
\mu_{i: k}=\sum_{j=k-i+1}^{k} \frac{1}{j}, \quad \sigma_{i: k}^{2}=\sum_{j=k-i+1}^{k} \frac{1}{j^{2}}
$$

and

$$
\rho_{i, j: k}=\operatorname{Cor}\left(X_{i: k}, X_{j: k}\right)=\frac{\sigma_{i: k}}{\sigma_{j: k}}, \quad 1 \leq i<j \leq k
$$

- If $k=3, i=2$ and $j=3$, then $\mu_{2: 3}=5 / 6, \mu_{3: 3}=11 / 6$, $\sigma_{2: 3}=0.6009, \sigma_{3: 3}=1.1667$, and $\rho_{2,3: 3}=0.5151$.

Order statistics. Example 2.

- X_{1}, \ldots, X_{k} iid $\operatorname{Exp}(\mu=1)$, then

$$
\mu_{i: k}=\sum_{j=k-i+1}^{k} \frac{1}{j}, \quad \sigma_{i: k}^{2}=\sum_{j=k-i+1}^{k} \frac{1}{j^{2}}
$$

and

$$
\rho_{i, j: k}=\operatorname{Cor}\left(X_{i: k}, X_{j: k}\right)=\frac{\sigma_{i: k}}{\sigma_{j: k}}, \quad 1 \leq i<j \leq k
$$

- If $k=3, i=2$ and $j=3$, then $\mu_{2: 3}=5 / 6, \mu_{3: 3}=11 / 6$, $\sigma_{2: 3}=0.6009, \sigma_{3: 3}=1.1667$, and $\rho_{2,3: 3}=0.5151$.
- Hence
$\operatorname{Pr}\left(\left[\frac{X_{3: 3}-\frac{11}{6}}{1.1667}-\frac{X_{2: 3}-\frac{5}{6}}{0.6009}\right]^{2}+0.969 \frac{X_{3: 3}-\frac{11}{6}}{1.1667} \frac{X_{2: 3}-\frac{5}{6}}{0.6009}<\delta\right) \geq 1-\frac{1.469}{\delta}$.

Figure: Confidence regions for $\delta=2,3,4$ containing at least 63.26%, the 75.51% and the 81.63% of the values of $\left(X_{2: 3}, X_{3: 3}\right)$.

Order statistics. Example 2.

- For $\left(X_{1: 3}, X_{2: 3}, X_{3: 3}\right)^{\prime}$ we obtain the confidence region $R_{\varepsilon}=\left\{(x, y, z): 1.444 x^{2}-1.602 x y+1.805 y^{2}-1.402 y z+1.361 z^{2}<\varepsilon\right\}$ containing $\left(X_{1: 3}^{*}, X_{2: 3}^{*}, X_{3: 3}^{*}\right)^{\prime}$ with a probability greater than $1-3 / \varepsilon$, where $X_{i: k}^{*}=\left(X_{i: k}-\mu_{i: k}\right) / \sigma_{i: k}$ for $i=1,2,3$.

for all $\varepsilon>0$, where
$Y_{1}=0.5518133 X_{1: 3}^{*}+0.6382230 X_{2: 3}^{*}+0.5337169 X_{3: 3}^{*}$
and
$Y_{2}=0.66914423 X_{1: 3}^{*}+0.03890251 X_{2: 3}^{*}-0.7421136 X_{3: 3}^{*}$

Order statistics. Example 2.

- For $\left(X_{1: 3}, X_{2: 3}, X_{3: 3}\right)^{\prime}$ we obtain the confidence region
$R_{\varepsilon}=\left\{(x, y, z): 1.444 x^{2}-1.602 x y+1.805 y^{2}-1.402 y z+1.361 z^{2}<\varepsilon\right\}$
containing $\left(X_{1: 3}^{*}, X_{2: 3}^{*}, X_{3: 3}^{*}\right)^{\prime}$ with a probability greater than $1-3 / \varepsilon$, where $X_{i: k}^{*}=\left(X_{i: k}-\mu_{i: k}\right) / \sigma_{i: k}$ for $i=1,2,3$.
- If we use the two principal components

$$
\begin{equation*}
\operatorname{Pr}\left(\frac{Y_{1}^{2}}{1.9129431}+\frac{Y_{2}^{2}}{0.77153779}<\varepsilon\right) \geq 1-\frac{2}{\varepsilon} \tag{13}
\end{equation*}
$$

for all $\varepsilon>0$, where

$$
Y_{1}=0.5548133 X_{1: 3}^{*}+0.6382230 X_{2: 3}^{*}+0.5337169 X_{3: 3}^{*}
$$

and

$$
Y_{2}=0.66914423 X_{1: 3}^{*}+0.03890251 X_{2: 3}^{*}-0.7421136 X_{3: 3}^{*} .
$$

Figure: Confidence regions for $\varepsilon=4,6,8$ containing at least the 50%, the 66.6667% and the 75% of the scores of $\left(X_{1: 3}, X_{2: 3}, X_{3: 3}\right)$.

Data sets.

- If we have a data set $O_{i}=\left(X_{i}, Y_{i}\right)^{\prime}, i=1, \ldots, n$, the mean is

$$
\bar{O}=\frac{1}{n} \sum_{i=1}^{n} O_{i}=(\bar{X}, \bar{Y})
$$

and its covariance matrix is

$$
\widehat{V}=\frac{1}{n} \sum_{m=1}^{n}\left(O_{m}-\bar{O}\right)\left(O_{m}-\bar{O}\right)^{\prime}=\left(\widehat{V}_{i, j}\right)
$$

- The correlation is $r=\widehat{V}_{1,2} / \sqrt{\widehat{V}_{1,1} \widehat{V}_{2,2}}$ and

Data sets.

- If we have a data set $O_{i}=\left(X_{i}, Y_{i}\right)^{\prime}, i=1, \ldots, n$, the mean is

$$
\bar{O}=\frac{1}{n} \sum_{i=1}^{n} O_{i}=(\bar{X}, \bar{Y})
$$

and its covariance matrix is

$$
\widehat{V}=\frac{1}{n} \sum_{m=1}^{n}\left(O_{m}-\bar{O}\right)\left(O_{m}-\bar{O}\right)^{\prime}=\left(\widehat{V}_{i, j}\right)
$$

- The correlation is $r=\widehat{V}_{1,2} / \sqrt{\widehat{V}_{1,1} \widehat{V}_{2,2}}$ and

$$
\begin{equation*}
\operatorname{Pr}\left(\left(X_{l}^{*}-Y_{I}^{*}\right)^{2}+2(1-r) X_{l}^{*} Y_{l}^{*}<\delta\right) \geq 1-2 \frac{1-r^{2}}{\delta} \tag{14}
\end{equation*}
$$

where $X_{I}^{*}=\left(X_{I}-\bar{X}\right) / \sqrt{\widehat{V}_{1,1}}, Y_{I}^{*}=\left(Y_{I}-\bar{Y}\right) / \sqrt{\widehat{V}_{2,2}}$ and $I=i$ with probability $1 / n$.

Data sets.

- Then, by taking $\delta=4\left(1-r^{2}\right)$

$$
R_{1}=\left\{(x, y) \in \mathbb{R}^{2}:\left(x^{*}-y^{*}\right)^{2}+2(1-r) x^{*} y^{*}<4\left(1-r^{2}\right)\right\}
$$

contains (for sure) at least the 50% of the data.

- By taking $\delta=8\left(1-r^{2}\right)$

contains (for sure) at least the 75% of the data and the complementary region

contains (for sure) at most the 25% of the data.
- These regions are similar to (univariate) box plots.

Data sets.

- Then, by taking $\delta=4\left(1-r^{2}\right)$

$$
R_{1}=\left\{(x, y) \in \mathbb{R}^{2}:\left(x^{*}-y^{*}\right)^{2}+2(1-r) x^{*} y^{*}<4\left(1-r^{2}\right)\right\}
$$

contains (for sure) at least the 50% of the data.

- By taking $\delta=8\left(1-r^{2}\right)$

$$
R_{2}=\left\{(x, y) \in \mathbb{R}^{2}:\left(x^{*}-y^{*}\right)^{2}+2(1-r) x^{*} y^{*}<8\left(1-r^{2}\right)\right\}
$$

contains (for sure) at least the 75% of the data and the complementary region

$$
\bar{R}_{2}=\left\{(x, y) \in \mathbb{R}^{2}:\left(x^{*}-y^{*}\right)^{2}+2(1-r) x^{*} y^{*} \geq 8\left(1-r^{2}\right)\right\}
$$

contains (for sure) at most the 25% of the data.

Data sets.

- Then, by taking $\delta=4\left(1-r^{2}\right)$

$$
R_{1}=\left\{(x, y) \in \mathbb{R}^{2}:\left(x^{*}-y^{*}\right)^{2}+2(1-r) x^{*} y^{*}<4\left(1-r^{2}\right)\right\}
$$

contains (for sure) at least the 50% of the data.

- By taking $\delta=8\left(1-r^{2}\right)$

$$
R_{2}=\left\{(x, y) \in \mathbb{R}^{2}:\left(x^{*}-y^{*}\right)^{2}+2(1-r) x^{*} y^{*}<8\left(1-r^{2}\right)\right\}
$$

contains (for sure) at least the 75% of the data and the complementary region

$$
\bar{R}_{2}=\left\{(x, y) \in \mathbb{R}^{2}:\left(x^{*}-y^{*}\right)^{2}+2(1-r) x^{*} y^{*} \geq 8\left(1-r^{2}\right)\right\}
$$

contains (for sure) at most the 25% of the data.

- These regions are similar to (univariate) box plots.

Data sets. An example.

- Consider in the data set "iris" from R (Fisher, 1936), the variables $X=$ Petal.Length and $Y=$ Petal.Width.
- We obtain $r=0.9628654$ and R_{1} and R_{2} determined by

respectively.

- These regions contain more than the 50% and the 75% of the data (i.e. more than 75 and 113 data in this case)

Data sets. An example.

- Consider in the data set "iris" from R (Fisher, 1936), the variables $X=$ Petal.Length and $Y=$ Petal.Width.
- We obtain $r=0.9628654$ and R_{1} and R_{2} determined by

$$
\left(\frac{x-3.758}{1.759}-\frac{y-1.199}{0.759}\right)^{2}+2(1-r) \frac{x-3.758}{1.759} \frac{y-1.199}{0.759}<0.292
$$

and

$$
\left(\frac{x-3.758}{1.759}-\frac{y-1.199}{0.759}\right)^{2}+2(1-r) \frac{x-3.758}{1.759} \frac{y-1.199}{0.759}<0.583
$$

respectively.

> These regions contain more than the 50\% and the 75% of the data (i.e. more than 75 and 113 data in this case)

Data sets. An example.

- Consider in the data set "iris" from R (Fisher, 1936), the variables $X=$ Petal.Length and $Y=$ Petal.Width.
- We obtain $r=0.9628654$ and R_{1} and R_{2} determined by

$$
\left(\frac{x-3.758}{1.759}-\frac{y-1.199}{0.759}\right)^{2}+2(1-r) \frac{x-3.758}{1.759} \frac{y-1.199}{0.759}<0.292
$$

and

$$
\left(\frac{x-3.758}{1.759}-\frac{y-1.199}{0.759}\right)^{2}+2(1-r) \frac{x-3.758}{1.759} \frac{y-1.199}{0.759}<0.583
$$

respectively.

- These regions contain more than the 50% and the 75% of the data (i.e. more than 75 and 113 data in this case).

Figure: Regions R_{1} and R_{2} containing (for sure) at least the 50% and 75% of the data from $X=$ Petal.Length and $Y=$ Petal.Width.

Figure: Regions R_{1} and R_{2} by species containing (for sure) at least the 50% and 75% of the data from $X=$ Petal.Length and $Y=$ Petal.Width.

Data sets. An example.

- The two first principal components Y_{1} and Y_{2} of the four variables in this data set are

$$
Y_{1}=0.521 X_{1}^{*}-0.269 X_{2}^{*}+0.580 X_{3}^{*}+0.565 X_{4}^{*}
$$

and

$$
Y_{2}=-0.377 X_{1}^{*}-0.923 X_{2}^{*}-0.025 X_{3}^{*}-0.067 X_{4}^{*}
$$

where $X_{i}^{*}=\left(X_{i}-\bar{X}_{i}\right) / \sqrt{\widehat{V}_{i, i}}, i=1,2,3,4$.

- In this case, $\bar{Y}_{1}=\bar{Y}_{2}=0$ and $r=0$ and hence

and

Data sets. An example.

- The two first principal components Y_{1} and Y_{2} of the four variables in this data set are

$$
Y_{1}=0.521 X_{1}^{*}-0.269 X_{2}^{*}+0.580 X_{3}^{*}+0.565 X_{4}^{*}
$$

and

$$
Y_{2}=-0.377 X_{1}^{*}-0.923 X_{2}^{*}-0.025 X_{3}^{*}-0.067 X_{4}^{*}
$$

where $X_{i}^{*}=\left(X_{i}-\bar{X}_{i}\right) / \sqrt{\widehat{V}_{i, i}}, i=1,2,3,4$.

- In this case, $\bar{Y}_{1}=\bar{Y}_{2}=0$ and $r=0$ and hence

$$
R_{1}=\left\{(x, y): \frac{x^{2}}{2.918}+\frac{y^{2}}{0.914}<4\right\}
$$

and

$$
R_{2}=\left\{(x, y): \frac{x^{2}}{2.918}+\frac{y^{2}}{0.914}<8\right\}
$$

Figure: Regions R_{1} and R_{2} for the scores in the two first principal components containing (for sure) at least the 50% and 75% of the data scores.

References

- Chen, X. (2011). A new generalization of Chebyshev inequality for random vectors. arXiv:0707.0805v2.
- Navarro, J. (2013). A very simple proof of the multivariate Chebyshev's inequality. To appear in Communications in Statistics - Theory and Methods. Published online first Dec 2013. DOI:10.1080/03610926.2013.873135.
- Navarro, J. (2014). Can the bounds in the multivariate Chebyshev inequality be attained? Statistics and Probability Letters 91, 1-5.
- Navarro, J. (2014). A note on confidence regions based on the bivariate Chebyshev inequality. Applications to order statistics and data sets. ISTATISTIK, Journal of the Turkish Statistical Association 7, 1-14.

References

- Thank you for your attention!!

