Order statistics and related concepts

Jorge Navarro¹, Universidad de Murcia, Spain E-mail: jorgenav@um.es

OS IID case

(日) (四) (王) (王) (王)

Э

999

- X_1, \ldots, X_n IID random variables.
- X_1, \ldots, X_n exchangeable (EXC), i.e., for any σ

$$(X_1,\ldots,X_n)=_{ST}(X_{\sigma(1)},\ldots,X_{\sigma(n)}).$$

• (X_1, \ldots, X_n) an arbitrary random vector with joint distribution

$$\mathbf{F}(x_1,\ldots,x_n)=\Pr(X_1\leq x_1,\ldots,X_n\leq x_n)$$

and with joint reliability

$$\overline{\mathbf{F}}(x_1,\ldots,x_n)=\Pr(X_1>x_1,\ldots,X_n>x_n).$$

- Let $X_{1:n}, \ldots, X_{n:n}$ be the associated OS.
- Let $F_{i:n}(t) = \Pr(X_{i:n} \le t)$ be the distribution function (DF).

A D A A B A A B A A B A

- X_1, \ldots, X_n IID random variables.
- X_1, \ldots, X_n exchangeable (EXC), i.e., for any σ

$$(X_1,\ldots,X_n) =_{ST} (X_{\sigma(1)},\ldots,X_{\sigma(n)}).$$

• (X_1, \ldots, X_n) an arbitrary random vector with joint distribution

$$\mathbf{F}(x_1,\ldots,x_n)=\Pr(X_1\leq x_1,\ldots,X_n\leq x_n)$$

and with joint reliability

$$\overline{\mathbf{F}}(x_1,\ldots,x_n)=\Pr(X_1>x_1,\ldots,X_n>x_n).$$

- Let $X_{1:n}, \ldots, X_{n:n}$ be the associated OS.
- Let $F_{i:n}(t) = \Pr(X_{i:n} \le t)$ be the distribution function (DF).

- 同下 - 三下 - 三下

- X_1, \ldots, X_n IID random variables.
- X_1, \ldots, X_n exchangeable (EXC), i.e., for any σ

$$(X_1,\ldots,X_n) =_{ST} (X_{\sigma(1)},\ldots,X_{\sigma(n)}).$$

• (X_1, \ldots, X_n) an arbitrary random vector with joint distribution

$$\mathbf{F}(x_1,\ldots,x_n)=\Pr(X_1\leq x_1,\ldots,X_n\leq x_n)$$

and with joint reliability

$$\overline{\mathbf{F}}(x_1,\ldots,x_n)=\Pr(X_1>x_1,\ldots,X_n>x_n).$$

- Let $X_{1:n}, \ldots, X_{n:n}$ be the associated OS.
- Let $F_{i:n}(t) = \Pr(X_{i:n} \le t)$ be the distribution function (DF).

A D A A B A A B A A B A

- X_1, \ldots, X_n IID random variables.
- X_1, \ldots, X_n exchangeable (EXC), i.e., for any σ

$$(X_1,\ldots,X_n) =_{ST} (X_{\sigma(1)},\ldots,X_{\sigma(n)}).$$

• (X_1, \ldots, X_n) an arbitrary random vector with joint distribution

$$\mathbf{F}(x_1,\ldots,x_n) = \Pr(X_1 \leq x_1,\ldots,X_n \leq x_n)$$

and with joint reliability

$$\overline{\mathbf{F}}(x_1,\ldots,x_n)=\Pr(X_1>x_1,\ldots,X_n>x_n).$$

- Let $X_{1:n}, \ldots, X_{n:n}$ be the associated OS.
- Let $F_{i:n}(t) = \Pr(X_{i:n} \le t)$ be the distribution function (DF).

A D A A B A A B A A B A

- X_1, \ldots, X_n IID random variables.
- X_1, \ldots, X_n exchangeable (EXC), i.e., for any σ

$$(X_1,\ldots,X_n) =_{ST} (X_{\sigma(1)},\ldots,X_{\sigma(n)}).$$

• (X_1, \ldots, X_n) an arbitrary random vector with joint distribution

$$\mathbf{F}(x_1,\ldots,x_n)=\Pr(X_1\leq x_1,\ldots,X_n\leq x_n)$$

and with joint reliability

$$\overline{\mathbf{F}}(x_1,\ldots,x_n)=\Pr(X_1>x_1,\ldots,X_n>x_n).$$

• Let $X_{1:n}, \ldots, X_{n:n}$ be the associated OS.

• Let $F_{i:n}(t) = \Pr(X_{i:n} \leq t)$ be the distribution function (DF).

In the IID case:

$$F_{i:n}(t) = \sum_{j=i}^{n} {n \choose j} F^{j}(t) \overline{F}^{n-j}(t),$$

where $F(t) = \Pr(X_i \leq t) = 1 - \overline{F}(t)$.

• Also in the IID case:

$$F_{i:n}(t) = \sum_{j=i}^{n} (-1)^{j-i} \binom{n}{j} \binom{j-1}{i-1} F_{j:j}(t) = q_{i:n}(F(t)), \quad (1.1)$$

where $F_{j:j}(t) = F^{j}(t)$ and $q_{i:n}(u)$ is an increasing polynomial.

• In the EXC case the left hand side of (1.1) holds with $F_{j:j}(t) = \mathbf{F}(\underbrace{t, \dots, t}_{, \infty, \dots, \infty}).$

• Some coefficients in (1.1) are negative.

In the IID case:

$$F_{i:n}(t) = \sum_{j=i}^{n} {n \choose j} F^{j}(t) \overline{F}^{n-j}(t),$$

where $F(t) = \Pr(X_i \leq t) = 1 - \overline{F}(t)$.

• Also in the IID case:

$$F_{i:n}(t) = \sum_{j=i}^{n} (-1)^{j-i} {n \choose j} {j-1 \choose i-1} F_{j:j}(t) = q_{i:n}(F(t)), \quad (1.1)$$

where $F_{j:j}(t) = F^{j}(t)$ and $q_{i:n}(u)$ is an increasing polynomial.

- In the EXC case the left hand side of (1.1) holds with $F_{j:j}(t) = \mathbf{F}(\underbrace{t, \dots, t}_{\infty}, \underbrace{\infty, \dots, \infty}_{\infty}).$
- Some coefficients in (1.1) are negative.

In the IID case:

$$F_{i:n}(t) = \sum_{j=i}^{n} {n \choose j} F^{j}(t) \overline{F}^{n-j}(t),$$

where $F(t) = \Pr(X_i \leq t) = 1 - \overline{F}(t)$.

• Also in the IID case:

$$F_{i:n}(t) = \sum_{j=i}^{n} (-1)^{j-i} {n \choose j} {j-1 \choose i-1} F_{j:j}(t) = q_{i:n}(F(t)), \quad (1.1)$$

where $F_{j:j}(t) = F^{j}(t)$ and $q_{i:n}(u)$ is an increasing polynomial.

• In the EXC case the left hand side of (1.1) holds with $F_{j:j}(t) = \mathbf{F}(\underbrace{t, \dots, t}_{i}, \underbrace{\infty, \dots, \infty}_{n-i}).$

• Some coefficients in (1.1) are negative.

In the IID case:

$$F_{i:n}(t) = \sum_{j=i}^{n} {n \choose j} F^{j}(t) \overline{F}^{n-j}(t),$$

where $F(t) = \Pr(X_i \leq t) = 1 - \overline{F}(t)$.

• Also in the IID case:

$$F_{i:n}(t) = \sum_{j=i}^{n} (-1)^{j-i} {n \choose j} {j-1 \choose i-1} F_{j:j}(t) = q_{i:n}(F(t)), \quad (1.1)$$

where $F_{j:j}(t) = F^{j}(t)$ and $q_{i:n}(u)$ is an increasing polynomial.

• In the EXC case the left hand side of (1.1) holds with $F_{j:j}(t) = \mathbf{F}(\underbrace{t, \dots, t}_{j}, \underbrace{\infty, \dots, \infty}_{n-j}).$

• Some coefficients in (1.1) are negative.

Stochastic orderings

• $X \leq_{ST} Y \Leftrightarrow \overline{F}_X(t) \leq \overline{F}_Y(t)$ stochastic order.

- $X \leq_{HR} Y \Leftrightarrow h_X(t) \geq h_Y(t)$, hazard rate order.
- $X \leq_{HR} Y \Leftrightarrow (X t | X > t) \leq_{ST} (Y t | Y > t)$ for all t.
- $X \leq_{MRL} Y \Leftrightarrow E(X t | X > t) \leq E(Y t | Y > t)$, mean residual life order.
- X ≤_{LR} Y ⇔ f_Y(t)/f_X(t) is nondecreasing, likelihood ratio order.
- $X \leq_{LR} Y \Leftrightarrow (X|s < X < t) \leq_{ST} (Y|s < Y < t)$ for s < t.

- $X \leq_{ST} Y \Leftrightarrow \overline{F}_X(t) \leq \overline{F}_Y(t)$ stochastic order.
- $X \leq_{HR} Y \Leftrightarrow h_X(t) \geq h_Y(t)$, hazard rate order.
- $X \leq_{HR} Y \Leftrightarrow (X t | X > t) \leq_{ST} (Y t | Y > t)$ for all t.
- $X \leq_{MRL} Y \Leftrightarrow E(X t | X > t) \leq E(Y t | Y > t)$, mean residual life order.
- X ≤_{LR} Y ⇔ f_Y(t)/f_X(t) is nondecreasing, likelihood ratio order.
- $X \leq_{LR} Y \Leftrightarrow (X|s < X < t) \leq_{ST} (Y|s < Y < t)$ for s < t.

A (1) < A (1) </p>

- $X \leq_{ST} Y \Leftrightarrow \overline{F}_X(t) \leq \overline{F}_Y(t)$ stochastic order.
- $X \leq_{HR} Y \Leftrightarrow h_X(t) \geq h_Y(t)$, hazard rate order.
- $X \leq_{HR} Y \Leftrightarrow (X t | X > t) \leq_{ST} (Y t | Y > t)$ for all t.
- $X \leq_{MRL} Y \Leftrightarrow E(X t | X > t) \leq E(Y t | Y > t)$, mean residual life order.
- X ≤_{LR} Y ⇔ f_Y(t)/f_X(t) is nondecreasing, likelihood ratio order.
- $X \leq_{LR} Y \Leftrightarrow (X|s < X < t) \leq_{ST} (Y|s < Y < t)$ for s < t.

・ 同 ト ・ ヨ ト ・ ヨ ト

- $X \leq_{ST} Y \Leftrightarrow \overline{F}_X(t) \leq \overline{F}_Y(t)$ stochastic order.
- $X \leq_{HR} Y \Leftrightarrow h_X(t) \geq h_Y(t)$, hazard rate order.
- $X \leq_{HR} Y \Leftrightarrow (X t | X > t) \leq_{ST} (Y t | Y > t)$ for all t.
- $X \leq_{MRL} Y \Leftrightarrow E(X t | X > t) \leq E(Y t | Y > t)$, mean residual life order.
- X ≤_{LR} Y ⇔ f_Y(t)/f_X(t) is nondecreasing, likelihood ratio order.
- $X \leq_{LR} Y \Leftrightarrow (X|s < X < t) \leq_{ST} (Y|s < Y < t)$ for s < t.

イロト イポト イラト イラト

- $X \leq_{ST} Y \Leftrightarrow \overline{F}_X(t) \leq \overline{F}_Y(t)$ stochastic order.
- $X \leq_{HR} Y \Leftrightarrow h_X(t) \geq h_Y(t)$, hazard rate order.
- $X \leq_{HR} Y \Leftrightarrow (X t | X > t) \leq_{ST} (Y t | Y > t)$ for all t.
- $X \leq_{MRL} Y \Leftrightarrow E(X t | X > t) \leq E(Y t | Y > t)$, mean residual life order.
- X ≤_{LR} Y ⇔ f_Y(t)/f_X(t) is nondecreasing, likelihood ratio order.
- $X \leq_{LR} Y \Leftrightarrow (X|s < X < t) \leq_{ST} (Y|s < Y < t)$ for s < t.

- $X \leq_{ST} Y \Leftrightarrow \overline{F}_X(t) \leq \overline{F}_Y(t)$ stochastic order.
- $X \leq_{HR} Y \Leftrightarrow h_X(t) \geq h_Y(t)$, hazard rate order.
- $X \leq_{HR} Y \Leftrightarrow (X t | X > t) \leq_{ST} (Y t | Y > t)$ for all t.
- $X \leq_{MRL} Y \Leftrightarrow E(X t | X > t) \leq E(Y t | Y > t)$, mean residual life order.
- X ≤_{LR} Y ⇔ f_Y(t)/f_X(t) is nondecreasing, likelihood ratio order.
- $X \leq_{LR} Y \Leftrightarrow (X|s < X < t) \leq_{ST} (Y|s < Y < t)$ for s < t.

$$\begin{array}{cccccc} E(X_{s,t}) \leq E(Y_{s,t}) & \Rightarrow & E(X_t) \leq E(Y_t) & \Rightarrow & E(X) \leq E(Y) \\ & \uparrow & \uparrow & \uparrow & \uparrow \\ X \leq_{DTM} Y & \Rightarrow & X \leq_{MRL} Y & \Rightarrow & X \leq_M Y \\ & \uparrow & \uparrow & \uparrow & \uparrow \\ X \leq_{LR} Y & \Rightarrow & X \leq_{HR} Y & \Rightarrow & X \leq_{ST} Y \\ & \uparrow & \uparrow & \uparrow & \uparrow \\ X_{s,t} \leq_{ST} Y_{s,t} & \Rightarrow & X_t \leq_{ST} Y_t & \Rightarrow & \overline{F}_X \leq \overline{F}_Y \end{array}$$

where $Z_t = (Z - t | Z > t)$ and $Z_{s,t} = (Z | s < Z < t)$ (see Navarro, Belzunce and Ruiz, PEIS, 1997).

▲ □ ► ▲ □ ►

- X is Increasing (Decreasing) Hazard rate IHR (DHR) if h is increasing.
- X is IHR $\Leftrightarrow (X s | X > s) \ge_{ST} (X t | X > t)$ for all s < t.
- X is New Better (Worse) than Used NBU (NWU) if $\Leftrightarrow X \ge_{ST} (X - t | X > t)$ for all t > 0.
- X is Increasing (Decreasing) Likelihood Ratio ILR (DLR) if f is log-concave (log-convex).
- X is ILR $\Leftrightarrow (X s | X > s) \ge_{LR} (X t | X > t)$ for all s < t.
- $ILR \Rightarrow IHR \Rightarrow NBU$.

- X is Increasing (Decreasing) Hazard rate IHR (DHR) if h is increasing.
- X is IHR $\Leftrightarrow (X s | X > s) \ge_{ST} (X t | X > t)$ for all s < t.
- X is New Better (Worse) than Used NBU (NWU) if $\Leftrightarrow X \ge_{ST} (X - t | X > t)$ for all t > 0.
- X is Increasing (Decreasing) Likelihood Ratio ILR (DLR) if f is log-concave (log-convex).
- X is ILR $\Leftrightarrow (X s | X > s) \ge_{LR} (X t | X > t)$ for all s < t.
- $ILR \Rightarrow IHR \Rightarrow NBU$.

- X is Increasing (Decreasing) Hazard rate IHR (DHR) if h is increasing.
- X is IHR $\Leftrightarrow (X s | X > s) \ge_{ST} (X t | X > t)$ for all s < t.
- X is New Better (Worse) than Used NBU (NWU) if $\Leftrightarrow X \ge_{ST} (X - t | X > t)$ for all t > 0.
- X is Increasing (Decreasing) Likelihood Ratio ILR (DLR) if f is log-concave (log-convex).
- X is ILR $\Leftrightarrow (X s | X > s) \ge_{LR} (X t | X > t)$ for all s < t.
- $ILR \Rightarrow IHR \Rightarrow NBU$.

- X is Increasing (Decreasing) Hazard rate IHR (DHR) if h is increasing.
- X is IHR $\Leftrightarrow (X s | X > s) \ge_{ST} (X t | X > t)$ for all s < t.
- X is New Better (Worse) than Used NBU (NWU) if $\Leftrightarrow X \ge_{ST} (X t | X > t)$ for all t > 0.
- X is Increasing (Decreasing) Likelihood Ratio ILR (DLR) if f is log-concave (log-convex).
- X is ILR $\Leftrightarrow (X s | X > s) \ge_{LR} (X t | X > t)$ for all s < t.
- $ILR \Rightarrow IHR \Rightarrow NBU$.

- X is Increasing (Decreasing) Hazard rate IHR (DHR) if h is increasing.
- X is IHR $\Leftrightarrow (X s | X > s) \ge_{ST} (X t | X > t)$ for all s < t.
- X is New Better (Worse) than Used NBU (NWU) if $\Leftrightarrow X \ge_{ST} (X t | X > t)$ for all t > 0.
- X is Increasing (Decreasing) Likelihood Ratio ILR (DLR) if f is log-concave (log-convex).
- X is ILR \Leftrightarrow $(X s|X > s) \ge_{LR} (X t|X > t)$ for all s < t. • $IIR \Rightarrow IHR \Rightarrow NBU$.

- X is Increasing (Decreasing) Hazard rate IHR (DHR) if h is increasing.
- X is IHR $\Leftrightarrow (X s | X > s) \ge_{ST} (X t | X > t)$ for all s < t.
- X is New Better (Worse) than Used NBU (NWU) if $\Leftrightarrow X \ge_{ST} (X t | X > t)$ for all t > 0.
- X is Increasing (Decreasing) Likelihood Ratio ILR (DLR) if f is log-concave (log-convex).
- X is ILR $\Leftrightarrow (X s | X > s) \ge_{LR} (X t | X > t)$ for all s < t.
- $ILR \Rightarrow IHR \Rightarrow NBU$.

In the IID case:

$$X_{1:n} \leq_{LR} \cdots \leq_{LR} X_{n:n}$$

• In the I case:

$$X_{1:n} \leq_{HR} \cdots \leq_{HR} X_{n:n}.$$

• In the general case:

$$X_{1:n} \leq_{ST} \cdots \leq_{ST} X_{n:n}$$

• In the IID case:

 $F \quad IHR \Rightarrow F_{i:n} \quad IHR$ $F \quad NBU \Rightarrow F_{i:n} \quad NBU, \text{ and}$ $F \quad ILR \Rightarrow F_{i:n} \quad ILR.$

・ロト ・回ト ・ヨト ・ヨト

DQC

In the IID case:

$$X_{1:n} \leq_{LR} \cdots \leq_{LR} X_{n:n}$$

In the I case:

$$X_{1:n} \leq_{HR} \cdots \leq_{HR} X_{n:n}.$$

• In the general case:

$$X_{1:n} \leq_{ST} \cdots \leq_{ST} X_{n:n}$$

• In the IID case:

 $F \quad IHR \Rightarrow F_{i:n} \quad IHR$ $F \quad NBU \Rightarrow F_{i:n} \quad NBU, \text{ and}$ $F \quad ILR \Rightarrow F_{i:n} \quad ILR.$

・ロト ・回ト ・ヨト ・ヨト

In the IID case:

$$X_{1:n} \leq_{LR} \cdots \leq_{LR} X_{n:n}$$

• In the I case:

$$X_{1:n} \leq_{HR} \cdots \leq_{HR} X_{n:n}.$$

• In the general case:

$$X_{1:n} \leq_{ST} \cdots \leq_{ST} X_{n:n}$$

• In the IID case:

 $F \quad IHR \Rightarrow F_{i:n} \quad IHR$ $F \quad NBU \Rightarrow F_{i:n} \quad NBU, \text{ and}$ $F \quad ILR \Rightarrow F_{i:n} \quad ILR.$

・ロト ・回ト ・ヨト ・ヨト

In the IID case:

$$X_{1:n} \leq_{LR} \cdots \leq_{LR} X_{n:n}$$

In the I case:

$$X_{1:n} \leq_{HR} \cdots \leq_{HR} X_{n:n}.$$

• In the general case:

$$X_{1:n} \leq_{ST} \cdots \leq_{ST} X_{n:n}.$$

In the IID case:

 $F \quad IHR \Rightarrow F_{i:n} \quad IHR$ $F \quad NBU \Rightarrow F_{i:n} \quad NBU, \text{ and}$ $F \quad ILR \Rightarrow F_{i:n} \quad ILR.$

Generalized Order statistics (GOS)

GOS

Э

DQC

OS IID case

Generalized Order statistics (GOS)

 For an arbitrary DF F, GOS X_{1:n}^{GOS},..., X_{n:n}^{GOS} based on F can be obtained (Kamps, 1995, B. G. Teubner Stuttgart, p.49) via the quantile transformation

$$X_{r:n}^{GOS} = F^{-1}(U_{r:n}^{GOS}), \quad r = 1, \dots, n,$$

where $(U_{1:n}^*, \ldots, U_{n:n}^*)$ has the joint PDF

$$g^{GOS}(u_1,\ldots,u_n)=k\left(\prod_{j=1}^{n-1}\gamma_j\right)\left(\prod_{i=1}^{n-1}(1-u_i)^{m_i}\right)(1-u_n)^{k-1}$$

for $0 \le u_1 \le \ldots \le u_n < 1$, $n \ge 2$, $k \ge 1$, $\gamma_1, \ldots, \gamma_n > 0$ and $m_i = \gamma_i - \gamma_{i+1} - 1$.

A D A A B A A B A A B A

Generalized Order statistics (GOS)

• If $\gamma_1, \ldots, \gamma_n$ are pairwise different, then

$$F_{r:n}^{GOS}(t) = 1 - c_{r-1} \sum_{i=1}^{r} \frac{a_{i,r}}{\gamma_i} \left(1 - F(t)\right)^{\gamma_i} = q_{r:n}^{GOS}(F(t))$$
(1.2)

with the constants

$$c_{r-1} = \prod_{j=1}^{r} \gamma_j, \quad a_{i,r} = \prod_{\substack{j=1\\j\neq i}}^{r} \frac{1}{\gamma_j - \gamma_i}, \quad 1 \le i \le r \le n$$

where the empty product \prod_{\emptyset} is defined to be 1.

・ロト ・回ト ・ヨト ・ヨト

• For the GOS we have:

$$X_{1:n} \leq_{LR} \cdots \leq_{LR} X_{n:n}$$

Cramer, Kamps and Raqab (2003, Applicationes Mathematicae) and Hu and Zhuang (2005, Statist Probab Lett).

• For the GOS we have:

$$F \quad IHR \Rightarrow F_{r:n}^{GOS} \quad IHR$$

(Kamps, 1995, B. G. Teubner Stuttgart, p. 172) and

F
$$ILR \Rightarrow F_{r:n}^{GOS}$$
 ILR

under some conditions (see Cramer, 2004, Statist Probab Lett and Chen, Xie and Hu, 2009, Statist Probab Lett 79).

- 4 回 ト 4 回 ト

• For the GOS we have:

$$X_{1:n} \leq_{LR} \cdots \leq_{LR} X_{n:n}$$

Cramer, Kamps and Raqab (2003, Applicationes Mathematicae) and Hu and Zhuang (2005, Statist Probab Lett).

• For the GOS we have:

$$F \quad IHR \Rightarrow F_{r:n}^{GOS} \quad IHR$$

(Kamps, 1995, B. G. Teubner Stuttgart, p. 172) and

$$F \quad ILR \Rightarrow F_{r:n}^{GOS} \quad ILR$$

under some conditions (see Cramer, 2004, Statist Probab Lett and Chen, Xie and Hu, 2009, Statist Probab Lett 79).

• The GOS include:

- OS, IID case $(m_1 = \cdots = m_{n-1} = 0 \text{ and } k = 1)$.
- kRV, k-th record values $(m_1 = \cdots = m_{n-1} = -1 \text{ and } k = 1, 2, \dots)$.
- RV, record values $(m_1 = \cdots = m_{n-1} = -1 \text{ and } k = 1)$.
- SOS, Sequential Order Statistics under the Proportional Hazard Rate (PHR) model, i.e., with $\overline{F}_r = \overline{F}^{\alpha_r}$ for $r = 1, ..., n \ (\gamma_r = (n r + 1)\alpha_r \text{ and } k = \alpha_n).$

- 4 同 ト 4 目 ト 4 目 ト

- The GOS include:
- OS, IID case $(m_1 = \cdots = m_{n-1} = 0 \text{ and } k = 1)$.
- kRV, k-th record values $(m_1 = \cdots = m_{n-1} = -1 \text{ and } k = 1, 2, \dots)$.
- RV, record values $(m_1 = \cdots = m_{n-1} = -1 \text{ and } k = 1)$.
- SOS, Sequential Order Statistics under the Proportional Hazard Rate (PHR) model, i.e., with $\overline{F}_r = \overline{F}^{\alpha_r}$ for $r = 1, ..., n \ (\gamma_r = (n r + 1)\alpha_r \text{ and } k = \alpha_n).$

- 4 同 ト 4 目 ト 4 目 ト

- The GOS include:
- OS, IID case $(m_1 = \cdots = m_{n-1} = 0 \text{ and } k = 1)$.
- kRV, k-th record values $(m_1 = \cdots = m_{n-1} = -1 \text{ and } k = 1, 2, \dots)$.
- RV, record values $(m_1 = \cdots = m_{n-1} = -1 \text{ and } k = 1)$.
- SOS, Sequential Order Statistics under the Proportional Hazard Rate (PHR) model, i.e., with $\overline{F}_r = \overline{F}^{\alpha_r}$ for $r = 1, ..., n \ (\gamma_r = (n r + 1)\alpha_r \text{ and } k = \alpha_n).$

- The GOS include:
- OS, IID case $(m_1 = \cdots = m_{n-1} = 0 \text{ and } k = 1)$.
- kRV, k-th record values $(m_1 = \cdots = m_{n-1} = -1 \text{ and } k = 1, 2, \dots).$
- RV, record values $(m_1 = \cdots = m_{n-1} = -1 \text{ and } k = 1)$.
- SOS, Sequential Order Statistics under the Proportional Hazard Rate (PHR) model, i.e., with $\overline{F}_r = \overline{F}^{\alpha_r}$ for $r = 1, ..., n \ (\gamma_r = (n r + 1)\alpha_r \text{ and } k = \alpha_n).$

イロト イポト イヨト イヨト

- The GOS include:
- OS, IID case $(m_1 = \cdots = m_{n-1} = 0 \text{ and } k = 1)$.
- kRV, k-th record values $(m_1 = \cdots = m_{n-1} = -1 \text{ and } k = 1, 2, \dots)$.
- RV, record values $(m_1 = \cdots = m_{n-1} = -1 \text{ and } k = 1)$.
- SOS, Sequential Order Statistics under the Proportional Hazard Rate (PHR) model, i.e., with $\overline{F}_r = \overline{F}^{\alpha_r}$ for $r = 1, ..., n \ (\gamma_r = (n r + 1)\alpha_r \text{ and } k = \alpha_n).$

イロト イポト イヨト イヨト

▲ □ ► < □ ►</p>

< ∃ >

Э

•
$$\overline{F}_{1}, \dots, \overline{F}_{n}$$
.
• $Y_{1}^{(1)}, \dots, Y_{n}^{(1)} \text{ IID } \sim \overline{F}_{1}$.
• $X_{1:n}^{SOS} = \min(Y_{1}^{(1)}, \dots, Y_{n}^{(1)}) = t_{1}$.
• $Y_{1}^{(2)}, \dots, Y_{n-1}^{(2)} \text{ IID } \sim \overline{F}_{2}(t)/\overline{F}_{2}(t_{1}) \text{ for } t \geq t_{1}$.
• $X_{2:n}^{SOS} = \min(Y_{1}^{(2)}, \dots, Y_{n-1}^{(2)}) = t_{2}$.
• \dots

•
$$X_{n:n}^{SOS} = Y_1^{(n)} \sim \overline{F}_n(t) / \overline{F}_n(t_{n-1})$$
 for $t \ge t_{n-1}$.

(4日) (1日)

< ∃ >

æ

•
$$\overline{F}_1, \dots, \overline{F}_n$$
.
• $Y_1^{(1)}, \dots, Y_n^{(1)} \text{ IID } \sim \overline{F}_1$.
• $X_{1:n}^{SOS} = \min(Y_1^{(1)}, \dots, Y_n^{(1)}) =$

•
$$Y_1^{(2)}, \ldots, Y_{n-1}^{(2)}$$
 IID $\sim \overline{F}_2(t)/\overline{F}_2(t_1)$ for $t \ge t_1$.

•
$$X_{2:n}^{SOS} = \min(Y_1^{(2)}, \dots, Y_{n-1}^{(2)}) = t_2.$$

•
$$X_{n:n}^{SOS} = Y_1^{(n)} \sim \overline{F}_n(t) / \overline{F}_n(t_{n-1})$$
 for $t \ge t_{n-1}$.

・ロト ・回ト ・ヨト ・ヨト

æ

•
$$\overline{F}_{1}, \dots, \overline{F}_{n}$$
.
• $Y_{1}^{(1)}, \dots, Y_{n}^{(1)} \text{ IID } \sim \overline{F}_{1}$.
• $X_{1:n}^{SOS} = \min(Y_{1}^{(1)}, \dots, Y_{n}^{(1)}) = t_{1}$.
• $Y_{1}^{(2)}, \dots, Y_{n-1}^{(2)} \text{ IID } \sim \overline{F}_{2}(t)/\overline{F}_{2}(t_{1}) \text{ for } t \geq t_{1}$
• $X_{2:n}^{SOS} = \min(Y_{1}^{(2)}, \dots, Y_{n-1}^{(2)}) = t_{2}$.
• \dots

•
$$X_{n:n}^{SOS} = Y_1^{(n)} \sim \overline{F}_n(t) / \overline{F}_n(t_{n-1})$$
 for $t \ge t_{n-1}$.

æ

•
$$\overline{F}_{1}, \dots, \overline{F}_{n}$$
.
• $Y_{1}^{(1)}, \dots, Y_{n}^{(1)} \text{ IID } \sim \overline{F}_{1}$.
• $X_{1:n}^{SOS} = \min(Y_{1}^{(1)}, \dots, Y_{n}^{(1)}) = t_{1}$.
• $Y_{1}^{(2)}, \dots, Y_{n-1}^{(2)} \text{ IID } \sim \overline{F}_{2}(t)/\overline{F}_{2}(t_{1}) \text{ for } t \geq t_{1}$.
• $X_{2:n}^{SOS} = \min(Y_{1}^{(2)}, \dots, Y_{n-1}^{(2)}) = t_{2}$.

•
$$X_{n:n}^{SOS} = Y_1^{(n)} \sim \overline{F}_n(t) / \overline{F}_n(t_{n-1})$$
 for $t \ge t_{n-1}$.

Image: A (□) + (0) +

- ∢ ≣ ▶

æ

•
$$\overline{F}_{1}, \dots, \overline{F}_{n}$$
.
• $Y_{1}^{(1)}, \dots, Y_{n}^{(1)} \text{ IID } \sim \overline{F}_{1}$.
• $X_{1:n}^{SOS} = \min(Y_{1}^{(1)}, \dots, Y_{n}^{(1)}) = t_{1}$.
• $Y_{1}^{(2)}, \dots, Y_{n-1}^{(2)} \text{ IID } \sim \overline{F}_{2}(t)/\overline{F}_{2}(t_{1}) \text{ for } t \geq t_{1}$.
• $X_{2:n}^{SOS} = \min(Y_{1}^{(2)}, \dots, Y_{n-1}^{(2)}) = t_{2}$.

•
$$X_{n:n}^{SOS} = Y_1^{(n)} \sim \overline{F}_n(t) / \overline{F}_n(t_{n-1})$$
 for $t \ge t_{n-1}$.

Image: A (□) + (0) +

- ∢ ≣ ▶

æ

•
$$\overline{F}_{1}, \dots, \overline{F}_{n}$$
.
• $Y_{1}^{(1)}, \dots, Y_{n}^{(1)} \text{ IID } \sim \overline{F}_{1}$.
• $X_{1:n}^{SOS} = \min(Y_{1}^{(1)}, \dots, Y_{n}^{(1)}) = t_{1}$.
• $Y_{1}^{(2)}, \dots, Y_{n-1}^{(2)} \text{ IID } \sim \overline{F}_{2}(t)/\overline{F}_{2}(t_{1}) \text{ for } t \geq t_{1}$.
• $X_{2:n}^{SOS} = \min(Y_{1}^{(2)}, \dots, Y_{n-1}^{(2)}) = t_{2}$.
• \dots

• $X_{n:n}^{SOS} = Y_1^{(n)} \sim \overline{F}_n(t) / \overline{F}_n(t_{n-1})$ for $t \ge t_{n-1}$.

•
$$\overline{F}_{1}, \dots, \overline{F}_{n}$$
.
• $Y_{1}^{(1)}, \dots, Y_{n}^{(1)} \text{ IID } \sim \overline{F}_{1}$.
• $X_{1:n}^{SOS} = \min(Y_{1}^{(1)}, \dots, Y_{n}^{(1)}) = t_{1}$.
• $Y_{1}^{(2)}, \dots, Y_{n-1}^{(2)} \text{ IID } \sim \overline{F}_{2}(t)/\overline{F}_{2}(t_{1}) \text{ for } t \geq t_{1}$.
• $X_{2:n}^{SOS} = \min(Y_{1}^{(2)}, \dots, Y_{n-1}^{(2)}) = t_{2}$.
• \dots

•
$$X_{n:n}^{SOS} = Y_1^{(n)} \sim \overline{F}_n(t) / \overline{F}_n(t_{n-1})$$
 for $t \ge t_{n-1}$.

Image: A (□) + (0) +

- ∢ ≣ ▶

æ

- OS (IID case) are SOS when $\overline{F}_1 = \cdots = \overline{F}_n$.
- $X_{1:n}^{SOS}, \ldots, X_{n:n}^{SOS}$ are the order statistics from an exchangeable random vector

 $(X_1^{SOS},\ldots,X_n^{SOS}).$

- If $\overline{F}_i = \overline{F}^{\alpha_i}$ for i = 1, ..., n (PHR model), the SOS are GOS.
- The SOS are not necessarily GOS.
- The GOS are not necessarily SOS.

||| 同 ト イヨト イヨト

- OS (IID case) are SOS when $\overline{F}_1 = \cdots = \overline{F}_n$.
- $X_{1:n}^{SOS}, \ldots, X_{n:n}^{SOS}$ are the order statistics from an exchangeable random vector

- If $\overline{F}_i = \overline{F}^{\alpha_i}$ for i = 1, ..., n (PHR model), the SOS are GOS.
- The SOS are not necessarily GOS.
- The GOS are not necessarily SOS.

・ 同下 ・ ヨト ・ ヨト

- OS (IID case) are SOS when $\overline{F}_1 = \cdots = \overline{F}_n$.
- $X_{1:n}^{SOS}, \ldots, X_{n:n}^{SOS}$ are the order statistics from an exchangeable random vector

- If $\overline{F}_i = \overline{F}^{\alpha_i}$ for i = 1, ..., n (PHR model), the SOS are GOS.
- The SOS are not necessarily GOS.
- The GOS are not necessarily SOS.

- OS (IID case) are SOS when $\overline{F}_1 = \cdots = \overline{F}_n$.
- $X_{1:n}^{SOS}, \ldots, X_{n:n}^{SOS}$ are the order statistics from an exchangeable random vector

- If $\overline{F}_i = \overline{F}^{\alpha_i}$ for i = 1, ..., n (PHR model), the SOS are GOS.
- The SOS are not necessarily GOS.
- The GOS are not necessarily SOS.

- OS (IID case) are SOS when $\overline{F}_1 = \cdots = \overline{F}_n$.
- $X_{1:n}^{SOS}, \ldots, X_{n:n}^{SOS}$ are the order statistics from an exchangeable random vector

- If $\overline{F}_i = \overline{F}^{\alpha_i}$ for i = 1, ..., n (PHR model), the SOS are GOS.
- The SOS are not necessarily GOS.
- The GOS are not necessarily SOS.

• The SOS are not necessarily HR ordered; see Navarro and Burkschat (2011, Naval Res Log).

• For the SOS:

 $\overline{F}_1, \ldots, \overline{F}_n$ IHR $\Rightarrow F_{r:n}^{SOS}$ IHR

and

$$\overline{F}_1, \ldots, \overline{F}_n$$
 ILR $\Rightarrow F_{r:n}^{GOS}$ ILR;

see Navarro and Burkschat (2011, Naval Res Log).

イロト イポト イヨト イヨト

- The SOS are not necessarily HR ordered; see Navarro and Burkschat (2011, Naval Res Log).
- For the SOS:

$$\overline{F}_1, \ldots, \overline{F}_n$$
 IHR $\Rightarrow F_{r:n}^{SOS}$ IHR

and

$$\overline{F}_1, \ldots, \overline{F}_n \quad ILR \Rightarrow F_{r:n}^{GOS} \quad ILR;$$

see Navarro and Burkschat (2011, Naval Res Log).

Figure: Hazard rate functions $h_{1:2}^{SOS}$ (constant line) and $h_{2:2}^{SOS}$ for the SOS obtained from $\overline{F}_1(t) = e^{-t}$ (exponential) and $\overline{F}_2(t) = e^{-t^2}$ (Weibull). The SOS are not HR ordered and $h_{2:2}^*$ is not monotone.

• Conditions for the HR, MRL and LR ordering of SOS were given in Navarro and Burkschat (2011, Naval Res Log).

• For example:

Theorem

Let $X_{1:n}^{SOS}, \ldots, X_{n:n}^{SOS}$ be the SOS based on $\overline{F}_1, \ldots, \overline{F}_n$ having hazard rate function h_1, \ldots, h_n . If h_k/h_{k+1} is increasing for $k = 1, \ldots, i$, then $X_{i:n}^{SOS} \leq_{HR} X_{i+1:n}^{SOS}$.

イロト イポト イヨト イヨト

- Conditions for the HR, MRL and LR ordering of SOS were given in Navarro and Burkschat (2011, Naval Res Log).
- For example:

Theorem

Let $X_{1:n}^{SOS}, \ldots, X_{n:n}^{SOS}$ be the SOS based on $\overline{F}_1, \ldots, \overline{F}_n$ having hazard rate function h_1, \ldots, h_n . If h_k/h_{k+1} is increasing for $k = 1, \ldots, i$, then $X_{i:n}^{SOS} \leq_{HR} X_{i+1:n}^{SOS}$.

- 4 同 ト 4 三 ト 4 三 ト

• Conditions for the preservation of IHR, IHRA, NBU and ILR classes under the formation of SOS were given in Navarro and Burkschat (2011, Probab Eng Inf Sci, to appear).

Theorem

Let f_i be log-concave for i = 1, 2, ..., r and $h_{j+1} - h_j$ be decreasing for j = 1, 2, ..., r - 1. Then $X_{r:n}^{SOS}$ is ILR.

• For more results, please go to PS9.

• Conditions for the preservation of IHR, IHRA, NBU and ILR classes under the formation of SOS were given in Navarro and Burkschat (2011, Probab Eng Inf Sci, to appear).

Theorem

Let f_i be log-concave for i = 1, 2, ..., r and $h_{j+1} - h_j$ be decreasing for j = 1, 2, ..., r - 1. Then $X_{r:n}^{SOS}$ is ILR.

• For more results, please go to PS9.

• Conditions for the preservation of IHR, IHRA, NBU and ILR classes under the formation of SOS were given in Navarro and Burkschat (2011, Probab Eng Inf Sci, to appear).

Theorem

Let f_i be log-concave for i = 1, 2, ..., r and $h_{j+1} - h_j$ be decreasing for j = 1, 2, ..., r - 1. Then $X_{r:n}^{SOS}$ is ILR.

• For more results, please go to PS9.

Coherent systems (CS)

・ロト ・回ト ・ヨト ・ヨト

Э

999

- Coherent systems φ = φ(x₁,...,x_n) ∈ {0,1} where x_i ∈ {0,1}, the structure function φ is nondecreasing and strictly increasing in x_i for at least one point (x₁,...,x_n), for i = 1,...,n.
- If X₁,..., X_n are the component lifetimes, then there exist φ such that the system lifetime T = φ(X₁,..., X_n).
- $X_{1:n}, \ldots, X_{n:n}$ are the lifetimes of k-out-of-n systems.
- $T = X_{i:n}$ for i = 1, ..., n.

- Coherent systems φ = φ(x₁,...,x_n) ∈ {0,1} where x_i ∈ {0,1}, the structure function φ is nondecreasing and strictly increasing in x_i for at least one point (x₁,...,x_n), for i = 1,...,n.
- If X₁,..., X_n are the component lifetimes, then there exist φ such that the system lifetime T = φ(X₁,..., X_n).
- $X_{1:n}, \ldots, X_{n:n}$ are the lifetimes of k-out-of-n systems.
- $T = X_{i:n}$ for i = 1, ..., n.

A D A A B A A B A A B A

- Coherent systems φ = φ(x₁,...,x_n) ∈ {0,1} where x_i ∈ {0,1}, the structure function φ is nondecreasing and strictly increasing in x_i for at least one point (x₁,...,x_n), for i = 1,...,n.
- If X₁,..., X_n are the component lifetimes, then there exist φ such that the system lifetime T = φ(X₁,..., X_n).
- $X_{1:n}, \ldots, X_{n:n}$ are the lifetimes of k-out-of-n systems.
- $T = X_{i:n}$ for i = 1, ..., n.

A D A A B A A B A A B A

- Coherent systems φ = φ(x₁,...,x_n) ∈ {0,1} where x_i ∈ {0,1}, the structure function φ is nondecreasing and strictly increasing in x_i for at least one point (x₁,...,x_n), for i = 1,...,n.
- If X₁,..., X_n are the component lifetimes, then there exist φ such that the system lifetime T = φ(X₁,..., X_n).
- $X_{1:n}, \ldots, X_{n:n}$ are the lifetimes of k-out-of-n systems.
- $T = X_{i:n}$ for i = 1, ..., n.

・同下 ・ヨト ・ヨト

• Samaniego (IEEE TR, 1985), IID case:

$$\overline{F}_{T}(t) = \sum_{i=1}^{n} p_{i} \overline{F}_{i:n}(t), \qquad (2.1)$$

where $p_i = \Pr(T = X_{i:n})$.

• $\mathbf{p} = (p_1, \ldots, p_n)$ is the signature of the system.

$$p_i = \frac{\left|\{\sigma : \phi(x_1, \dots, x_n) = x_{i:n}, \text{ when } x_{\sigma(1)} < \dots < x_{\sigma(n)}\}\right|}{n!}$$

- Navarro and Rychlik (JMVA, 2007), (2.1) holds for EXC absolutely continuous joint distribution.
- Navarro, Samaniego, Balakrishnan and Bhathacharya (NRL, 2008), (2.1) holds for EXC r.v. when **p** is given by (2.2).

• Samaniego (IEEE TR, 1985), IID case:

$$\overline{F}_{T}(t) = \sum_{i=1}^{n} p_{i} \overline{F}_{i:n}(t), \qquad (2.1)$$

where $p_i = \Pr(T = X_{i:n})$.

• $\mathbf{p} = (p_1, \dots, p_n)$ is the signature of the system.

$$p_i = \frac{\left|\{\sigma : \phi(x_1, \dots, x_n) = x_{i:n}, \text{ when } x_{\sigma(1)} < \dots < x_{\sigma(n)}\}\right|}{n!}$$

- Navarro and Rychlik (JMVA, 2007), (2.1) holds for EXC absolutely continuous joint distribution.
- Navarro, Samaniego, Balakrishnan and Bhathacharya (NRL, 2008), (2.1) holds for EXC r.v. when **p** is given by (2.2).

• Samaniego (IEEE TR, 1985), IID case:

$$\overline{F}_{T}(t) = \sum_{i=1}^{n} p_{i} \overline{F}_{i:n}(t), \qquad (2.1)$$

where $p_i = \Pr(T = X_{i:n})$.

• $\mathbf{p} = (p_1, \dots, p_n)$ is the signature of the system.

$$p_{i} = \frac{\left|\{\sigma : \phi(x_{1}, \dots, x_{n}) = x_{i:n}, \text{ when } x_{\sigma(1)} < \dots < x_{\sigma(n)}\}\right|}{n!}$$
(2.2)

- Navarro and Rychlik (JMVA, 2007), (2.1) holds for EXC absolutely continuous joint distribution.
- Navarro, Samaniego, Balakrishnan and Bhathacharya (NRL, 2008), (2.1) holds for EXC r.v. when **p** is given by (2.2).

• Samaniego (IEEE TR, 1985), IID case:

$$\overline{F}_{T}(t) = \sum_{i=1}^{n} p_{i} \overline{F}_{i:n}(t), \qquad (2.1)$$

where $p_i = \Pr(T = X_{i:n})$.

• $\mathbf{p} = (p_1, \dots, p_n)$ is the signature of the system.

$$p_{i} = \frac{\left|\{\sigma : \phi(x_{1}, \dots, x_{n}) = x_{i:n}, \text{ when } x_{\sigma(1)} < \dots < x_{\sigma(n)}\}\right|}{n!}$$
(2.2)

- Navarro and Rychlik (JMVA, 2007), (2.1) holds for EXC absolutely continuous joint distribution.
- Navarro, Samaniego, Balakrishnan and Bhathacharya (NRL, 2008), (2.1) holds for EXC r.v. when **p** is given by (2.2).

• Samaniego (IEEE TR, 1985), IID case:

$$\overline{F}_{T}(t) = \sum_{i=1}^{n} p_{i} \overline{F}_{i:n}(t), \qquad (2.1)$$

where $p_i = \Pr(T = X_{i:n})$.

• $\mathbf{p} = (p_1, \dots, p_n)$ is the signature of the system.

$$p_i = \frac{\left|\{\sigma : \phi(x_1, \dots, x_n) = x_{i:n}, \text{ when } x_{\sigma(1)} < \dots < x_{\sigma(n)}\}\right|}{n!}$$
(2.2)

- Navarro and Rychlik (JMVA, 2007), (2.1) holds for EXC absolutely continuous joint distribution.
- Navarro, Samaniego, Balakrishnan and Bhathacharya (NRL, 2008), (2.1) holds for EXC r.v. when **p** is given by (2.2).

- A **mixed system** of order *n* is a stochastic mixture of coherent systems of order *n* (Boland and Samaniego, 2004).
- From (2.1), in the EXC case, all the mixed systems of order *n* can be written as mixtures of $X_{1:n}, \ldots, X_{n:n}$.
- The vector with the coefficients in that representation is called the signature of the mixed system.
- Conversely, any probability vector in the simplex $\{\mathbf{c} \in [0,1]^n : \sum_{i=1}^n c_i = 1\}$ determines a mixed system with reliability

$$\overline{F}_{T}(t) = \sum_{i=1}^{n} c_{i} \overline{F}_{i:n}(t).$$

- 4 同 ト 4 目 ト 4 目 ト

- A **mixed system** of order *n* is a stochastic mixture of coherent systems of order *n* (Boland and Samaniego, 2004).
- From (2.1), in the EXC case, all the mixed systems of order *n* can be written as mixtures of $X_{1:n}, \ldots, X_{n:n}$.
- The vector with the coefficients in that representation is called the signature of the mixed system.
- Conversely, any probability vector in the simplex $\{\mathbf{c} \in [0,1]^n : \sum_{i=1}^n c_i = 1\}$ determines a mixed system with reliability

$$\overline{F}_{T}(t) = \sum_{i=1}^{n} c_{i} \overline{F}_{i:n}(t).$$

- A **mixed system** of order *n* is a stochastic mixture of coherent systems of order *n* (Boland and Samaniego, 2004).
- From (2.1), in the EXC case, all the mixed systems of order *n* can be written as mixtures of $X_{1:n}, \ldots, X_{n:n}$.
- The vector with the coefficients in that representation is called the signature of the mixed system.
- Conversely, any probability vector in the simplex $\{\mathbf{c} \in [0,1]^n : \sum_{i=1}^n c_i = 1\}$ determines a mixed system with reliability

$$\overline{F}_{T}(t) = \sum_{i=1}^{n} c_{i} \overline{F}_{i:n}(t).$$

- A **mixed system** of order *n* is a stochastic mixture of coherent systems of order *n* (Boland and Samaniego, 2004).
- From (2.1), in the EXC case, all the mixed systems of order *n* can be written as mixtures of $X_{1:n}, \ldots, X_{n:n}$.
- The vector with the coefficients in that representation is called the signature of the mixed system.
- Conversely, any probability vector in the simplex $\{\mathbf{c} \in [0,1]^n : \sum_{i=1}^n c_i = 1\}$ determines a mixed system with reliability

$$\overline{F}_{T}(t) = \sum_{i=1}^{n} c_{i} \overline{F}_{i:n}(t).$$

イロト イポト イヨト イヨト

Mixtures of Order Statistics (MOS), EXC case

・ロト ・回ト ・ヨト ・ヨト

æ

DQC

• Navarro, Ruiz and Sandoval (CSTM, 2007), if *T* has EXC components, then

$$\overline{F}_{T}(t) = \sum_{i=1}^{n} a_{i} \overline{F}_{1:i}(t).$$
(2.3)

- $\mathbf{a} = (a_1, \ldots, a_n)$ is the minimal signature of T.
- *a_i* only depends on φ but can be negative and so (2.3) is a generalized mixture.
- In the IID case:

$$\overline{F}_{\mathcal{T}}(t) = \sum_{i=1}^{n} a_i \overline{F}^i(t) = q_{\phi}(\overline{F}(t)), \qquad (2.4)$$

• Navarro, Ruiz and Sandoval (CSTM, 2007), if *T* has EXC components, then

$$\overline{F}_{T}(t) = \sum_{i=1}^{n} a_{i} \overline{F}_{1:i}(t).$$
(2.3)

- $\mathbf{a} = (a_1, \ldots, a_n)$ is the minimal signature of T.
- *a_i* only depends on φ but can be negative and so (2.3) is a generalized mixture.
- In the IID case:

$$\overline{F}_{\mathcal{T}}(t) = \sum_{i=1}^{n} a_i \overline{F}^i(t) = q_{\phi}(\overline{F}(t)), \qquad (2.4)$$

• Navarro, Ruiz and Sandoval (CSTM, 2007), if *T* has EXC components, then

$$\overline{F}_{T}(t) = \sum_{i=1}^{n} a_{i} \overline{F}_{1:i}(t).$$
(2.3)

- $\mathbf{a} = (a_1, \ldots, a_n)$ is the minimal signature of T.
- *a_i* only depends on φ but can be negative and so (2.3) is a generalized mixture.
- In the IID case:

$$\overline{F}_{\mathcal{T}}(t) = \sum_{i=1}^{n} a_i \overline{F}^i(t) = q_{\phi}(\overline{F}(t)), \qquad (2.4)$$

• Navarro, Ruiz and Sandoval (CSTM, 2007), if *T* has EXC components, then

$$\overline{F}_{T}(t) = \sum_{i=1}^{n} a_{i} \overline{F}_{1:i}(t).$$
(2.3)

- $\mathbf{a} = (a_1, \ldots, a_n)$ is the minimal signature of T.
- *a_i* only depends on φ but can be negative and so (2.3) is a generalized mixture.
- In the IID case:

$$\overline{F}_{\mathcal{T}}(t) = \sum_{i=1}^{n} a_i \overline{F}^i(t) = q_{\phi}(\overline{F}(t)), \qquad (2.4)$$

- A **path set** of *T* is a set such that if all the components in *P* work, then the system works.
- A **minimal path set** of *T* is a path set which does not contains other path sets.
- If P_1, \ldots, P_r are the minimal path sets of T, then $T = \max_{j=1,\ldots,r} X_{P_j}$, where $X_P = \min_{i \in P} X_i$.

$$\overline{F}_{\mathcal{T}}(t) = \Pr\left(\max_{j=1,\dots,r} X_{P_j} > t\right)$$

= $\Pr\left(\cup_{j=1,\dots,r} \{X_{P_j} > t\}\right)$
= $\sum_{i=1}^r \overline{F}_{P_i}(t) - \sum_{i \neq j} \overline{F}_{P_i \cup P_j}(t) + \dots \pm \overline{F}_{P_1 \cup \dots P_r}(t).$

where $\overline{F}_P(t) = \Pr(X_P > t)$.

イロト イポト イヨト イヨト

- A **path set** of *T* is a set such that if all the components in *P* work, then the system works.
- A **minimal path set** of *T* is a path set which does not contains other path sets.
- If P_1, \ldots, P_r are the minimal path sets of T, then $T = \max_{j=1,\ldots,r} X_{P_j}$, where $X_P = \min_{i \in P} X_i$.

$$\overline{F}_{\mathcal{T}}(t) = \Pr\left(\max_{j=1,\dots,r} X_{P_j} > t\right)$$

= $\Pr\left(\cup_{j=1,\dots,r} \{X_{P_j} > t\}\right)$
= $\sum_{i=1}^r \overline{F}_{P_i}(t) - \sum_{i \neq j} \overline{F}_{P_i \cup P_j}(t) + \dots \pm \overline{F}_{P_1 \cup \dots P_r}(t).$

where $\overline{F}_P(t) = \Pr(X_P > t)$.

- A **path set** of *T* is a set such that if all the components in *P* work, then the system works.
- A **minimal path set** of *T* is a path set which does not contains other path sets.
- If P_1, \ldots, P_r are the minimal path sets of T, then $T = \max_{j=1,\ldots,r} X_{P_j}$, where $X_P = \min_{i \in P} X_i$.

$$\overline{F}_{\mathcal{T}}(t) = \Pr\left(\max_{j=1,\dots,r} X_{P_j} > t\right)$$

= $\Pr\left(\cup_{j=1,\dots,r} \{X_{P_j} > t\}\right)$
= $\sum_{i=1}^r \overline{F}_{P_i}(t) - \sum_{i \neq j} \overline{F}_{P_i \cup P_j}(t) + \dots \pm \overline{F}_{P_1 \cup \dots P_r}(t).$

where $\overline{F}_P(t) = \Pr(X_P > t)$.

・ロト ・回ト ・ヨト ・

• If K is the survival copula of (X_1, \ldots, X_n) , then

$$\overline{\mathbf{F}}(x_1,\ldots,x_n) = \mathcal{K}(\overline{F}_1(x_1),\ldots,\overline{F}(x_n)),$$

where $\overline{F}_i(t) = \Pr(X_i > t), i = 1, \dots, n$.

• Then

 $\overline{F}_P(t) = K(\mathbf{z}_P)$

where $\mathbf{z}_P = (z_1, \ldots, z_n)$, $z_i = \overline{F}_i(t)$ for $i \in P$ and $z_i = 1$ for $i \notin P$.

Therefore

$$\overline{F}_{\mathcal{T}}(t) = Q_{\phi,K}(\overline{F}_1(t),\ldots,\overline{F}_n(t)).$$

• In the ID case

$$\overline{F}_{T}(t) = q_{\phi,K}(\overline{F}(t)).$$
(2.5)

▲ □ ► ▲ □ ►

I ∃ ►

• If K is the survival copula of (X_1, \ldots, X_n) , then

$$\overline{\mathbf{F}}(x_1,\ldots,x_n) = \mathcal{K}(\overline{\mathcal{F}}_1(x_1),\ldots,\overline{\mathcal{F}}(x_n)),$$

where $\overline{F}_i(t) = \Pr(X_i > t), i = 1, \dots, n$.

Then

$$\overline{F}_P(t) = K(\mathbf{z}_P)$$

where $\mathbf{z}_P = (z_1, \ldots, z_n)$, $z_i = \overline{F}_i(t)$ for $i \in P$ and $z_i = 1$ for $i \notin P$.

Therefore

$$\overline{F}_{\mathcal{T}}(t) = Q_{\phi,K}(\overline{F}_1(t),\ldots,\overline{F}_n(t)).$$

• In the ID case

$$\overline{F}_{T}(t) = q_{\phi,K}(\overline{F}(t)).$$
(2.5)

・ 同下 ・ ヨト ・ ヨト

• If K is the survival copula of (X_1, \ldots, X_n) , then

$$\overline{\mathbf{F}}(x_1,\ldots,x_n) = \mathcal{K}(\overline{\mathcal{F}}_1(x_1),\ldots,\overline{\mathcal{F}}(x_n)),$$

where $\overline{F}_i(t) = \Pr(X_i > t), i = 1, \dots, n$.

Then

$$\overline{F}_P(t) = K(\mathbf{z}_P)$$

where $\mathbf{z}_P = (z_1, \ldots, z_n)$, $z_i = \overline{F}_i(t)$ for $i \in P$ and $z_i = 1$ for $i \notin P$.

Therefore

$$\overline{F}_{T}(t) = Q_{\phi,K}(\overline{F}_{1}(t),\ldots,\overline{F}_{n}(t)).$$

In the ID case

$$\overline{F}_{\mathcal{T}}(t) = q_{\phi,\mathcal{K}}(\overline{F}(t)).$$
(2.5)

・ 同下 ・ ヨト ・ ヨト

• If K is the survival copula of (X_1, \ldots, X_n) , then

$$\overline{\mathbf{F}}(x_1,\ldots,x_n) = \mathcal{K}(\overline{F}_1(x_1),\ldots,\overline{F}(x_n)),$$

where $\overline{F}_i(t) = \Pr(X_i > t), i = 1, \dots, n$.

Then

$$\overline{F}_P(t) = K(\mathbf{z}_P)$$

where $\mathbf{z}_P = (z_1, \ldots, z_n)$, $z_i = \overline{F}_i(t)$ for $i \in P$ and $z_i = 1$ for $i \notin P$.

Therefore

$$\overline{F}_{\mathcal{T}}(t) = Q_{\phi,\mathcal{K}}(\overline{F}_1(t),\ldots,\overline{F}_n(t)).$$

In the ID case

$$\overline{F}_{T}(t) = q_{\phi,K}(\overline{F}(t)).$$
(2.5)

・ 同下 ・ ヨト ・ ヨト

Theorem (Navarro et al., NRL 2008)

If $T_1 = \phi_1(X_1, \ldots, X_n)$ and $T_2 = \phi_2(X_1, \ldots, X_n)$ have signatures $\mathbf{p} = (p_1, \ldots, p_n)$ and $\mathbf{q} = (q_1, \ldots, q_n)$, (X_1, \ldots, X_n) is EXC, then: (i) If $\mathbf{p} \leq_{ST} \mathbf{q}$, then $T_1 \leq_{ST} T_2$. (ii) If $\mathbf{p} \leq_{HR} \mathbf{q}$ and $X_{1:n} \leq_{HR} \cdots \leq_{HR} X_{n:n}$ holds, then $T_1 \leq_{HR} T_2$. (iii) If $\mathbf{p} \leq_{HR} \mathbf{q}$ and $X_{1:n} \leq_{MRL} \cdots \leq_{MRL} X_{n:n}$ holds, then $T_1 \leq_{MRL} T_2$. (iv) If $\mathbf{p} \leq_{LR} \mathbf{q}$ and $X_{1:n} \leq_{LR} \cdots \leq_{LR} X_{n:n}$ holds, then $T_1 \leq_{LR} T_2$.

Aging classes results for coherent systems

• If
$$X_1, \ldots, X_n$$
 are IID

 $X_1 \quad NBU \Rightarrow T \quad NBU$,

but

 $X_1 \quad IHR \Rightarrow T \quad IHR$

and

 X_1 ILR \Rightarrow T ILR.

イロト イヨト イヨト イヨト

æ

DQC

- The distorted distributions are a way to model distortion risk measures developed from research on premium principles, see Wang (1996, ASTIN Bull).
- The distorted distribution associated to F and to an increasing right continuous distortion function q: [0,1] → [0,1] such that q(0) = 0 and q(1) = 1, is

$$F_q(t) = q(F(t)).$$
 (3.1)

- Some authors assume that *q* is continuous and strictly increasing. Then *F* and *F_q* have the same support.
- For the reliability functions we have

$$\overline{F}_q(t) = \overline{q}(\overline{F}(t)), \qquad (3.2)$$

where $\overline{q}(u) = 1 - q(1 - u)$ is the *dual distortion function*; see Hürlimann (2004, N Am Actuarial J).

- The distorted distributions are a way to model distortion risk measures developed from research on premium principles, see Wang (1996, ASTIN Bull).
- The distorted distribution associated to F and to an increasing right continuous distortion function q: [0,1] → [0,1] such that q(0) = 0 and q(1) = 1, is

$$F_q(t) = q(F(t)).$$
 (3.1)

- Some authors assume that *q* is continuous and strictly increasing. Then *F* and *F_q* have the same support.
- For the reliability functions we have

$$\overline{F}_q(t) = \overline{q}(\overline{F}(t)), \qquad (3.2)$$

where $\overline{q}(u) = 1 - q(1 - u)$ is the *dual distortion function*; see Hürlimann (2004, N Am Actuarial J).

- The distorted distributions are a way to model distortion risk measures developed from research on premium principles, see Wang (1996, ASTIN Bull).
- The distorted distribution associated to F and to an increasing right continuous distortion function q: [0, 1] → [0, 1] such that q(0) = 0 and q(1) = 1, is

$$F_q(t) = q(F(t)). \tag{3.1}$$

- Some authors assume that q is continuous and strictly increasing. Then F and F_q have the same support.
- For the reliability functions we have

$$\overline{F}_q(t) = \overline{q}(\overline{F}(t)), \qquad (3.2)$$

where $\overline{q}(u) = 1 - q(1 - u)$ is the *dual distortion function*; see Hürlimann (2004, N Am Actuarial J).

- The distorted distributions are a way to model distortion risk measures developed from research on premium principles, see Wang (1996, ASTIN Bull).
- The distorted distribution associated to F and to an increasing right continuous distortion function q: [0, 1] → [0, 1] such that q(0) = 0 and q(1) = 1, is

$$F_q(t) = q(F(t)). \tag{3.1}$$

- Some authors assume that q is continuous and strictly increasing. Then F and F_q have the same support.
- For the reliability functions we have

$$\overline{F}_q(t) = \overline{q}(\overline{F}(t)), \qquad (3.2)$$

where $\overline{q}(u) = 1 - q(1 - u)$ is the *dual distortion function*; see Hürlimann (2004, N Am Actuarial J).

- The distorted distributions are a way to model distortion risk measures developed from research on premium principles, see Wang (1996, ASTIN Bull).
- The distorted distribution associated to F and to an increasing right continuous distortion function q : [0, 1] → [0, 1] such that q(0) = 0 and q(1) = 1, is

$$F_q(t) = q(F(t)). \tag{3.1}$$

- Some authors assume that q is continuous and strictly increasing. Then F and F_q have the same support.
- For the reliability functions we have

$$\overline{F}_q(t) = \overline{q}(\overline{F}(t)), \qquad (3.2)$$

where $\overline{q}(u) = 1 - q(1 - u)$ is the *dual distortion function*; see Hürlimann (2004, N Am Actuarial J).

Particular cases of Distorted Distributions (DD)

• The OS in the IID case are DD (1.1).

- The GOS (Records, k-Records, etc.) are DD (1.2).
- The SOS in the PHR case are DD.
- The CS (OS) in the ID case (includes the EXC case) are DD (2.5).
- The SOS in the general case are DD but *q* and *F* are quite complicate.
- PHR and RPHR are DD.

Particular cases of Distorted Distributions (DD)

- The OS in the IID case are DD (1.1).
- The GOS (Records, k-Records, etc.) are DD (1.2).
- The SOS in the PHR case are DD.
- The CS (OS) in the ID case (includes the EXC case) are DD (2.5).
- The SOS in the general case are DD but *q* and *F* are quite complicate.
- PHR and RPHR are DD.

▲ @ ▶ ▲ ∃ ▶

Particular cases of Distorted Distributions (DD)

- The OS in the IID case are DD (1.1).
- The GOS (Records, k-Records, etc.) are DD (1.2).
- The SOS in the PHR case are DD.
- The CS (OS) in the ID case (includes the EXC case) are DD (2.5).
- The SOS in the general case are DD but *q* and *F* are quite complicate.
- PHR and RPHR are DD.

▲ @ ▶ ▲ ∃ ▶

- The OS in the IID case are DD (1.1).
- The GOS (Records, k-Records, etc.) are DD (1.2).
- The SOS in the PHR case are DD.
- The CS (OS) in the ID case (includes the EXC case) are DD (2.5).
- The SOS in the general case are DD but *q* and *F* are quite complicate.
- PHR and RPHR are DD.

▲ □ ► ▲ □ ►

- The OS in the IID case are DD (1.1).
- The GOS (Records, k-Records, etc.) are DD (1.2).
- The SOS in the PHR case are DD.
- The CS (OS) in the ID case (includes the EXC case) are DD (2.5).
- The SOS in the general case are DD but q and F are quite complicate.
- PHR and RPHR are DD.

- The OS in the IID case are DD (1.1).
- The GOS (Records, k-Records, etc.) are DD (1.2).
- The SOS in the PHR case are DD.
- The CS (OS) in the ID case (includes the EXC case) are DD (2.5).
- The SOS in the general case are DD but q and F are quite complicate.
- PHR and RPHR are DD.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -

Э

590

- Conditions to get ordering results for DD were given in Navarro, del Aguila, Sordo and Suarez-Llorens (to appear in ASMBI, DOI: 10.1002/asmb.1917).
- For example:

Theorem

Let $F_1 = q_1(F)$ and let $F_2 = q_2(F)$. Then we have the following properties: (i) $F_1 \leq_{ST} F_2 \ (\geq_{ST})$ for all F if and only if $q_1(u)/q_2(u) \geq 1 \ (\leq)$ in (0,1). (ii) $F_1 \leq_{HR} F_2 \ (\geq_{HR})$ for all F if and only if $\overline{q}_1(u)/\overline{q}_2(u)$ increases (decreases) in (0,1). (iii) $F_1 \leq_{LR} F_2 \ (\geq_{LR})$ for all F if and only if $\overline{q}_2(\overline{q}_1^{-1}(u))$ is concave (convex) in (0,1).

イロト イポト イヨト イヨト

- Conditions to get ordering results for DD were given in Navarro, del Aguila, Sordo and Suarez-Llorens (to appear in ASMBI, DOI: 10.1002/asmb.1917).
- For example:

Theorem

Let $F_1 = q_1(F)$ and let $F_2 = q_2(F)$. Then we have the following properties: (i) $F_1 \leq_{ST} F_2$ (\geq_{ST}) for all F if and only if $q_1(u)/q_2(u) \geq 1$ (\leq) in (0,1). (ii) $F_1 \leq_{HR} F_2$ (\geq_{HR}) for all F if and only if $\overline{q}_1(u)/\overline{q}_2(u)$ increases (decreases) in (0,1). (iii) $F_1 \leq_{LR} F_2$ (\geq_{LR}) for all F if and only if $\overline{q}_2(\overline{q}_1^{-1}(u))$ is concave (convex) in (0,1).

・ロト ・同ト ・ヨト ・ヨト

- Conditions to get preservation of aging classes for DD were given in Navarro, del Aguila, Sordo and Suarez-Llorens (submitted).
- For example:

Theorem

Let
$$F_q = q(F)$$
 and let $\alpha_q(u) = \frac{uq'(1-u)}{1-q(1-u)}$. Then:
(i) If α_q is decreasing in (0,1) and F is IHR, then F_q is IHR.
(ii) If α_q is increasing in (0,1) and F is DHR, then F_q is DHR.
(iii) If α_q is increasing in (0,1) and F_q is IHR, then F is IHR.
(iv) If α_q is decreasing in (0,1) and F_q is DFR, then F is DFR.

- Conditions to get preservation of aging classes for DD were given in Navarro, del Aguila, Sordo and Suarez-Llorens (submitted).
- For example:

Theorem

Let
$$F_q = q(F)$$
 and let $\alpha_q(u) = \frac{uq'(1-u)}{1-q(1-u)}$. Then:
(i) If α_q is decreasing in (0,1) and F is IHR, then F_q is IHR.
(ii) If α_q is increasing in (0,1) and F is DHR, then F_q is DHR.
(iii) If α_q is increasing in (0,1) and F_q is IHR, then F is IHR.
(iv) If α_q is decreasing in (0,1) and F_q is DFR, then F is DFR.

▲ @ ▶ ▲ ∃ ▶

- Inference results for distorted distributions (i.e. to estimate characteristics of F from a *distorted* sample from F_q) were obtained in:
- Balakrishnan, Ng and Navarro (2011, IEEE Trans. Reliab. 60, 426-440).
- Balakrishnan, Ng and Navarro (2011, J. Nonparmetric Stat. 23, 741-752).
- Ng, Navarro and Balakrishnan (2012, Metrika 75, 367-388).

- Inference results for distorted distributions (i.e. to estimate characteristics of F from a *distorted* sample from F_q) were obtained in:
- Balakrishnan, Ng and Navarro (2011, IEEE Trans. Reliab. 60, 426-440).
- Balakrishnan, Ng and Navarro (2011, J. Nonparmetric Stat. 23, 741-752).
- Ng, Navarro and Balakrishnan (2012, Metrika 75, 367-388).

- Inference results for distorted distributions (i.e. to estimate characteristics of F from a *distorted* sample from F_q) were obtained in:
- Balakrishnan, Ng and Navarro (2011, IEEE Trans. Reliab. 60, 426-440).
- Balakrishnan, Ng and Navarro (2011, J. Nonparmetric Stat. 23, 741-752).
- Ng, Navarro and Balakrishnan (2012, Metrika 75, 367-388).

- Inference results for distorted distributions (i.e. to estimate characteristics of F from a *distorted* sample from F_q) were obtained in:
- Balakrishnan, Ng and Navarro (2011, IEEE Trans. Reliab. 60, 426-440).
- Balakrishnan, Ng and Navarro (2011, J. Nonparmetric Stat. 23, 741-752).
- Ng, Navarro and Balakrishnan (2012, Metrika 75, 367-388).

Definition Generalized Distorted Distributions (GDD)

The generalized distorted distribution associated to F₁,...F_n and to an increasing right continuous generalized distortion function Q : [0,1]ⁿ → [0,1] such that Q(0,...,0) = 0 and Q(1,...,1) = 1, is

$$F_Q(t) = Q(F_1(t), \dots, F_n(t)),$$
 (3.3)

see Navarro, del Aguila, Sordo and Suarez-Llorens (submitted).

For the reliability functions we have

$$\overline{F}_Q(t) = \overline{Q}(\overline{F}_1(t), \dots, \overline{F}_n(t)), \qquad (3.4)$$

where $\overline{Q}(u_1, \ldots, u_n) = 1 - Q(1 - u_1, \ldots, 1 - u_n)$ is the dual generalized distortion function.

• \overline{Q} is also increasing in $(0,1)^n$ from $\overline{Q}(0,\ldots,0) = 0$ to $\overline{Q}(1,\ldots,1) = 1.$

Definition Generalized Distorted Distributions (GDD)

The generalized distorted distribution associated to F₁,...F_n and to an increasing right continuous generalized distortion function Q : [0,1]ⁿ → [0,1] such that Q(0,...,0) = 0 and Q(1,...,1) = 1, is

$$F_Q(t) = Q(F_1(t), \dots, F_n(t)),$$
 (3.3)

see Navarro, del Aguila, Sordo and Suarez-Llorens (submitted).

• For the reliability functions we have

$$\overline{F}_Q(t) = \overline{Q}(\overline{F}_1(t), \dots, \overline{F}_n(t)), \qquad (3.4)$$

where $\overline{Q}(u_1, \ldots, u_n) = 1 - Q(1 - u_1, \ldots, 1 - u_n)$ is the dual generalized distortion function.

• \overline{Q} is also increasing in $(0,1)^n$ from $\overline{Q}(0,\ldots,0) = 0$ to $\overline{Q}(1,\ldots,1) = 1.$

Definition Generalized Distorted Distributions (GDD)

The generalized distorted distribution associated to F₁,...F_n and to an increasing right continuous generalized distortion function Q : [0,1]ⁿ → [0,1] such that Q(0,...,0) = 0 and Q(1,...,1) = 1, is

$$F_Q(t) = Q(F_1(t), \dots, F_n(t)),$$
 (3.3)

see Navarro, del Aguila, Sordo and Suarez-Llorens (submitted).

• For the reliability functions we have

$$\overline{F}_Q(t) = \overline{Q}(\overline{F}_1(t), \dots, \overline{F}_n(t)), \qquad (3.4)$$

where $\overline{Q}(u_1, \ldots, u_n) = 1 - Q(1 - u_1, \ldots, 1 - u_n)$ is the dual generalized distortion function.

• \overline{Q} is also increasing in $(0,1)^n$ from $\overline{Q}(0,\ldots,0) = 0$ to $\overline{Q}(1,\ldots,1) = 1.$

Particular case of Generalized Distorted Distributions

- The OS in the general case (includes the INID case) are GDD.
- The CS in the general case (includes the INID case) are GDD.
- Ordering and aging classes properties for GDD were given in Navarro, del Aguila, Sordo and Suarez-Llorens (submitted), see also Marshall, Olkin and Arnold (2011, Springer).

Particular case of Generalized Distorted Distributions

- The OS in the general case (includes the INID case) are GDD.
- The CS in the general case (includes the INID case) are GDD.
- Ordering and aging classes properties for GDD were given in Navarro, del Aguila, Sordo and Suarez-Llorens (submitted), see also Marshall, Olkin and Arnold (2011, Springer).

- The OS in the general case (includes the INID case) are GDD.
- The CS in the general case (includes the INID case) are GDD.
- Ordering and aging classes properties for GDD were given in Navarro, del Aguila, Sordo and Suarez-Llorens (submitted), see also Marshall, Olkin and Arnold (2011, Springer).

OSDA Murcia 2012 Order statistics and related concepts

Э

• $X_{2:3}$ has the path sets $P_1 = \{1, 2\}$, $P_2 = \{1, 3\}$, and $P_3 = \{2, 3\}$.

• Then

 $\overline{F}_{T}(t) = \overline{F}_{\{1,2\}}(t) + \overline{F}_{\{1,3\}}(t) + \overline{F}_{\{2,3\}}(t) - 2\overline{F}_{\{1,2,3\}}(t).$

• Therefore, in the ID case, we have

 $\overline{F}_{\mathcal{T}}(t) = \mathcal{K}(\overline{F}(t), \overline{F}(t), 1) + \mathcal{K}(\overline{F}(t), 1, \overline{F}(t)) + \mathcal{K}(1, \overline{F}(t), \overline{F}(t)) \\ - 2\mathcal{K}(\overline{F}(t), \overline{F}(t), \overline{F}(t)).$

- That is $\overline{F}_T(t) = q(\overline{F}(t))$ where q(u) = K(u, u, 1) + K(u, 1, u) + K(u, u, 1) - 2K(u, u, u).
- In the EXC case $q(u) = q_{2:3}^{EXC}(u) = 3K(u, u, 1) 2K(u, u, u)$.
- In the IID case $q(u) = q_{2:3}^{IID}(u) = 3u^2 2u^3$.

イロト イポト イヨト イヨト

• $X_{2:3}$ has the path sets $P_1 = \{1, 2\}$, $P_2 = \{1, 3\}$, and $P_3 = \{2, 3\}$.

Then

$$\overline{F}_{\mathcal{T}}(t) = \overline{F}_{\{1,2\}}(t) + \overline{F}_{\{1,3\}}(t) + \overline{F}_{\{2,3\}}(t) - 2\overline{F}_{\{1,2,3\}}(t).$$

• Therefore, in the ID case, we have

 $\overline{F}_{\mathcal{T}}(t) = \mathcal{K}(\overline{F}(t), \overline{F}(t), 1) + \mathcal{K}(\overline{F}(t), 1, \overline{F}(t)) + \mathcal{K}(1, \overline{F}(t), \overline{F}(t)) \\ - 2\mathcal{K}(\overline{F}(t), \overline{F}(t), \overline{F}(t)).$

- That is $\overline{F}_{T}(t) = q(\overline{F}(t))$ where q(u) = K(u, u, 1) + K(u, 1, u) + K(u, u, 1) - 2K(u, u, u).
- In the EXC case $q(u) = q_{2:3}^{EXC}(u) = 3K(u, u, 1) 2K(u, u, u)$.
- In the IID case $q(u) = q_{2:3}^{IID}(u) = 3u^2 2u^3$.

イロト イポト イヨト イヨト

• $X_{2:3}$ has the path sets $P_1 = \{1, 2\}$, $P_2 = \{1, 3\}$, and $P_3 = \{2, 3\}$.

Then

$$\overline{F}_{\mathcal{T}}(t) = \overline{F}_{\{1,2\}}(t) + \overline{F}_{\{1,3\}}(t) + \overline{F}_{\{2,3\}}(t) - 2\overline{F}_{\{1,2,3\}}(t).$$

• Therefore, in the ID case, we have

 $\overline{F}_{\mathcal{T}}(t) = \mathcal{K}(\overline{F}(t), \overline{F}(t), 1) + \mathcal{K}(\overline{F}(t), 1, \overline{F}(t)) + \mathcal{K}(1, \overline{F}(t), \overline{F}(t)) \\ - 2\mathcal{K}(\overline{F}(t), \overline{F}(t), \overline{F}(t)).$

• That is
$$\overline{F}_{\mathcal{T}}(t) = q(\overline{F}(t))$$
 where
 $q(u) = K(u, u, 1) + K(u, 1, u) + K(u, u, 1) - 2K(u, u, u).$

- In the EXC case $q(u) = q_{2:3}^{EXC}(u) = 3K(u, u, 1) 2K(u, u, u)$.
- In the IID case $q(u) = q_{2:3}^{IID}(u) = 3u^2 2u^3$.

イロト イポト イヨト イヨト

• $X_{2:3}$ has the path sets $P_1 = \{1, 2\}$, $P_2 = \{1, 3\}$, and $P_3 = \{2, 3\}$.

Then

$$\overline{F}_{\mathcal{T}}(t) = \overline{F}_{\{1,2\}}(t) + \overline{F}_{\{1,3\}}(t) + \overline{F}_{\{2,3\}}(t) - 2\overline{F}_{\{1,2,3\}}(t).$$

• Therefore, in the ID case, we have

$$\overline{F}_{\mathcal{T}}(t) = \mathcal{K}(\overline{F}(t), \overline{F}(t), 1) + \mathcal{K}(\overline{F}(t), 1, \overline{F}(t)) + \mathcal{K}(1, \overline{F}(t), \overline{F}(t)) \\ - 2\mathcal{K}(\overline{F}(t), \overline{F}(t), \overline{F}(t)).$$

- That is $\overline{F}_T(t) = q(\overline{F}(t))$ where q(u) = K(u, u, 1) + K(u, 1, u) + K(u, u, 1) - 2K(u, u, u).
- In the EXC case $q(u) = q_{2:3}^{EXC}(u) = 3K(u, u, 1) 2K(u, u, u)$.
- In the IID case $q(u) = q_{2:3}^{IID}(u) = 3u^2 2u^3$.

I ∃ ►

• $X_{2:3}$ has the path sets $P_1 = \{1, 2\}$, $P_2 = \{1, 3\}$, and $P_3 = \{2, 3\}$.

Then

$$\overline{F}_{\mathcal{T}}(t) = \overline{F}_{\{1,2\}}(t) + \overline{F}_{\{1,3\}}(t) + \overline{F}_{\{2,3\}}(t) - 2\overline{F}_{\{1,2,3\}}(t).$$

• Therefore, in the ID case, we have

$$\overline{F}_{\mathcal{T}}(t) = \mathcal{K}(\overline{F}(t), \overline{F}(t), 1) + \mathcal{K}(\overline{F}(t), 1, \overline{F}(t)) + \mathcal{K}(1, \overline{F}(t), \overline{F}(t)) \\ - 2\mathcal{K}(\overline{F}(t), \overline{F}(t), \overline{F}(t)).$$

- That is $\overline{F}_T(t) = q(\overline{F}(t))$ where q(u) = K(u, u, 1) + K(u, 1, u) + K(u, u, 1) - 2K(u, u, u).
- In the EXC case $q(u) = q_{2:3}^{EXC}(u) = 3K(u, u, 1) 2K(u, u, u)$.
- In the IID case $q(u) = q_{2:3}^{IID}(u) = 3u^2 2u^3$.

• $X_{2:3}$ has the path sets $P_1 = \{1, 2\}$, $P_2 = \{1, 3\}$, and $P_3 = \{2, 3\}$.

Then

$$\overline{F}_{\mathcal{T}}(t) = \overline{F}_{\{1,2\}}(t) + \overline{F}_{\{1,3\}}(t) + \overline{F}_{\{2,3\}}(t) - 2\overline{F}_{\{1,2,3\}}(t).$$

• Therefore, in the ID case, we have

$$\overline{F}_{\mathcal{T}}(t) = \mathcal{K}(\overline{F}(t), \overline{F}(t), 1) + \mathcal{K}(\overline{F}(t), 1, \overline{F}(t)) + \mathcal{K}(1, \overline{F}(t), \overline{F}(t)) \\ - 2\mathcal{K}(\overline{F}(t), \overline{F}(t), \overline{F}(t)).$$

- That is $\overline{F}_T(t) = q(\overline{F}(t))$ where q(u) = K(u, u, 1) + K(u, 1, u) + K(u, u, 1) - 2K(u, u, u).
- In the EXC case $q(u) = q_{2:3}^{EXC}(u) = 3K(u, u, 1) 2K(u, u, u)$.
- In the IID case $q(u) = q_{2:3}^{IID}(u) = 3u^2 2u^3$.

As

$$\overline{F}_{\mathcal{T}}(t) = \overline{F}_{\{1,2\}}(t) + \overline{F}_{\{1,3\}}(t) + \overline{F}_{\{2,3\}}(t) - 2\overline{F}_{\{1,2,3\}}(t).$$

• In the general case, we have

$$\overline{F}_{T}(t) = K(\overline{F}_{1}(t), \overline{F}_{2}(t), 1) + K(\overline{F}_{1}(t), 1, \overline{F}_{3}(t)) + K(1, \overline{F}_{2}(t), \overline{F}_{3}(t)) - 2K(\overline{F}_{1}(t), \overline{F}_{2}(t), \overline{F}_{3}(t)).$$

• That is
$$\overline{F}_T(t) = Q(\overline{F}_1(t), \overline{F}_2(t), \overline{F}_3(t))$$
 where

$$Q(u_1, u_2, u_3) = K(u_1, u_2, 1) + K(u_1, 1, u_3) + K(u_1, u_2, 1) - 2K(u_1, u_2, u_3).$$

• In the I case:

$$Q(u_1, u_2, u_3) = u_1 u_2 + u_1 u_3 + u_1 u_2 - 2u_1 u_2 u_3.$$

(日) (四) (王) (王) (王)

Э

As

$$\overline{F}_{\mathcal{T}}(t) = \overline{F}_{\{1,2\}}(t) + \overline{F}_{\{1,3\}}(t) + \overline{F}_{\{2,3\}}(t) - 2\overline{F}_{\{1,2,3\}}(t).$$

• In the general case, we have

$$\begin{split} \overline{F}_{T}(t) &= \mathcal{K}(\overline{F}_{1}(t),\overline{F}_{2}(t),1) + \mathcal{K}(\overline{F}_{1}(t),1,\overline{F}_{3}(t)) \\ &+ \mathcal{K}(1,\overline{F}_{2}(t),\overline{F}_{3}(t)) - 2\mathcal{K}(\overline{F}_{1}(t),\overline{F}_{2}(t),\overline{F}_{3}(t)). \end{split}$$

• That is
$$\overline{F}_T(t) = Q(\overline{F}_1(t), \overline{F}_2(t), \overline{F}_3(t))$$
 where

$$Q(u_1, u_2, u_3) = K(u_1, u_2, 1) + K(u_1, 1, u_3) + K(u_1, u_2, 1) - 2K(u_1, u_2, u_3).$$

• In the I case:

$$Q(u_1, u_2, u_3) = u_1 u_2 + u_1 u_3 + u_1 u_2 - 2u_1 u_2 u_3.$$

イロト イヨト イヨト イヨト

Э

As

$$\overline{F}_{\mathcal{T}}(t) = \overline{F}_{\{1,2\}}(t) + \overline{F}_{\{1,3\}}(t) + \overline{F}_{\{2,3\}}(t) - 2\overline{F}_{\{1,2,3\}}(t).$$

• In the general case, we have

$$\begin{split} \overline{F}_{\mathcal{T}}(t) &= \mathcal{K}(\overline{F}_1(t), \overline{F}_2(t), 1) + \mathcal{K}(\overline{F}_1(t), 1, \overline{F}_3(t)) \\ &+ \mathcal{K}(1, \overline{F}_2(t), \overline{F}_3(t)) - 2\mathcal{K}(\overline{F}_1(t), \overline{F}_2(t), \overline{F}_3(t)). \end{split}$$

• That is
$$\overline{F}_{T}(t) = Q(\overline{F}_{1}(t), \overline{F}_{2}(t), \overline{F}_{3}(t))$$
 where
 $Q(u_{1}, u_{2}, u_{3}) = K(u_{1}, u_{2}, 1) + K(u_{1}, 1, u_{3}) + K(u_{1}, u_{2}, 1)$
 $- 2K(u_{1}, u_{2}, u_{3}).$

• In the I case:

$$Q(u_1, u_2, u_3) = u_1 u_2 + u_1 u_3 + u_1 u_2 - 2 u_1 u_2 u_3.$$

A B > A B >

< ∃ >

Э

As

$$\overline{F}_{\mathcal{T}}(t) = \overline{F}_{\{1,2\}}(t) + \overline{F}_{\{1,3\}}(t) + \overline{F}_{\{2,3\}}(t) - 2\overline{F}_{\{1,2,3\}}(t).$$

• In the general case, we have

$$\begin{split} \overline{F}_{\mathcal{T}}(t) &= \mathcal{K}(\overline{F}_1(t),\overline{F}_2(t),1) + \mathcal{K}(\overline{F}_1(t),1,\overline{F}_3(t)) \\ &+ \mathcal{K}(1,\overline{F}_2(t),\overline{F}_3(t)) - 2\mathcal{K}(\overline{F}_1(t),\overline{F}_2(t),\overline{F}_3(t)). \end{split}$$

• That is
$$\overline{F}_{T}(t) = Q(\overline{F}_{1}(t), \overline{F}_{2}(t), \overline{F}_{3}(t))$$
 where
 $Q(u_{1}, u_{2}, u_{3}) = K(u_{1}, u_{2}, 1) + K(u_{1}, 1, u_{3}) + K(u_{1}, u_{2}, 1) + 2K(u_{1}, u_{2}, u_{3}).$

• In the I case:

$$Q(u_1, u_2, u_3) = u_1 u_2 + u_1 u_3 + u_1 u_2 - 2u_1 u_2 u_3.$$

<->→ □→ < ≥→</>

< ∃⇒

æ

- A graph (or network) is an ordered pair G = (V, E) comprising a set V of nodes together with a set E of edges, which are 2-element subsets of V.
- A directed graph is an ordered pair G = (V, E) comprising a set V of nodes together with a set E of edges, which are elements of V × V.
- Let us assume that in a graph (directed graph) the nodes cannot fail but the edges can fail. Let X_1, \ldots, X_n be the edges lifetimes.
- Suppose that we want to study a given connectivity problem (e.g. the connection of all the nodes). Let T_N be the lifetime of the network for this connectivity problem. Then

$$T_N = \phi(X_1,\ldots,X_n)$$

for a coherent system ϕ .

- A graph (or network) is an ordered pair G = (V, E) comprising a set V of nodes together with a set E of edges, which are 2-element subsets of V.
- A directed graph is an ordered pair G = (V, E) comprising a set V of nodes together with a set E of edges, which are elements of V × V.
- Let us assume that in a graph (directed graph) the nodes cannot fail but the edges can fail. Let X_1, \ldots, X_n be the edges lifetimes.
- Suppose that we want to study a given connectivity problem (e.g. the connection of all the nodes). Let T_N be the lifetime of the network for this connectivity problem. Then

$$T_N = \phi(X_1, \ldots, X_n)$$

for a coherent system ϕ .

- A graph (or network) is an ordered pair G = (V, E) comprising a set V of nodes together with a set E of edges, which are 2-element subsets of V.
- A directed graph is an ordered pair G = (V, E) comprising a set V of nodes together with a set E of edges, which are elements of V × V.
- Let us assume that in a graph (directed graph) the nodes cannot fail but the edges can fail. Let X_1, \ldots, X_n be the edges lifetimes.
- Suppose that we want to study a given connectivity problem (e.g. the connection of all the nodes). Let T_N be the lifetime of the network for this connectivity problem. Then

$$T_N = \phi(X_1,\ldots,X_n)$$

for a coherent system ϕ .

- A graph (or network) is an ordered pair G = (V, E) comprising a set V of nodes together with a set E of edges, which are 2-element subsets of V.
- A directed graph is an ordered pair G = (V, E) comprising a set V of nodes together with a set E of edges, which are elements of V × V.
- Let us assume that in a graph (directed graph) the nodes cannot fail but the edges can fail. Let X_1, \ldots, X_n be the edges lifetimes.
- Suppose that we want to study a given connectivity problem (e.g. the connection of all the nodes). Let T_N be the lifetime of the network for this connectivity problem. Then

$$T_N = \phi(X_1, \ldots, X_n)$$

for a coherent system ϕ .

イロト イヨト イヨト イヨト

æ

イロト イヨト イヨト イヨト

æ

イロト イヨト イヨト イヨト

æ

→ 同 ト → 三 ト

< ∃⇒

æ

→ 同 ト → 三 ト

프 🕨 🗉 프

.

</l>
< □ > < □ >

< ∃ >

æ

イロト イヨト イヨト イヨト

Э

▲ □ > < □ >

< ∃ >

æ

Network

▲ □ > < □ >

- ∢ ≣ ▶

æ

DQC

Path sets:

▲ □ > < □ >

- ∢ ≣ ▶

æ

Path sets:

 $min(X_1, max(X_2, X_3))$

(日) (部) (E) (E)

æ

.

What is the best way to connect three nodes with three edges?

Network

٠

Coherent system

・ロト ・回ト ・ヨト ・ヨト

æ

Coherent system

2-out-of-3

$$X_{2:3} \ge \min(X_1, \max(X_2, X_3))$$

▲ □ ► ▲ □ ►

• For the complete references, please visit my personal web page:

https://webs.um.es/jorgenav/

• Thank you for your attention!!

• For the complete references, please visit my personal web page:

```
https://webs.um.es/jorgenav/
```

• Thank you for your attention!!

→ Ξ →