Order statistics and related concepts

Jorge Navarro ${ }^{1}$,
Universidad de Murcia, Spain

E-mail: jorgenav@um.es

${ }^{1}$ Supported by Ministerio de Ciencia y Tecnología under grant MTM2009-08311 and Fundación Séneca under grant $08627 / \mathrm{PI} / 08$.

Order statistics

- OS IID case

OSDA Murcia 2012

Notation

- X_{1}, \ldots, X_{n} IID random variables.
- X_{1}, \ldots, X_{n} exchangeable (EXC), i.e., for any σ

- $\left(X_{1}, \ldots, X_{n}\right)$ an arbitrary random vector with joint distribution

and with joint reliability

$$
\bar{F}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{Pr}\left(x_{1}>x_{1}, \ldots, x_{n}>x_{n}\right) .
$$

- Let $X_{1: n}, \ldots, X_{n: n}$ be the associated OS.
- Let $F_{i: n}(t)=\operatorname{Pr}\left(X_{i \cdot n} \leq t\right)$ be the distribution function (DF).

Notation

- X_{1}, \ldots, X_{n} IID random variables.
- X_{1}, \ldots, X_{n} exchangeable (EXC), i.e., for any σ

$$
\left(X_{1}, \ldots, X_{n}\right)=\operatorname{st}\left(X_{\sigma(1)}, \ldots, X_{\sigma(n)}\right)
$$

- $\left(X_{1}, \ldots, X_{n}\right)$ an arbitrary random vector with joint distribution

$$
\mathbf{F}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{Pr}\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right)
$$

and with joint reliability

$$
\bar{F}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{Pr}\left(x_{1}>x_{1}, \ldots, x_{n}>x_{n}\right) .
$$

- Let $X_{1: n}, \ldots, X_{n: n}$ be the associated OS.
- Let $F_{i: n}(t)=\operatorname{Pr}\left(X_{i: n} \leq t\right)$ be the distribution function (DF)

Notation

- X_{1}, \ldots, X_{n} IID random variables.
- X_{1}, \ldots, X_{n} exchangeable (EXC), i.e., for any σ

$$
\left(X_{1}, \ldots, X_{n}\right)=\operatorname{st}\left(X_{\sigma(1)}, \ldots, X_{\sigma(n)}\right)
$$

- $\left(X_{1}, \ldots, X_{n}\right)$ an arbitrary random vector with joint distribution

$$
\mathbf{F}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{Pr}\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right)
$$

and with joint reliability

$$
\overline{\mathbf{F}}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{Pr}\left(X_{1}>x_{1}, \ldots, X_{n}>x_{n}\right) .
$$

- Let $X_{1: n}, \ldots, X_{n: n}$ be the associated $O S$.
- Let $F_{i: n}(t)=\operatorname{Pr}\left(X_{i: n} \leq t\right)$ be the distribution function (DF).

Notation

- X_{1}, \ldots, X_{n} IID random variables.
- X_{1}, \ldots, X_{n} exchangeable (EXC), i.e., for any σ

$$
\left(X_{1}, \ldots, X_{n}\right)=\operatorname{st}\left(X_{\sigma(1)}, \ldots, X_{\sigma(n)}\right)
$$

- $\left(X_{1}, \ldots, X_{n}\right)$ an arbitrary random vector with joint distribution

$$
\mathbf{F}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{Pr}\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right)
$$

and with joint reliability

$$
\overline{\mathbf{F}}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{Pr}\left(X_{1}>x_{1}, \ldots, X_{n}>x_{n}\right) .
$$

- Let $X_{1: n}, \ldots, X_{n: n}$ be the associated OS .
- Let $F_{i: n}(t)=\operatorname{Pr}\left(X_{i: n} \leq t\right)$ be the distribution function (DF).

Notation

- X_{1}, \ldots, X_{n} IID random variables.
- X_{1}, \ldots, X_{n} exchangeable (EXC), i.e., for any σ

$$
\left(X_{1}, \ldots, X_{n}\right)=s T\left(X_{\sigma(1)}, \ldots, X_{\sigma(n)}\right)
$$

- $\left(X_{1}, \ldots, X_{n}\right)$ an arbitrary random vector with joint distribution

$$
\mathbf{F}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{Pr}\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right)
$$

and with joint reliability

$$
\overline{\mathbf{F}}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{Pr}\left(X_{1}>x_{1}, \ldots, X_{n}>x_{n}\right) .
$$

- Let $X_{1: n}, \ldots, X_{n: n}$ be the associated OS.
- Let $F_{i: n}(t)=\operatorname{Pr}\left(X_{i: n} \leq t\right)$ be the distribution function (DF).

Generalized mixture representations

- In the IID case:

$$
\begin{gathered}
\qquad F_{i: n}(t)=\sum_{j=i}^{n}\binom{n}{j} F^{j}(t) \bar{F}^{n-j}(t), \\
\text { where } F(t)=\operatorname{Pr}\left(X_{i} \leq t\right)=1-\bar{F}(t)
\end{gathered}
$$

- Also in the IID case:

where $F_{j: j}(t)=F^{j}(t)$ and $q_{i: n}(u)$ is an increasing polinomial.
- In the EXC case the left hand side of (1.1) holds with

- Some coefficients in (1.1) are negative.

Generalized mixture representations

- In the IID case:

$$
F_{i: n}(t)=\sum_{j=i}^{n}\binom{n}{j} F^{j}(t) \bar{F}^{n-j}(t)
$$

where $F(t)=\operatorname{Pr}\left(X_{i} \leq t\right)=1-\bar{F}(t)$.

- Also in the IID case:

$$
\begin{equation*}
F_{i: n}(t)=\sum_{j=i}^{n}(-1)^{j-i}\binom{n}{j}\binom{j-1}{i-1} F_{j: j}(t)=q_{i: n}(F(t)), \tag{1.1}
\end{equation*}
$$

where $F_{j: j}(t)=F^{j}(t)$ and $q_{i: n}(u)$ is an increasing polinomial.

- In the EXC case the left hand side of (1.1) holds with

- Some coefficients in (1.1) are negative.

Generalized mixture representations

- In the IID case:

$$
F_{i: n}(t)=\sum_{j=i}^{n}\binom{n}{j} F^{j}(t) \bar{F}^{n-j}(t)
$$

where $F(t)=\operatorname{Pr}\left(X_{i} \leq t\right)=1-\bar{F}(t)$.

- Also in the IID case:

$$
\begin{equation*}
F_{i: n}(t)=\sum_{j=i}^{n}(-1)^{j-i}\binom{n}{j}\binom{j-1}{i-1} F_{j: j}(t)=q_{i: n}(F(t)), \tag{1.1}
\end{equation*}
$$

where $F_{j: j}(t)=F^{j}(t)$ and $q_{i: n}(u)$ is an increasing polinomial.

- In the EXC case the left hand side of (1.1) holds with

$$
F_{j: j}(t)=\mathbf{F}(\underbrace{t, \ldots, t}_{j}, \underbrace{\infty, \ldots, \infty}_{n-j}) .
$$

Generalized mixture representations

- In the IID case:

$$
F_{i: n}(t)=\sum_{j=i}^{n}\binom{n}{j} F^{j}(t) \bar{F}^{n-j}(t)
$$

where $F(t)=\operatorname{Pr}\left(X_{i} \leq t\right)=1-\bar{F}(t)$.

- Also in the IID case:

$$
\begin{equation*}
F_{i: n}(t)=\sum_{j=i}^{n}(-1)^{j-i}\binom{n}{j}\binom{j-1}{i-1} F_{j: j}(t)=q_{i: n}(F(t)), \tag{1.1}
\end{equation*}
$$

where $F_{j: j}(t)=F^{j}(t)$ and $q_{i: n}(u)$ is an increasing polinomial.

- In the EXC case the left hand side of (1.1) holds with

- Some coefficients in (1.1) are negative.

Stochastic orderings

- $X \leq_{S T} Y \Leftrightarrow \bar{F}_{X}(t) \leq \bar{F}_{Y}(t)$ stochastic order.
 residual life order.

order.

Stochastic orderings

－$X \leq_{S T} Y \Leftrightarrow \bar{F}_{X}(t) \leq \bar{F}_{Y}(t)$ stochastic order．
－$X \leq_{H R} Y \Leftrightarrow h_{X}(t) \geq h_{Y}(t)$ ，hazard rate order．

residual life order

Stochastic orderings

- $X \leq_{S T} Y \Leftrightarrow \bar{F}_{X}(t) \leq \bar{F}_{Y}(t)$ stochastic order.
- $X \leq_{H R} Y \Leftrightarrow h_{X}(t) \geq h_{Y}(t)$, hazard rate order.
- $X \leq_{H R} Y \Leftrightarrow(X-t \mid X>t) \leq_{S T}(Y-t \mid Y>t)$ for all t.
residual life order
- $X \leq_{I R} Y \Leftrightarrow f_{Y}(t) / f_{X}(t)$ is nondecreasing, likelihood ratio order.

Stochastic orderings

- $X \leq_{S T} Y \Leftrightarrow \bar{F}_{X}(t) \leq \bar{F}_{Y}(t)$ stochastic order.
- $X \leq_{H R} Y \Leftrightarrow h_{X}(t) \geq h_{Y}(t)$, hazard rate order.
- $X \leq_{H R} Y \Leftrightarrow(X-t \mid X>t) \leq_{S T}(Y-t \mid Y>t)$ for all t.
- $X \leq_{m r L} Y \Leftrightarrow E(X-t \mid X>t) \leq E(Y-t \mid Y>t)$, mean residual life order.

Stochastic orderings

- $X \leq_{S T} Y \Leftrightarrow \bar{F}_{X}(t) \leq \bar{F}_{Y}(t)$ stochastic order.
- $X \leq_{H R} Y \Leftrightarrow h_{X}(t) \geq h_{Y}(t)$, hazard rate order.
- $X \leq_{H R} Y \Leftrightarrow(X-t \mid X>t) \leq_{S T}(Y-t \mid Y>t)$ for all t.
- $X \leq_{m r l} Y \Leftrightarrow E(X-t \mid X>t) \leq E(Y-t \mid Y>t)$, mean residual life order.
- $X \leq_{L R} Y \Leftrightarrow f_{Y}(t) / f_{X}(t)$ is nondecreasing, likelihood ratio order.

Stochastic orderings

- $X \leq_{S T} Y \Leftrightarrow \bar{F}_{X}(t) \leq \bar{F}_{Y}(t)$ stochastic order.
- $X \leq_{H R} Y \Leftrightarrow h_{X}(t) \geq h_{Y}(t)$, hazard rate order.
- $X \leq_{H R} Y \Leftrightarrow(X-t \mid X>t) \leq_{s t}(Y-t \mid Y>t)$ for all t.
- $X \leq_{m r L} Y \Leftrightarrow E(X-t \mid X>t) \leq E(Y-t \mid Y>t)$, mean residual life order.
- $X \leq_{L R} Y \Leftrightarrow f_{Y}(t) / f_{X}(t)$ is nondecreasing, likelihood ratio order.
- $X \leq_{L R} Y \Leftrightarrow(X \mid s<X<t) \leq_{s T}(Y \mid s<Y<t)$ for $s<t$.

Stochastic orderings relationships

$$
\begin{aligned}
& E\left(X_{s, t}\right) \leq E\left(Y_{s, t}\right) \Rightarrow E\left(X_{t}\right) \leq E\left(Y_{t}\right) \Rightarrow E(X) \leq E(Y) \\
& X \leq_{D T M} Y \quad \Rightarrow \quad X \leq_{M R L} Y \quad \Rightarrow \quad X \leq_{M} Y
\end{aligned}
$$

$$
\begin{aligned}
& X_{s, t} \leq_{S T} Y_{s, t} \quad \Rightarrow \quad X_{t} \leq_{S T} Y_{t} \quad \Rightarrow \quad \bar{F}_{X} \leq \bar{F}_{Y}
\end{aligned}
$$

where $Z_{t}=(Z-t \mid Z>t)$ and $Z_{s, t}=(Z \mid s<Z<t)$ (see Navarro, Belzunce and Ruiz, PEIS, 1997).

Stochastic aging classes

- X is Increasing (Decreasing) Hazard rate IHR (DHR) if h is increasing.
- X is New Better (Worse) than Used NBU (NWU) if $\Leftrightarrow X \geq s t(X-t \mid X>t)$ for all $t>0$.
- X is Increasing (Decreasing) Likelihood Ratio ILR (DLR) if f is log-concave (log-convex).
- ILR $\Rightarrow I H R \Rightarrow N B U$

Stochastic aging classes

- X is Increasing (Decreasing) Hazard rate IHR (DHR) if h is increasing.
- X is IHR $\Leftrightarrow(X-s \mid X>s) \geq_{s t}(X-t \mid X>t)$ for all $s<t$.
- X is New Better (Worse) than Used NBU (NWU) if $\Leftrightarrow X \geq s T(X-t \mid X>t)$ for all $t>0$.
- X is Increasing (Decreasing) Likelihood Ratio ILR (DLR) if f is log-concave (log-convex).
- $I L R \Rightarrow I H R \Rightarrow N B U$

Stochastic aging classes

- X is Increasing (Decreasing) Hazard rate IHR (DHR) if h is increasing.
- X is IHR $\Leftrightarrow(X-s \mid X>s) \geq_{s t}(X-t \mid X>t)$ for all $s<t$.
- X is New Better (Worse) than Used NBU (NWU) if $\Leftrightarrow X \geq s t(X-t \mid X>t)$ for all $t>0$.
- $I L R \Rightarrow I H R \Rightarrow N B U$.

Stochastic aging classes

- X is Increasing (Decreasing) Hazard rate IHR (DHR) if h is increasing.
- X is IHR $\Leftrightarrow(X-s \mid X>s) \geq_{s t}(X-t \mid X>t)$ for all $s<t$.
- X is New Better (Worse) than Used NBU (NWU) if $\Leftrightarrow X \geq s t(X-t \mid X>t)$ for all $t>0$.
- X is Increasing (Decreasing) Likelihood Ratio ILR (DLR) if f is log-concave (log-convex).
- $I L R \Rightarrow I H R \Rightarrow N B U$

Stochastic aging classes

- X is Increasing (Decreasing) Hazard rate IHR (DHR) if h is increasing.
- X is $\operatorname{IHR} \Leftrightarrow(X-s \mid X>s) \geq_{s t}(X-t \mid X>t)$ for all $s<t$.
- X is New Better (Worse) than Used NBU (NWU) if $\Leftrightarrow X \geq s t(X-t \mid X>t)$ for all $t>0$.
- X is Increasing (Decreasing) Likelihood Ratio ILR (DLR) if f is log-concave (log-convex).
- X is ILR $\Leftrightarrow(X-s \mid X>s) \geq_{L R}(X-t \mid X>t)$ for all $s<t$.
- ILR $\Rightarrow I H R \Rightarrow N B U$

Stochastic aging classes

- X is Increasing (Decreasing) Hazard rate IHR (DHR) if h is increasing.
- X is IHR $\Leftrightarrow(X-s \mid X>s) \geq_{s t}(X-t \mid X>t)$ for all $s<t$.
- X is New Better (Worse) than Used NBU (NWU) if $\Leftrightarrow X \geq s t(X-t \mid X>t)$ for all $t>0$.
- X is Increasing (Decreasing) Likelihood Ratio ILR (DLR) if f is log-concave (log-convex).
- X is ILR $\Leftrightarrow(X-s \mid X>s) \geq_{L R}(X-t \mid X>t)$ for all $s<t$.
- $I L R \Rightarrow I H R \Rightarrow N B U$.

Ordering properties for OS

- In the IID case:

$$
X_{1: n} \leq_{L R} \cdots \leq_{L R} X_{n: n}
$$

- In the I case:

$$
X_{1: n} \leq H R \cdots \leq_{H R} X_{n: n} .
$$

- In the general case:

- In the IID case:

$$
F \quad I H R \Rightarrow F_{i: n} \quad I H R
$$

$N B U \Rightarrow F_{i: n} \quad N B U$, and
$\left\|R \Rightarrow F_{i n} \quad\right\| R$

Ordering properties for OS

- In the IID case:

$$
X_{1: n} \leq_{L R} \cdots \leq_{L R} X_{n: n}
$$

- In the I case:

$$
X_{1: n} \leq_{H R} \cdots \leq_{H R} X_{n: n} .
$$

- In the general case:

- In the IID case:

$$
F \quad I H R \Rightarrow F_{i: n} \quad I H R
$$

$N B U \Rightarrow F_{i: n} \quad N B U$, and
$\left\|R \Rightarrow F_{i n} \quad\right\| R$

Ordering properties for OS

- In the IID case:

$$
X_{1: n} \leq_{L R} \cdots \leq_{L R} X_{n: n}
$$

- In the I case:

$$
X_{1: n} \leq H R \cdots \leq_{H R} X_{n: n} .
$$

- In the general case:

$$
X_{1: n} \leq_{S T} \cdots \leq_{S T} X_{n: n}
$$

- In the IID case:

$$
\begin{aligned}
& F \quad I H R \Rightarrow F_{i: n} \quad I H R \\
& N B U \Rightarrow F_{i: n} \quad N B U, \text { and } \\
& F \quad I L R \Rightarrow F_{i: n} \quad I L R .
\end{aligned}
$$

Ordering properties for OS

- In the IID case:

$$
X_{1: n} \leq_{L R} \cdots \leq_{L R} X_{n: n}
$$

- In the I case:

$$
X_{1: n} \leq H R \cdots \leq H R X_{n: n} .
$$

- In the general case:

$$
X_{1: n} \leq_{S T} \cdots \leq_{S T} X_{n: n}
$$

- In the IID case:

$$
\begin{aligned}
& F \quad I H R \Rightarrow F_{i: n} \quad I H R \\
& F \quad N B U \Rightarrow F_{i: n} \quad N B U, \text { and } \\
& F \quad I L R \Rightarrow F_{i: n} \quad I L R .
\end{aligned}
$$

Generalized Order statistics (GOS)

Generalized Order statistics (GOS)

- For an arbitrary DF $F, G O S X_{1: n}^{G O S}, \ldots, X_{n: n}^{G O S}$ based on F can be obtained (Kamps, 1995, B. G. Teubner Stuttgart, p.49) via the quantile transformation

$$
X_{r: n}^{G O S}=F^{-1}\left(U_{r: n}^{G O S}\right), \quad r=1, \ldots, n
$$

where $\left(U_{1: n}^{*}, \ldots, U_{n: n}^{*}\right)$ has the joint PDF

$$
g^{G O S}\left(u_{1}, \ldots, u_{n}\right)=k\left(\prod_{j=1}^{n-1} \gamma_{j}\right)\left(\prod_{i=1}^{n-1}\left(1-u_{i}\right)^{m_{i}}\right)\left(1-u_{n}\right)^{k-1}
$$

for $0 \leq u_{1} \leq \ldots \leq u_{n}<1, n \geq 2, k \geq 1, \gamma_{1}, \ldots, \gamma_{n}>0$ and $m_{i}=\gamma_{i}-\gamma_{i+1}-1$.

Generalized Order statistics (GOS)

- If $\gamma_{1}, \ldots, \gamma_{n}$ are pairwise different, then

$$
\begin{equation*}
F_{r: n}^{\operatorname{GOS}}(t)=1-c_{r-1} \sum_{i=1}^{r} \frac{a_{i, r}}{\gamma_{i}}(1-F(t))^{\gamma_{i}}=q_{r: n}^{G O S}(F(t)) \tag{1.2}
\end{equation*}
$$

with the constants

$$
c_{r-1}=\prod_{j=1}^{r} \gamma_{j}, \quad a_{i, r}=\prod_{\substack{j=1 \\ j \neq i}}^{r} \frac{1}{\gamma_{j}-\gamma_{i}}, \quad 1 \leq i \leq r \leq n
$$

where the empty product \prod_{\emptyset} is defined to be 1 .

Ordering properties for GOS

- For the GOS we have:

$$
X_{1: n} \leq_{L R} \cdots \leq_{L R} X_{n: n}
$$

Cramer, Kamps and Raqab (2003, Applicationes Mathematicae) and Hu and Zhuang (2005, Statist Probab Lett).

- For the GOS we have:

(Kamps, 1995, B. G. Teubner Stuttgart, p. 172) and

under some conditions (see Cramer, 2004, Statist Probab Lett
and Chen, Xie and Hu, 2009, Statist Probab Lett 79).

Ordering properties for GOS

- For the GOS we have:

$$
X_{1: n} \leq_{L R} \cdots \leq_{L R} X_{n: n}
$$

Cramer, Kamps and Raqab (2003, Applicationes Mathematicae) and Hu and Zhuang (2005, Statist Probab Lett).

- For the GOS we have:

$$
F \quad I H R \Rightarrow F_{r: n}^{G O S} \quad I H R
$$

(Kamps, 1995, B. G. Teubner Stuttgart, p. 172) and

$$
F \quad I L R \Rightarrow F_{r: n}^{G O S} \quad I L R
$$

under some conditions (see Cramer, 2004, Statist Probab Lett and Chen, Xie and Hu, 2009, Statist Probab Lett 79).

Particular cases of GOS

- The GOS include:
- OS, IID case ($m_{1}=\cdots=m_{n-1}=0$ and $k=1$).
- kRV, k -th record values ($m_{1}=\cdots=m_{n-1}=-1$ and $k=1,2, \ldots)$.
- RV, record values ($m_{1}=\cdots=m_{n-1}=-1$ and $k=1$).
- SOS, Sequential Order Statistics under the Proportional Hazard Rate (PHR) model, i.e., with $\bar{F}_{r}=\bar{F}^{\alpha_{r}}$ for $r=1, \ldots, n\left(\gamma_{r}=(n-r+1) \alpha_{r}\right.$ and $\left.k=\alpha_{n}\right)$.

Particular cases of GOS

- The GOS include:
- OS, IID case ($m_{1}=\cdots=m_{n-1}=0$ and $k=1$).
- kRV, k-th record values $\left(m_{1}=\cdots=m_{n-1}=-1\right.$ and $k=1,2, \ldots)$.
- RV, record values ($m_{1}=\cdots=m_{n-1}=-1$ and $k=1$).
- SOS, Sequential Order Statistics under the Proportional Hazard Rate (PHR) model, i.e., with $\bar{F}_{r}=\bar{F}^{\alpha_{r}}$ for $r=1, \ldots, n\left(\gamma_{r}=(n-r+1) \alpha_{r}\right.$ and $\left.k=\alpha_{n}\right)$.

Particular cases of GOS

- The GOS include:
- OS, IID case ($m_{1}=\cdots=m_{n-1}=0$ and $k=1$).
- kRV, k-th record values ($m_{1}=\cdots=m_{n-1}=-1$ and $k=1,2, \ldots)$.
- RV, record values ($m_{1}=\cdots=m_{n-1}=-1$ and $k=1$).
- SOS, Sequential Order Statistics under the Proportional Hazard Rate (PHR) model, i.e., with $\bar{F}_{r}=\bar{F}^{\alpha_{r}}$ for $r=1, \ldots, n\left(\gamma_{r}=(n-r+1) \alpha_{r}\right.$ and $\left.k=\alpha_{n}\right)$

Particular cases of GOS

- The GOS include:
- OS, IID case ($m_{1}=\cdots=m_{n-1}=0$ and $k=1$).
- kRV, k-th record values ($m_{1}=\cdots=m_{n-1}=-1$ and $k=1,2, \ldots)$.
- RV, record values ($m_{1}=\cdots=m_{n-1}=-1$ and $k=1$).
- SOS, Sequential Order Statistics under the Proportional Hazard Rate (PHR) model, i.e., with $\bar{F}_{r}=\bar{F}^{\alpha_{r}}$ for $r=1, \ldots, n\left(\gamma_{r}=(n-r+1) \alpha_{r}\right.$ and $\left.k=\alpha_{n}\right)$

Particular cases of GOS

- The GOS include:
- OS, IID case ($m_{1}=\cdots=m_{n-1}=0$ and $k=1$).
- kRV, k-th record values ($m_{1}=\cdots=m_{n-1}=-1$ and $k=1,2, \ldots)$.
- RV, record values ($m_{1}=\cdots=m_{n-1}=-1$ and $k=1$).
- SOS, Sequential Order Statistics under the Proportional Hazard Rate (PHR) model, i.e., with $\bar{F}_{r}=\bar{F}^{\alpha_{r}}$ for $r=1, \ldots, n\left(\gamma_{r}=(n-r+1) \alpha_{r}\right.$ and $\left.k=\alpha_{n}\right)$.

Sequential Order statistics (SOS)

Sequential Order statistics (SOS)

- $\bar{F}_{1}, \ldots, \bar{F}_{n}$.

Sequential Order statistics (SOS)

- $\bar{F}_{1}, \ldots, \bar{F}_{n}$.
- $Y_{1}^{(1)}, \ldots, Y_{n}^{(1)}$ IID $\sim \bar{F}_{1}$.

Sequential Order statistics (SOS)

- $\bar{F}_{1}, \ldots, \bar{F}_{n}$.
- $Y_{1}^{(1)}, \ldots, Y_{n}^{(1)} \| \mathrm{ID} \sim \bar{F}_{1}$.
- $X_{1: n}^{\text {SOS }}=\min \left(Y_{1}^{(1)}, \ldots, Y_{n}^{(1)}\right)=t_{1}$.

Sequential Order statistics (SOS)

- $\bar{F}_{1}, \ldots, \bar{F}_{n}$.
- $Y_{1}^{(1)}, \ldots, Y_{n}^{(1)} \| \mathrm{ID} \sim \bar{F}_{1}$.
- $X_{1: n}^{\text {SOS }}=\min \left(Y_{1}^{(1)}, \ldots, Y_{n}^{(1)}\right)=t_{1}$.
- $Y_{1}^{(2)}, \ldots, Y_{n-1}^{(2)}$ IID $\sim \bar{F}_{2}(t) / \bar{F}_{2}\left(t_{1}\right)$ for $t \geq t_{1}$.

Sequential Order statistics (SOS)

- $\bar{F}_{1}, \ldots, \bar{F}_{n}$.
- $Y_{1}^{(1)}, \ldots, Y_{n}^{(1)} \mathrm{IID} \sim \bar{F}_{1}$.
- $X_{1: n}^{\operatorname{SOS}}=\min \left(Y_{1}^{(1)}, \ldots, Y_{n}^{(1)}\right)=t_{1}$.
- $Y_{1}^{(2)}, \ldots, Y_{n-1}^{(2)}$ IID $\sim \bar{F}_{2}(t) / \bar{F}_{2}\left(t_{1}\right)$ for $t \geq t_{1}$.
- $X_{2: n}^{S O S}=\min \left(Y_{1}^{(2)}, \ldots, Y_{n-1}^{(2)}\right)=t_{2}$.

Sequential Order statistics (SOS)

- $\bar{F}_{1}, \ldots, \bar{F}_{n}$.
- $Y_{1}^{(1)}, \ldots, Y_{n}^{(1)} \mathrm{IID} \sim \bar{F}_{1}$.
- $X_{1: n}^{\operatorname{SOS}}=\min \left(Y_{1}^{(1)}, \ldots, Y_{n}^{(1)}\right)=t_{1}$.
- $Y_{1}^{(2)}, \ldots, Y_{n-1}^{(2)}$ IID $\sim \bar{F}_{2}(t) / \bar{F}_{2}\left(t_{1}\right)$ for $t \geq t_{1}$.
- $X_{2: n}^{S O S}=\min \left(Y_{1}^{(2)}, \ldots, Y_{n-1}^{(2)}\right)=t_{2}$.
- $X_{n: n}^{S O S}=Y_{1}^{(n)} \sim \bar{F}_{n}(t) / \bar{F}_{n}\left(t_{n-1}\right)$ for $t \geq t_{n-1}$.

Sequential Order statistics (SOS)

- $\bar{F}_{1}, \ldots, \bar{F}_{n}$.
- $Y_{1}^{(1)}, \ldots, Y_{n}^{(1)}$ IID $\sim \bar{F}_{1}$.
- $X_{1: n}^{S O S}=\min \left(Y_{1}^{(1)}, \ldots, Y_{n}^{(1)}\right)=t_{1}$.
- $Y_{1}^{(2)}, \ldots, Y_{n-1}^{(2)}$ IID $\sim \bar{F}_{2}(t) / \bar{F}_{2}\left(t_{1}\right)$ for $t \geq t_{1}$.
- $X_{2: n}^{S O S}=\min \left(Y_{1}^{(2)}, \ldots, Y_{n-1}^{(2)}\right)=t_{2}$.
- $X_{n: n}^{\text {SOS }}=Y_{1}^{(n)} \sim \bar{F}_{n}(t) / \bar{F}_{n}\left(t_{n-1}\right)$ for $t \geq t_{n-1}$.

Sequential Order statistics (SOS)

- OS (IID case) are SOS when $\bar{F}_{1}=\cdots=\bar{F}_{n}$.
 random vector

- If $\bar{F}_{i}=\bar{F}^{\alpha_{i}}$ for $i=1, \ldots, n$ (PHR model), the SOS are GOS
- The SOS are not necessarily GOS
- The GOS are not necessarily SOS.

Sequential Order statistics (SOS)

- OS (IID case) are SOS when $\bar{F}_{1}=\cdots=\bar{F}_{n}$.
- $X_{1: n}^{S O S}, \ldots, X_{n: n}^{S O S}$ are the order statistics from an exchangeable random vector

$$
\left(X_{1}^{S O S}, \ldots, X_{n}^{S O S}\right)
$$

- If $\bar{F}_{i}=\bar{F}^{\alpha_{i}}$ for $i=1, \ldots, n$ (PHR model), the SOS are GOS
- The SOS are not necessarily GOS
- The GOS are not necessarily SOS.

Sequential Order statistics (SOS)

- OS (IID case) are SOS when $\bar{F}_{1}=\cdots=\bar{F}_{n}$.
- $X_{1: n}^{S O S}, \ldots, X_{n: n}^{S O S}$ are the order statistics from an exchangeable random vector

$$
\left(X_{1}^{S O S}, \ldots, X_{n}^{S O S}\right)
$$

- If $\bar{F}_{i}=\bar{F}^{\alpha_{i}}$ for $i=1, \ldots, n$ (PHR model), the SOS are GOS.
- The SOS are not necessarily GOS.
- The GOS are not necessarily SOS

Sequential Order statistics (SOS)

- OS (IID case) are SOS when $\bar{F}_{1}=\cdots=\bar{F}_{n}$.
- $X_{1: n}^{S O S}, \ldots, X_{n: n}^{S O S}$ are the order statistics from an exchangeable random vector

$$
\left(X_{1}^{S O S}, \ldots, X_{n}^{S O S}\right)
$$

- If $\bar{F}_{i}=\bar{F}^{\alpha_{i}}$ for $i=1, \ldots, n$ (PHR model), the SOS are GOS.
- The SOS are not necessarily GOS.
- The GOS are not necessarily SOS.

Sequential Order statistics (SOS)

- OS (IID case) are SOS when $\bar{F}_{1}=\cdots=\bar{F}_{n}$.
- $X_{1: n}^{S O S}, \ldots, X_{n: n}^{S O S}$ are the order statistics from an exchangeable random vector

$$
\left(X_{1}^{S O S}, \ldots, X_{n}^{S O S}\right)
$$

- If $\bar{F}_{i}=\bar{F}^{\alpha_{i}}$ for $i=1, \ldots, n$ (PHR model), the SOS are GOS.
- The SOS are not necessarily GOS.
- The GOS are not necessarily SOS.

Ordering properties for SOS

- The SOS are not necessarily HR ordered; see Navarro and Burkschat (2011, Naval Res Log).

- For the SOS

and

see Navarro and Burkschat (2011, Naval Res Log)

Ordering properties for SOS

- The SOS are not necessarily HR ordered; see Navarro and Burkschat (2011, Naval Res Log).
- For the SOS:

$$
\bar{F}_{1}, \ldots, \bar{F}_{n} \quad I H R \nRightarrow F_{r: n}^{S O S} \quad I H R
$$

and

$$
\bar{F}_{1}, \ldots, \bar{F}_{n} \quad I L R \nRightarrow F_{r: n}^{G O S} \quad I L R ;
$$

see Navarro and Burkschat (2011, Naval Res Log).

Figure: Hazard rate functions $h_{1: 2}^{S O S}$ (constant line) and $h_{2: 2}^{S O S}$ for the SOS obtained from $\bar{F}_{1}(t)=e^{-t}$ (exponential) and $\bar{F}_{2}(t)=e^{-t^{2}}$ (Weibull). The SOS are not HR ordered and $h_{2: 2}^{*}$ is not monotone.

Ordering properties for SOS

- Conditions for the HR, MRL and LR ordering of SOS were given in Navarro and Burkschat (2011, Naval Res Log).
- For example:

Theorem

Ordering properties for SOS

- Conditions for the HR, MRL and LR ordering of SOS were given in Navarro and Burkschat (2011, Naval Res Log).
- For example:

Theorem

Let $X_{1: n}^{S O S}, \ldots, X_{n: n}^{S O S}$ be the SOS based on $\bar{F}_{1}, \ldots, \bar{F}_{n}$ having hazard rate function h_{1}, \ldots, h_{n}. If h_{k} / h_{k+1} is increasing for $k=1, \ldots, i$, then $X_{i: n}^{S O S} \leq_{H R} X_{i+1: n}^{S O S}$.

Ordering properties for SOS

- Conditions for the preservation of IHR, IHRA, NBU and ILR classes under the formation of SOS were given in Navarro and Burkschat (2011, Probab Eng Inf Sci, to appear).

Theorem

- For more results, please go to PS9.

Ordering properties for SOS

- Conditions for the preservation of IHR, IHRA, NBU and ILR classes under the formation of SOS were given in Navarro and Burkschat (2011, Probab Eng Inf Sci, to appear).

Theorem

Let f_{i} be log-concave for $i=1,2, \ldots, r$ and $h_{j+1}-h_{j}$ be decreasing for $j=1,2, \ldots, r-1$. Then $X_{r: n}^{S O S}$ is ILR.

- For more results, please go to PS9.

Ordering properties for SOS

- Conditions for the preservation of IHR, IHRA, NBU and ILR classes under the formation of SOS were given in Navarro and Burkschat (2011, Probab Eng Inf Sci, to appear).

```
Theorem
Let \(f_{i}\) be log-concave for \(i=1,2, \ldots, r\) and \(h_{j+1}-h_{j}\) be decreasing for \(j=1,2, \ldots, r-1\). Then \(X_{r: n}^{S O S}\) is ILR.
```

- For more results, please go to PS9.

Coherent systems (CS)

Coherent systems- Exchangeable case

- Coherent systems $\phi=\phi\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}$ where $x_{i} \in\{0,1\}$, the structure function ϕ is nondecreasing and strictly increasing in x_{i} for at least one point $\left(x_{1}, \ldots, x_{n}\right)$, for $i=1, \ldots, n$.
- If X_{1}, \ldots, X_{n} are the component lifetimes, then there exist ϕ such that the system lifetime $T=\phi\left(X_{1}, \ldots, X_{n}\right)$
- $X_{1: n}, \ldots, X_{n: n}$ are the lifetimes of k-out-of- n systems.
- $T=X_{i: n}$ for $i=1, \ldots, n$.

Coherent systems- Exchangeable case

- Coherent systems $\phi=\phi\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}$ where $x_{i} \in\{0,1\}$, the structure function ϕ is nondecreasing and strictly increasing in x_{i} for at least one point $\left(x_{1}, \ldots, x_{n}\right)$, for $i=1, \ldots, n$.
- If X_{1}, \ldots, X_{n} are the component lifetimes, then there exist ϕ such that the system lifetime $T=\phi\left(X_{1}, \ldots, X_{n}\right)$.
- $X_{1: n}, \ldots, X_{n: n}$ are the lifetimes of k-out-of- n systems.
- $T=X_{i: n}$ for $i=1, \ldots, n$.

Coherent systems- Exchangeable case

- Coherent systems $\phi=\phi\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}$ where $x_{i} \in\{0,1\}$, the structure function ϕ is nondecreasing and strictly increasing in x_{i} for at least one point $\left(x_{1}, \ldots, x_{n}\right)$, for $i=1, \ldots, n$.
- If X_{1}, \ldots, X_{n} are the component lifetimes, then there exist ϕ such that the system lifetime $T=\phi\left(X_{1}, \ldots, X_{n}\right)$.
- $X_{1: n}, \ldots, X_{n: n}$ are the lifetimes of k-out-of- n systems.

Coherent systems- Exchangeable case

- Coherent systems $\phi=\phi\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}$ where $x_{i} \in\{0,1\}$, the structure function ϕ is nondecreasing and strictly increasing in x_{i} for at least one point $\left(x_{1}, \ldots, x_{n}\right)$, for $i=1, \ldots, n$.
- If X_{1}, \ldots, X_{n} are the component lifetimes, then there exist ϕ such that the system lifetime $T=\phi\left(X_{1}, \ldots, X_{n}\right)$.
- $X_{1: n}, \ldots, X_{n: n}$ are the lifetimes of k-out-of- n systems.
- $T=X_{i: n}$ for $i=1, \ldots, n$.

Coherent systems- IID and EXC case

- Samaniego (IEEE TR, 1985), IID case:

$$
\begin{equation*}
\bar{F}_{T}(t)=\sum_{i=1}^{n} p_{i} \bar{F}_{i: n}(t) \tag{2.1}
\end{equation*}
$$

where $p_{i}=\operatorname{Pr}\left(T=X_{i: n}\right)$.

- $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ is the signature of the system.
- p_{i} does not depend on F and

- Navarro and Rychlik (JMVA, 2007), (2.1) holds for EXC absolutely continuous joint distribution.
- Navarro, Samaniego, Balakrishnan and Bhathacharya (NRL, 2008), (2.1) holds for EXC r.v. when p is given by (2.2).

Coherent systems- IID and EXC case

- Samaniego (IEEE TR, 1985), IID case:

$$
\begin{equation*}
\bar{F}_{T}(t)=\sum_{i=1}^{n} p_{i} \bar{F}_{i: n}(t) \tag{2.1}
\end{equation*}
$$

where $p_{i}=\operatorname{Pr}\left(T=X_{i: n}\right)$.

- $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ is the signature of the system.
- p_{i} does not depend on F and

- Navarro and Rychlik (JMVA, 2007), (2.1) holds for EXC absolutely continuous joint distribution.
- Navarro, Samaniego, Balakrishnan and Bhathacharya (NRL, 2008), (2.1) holds for EXC r.v. when p is given by (2.2).

Coherent systems- IID and EXC case

- Samaniego (IEEE TR, 1985), IID case:

$$
\begin{equation*}
\bar{F}_{T}(t)=\sum_{i=1}^{n} p_{i} \bar{F}_{i: n}(t) \tag{2.1}
\end{equation*}
$$

where $p_{i}=\operatorname{Pr}\left(T=X_{i: n}\right)$.

- $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ is the signature of the system.
- p_{i} does not depend on \bar{F} and

$$
\begin{equation*}
p_{i}=\frac{\mid\left\{\sigma: \phi\left(x_{1}, \ldots, x_{n}\right)=x_{i: n}, \text { when } x_{\sigma(1)}<\ldots<x_{\sigma(n)}\right\} \mid}{n!} \tag{2.2}
\end{equation*}
$$

- Navarro and Rychlik (JMVA, 2007), (2.1) holds for EXC
absolutely continuous joint distribution.
- Navarro, Samaniego, Balakrishnan and Bhathacharya (NRL, 2008), (2.1) holds for EXC r.v. when p is given by (2.2).

Coherent systems- IID and EXC case

- Samaniego (IEEE TR, 1985), IID case:

$$
\begin{equation*}
\bar{F}_{T}(t)=\sum_{i=1}^{n} p_{i} \bar{F}_{i: n}(t) \tag{2.1}
\end{equation*}
$$

where $p_{i}=\operatorname{Pr}\left(T=X_{i: n}\right)$.

- $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ is the signature of the system.
- p_{i} does not depend on \bar{F} and

$$
\begin{equation*}
p_{i}=\frac{\mid\left\{\sigma: \phi\left(x_{1}, \ldots, x_{n}\right)=x_{i: n}, \text { when } x_{\sigma(1)}<\ldots<x_{\sigma(n)}\right\} \mid}{n!} \tag{2.2}
\end{equation*}
$$

- Navarro and Rychlik (JMVA, 2007), (2.1) holds for EXC absolutely continuous joint distribution.

Coherent systems- IID and EXC case

- Samaniego (IEEE TR, 1985), IID case:

$$
\begin{equation*}
\bar{F}_{T}(t)=\sum_{i=1}^{n} p_{i} \bar{F}_{i: n}(t) \tag{2.1}
\end{equation*}
$$

where $p_{i}=\operatorname{Pr}\left(T=X_{i: n}\right)$.

- $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ is the signature of the system.
- p_{i} does not depend on \bar{F} and

$$
\begin{equation*}
p_{i}=\frac{\mid\left\{\sigma: \phi\left(x_{1}, \ldots, x_{n}\right)=x_{i: n}, \text { when } x_{\sigma(1)}<\ldots<x_{\sigma(n)}\right\} \mid}{n!} \tag{2.2}
\end{equation*}
$$

- Navarro and Rychlik (JMVA, 2007), (2.1) holds for EXC absolutely continuous joint distribution.
- Navarro, Samaniego, Balakrishnan and Bhathacharya (NRL, 2008), (2.1) holds for EXC r.v. when \mathbf{p} is given by (2.2).

Mixed systems

- A mixed system of order n is a stochastic mixture of coherent systems of order n (Boland and Samaniego, 2004).
- From (2.1), in the EXC case, all the mixed systems of order n can be written as mixtures of $X_{1: n}, \ldots, X_{n: n}$.
- The vector with the coefficients in that representation is called the signature of the mixed system
- Conversely, any probability vector in the simplex $\left\{\mathbf{c} \in[0,1]^{n}: \sum_{i=1}^{n} c_{i}=1\right\}$ determines a mixed system with reliability

Mixed systems

- A mixed system of order n is a stochastic mixture of coherent systems of order n (Boland and Samaniego, 2004).
- From (2.1), in the EXC case, all the mixed systems of order n can be written as mixtures of $X_{1: n}, \ldots, X_{n: n}$.
- The vector with the coefficients in that representation is called the signature of the mixed system.
- Conversely, any probability vector in the simplex $\left\{\mathbf{c} \in[0,1]^{n}: \sum_{i=1}^{n} c_{i}=1\right\}$ determines a mixed system with reliability

Mixed systems

- A mixed system of order n is a stochastic mixture of coherent systems of order n (Boland and Samaniego, 2004).
- From (2.1), in the EXC case, all the mixed systems of order n can be written as mixtures of $X_{1: n}, \ldots, X_{n: n}$.
- The vector with the coefficients in that representation is called the signature of the mixed system.
- Conversely, any probability vector in the simplex determines a mixed system with reliability

Mixed systems

- A mixed system of order n is a stochastic mixture of coherent systems of order n (Boland and Samaniego, 2004).
- From (2.1), in the EXC case, all the mixed systems of order n can be written as mixtures of $X_{1: n}, \ldots, X_{n: n}$.
- The vector with the coefficients in that representation is called the signature of the mixed system.
- Conversely, any probability vector in the simplex $\left\{\mathbf{c} \in[0,1]^{n}: \sum_{i=1}^{n} c_{i}=1\right\}$ determines a mixed system with reliability

$$
\bar{F}_{T}(t)=\sum_{i=1}^{n} c_{i} \bar{F}_{i: n}(t)
$$

Mixtures of Order Statistics (MOS), EXC case

MOS EXC case

Generalized mixture representations

- Navarro, Ruiz and Sandoval (CSTM, 2007), if T has EXC components, then

$$
\begin{equation*}
\bar{F}_{T}(t)=\sum_{i=1}^{n} a_{i} \bar{F}_{1: i}(t) \tag{2.3}
\end{equation*}
$$

- $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ is the minimal signature of T
- a_{i} only depends on ϕ but can be negative and so (2.3) is a generalized mixture.
- In the IID case:

where $q_{\phi}(x)=\sum_{i=1}^{n} a_{i} x^{i}$ is the domination or reliability polynomial.

Generalized mixture representations

- Navarro, Ruiz and Sandoval (CSTM, 2007), if T has EXC components, then

$$
\begin{equation*}
\bar{F}_{T}(t)=\sum_{i=1}^{n} a_{i} \bar{F}_{1: i}(t) \tag{2.3}
\end{equation*}
$$

- $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ is the minimal signature of T.
- a_{i} only depends on ϕ but can be negative and so (2.3) is a generalized mixture.
- In the IID case:

where $q_{\phi}(x)=\sum_{i=1}^{n} a_{i} x^{i}$ is the domination or reliability polynomial.

Generalized mixture representations

- Navarro, Ruiz and Sandoval (CSTM, 2007), if T has EXC components, then

$$
\begin{equation*}
\bar{F}_{T}(t)=\sum_{i=1}^{n} a_{i} \bar{F}_{1: i}(t) \tag{2.3}
\end{equation*}
$$

- $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ is the minimal signature of T.
- a_{i} only depends on ϕ but can be negative and so (2.3) is a generalized mixture.
- In the IID case:

where $q_{\phi}(x)=\sum_{i=1}^{n} a_{i} x^{i}$ is the domination or reliability
polynomial.

Generalized mixture representations

- Navarro, Ruiz and Sandoval (CSTM, 2007), if T has EXC components, then

$$
\begin{equation*}
\bar{F}_{T}(t)=\sum_{i=1}^{n} a_{i} \bar{F}_{1: i}(t) \tag{2.3}
\end{equation*}
$$

- $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ is the minimal signature of T.
- a_{i} only depends on ϕ but can be negative and so (2.3) is a generalized mixture.
- In the IID case:

$$
\begin{equation*}
\bar{F}_{T}(t)=\sum_{i=1}^{n} a_{i} \bar{F}^{i}(t)=q_{\phi}(\bar{F}(t)) \tag{2.4}
\end{equation*}
$$

where $q_{\phi}(x)=\sum_{i=1}^{n} a_{i} x^{i}$ is the domination or reliability polynomial.

Generalized mixture representations

- A path set of T is a set such that if all the components in P work, then the system works.
- A minimal path set of T is a path set which does not contains other path sets.

where $\bar{F}_{P}(t)=\operatorname{Pr}\left(X_{P}>t\right)$.

Generalized mixture representations

- A path set of T is a set such that if all the components in P work, then the system works.
- A minimal path set of T is a path set which does not contains other path sets.

where $\bar{F}_{P}(t)=\operatorname{Pr}\left(X_{P}>t\right)$.

Generalized mixture representations

- A path set of T is a set such that if all the components in P work, then the system works.
- A minimal path set of T is a path set which does not contains other path sets.
- If P_{1}, \ldots, P_{r} are the minimal path sets of T, then $T=\max _{j=1, \ldots, r} X_{P_{j}}$, where $X_{P}=\min _{i \in P} X_{i}$.

$$
\begin{aligned}
\bar{F}_{T}(t) & =\operatorname{Pr}\left(\max _{j=1, \ldots, r} X_{P_{j}}>t\right) \\
& =\operatorname{Pr}\left(\cup_{j=1, \ldots, r}\left\{X_{P_{j}}>t\right\}\right) \\
& =\sum_{i=1}^{r} \bar{F}_{P_{i}}(t)-\sum_{i \neq j} \bar{F}_{P_{i} \cup P_{j}}(t)+\cdots \pm \bar{F}_{P_{1} \cup \ldots P_{r}}(t)
\end{aligned}
$$

where $\bar{F}_{P}(t)=\operatorname{Pr}\left(X_{P}>t\right)$.

Generalized mixture representations

- If K is the survival copula of $\left(X_{1}, \ldots, X_{n}\right)$, then

$$
\overline{\mathbf{F}}\left(x_{1}, \ldots, x_{n}\right)=K\left(\bar{F}_{1}\left(x_{1}\right), \ldots, \bar{F}\left(x_{n}\right)\right),
$$

where $\bar{F}_{i}(t)=\operatorname{Pr}\left(X_{i}>t\right), i=1, \ldots, n$.

- Then

$$
\bar{F}_{P}(t)=K\left(z_{P}\right)
$$

where $z_{P}=\left(z_{1}, \ldots, z_{n}\right), z_{i}=\bar{F}_{i}(t)$ for $i \in P$ and $z_{i}=1$ for

- Therefore

$$
\bar{F}_{T}(t)=Q_{\phi, K}\left(\bar{F}_{1}(t), \ldots, \bar{F}_{n}(t)\right)
$$

- In the ID case

$$
\bar{F}_{T}(t)=q_{\phi, K}(\bar{F}(t)) .
$$

Generalized mixture representations

- If K is the survival copula of $\left(X_{1}, \ldots, X_{n}\right)$, then

$$
\overline{\mathbf{F}}\left(x_{1}, \ldots, x_{n}\right)=K\left(\bar{F}_{1}\left(x_{1}\right), \ldots, \bar{F}\left(x_{n}\right)\right),
$$

where $\bar{F}_{i}(t)=\operatorname{Pr}\left(X_{i}>t\right), i=1, \ldots, n$.

- Then

$$
\bar{F}_{P}(t)=K\left(\mathbf{z}_{P}\right)
$$

where $\mathbf{z}_{P}=\left(z_{1}, \ldots, z_{n}\right), z_{i}=\bar{F}_{i}(t)$ for $i \in P$ and $z_{i}=1$ for $i \notin P$.

- Therefore

$$
\bar{F}_{T}(t)=Q_{\phi, K}\left(\bar{F}_{1}(t), \ldots, \bar{F}_{n}(t)\right)
$$

- In the ID case

$$
\bar{F}_{T}(t)=q_{\phi, K}(\bar{F}(t)) .
$$

Generalized mixture representations

- If K is the survival copula of $\left(X_{1}, \ldots, X_{n}\right)$, then

$$
\overline{\mathbf{F}}\left(x_{1}, \ldots, x_{n}\right)=K\left(\bar{F}_{1}\left(x_{1}\right), \ldots, \bar{F}\left(x_{n}\right)\right),
$$

where $\bar{F}_{i}(t)=\operatorname{Pr}\left(X_{i}>t\right), i=1, \ldots, n$.

- Then

$$
\bar{F}_{P}(t)=K\left(\mathbf{z}_{P}\right)
$$

where $\mathbf{z}_{P}=\left(z_{1}, \ldots, z_{n}\right), z_{i}=\bar{F}_{i}(t)$ for $i \in P$ and $z_{i}=1$ for $i \notin P$.

- Therefore

$$
\bar{F}_{T}(t)=Q_{\phi, K}\left(\bar{F}_{1}(t), \ldots, \bar{F}_{n}(t)\right) .
$$

- In the ID case

$$
\bar{F}_{T}(t)=q_{\phi, K}(\bar{F}(t)) .
$$

Generalized mixture representations

- If K is the survival copula of $\left(X_{1}, \ldots, X_{n}\right)$, then

$$
\overline{\mathbf{F}}\left(x_{1}, \ldots, x_{n}\right)=K\left(\bar{F}_{1}\left(x_{1}\right), \ldots, \bar{F}\left(x_{n}\right)\right),
$$

where $\bar{F}_{i}(t)=\operatorname{Pr}\left(X_{i}>t\right), i=1, \ldots, n$.

- Then

$$
\bar{F}_{P}(t)=K\left(\mathbf{z}_{P}\right)
$$

where $\mathbf{z}_{P}=\left(z_{1}, \ldots, z_{n}\right), z_{i}=\bar{F}_{i}(t)$ for $i \in P$ and $z_{i}=1$ for $i \notin P$.

- Therefore

$$
\bar{F}_{T}(t)=Q_{\phi, K}\left(\bar{F}_{1}(t), \ldots, \bar{F}_{n}(t)\right) .
$$

- In the ID case

$$
\begin{equation*}
\bar{F}_{T}(t)=q_{\phi, K}(\bar{F}(t)) . \tag{2.5}
\end{equation*}
$$

Ordering results for systems-EXC case

Theorem (Navarro et al., NRL 2008)

If $T_{1}=\phi_{1}\left(X_{1}, \ldots, X_{n}\right)$ and $T_{2}=\phi_{2}\left(X_{1}, \ldots, X_{n}\right)$ have signatures $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ and $\mathbf{q}=\left(q_{1}, \ldots, q_{n}\right),\left(X_{1}, \ldots, X_{n}\right)$ is EXC, then:
(i) If $\mathbf{p} \leq S T \mathbf{q}$, then $T_{1} \leq S T T_{2}$.
(ii) If $\mathbf{p} \leq_{H R} \mathbf{q}$ and $X_{1: n} \leq_{H R} \cdots \leq_{H R} X_{n: n}$ holds, then $T_{1} \leq_{H R} T_{2}$.
(iii) If $\mathbf{p} \leq_{H R} \mathbf{q}$ and $X_{1: n} \leq_{M R L} \cdots \leq_{M R L} X_{n: n}$ holds, then
$T_{1} \leq_{M R L} T_{2}$.
(iv) If $\mathbf{p} \leq_{L R} \mathbf{q}$ and $X_{1: n} \leq_{L R} \cdots \leq_{L R} X_{n: n}$ holds, then $T_{1} \leq_{L R} T_{2}$.

Aging classes results for coherent systems

- If X_{1}, \ldots, X_{n} are IID

$$
X_{1} \quad N B U \Rightarrow T \quad N B U
$$

but

$$
X_{1} \quad I H R \nRightarrow T \quad I H R
$$

and

$$
X_{1} \quad I L R \nRightarrow T \quad I L R .
$$

Distorted Distributions (DD)

- The distorted distributions are a way to model distortion risk measures developed from research on premium principles, see Wang (1996, ASTIN Bull).
- The distorted distribution associated to F and to an increasing right continuous distortion function $q:[0,1] \rightarrow[0,1]$ such that $q(0)=0$ and $q(1)=1$, is

$$
F_{q}(t)=q(F(t))
$$

- Some authors assume that q is continuous and strictly increasing. Then F and F_{q} have the same support
- For the reliability functions we have

$$
\begin{equation*}
\bar{F}_{q}(t)=\bar{q}(\bar{F}(t)) \tag{3.2}
\end{equation*}
$$

where $\bar{q}(u)=1-q(1-u)$ is the dual distortion function; see Hürlimann (2004, N Am Actuarial J)

Distorted Distributions（DD）

－The distorted distributions are a way to model distortion risk measures developed from research on premium principles，see Wang（1996，ASTIN Bull）．
－The distorted distribution associated to F and to an increasing right continuous distortion function $q:[0,1] \rightarrow[0,1]$ such that $q(0)=0$ and $q(1)=1$ ，is

$$
\begin{equation*}
F_{q}(t)=q(F(t)) \tag{3.1}
\end{equation*}
$$

－Some authors assume that q is continuous and strictly increasing．Then F and F_{q} have the same support
－For the reliability functions we have

$$
\bar{F}_{q}(t)=\bar{q}(\bar{F}(t)),
$$

Distorted Distributions (DD)

- The distorted distributions are a way to model distortion risk measures developed from research on premium principles, see Wang (1996, ASTIN Bull).
- The distorted distribution associated to F and to an increasing right continuous distortion function $q:[0,1] \rightarrow[0,1]$ such that $q(0)=0$ and $q(1)=1$, is

$$
\begin{equation*}
F_{q}(t)=q(F(t)) \tag{3.1}
\end{equation*}
$$

- Some authors assume that q is continuous and strictly increasing. Then F and F_{q} have the same support.
- For the reliability functions we have

where $\bar{q}(u)=1-q(1-u)$ is the dual distortion function; see Hürlimann (2004, N Am Actuarial J).

Distorted Distributions (DD)

- The distorted distributions are a way to model distortion risk measures developed from research on premium principles, see Wang (1996, ASTIN Bull).
- The distorted distribution associated to F and to an increasing right continuous distortion function $q:[0,1] \rightarrow[0,1]$ such that $q(0)=0$ and $q(1)=1$, is

$$
\begin{equation*}
F_{q}(t)=q(F(t)) \tag{3.1}
\end{equation*}
$$

- Some authors assume that q is continuous and strictly increasing. Then F and F_{q} have the same support.
- For the reliability functions we have

$$
\begin{equation*}
\bar{F}_{q}(t)=\bar{q}(\bar{F}(t)), \tag{3.2}
\end{equation*}
$$

where $\bar{q}(u)=1-q(1-u)$ is the dual distortion function; see Hürlimann (2004, N Am Actuarial J).

Distorted Distributions (DD)

- The distorted distributions are a way to model distortion risk measures developed from research on premium principles, see Wang (1996, ASTIN Bull).
- The distorted distribution associated to F and to an increasing right continuous distortion function $q:[0,1] \rightarrow[0,1]$ such that $q(0)=0$ and $q(1)=1$, is

$$
\begin{equation*}
F_{q}(t)=q(F(t)) \tag{3.1}
\end{equation*}
$$

- Some authors assume that q is continuous and strictly increasing. Then F and F_{q} have the same support.
- For the reliability functions we have

$$
\begin{equation*}
\bar{F}_{q}(t)=\bar{q}(\bar{F}(t)), \tag{3.2}
\end{equation*}
$$

where $\bar{q}(u)=1-q(1-u)$ is the dual distortion function; see Hürlimann (2004, N Am Actuarial J).

- \bar{q} is also increasing in $(0,1)$ from $\bar{q}(0)=0$ to $\bar{q}(1)=1$.

Particular cases of Distorted Distributions (DD)

- The OS in the IID case are DD (1.1).
- The GOS (Records, k-Records, etc.) are DD (1.2)
- The SOS in the PHR case are DD.
- The CS (OS) in the ID case (includes the EXC case) are DD (2.5)
- The SOS in the general case are DD but q and F are quite complicate.
- PHR and RPHR are DD

Particular cases of Distorted Distributions (DD)

- The OS in the IID case are DD (1.1).
- The GOS (Records, k-Records, etc.) are DD (1.2).
- The SOS in the PHR case are DD
- The CS (OS) in the ID case (includes the EXC case) are DD (2.5)
- The SOS in the general case are DD but q and F are quite complicate.
- PHR and RPHR are DD

Particular cases of Distorted Distributions (DD)

- The OS in the IID case are DD (1.1).
- The GOS (Records, k-Records, etc.) are DD (1.2).
- The SOS in the PHR case are DD.
- The CS (OS) in the ID case (includes the EXC case) are DD (2.5)
- The SOS in the general case are DD but q and F are quite complicate.
- PHR and RPHR are DD

Particular cases of Distorted Distributions (DD)

- The OS in the IID case are DD (1.1).
- The GOS (Records, k-Records, etc.) are DD (1.2).
- The SOS in the PHR case are DD.
- The CS (OS) in the ID case (includes the EXC case) are DD (2.5).
- The SOS in the general case are DD but q and F are quite complicate.
- PHR and RPHR are DD

Particular cases of Distorted Distributions (DD)

- The OS in the IID case are DD (1.1).
- The GOS (Records, k-Records, etc.) are DD (1.2).
- The SOS in the PHR case are DD.
- The CS (OS) in the ID case (includes the EXC case) are DD (2.5).
- The SOS in the general case are DD but q and F are quite complicate.
- PHR and RPHR are DD
- The OS in the IID case are DD (1.1).
- The GOS (Records, k-Records, etc.) are DD (1.2).
- The SOS in the PHR case are DD.
- The CS (OS) in the ID case (includes the EXC case) are DD (2.5).
- The SOS in the general case are DD but q and F are quite complicate.
- PHR and RPHR are DD.

Distorted Distributions (DD)

Ordering results for distorted distributions

- Conditions to get ordering results for DD were given in Navarro, del Aguila, Sordo and Suarez-Llorens (to appear in ASMBI, DOI: 10.1002/asmb.1917).
- For example:

Ordering results for distorted distributions

- Conditions to get ordering results for DD were given in Navarro, del Aguila, Sordo and Suarez-Llorens (to appear in ASMBI, DOI: 10.1002/asmb.1917).
- For example:

Theorem

Let $F_{1}=q_{1}(F)$ and let $F_{2}=q_{2}(F)$. Then we have the following properties:
(i) $F_{1} \leq_{S T} F_{2}(\geq s T)$ for all F if and only if $q_{1}(u) / q_{2}(u) \geq 1$ (\leq) in $(0,1)$.
(ii) $F_{1} \leq_{H R} F_{2}\left(\geq_{H R}\right)$ for all F if and only if $\bar{q}_{1}(u) / \bar{q}_{2}(u)$ increases (decreases) in $(0,1)$.
(iii) $F_{1} \leq_{L R} F_{2}\left(\geq_{L R}\right)$ for all F if and only if $\bar{q}_{2}\left(\bar{q}_{1}^{-1}(u)\right)$ is concave (convex) in $(0,1)$.

Ordering results for distorted distributions

- Conditions to get preservation of aging classes for DD were given in Navarro, del Aguila, Sordo and Suarez-Llorens (submitted).
- For example

Ordering results for distorted distributions

- Conditions to get preservation of aging classes for DD were given in Navarro, del Aguila, Sordo and Suarez-Llorens (submitted).
- For example:

Theorem

Let $F_{q}=q(F)$ and let $\alpha_{q}(u)=\frac{u q^{\prime}(1-u)}{1-q(1-u)}$. Then:
(i) If α_{q} is decreasing in $(0,1)$ and F is IHR, then F_{q} is IHR.
(ii) If α_{q} is increasing in $(0,1)$ and F is $D H R$, then F_{q} is DHR.
(iii) If α_{q} is increasing in $(0,1)$ and F_{q} is IHR, then F is IHR.
(iv) If α_{q} is decreasing in $(0,1)$ and F_{q} is DFR, then F is DFR.

Inference results for distorted distributions

- Inference results for distorted distributions (i.e. to estimate characteristics of F from a distorted sample from F_{q}) were obtained in:
- Balakrishnan, Ng and Navarro (2011, IEEE Trans. Reliab. 60, 426-440)
- Balakrishnar, Ng and Navarro (2011, J. Nonparmetric Stat. 23, 741-752)
- Ng, Navarro and Balakrishnan (2012, Metrika 75, 367-388)

Inference results for distorted distributions

- Inference results for distorted distributions (i.e. to estimate characteristics of F from a distorted sample from F_{q}) were obtained in:
- Balakrishnan, Ng and Navarro (2011, IEEE Trans. Reliab. 60, 426-440).
- Balakrishnan, Ng and Navarro (2011, J. Nonparmetric Stat. 23, 741-752).
- Ng, Navarro anc Balakrishnan (2012, Metrika 75, 367-388).

Inference results for distorted distributions

- Inference results for distorted distributions (i.e. to estimate characteristics of F from a distorted sample from F_{q}) were obtained in:
- Balakrishnan, Ng and Navarro (2011, IEEE Trans. Reliab. 60, 426-440).
- Balakrishnan, Ng and Navarro (2011, J. Nonparmetric Stat. 23, 741-752).

Inference results for distorted distributions

- Inference results for distorted distributions (i.e. to estimate characteristics of F from a distorted sample from F_{q}) were obtained in:
- Balakrishnan, Ng and Navarro (2011, IEEE Trans. Reliab. 60, 426-440).
- Balakrishnan, Ng and Navarro (2011, J. Nonparmetric Stat. 23, 741-752).
- Ng, Navarro and Balakrishnan (2012, Metrika 75, 367-388).

Definition Generalized Distorted Distributions (GDD)

- The generalized distorted distribution associated to $F_{1}, \ldots F_{n}$ and to an increasing right continuous generalized distortion function $Q:[0,1]^{n} \rightarrow[0,1]$ such that $Q(0, \ldots, 0)=0$ and $Q(1, \ldots, 1)=1$, is

$$
\begin{equation*}
F_{Q}(t)=Q\left(F_{1}(t), \ldots, F_{n}(t)\right), \tag{3.3}
\end{equation*}
$$

see Navarro, del Aguila, Sordo and Suarez-Llorens (submitted).

- For the reliability functions we have

where $\bar{Q}\left(u_{1}\right.$
generalized distortion function.
\bar{Q} is also increasing in $(0,1)^{n}$ from $\bar{Q}(0$,
$\bar{Q}(1$

1) $=1$.

Definition Generalized Distorted Distributions (GDD)

- The generalized distorted distribution associated to $F_{1}, \ldots F_{n}$ and to an increasing right continuous generalized distortion function $Q:[0,1]^{n} \rightarrow[0,1]$ such that $Q(0, \ldots, 0)=0$ and $Q(1, \ldots, 1)=1$, is

$$
\begin{equation*}
F_{Q}(t)=Q\left(F_{1}(t), \ldots, F_{n}(t)\right) \tag{3.3}
\end{equation*}
$$

see Navarro, del Aguila, Sordo and Suarez-Llorens (submitted).

- For the reliability functions we have

$$
\begin{equation*}
\bar{F}_{Q}(t)=\bar{Q}\left(\bar{F}_{1}(t), \ldots, \bar{F}_{n}(t)\right), \tag{3.4}
\end{equation*}
$$

where $\bar{Q}\left(u_{1}, \ldots, u_{n}\right)=1-Q\left(1-u_{1}, \ldots, 1-u_{n}\right)$ is the dual generalized distortion function.

Definition Generalized Distorted Distributions (GDD)

- The generalized distorted distribution associated to $F_{1}, \ldots F_{n}$ and to an increasing right continuous generalized distortion function $Q:[0,1]^{n} \rightarrow[0,1]$ such that $Q(0, \ldots, 0)=0$ and $Q(1, \ldots, 1)=1$, is

$$
\begin{equation*}
F_{Q}(t)=Q\left(F_{1}(t), \ldots, F_{n}(t)\right) \tag{3.3}
\end{equation*}
$$

see Navarro, del Aguila, Sordo and Suarez-Llorens (submitted).

- For the reliability functions we have

$$
\begin{equation*}
\bar{F}_{Q}(t)=\bar{Q}\left(\bar{F}_{1}(t), \ldots, \bar{F}_{n}(t)\right), \tag{3.4}
\end{equation*}
$$

where $\bar{Q}\left(u_{1}, \ldots, u_{n}\right)=1-Q\left(1-u_{1}, \ldots, 1-u_{n}\right)$ is the dual generalized distortion function.

- \bar{Q} is also increasing in $(0,1)^{n}$ from $\bar{Q}(0, \ldots, 0)=0$ to $\bar{Q}(1, \ldots, 1)=1$.

Particular case of Generalized Distorted Distributions

- The OS in the general case (includes the INID case) are GDD. - The CS in the general case (includes the INID case) are GDD
- Ordering and aging classes properties for GDD were given in Navarro, del Aguila, Sordo and Suarez-Llorens (submitted), see also Marshall, Olkin and Arnold (2011, Springer).
- The OS in the general case (includes the INID case) are GDD.
- The CS in the general case (includes the INID case) are GDD.
- Ordering and aging classes properties for GDD were given in Navarro, del Aguila, Sordo and Suarez-Llorens (submitted), see also Marshall, Olkin and Arnold (2011, Springer).
- The OS in the general case (includes the INID case) are GDD.
- The CS in the general case (includes the INID case) are GDD.
- Ordering and aging classes properties for GDD were given in Navarro, del Aguila, Sordo and Suarez-Llorens (submitted), see also Marshall, Olkin and Arnold (2011, Springer).

Distorted Distributions (DD)

Example

- $X_{2: 3}$ has the path sets $P_{1}=\{1,2\}, P_{2}=\{1,3\}$, and $P_{3}=\{2,3\}$.
- Then

$$
\bar{F}_{T}(t)=\bar{F}_{\{1,2\}}(t)+\bar{F}_{\{1,3\}}(t)+\bar{F}_{\{2,3\}}(t)-2 \bar{F}_{\{1,2,3\}}(t) .
$$

- Therefore, in the ID case, we have

$$
\begin{aligned}
\bar{F}_{T}(t) & =K(\bar{F}(t), \bar{F}(t), 1)+K(\bar{F}(t), 1, \bar{F}(t))+K(1, \bar{F}(t), \bar{F}(t)) \\
& -2 K(\bar{F}(t), \bar{F}(t), \bar{F}(t)) .
\end{aligned}
$$

- That is $\bar{F}_{T}(t)=q(\bar{F}(t))$ where $q(u)=K(u, u, 1)+K(u, 1, u)+K(u, u, 1)-2 K(u, u, u)$
- In the EXC case $q(u)=q_{2: 3}^{E X C}(u)=3 K(u, u, 1)-2 K(u, u, u)$.
- In the IID case $q(u)=q_{2: 3}^{I I D}(u)=3 u^{2}-2 u^{3}$

Example

- $X_{2: 3}$ has the path sets $P_{1}=\{1,2\}, P_{2}=\{1,3\}$, and $P_{3}=\{2,3\}$.
- Then

$$
\bar{F}_{T}(t)=\bar{F}_{\{1,2\}}(t)+\bar{F}_{\{1,3\}}(t)+\bar{F}_{\{2,3\}}(t)-2 \bar{F}_{\{1,2,3\}}(t) .
$$

- Therefore, in the ID case, we have

$$
\begin{aligned}
\bar{F}_{T}(t) & =K(\bar{F}(t), \bar{F}(t), 1)+K(\bar{F}(t), 1, \bar{F}(t))+K(1, \bar{F}(t), \bar{F}(t)) \\
& -2 K(\bar{F}(t), \bar{F}(t), \bar{F}(t)) .
\end{aligned}
$$

- That is $\bar{F}_{T}(t)=q(\bar{F}(t))$ where $q(u)=K(u, u, 1)+K(u, 1, u)+K(u, u, 1)-2 K(u, u, u)$
- In the EXC case $q(u)=q_{2: 3}^{E X C}(u)=3 K(u, u, 1)-2 K(u, u, u)$
- In the IID case $q(u)=q_{2: 3}^{I I D}(u)=3 u^{2}-2 u^{3}$.

Example

- $X_{2: 3}$ has the path sets $P_{1}=\{1,2\}, P_{2}=\{1,3\}$, and $P_{3}=\{2,3\}$.
- Then

$$
\bar{F}_{T}(t)=\bar{F}_{\{1,2\}}(t)+\bar{F}_{\{1,3\}}(t)+\bar{F}_{\{2,3\}}(t)-2 \bar{F}_{\{1,2,3\}}(t) .
$$

- Therefore, in the ID case, we have

$$
\begin{aligned}
\bar{F}_{T}(t) & =K(\bar{F}(t), \bar{F}(t), 1)+K(\bar{F}(t), 1, \bar{F}(t))+K(1, \bar{F}(t), \bar{F}(t)) \\
& -2 K(\bar{F}(t), \bar{F}(t), \bar{F}(t))
\end{aligned}
$$

- That is $\bar{F}_{T}(t)=q(\bar{F}(t))$ where $q(u)=K(u, u, 1)+K(u, 1, u)+K(u, u, 1)-2 K(u, u, u)$.
- In the EXC case $q(u)=q_{2: 3}^{E X C}(u)=3 K(u, u, 1)-2 K(u, u, u)$
- In the IID case $q(u)=q_{2: 3}^{I I D}(u)=3 u^{2}-2 u^{3}$.

Example

- $X_{2: 3}$ has the path sets $P_{1}=\{1,2\}, P_{2}=\{1,3\}$, and $P_{3}=\{2,3\}$.
- Then

$$
\bar{F}_{T}(t)=\bar{F}_{\{1,2\}}(t)+\bar{F}_{\{1,3\}}(t)+\bar{F}_{\{2,3\}}(t)-2 \bar{F}_{\{1,2,3\}}(t) .
$$

- Therefore, in the ID case, we have

$$
\begin{aligned}
\bar{F}_{T}(t) & =K(\bar{F}(t), \bar{F}(t), 1)+K(\bar{F}(t), 1, \bar{F}(t))+K(1, \bar{F}(t), \bar{F}(t)) \\
& -2 K(\bar{F}(t), \bar{F}(t), \bar{F}(t))
\end{aligned}
$$

- That is $\bar{F}_{T}(t)=q(\bar{F}(t))$ where $q(u)=K(u, u, 1)+K(u, 1, u)+K(u, u, 1)-2 K(u, u, u)$.

Example

- $X_{2: 3}$ has the path sets $P_{1}=\{1,2\}, P_{2}=\{1,3\}$, and $P_{3}=\{2,3\}$.
- Then

$$
\bar{F}_{T}(t)=\bar{F}_{\{1,2\}}(t)+\bar{F}_{\{1,3\}}(t)+\bar{F}_{\{2,3\}}(t)-2 \bar{F}_{\{1,2,3\}}(t) .
$$

- Therefore, in the ID case, we have

$$
\begin{aligned}
\bar{F}_{T}(t) & =K(\bar{F}(t), \bar{F}(t), 1)+K(\bar{F}(t), 1, \bar{F}(t))+K(1, \bar{F}(t), \bar{F}(t)) \\
& -2 K(\bar{F}(t), \bar{F}(t), \bar{F}(t))
\end{aligned}
$$

- That is $\bar{F}_{T}(t)=q(\bar{F}(t))$ where $q(u)=K(u, u, 1)+K(u, 1, u)+K(u, u, 1)-2 K(u, u, u)$.
- In the EXC case $q(u)=q_{2: 3}^{E X C}(u)=3 K(u, u, 1)-2 K(u, u, u)$.

Example

- $X_{2: 3}$ has the path sets $P_{1}=\{1,2\}, P_{2}=\{1,3\}$, and $P_{3}=\{2,3\}$.
- Then

$$
\bar{F}_{T}(t)=\bar{F}_{\{1,2\}}(t)+\bar{F}_{\{1,3\}}(t)+\bar{F}_{\{2,3\}}(t)-2 \bar{F}_{\{1,2,3\}}(t) .
$$

- Therefore, in the ID case, we have

$$
\begin{aligned}
\bar{F}_{T}(t) & =K(\bar{F}(t), \bar{F}(t), 1)+K(\bar{F}(t), 1, \bar{F}(t))+K(1, \bar{F}(t), \bar{F}(t)) \\
& -2 K(\bar{F}(t), \bar{F}(t), \bar{F}(t))
\end{aligned}
$$

- That is $\bar{F}_{T}(t)=q(\bar{F}(t))$ where $q(u)=K(u, u, 1)+K(u, 1, u)+K(u, u, 1)-2 K(u, u, u)$.
- In the EXC case $q(u)=q_{2: 3}^{E X C}(u)=3 K(u, u, 1)-2 K(u, u, u)$.
- In the IID case $q(u)=q_{2: 3}^{I I D}(u)=3 u^{2}-2 u^{3}$.

Example

- As

$$
\bar{F}_{T}(t)=\bar{F}_{\{1,2\}}(t)+\bar{F}_{\{1,3\}}(t)+\bar{F}_{\{2,3\}}(t)-2 \bar{F}_{\{1,2,3\}}(t) .
$$

- In the general case, we have

$$
\begin{aligned}
\bar{F}_{T}(t) & =K\left(\bar{F}_{1}(t), \bar{F}_{2}(t), 1\right)+K\left(\bar{F}_{1}(t), 1, \bar{F}_{3}(t)\right) \\
& +K\left(1, \bar{F}_{2}(t), \bar{F}_{3}(t)\right)-2 K\left(\bar{F}_{1}(t), \bar{F}_{2}(t), \bar{F}_{3}(t)\right) .
\end{aligned}
$$

- That is $\bar{F}_{T}(t)=Q\left(\bar{F}_{1}(t), \bar{F}_{2}(t), \bar{F}_{3}(t)\right)$ where

$$
\begin{aligned}
Q\left(u_{1}, u_{2}, u_{3}\right) & =K\left(u_{1}, u_{2}, 1\right)+K\left(u_{1}, 1, u_{3}\right)+K\left(u_{1}, u_{2}, 1\right) \\
& -2 K\left(u_{1}, u_{2}, u_{3}\right) .
\end{aligned}
$$

- In the I case:

$$
Q^{\prime}\left(u_{1}, u_{2}, u_{3}\right)=u_{1} u_{2}+u_{1} u_{3}+u_{1} u_{2}-2 u_{1} u_{2} u_{3} .
$$

Example

- As

$$
\bar{F}_{T}(t)=\bar{F}_{\{1,2\}}(t)+\bar{F}_{\{1,3\}}(t)+\bar{F}_{\{2,3\}}(t)-2 \bar{F}_{\{1,2,3\}}(t) .
$$

- In the general case, we have

$$
\begin{aligned}
\bar{F}_{T}(t) & =K\left(\bar{F}_{1}(t), \bar{F}_{2}(t), 1\right)+K\left(\bar{F}_{1}(t), 1, \bar{F}_{3}(t)\right) \\
& +K\left(1, \bar{F}_{2}(t), \bar{F}_{3}(t)\right)-2 K\left(\bar{F}_{1}(t), \bar{F}_{2}(t), \bar{F}_{3}(t)\right) .
\end{aligned}
$$

- That is $\bar{F}_{T}(t)=Q\left(\bar{F}_{1}(t), \bar{F}_{2}(t), \bar{F}_{3}(t)\right)$ where

$-2 K\left(u_{1}, u_{2}, u_{3}\right)$.
- In the I case:
$Q\left(u_{1}, u_{2}, u_{3}\right)=u_{1} u_{2}+u_{1} u_{3}+u_{1} u_{2}-2 u_{1} u_{2} u_{3}$.

Example

- As

$$
\bar{F}_{T}(t)=\bar{F}_{\{1,2\}}(t)+\bar{F}_{\{1,3\}}(t)+\bar{F}_{\{2,3\}}(t)-2 \bar{F}_{\{1,2,3\}}(t) .
$$

- In the general case, we have

$$
\begin{aligned}
\bar{F}_{T}(t) & =K\left(\bar{F}_{1}(t), \bar{F}_{2}(t), 1\right)+K\left(\bar{F}_{1}(t), 1, \bar{F}_{3}(t)\right) \\
& +K\left(1, \bar{F}_{2}(t), \bar{F}_{3}(t)\right)-2 K\left(\bar{F}_{1}(t), \bar{F}_{2}(t), \bar{F}_{3}(t)\right) .
\end{aligned}
$$

- That is $\bar{F}_{T}(t)=Q\left(\bar{F}_{1}(t), \bar{F}_{2}(t), \bar{F}_{3}(t)\right)$ where

$$
\begin{aligned}
Q\left(u_{1}, u_{2}, u_{3}\right) & =K\left(u_{1}, u_{2}, 1\right)+K\left(u_{1}, 1, u_{3}\right)+K\left(u_{1}, u_{2}, 1\right) \\
& -2 K\left(u_{1}, u_{2}, u_{3}\right) .
\end{aligned}
$$

- In the I case:
$Q^{\prime}\left(u_{1}, u_{2}, u_{3}\right)=u_{1} u_{2}+u_{1} u_{3}+u_{1} u_{2}-2 u_{1} u_{2} u_{3}$.

Example

- As

$$
\bar{F}_{T}(t)=\bar{F}_{\{1,2\}}(t)+\bar{F}_{\{1,3\}}(t)+\bar{F}_{\{2,3\}}(t)-2 \bar{F}_{\{1,2,3\}}(t) .
$$

- In the general case, we have

$$
\begin{aligned}
\bar{F}_{T}(t) & =K\left(\bar{F}_{1}(t), \bar{F}_{2}(t), 1\right)+K\left(\bar{F}_{1}(t), 1, \bar{F}_{3}(t)\right) \\
& +K\left(1, \bar{F}_{2}(t), \bar{F}_{3}(t)\right)-2 K\left(\bar{F}_{1}(t), \bar{F}_{2}(t), \bar{F}_{3}(t)\right) .
\end{aligned}
$$

- That is $\bar{F}_{T}(t)=Q\left(\bar{F}_{1}(t), \bar{F}_{2}(t), \bar{F}_{3}(t)\right)$ where

$$
\begin{aligned}
Q\left(u_{1}, u_{2}, u_{3}\right) & =K\left(u_{1}, u_{2}, 1\right)+K\left(u_{1}, 1, u_{3}\right)+K\left(u_{1}, u_{2}, 1\right) \\
& -2 K\left(u_{1}, u_{2}, u_{3}\right) .
\end{aligned}
$$

- In the I case:

$$
Q\left(u_{1}, u_{2}, u_{3}\right)=u_{1} u_{2}+u_{1} u_{3}+u_{1} u_{2}-2 u_{1} u_{2} u_{3}
$$

Connectivity problems in Networks

- A graph (or network) is an ordered pair $G=(V, E)$ comprising a set V of nodes together with a set E of edges, which are 2-element subsets of V.
- A directed graph is an ordered pair $G=(V, E)$ comprising a set V of nodes together with a set E of edges, which are elements of $V \times V$.
- Let us assume that in a graph (directed graph) the nodes cannot fail but the edges can fail. Let X_{1}, \ldots, X_{n} be the edges lifetimes.
- Suppose that we want to study a given connectivity problem (e.g. the connection of all the nodes). Let T_{N} be the lifetime of the network for this connectivity problem. Then

for a coherent system ϕ.

Connectivity problems in Networks

- A graph (or network) is an ordered pair $G=(V, E)$ comprising a set V of nodes together with a set E of edges, which are 2-element subsets of V.
- A directed graph is an ordered pair $G=(V, E)$ comprising a set V of nodes together with a set E of edges, which are elements of $V \times V$.
- Let us assume that in a graph (directed graph) the nodes cannot fail but the edges can fail. Let X_{1}, \ldots, X_{n} be the edges lifetimes.
- Suppose that we want to study a given connectivity problem (e.g. the connection of all the nodes). Let T_{N} be the lifetime of the network for this connectivity problem. Then

Connectivity problems in Networks

- A graph (or network) is an ordered pair $G=(V, E)$ comprising a set V of nodes together with a set E of edges, which are 2-element subsets of V.
- A directed graph is an ordered pair $G=(V, E)$ comprising a set V of nodes together with a set E of edges, which are elements of $V \times V$.
- Let us assume that in a graph (directed graph) the nodes cannot fail but the edges can fail. Let X_{1}, \ldots, X_{n} be the edges lifetimes.
- Suppose that we want to study a given connectivity problem (e.g. the connection of all the nodes). Let T_{N} be the lifetime of the network for this connectivity problem. Then
\square

Connectivity problems in Networks

- A graph (or network) is an ordered pair $G=(V, E)$ comprising a set V of nodes together with a set E of edges, which are 2-element subsets of V.
- A directed graph is an ordered pair $G=(V, E)$ comprising a set V of nodes together with a set E of edges, which are elements of $V \times V$.
- Let us assume that in a graph (directed graph) the nodes cannot fail but the edges can fail. Let X_{1}, \ldots, X_{n} be the edges lifetimes.
- Suppose that we want to study a given connectivity problem (e.g. the connection of all the nodes). Let T_{N} be the lifetime of the network for this connectivity problem. Then

$$
T_{N}=\phi\left(X_{1}, \ldots, X_{n}\right)
$$

for a coherent system ϕ.

All nodes connection problem in a network

Network

Path sets:

Coherent system

?

All nodes connection problem in a network

Network

Coherent system

Path sets:

$\{1,2,3\}$
?

All nodes connection problem in a network

Network

Path sets:
$\{1,2,3\}$

Coherent system

Series system $X_{1: 3}$

All nodes connection problem in a network

Network

Path sets：

？

All nodes connection problem in a network

Network

Path sets:
$\{1,2\}$

Coherent system

?
$\{1,3\}$
$\{2,3\}$

All nodes connection problem in a network

Network

Coherent system

Path sets:	
$\{1,2\}$	2 -out-of-3
$\{1,3\}$	$X_{2: 3}$
$\{2,3\}$	

All nodes connection problem in a network

Network

Coherent system

Path sets:
\{1\}
$\{2\}$
\{3\}

Parallel system
$X_{3: 3}$

All nodes connection problem in a network

Network

Coherent system

All nodes connection problem in a network

Network

Coherent system

Order statistics and related concepts

All nodes connection problem in a network

Network
Coherent system

All nodes connection problem in a network

Network

Path sets:
$\{1,2\}$
$\{1,3\}$

Coherent system

$$
\min \left(X_{1}, \max \left(X_{2}, X_{3}\right)\right)
$$

All nodes connection problem in a network

What is the best way to connect three nodes with three edges？

Network
Coherent system

All nodes connection problem in a network

What is the best way to connect three nodes with three edges?

Network

Coherent system

```
2-out-of-3
    X 2:3 >= min}(\mp@subsup{X}{1}{},\operatorname{max}(\mp@subsup{X}{2}{},\mp@subsup{X}{3}{})
```


References

- For the complete references, please visit my personal web page:
https://webs.um.es/jorgenav/
- Thank you for your attention!!

References

- For the complete references, please visit my personal web page:
https: //webs.um.es/jorgenav/
- Thank you for your attention!!

