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MTM2009-08311 and Fundación Séneca under grant 08627/PI/08.
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Notation

X1, . . . ,Xn IID random variables.

X1, . . . ,Xn exchangeable (EXC), i.e., for any σ

(X1, . . . ,Xn) =ST (Xσ(1), . . . ,Xσ(n)).

(X1, . . . ,Xn) an arbitrary random vector with joint distribution

F(x1, . . . , xn) = Pr(X1 ≤ x1, . . . ,Xn ≤ xn)

and with joint reliability

F(x1, . . . , xn) = Pr(X1 > x1, . . . ,Xn > xn).

Let X1:n, . . . ,Xn:n be the associated OS.

Let Fi :n(t) = Pr(Xi :n ≤ t) be the distribution function (DF).
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Generalized mixture representations

In the IID case:

Fi :n(t) =
n∑

j=i

(
n

j

)
F j(t)F

n−j
(t),

where F (t) = Pr(Xi ≤ t) = 1− F (t).

Also in the IID case:

Fi :n(t) =
n∑

j=i

(−1)j−i

(
n

j

)(
j − 1

i − 1

)
Fj :j(t) = qi :n(F (t)), (1.1)

where Fj :j(t) = F j(t) and qi :n(u) is an increasing polinomial.

In the EXC case the left hand side of (1.1) holds with
Fj :j(t) = F(t, . . . , t︸ ︷︷ ︸

j

,∞, . . . ,∞︸ ︷︷ ︸
n−j

).

Some coefficients in (1.1) are negative.
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Stochastic orderings

X ≤ST Y ⇔ FX (t) ≤ FY (t) stochastic order.

X ≤HR Y ⇔ hX (t) ≥ hY (t), hazard rate order.

X ≤HR Y ⇔ (X − t|X > t) ≤ST (Y − t|Y > t) for all t.

X ≤MRL Y ⇔ E (X − t|X > t) ≤ E (Y − t|Y > t), mean
residual life order.

X ≤LR Y ⇔ fY (t)/fX (t) is nondecreasing, likelihood ratio
order.

X ≤LR Y ⇔ (X |s < X < t) ≤ST (Y |s < Y < t) for s < t.
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Stochastic orderings relationships

E (Xs,t) ≤ E (Ys,t) ⇒ E (Xt) ≤ E (Yt) ⇒ E (X ) ≤ E (Y )
m m m

X ≤DTM Y ⇒ X ≤MRL Y ⇒ X ≤M Y
⇑ ⇑ ⇑

X ≤LR Y ⇒ X ≤HR Y ⇒ X ≤ST Y
m m m

Xs,t ≤ST Ys,t ⇒ Xt ≤ST Yt ⇒ FX ≤ FY

where Zt = (Z − t|Z > t) and Zs,t = (Z |s < Z < t) (see Navarro,
Belzunce and Ruiz, PEIS, 1997).
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Stochastic aging classes

X is Increasing (Decreasing) Hazard rate IHR (DHR) if h is
increasing.

X is IHR ⇔ (X − s|X > s) ≥ST (X − t|X > t) for all s < t.

X is New Better (Worse) than Used NBU (NWU) if
⇔ X ≥ST (X − t|X > t) for all t > 0.

X is Increasing (Decreasing) Likelihood Ratio ILR (DLR) if f
is log-concave (log-convex).

X is ILR ⇔ (X − s|X > s) ≥LR (X − t|X > t) for all s < t.

ILR ⇒ IHR ⇒ NBU.
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Ordering properties for OS

In the IID case:

X1:n ≤LR · · · ≤LR Xn:n.

In the I case:
X1:n ≤HR · · · ≤HR Xn:n.

In the general case:

X1:n ≤ST · · · ≤ST Xn:n.

In the IID case:

F IHR ⇒ Fi :n IHR

F NBU ⇒ Fi :n NBU, and

F ILR ⇒ Fi :n ILR.
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Generalized Order statistics (GOS)
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Generalized Order statistics (GOS)

For an arbitrary DF F , GOS XGOS
1:n , . . . ,XGOS

n:n based on F can
be obtained (Kamps, 1995, B. G. Teubner Stuttgart, p.49) via
the quantile transformation

XGOS
r :n = F−1(UGOS

r :n ), r = 1, . . . , n,

where (U∗
1:n, . . . ,U

∗
n:n) has the joint PDF

gGOS(u1, . . . , un) = k

n−1∏
j=1

γj

(n−1∏
i=1

(1− ui )
mi

)
(1−un)

k−1

for 0 ≤ u1 ≤ . . . ≤ un < 1, n ≥ 2, k ≥ 1, γ1, . . . , γn > 0 and
mi = γi − γi+1 − 1.
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Generalized Order statistics (GOS)

If γ1, . . . , γn are pairwise different, then

FGOS
r :n (t) = 1− cr−1

r∑
i=1

ai ,r

γi
(1− F (t))γi = qGOS

r :n (F (t))

(1.2)

with the constants

cr−1 =
r∏

j=1

γj , ai ,r =
r∏

j=1
j 6=i

1

γj − γi
, 1 ≤ i ≤ r ≤ n

where the empty product
∏

∅ is defined to be 1.
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Ordering properties for GOS

For the GOS we have:

X1:n ≤LR · · · ≤LR Xn:n

Cramer, Kamps and Raqab (2003, Applicationes
Mathematicae) and Hu and Zhuang (2005, Statist Probab
Lett).

For the GOS we have:

F IHR ⇒ FGOS
r :n IHR

(Kamps, 1995, B. G. Teubner Stuttgart, p. 172) and

F ILR ⇒ FGOS
r :n ILR

under some conditions (see Cramer, 2004, Statist Probab Lett
and Chen, Xie and Hu, 2009, Statist Probab Lett 79).
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Particular cases of GOS

The GOS include:

OS, IID case (m1 = · · · = mn−1 = 0 and k = 1).

kRV, k-th record values (m1 = · · · = mn−1 = −1 and
k = 1, 2, . . . ).

RV, record values (m1 = · · · = mn−1 = −1 and k = 1).

SOS, Sequential Order Statistics under the Proportional
Hazard Rate (PHR) model, i.e., with F r = F

αr
for

r = 1, . . . , n (γr = (n − r + 1)αr and k = αn).
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Sequential Order statistics (SOS)
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Sequential Order statistics (SOS)

F 1, . . . ,F n.

Y
(1)
1 , . . . ,Y

(1)
n IID ∼ F 1.

X SOS
1:n = min(Y

(1)
1 , . . . ,Y

(1)
n ) = t1.

Y
(2)
1 , . . . ,Y

(2)
n−1 IID ∼ F 2(t)/F 2(t1) for t ≥ t1.

X SOS
2:n = min(Y

(2)
1 , . . . ,Y

(2)
n−1) = t2.

. . .

X SOS
n:n = Y

(n)
1 ∼ F n(t)/F n(tn−1) for t ≥ tn−1.
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Sequential Order statistics (SOS)

OS (IID case) are SOS when F 1 = · · · = F n.

X SOS
1:n , . . . ,X SOS

n:n are the order statistics from an exchangeable
random vector

(X SOS
1 , . . . ,X SOS

n ).

If F i = F
αi for i = 1, . . . , n (PHR model), the SOS are GOS.

The SOS are not necessarily GOS.

The GOS are not necessarily SOS.
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Ordering properties for SOS

The SOS are not necessarily HR ordered; see Navarro and
Burkschat (2011, Naval Res Log).

For the SOS:

F 1, . . . ,F n IHR ; F SOS
r :n IHR

and
F 1, . . . ,F n ILR ; FGOS

r :n ILR;

see Navarro and Burkschat (2011, Naval Res Log).

OSDA Murcia 2012 Order statistics and related concepts



Ordering properties for SOS

The SOS are not necessarily HR ordered; see Navarro and
Burkschat (2011, Naval Res Log).

For the SOS:

F 1, . . . ,F n IHR ; F SOS
r :n IHR

and
F 1, . . . ,F n ILR ; FGOS

r :n ILR;

see Navarro and Burkschat (2011, Naval Res Log).

OSDA Murcia 2012 Order statistics and related concepts



Figure: Hazard rate functions hSOS
1:2 (constant line) and hSOS

2:2 for the

SOS obtained from F 1(t) = e−t (exponential) and F 2(t) = e−t2

(Weibull). The SOS are not HR ordered and h∗2:2 is not monotone.
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Ordering properties for SOS

Conditions for the HR, MRL and LR ordering of SOS were
given in Navarro and Burkschat (2011, Naval Res Log).

For example:

Theorem

Let X SOS
1:n , . . . ,X SOS

n:n be the SOS based on F 1, . . . ,F n having
hazard rate function h1, . . . , hn. If hk/hk+1 is increasing for
k = 1, . . . , i , then X SOS

i :n ≤HR X SOS
i+1:n.
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Ordering properties for SOS

Conditions for the preservation of IHR, IHRA, NBU and ILR
classes under the formation of SOS were given in Navarro and
Burkschat (2011, Probab Eng Inf Sci, to appear).

Theorem

Let fi be log-concave for i = 1, 2, . . . , r and hj+1 − hj be
decreasing for j = 1, 2, . . . , r − 1. Then X SOS

r :n is ILR.

For more results, please go to PS9.
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Coherent systems (CS)
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Coherent systems- Exchangeable case

Coherent systems φ = φ(x1, . . . , xn) ∈ {0, 1} where
xi ∈ {0, 1}, the structure function φ is nondecreasing and
strictly increasing in xi for at least one point (x1, . . . , xn), for
i = 1, . . . , n.

If X1, . . . ,Xn are the component lifetimes, then there exist φ
such that the system lifetime T = φ(X1, . . . ,Xn).

X1:n, . . . ,Xn:n are the lifetimes of k-out-of-n systems.

T = Xi :n for i = 1, . . . , n.
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Coherent systems- IID and EXC case

Samaniego (IEEE TR, 1985), IID case:

FT (t) =
n∑

i=1

piF i :n(t), (2.1)

where pi = Pr(T = Xi :n).

p = (p1, . . . , pn) is the signature of the system.

pi does not depend on F and

pi =

∣∣{σ : φ(x1, . . . , xn) = xi :n, when xσ(1) < . . . < xσ(n)}
∣∣

n!
(2.2)

Navarro and Rychlik (JMVA, 2007), (2.1) holds for EXC
absolutely continuous joint distribution.

Navarro, Samaniego, Balakrishnan and Bhathacharya (NRL,
2008), (2.1) holds for EXC r.v. when p is given by (2.2).
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Mixed systems

A mixed system of order n is a stochastic mixture of
coherent systems of order n (Boland and Samaniego, 2004).

From (2.1), in the EXC case, all the mixed systems of order n
can be written as mixtures of X1:n, . . . ,Xn:n.

The vector with the coefficients in that representation is called
the signature of the mixed system.

Conversely, any probability vector in the simplex
{c ∈ [0, 1]n :

∑n
i=1 ci = 1} determines a mixed system with

reliability

FT (t) =
n∑

i=1

ciF i :n(t).
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Mixtures of Order Statistics (MOS), EXC case
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Generalized mixture representations

Navarro, Ruiz and Sandoval (CSTM, 2007), if T has EXC
components, then

FT (t) =
n∑

i=1

aiF 1:i (t). (2.3)

a = (a1, . . . , an) is the minimal signature of T .

ai only depends on φ but can be negative and so (2.3) is a
generalized mixture.

In the IID case:

FT (t) =
n∑

i=1

aiF
i
(t) = qφ(F (t)), (2.4)

where qφ(x) =
∑n

i=1 aix
i is the domination or reliability

polynomial.
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Generalized mixture representations

A path set of T is a set such that if all the components in P
work, then the system works.

A minimal path set of T is a path set which does not
contains other path sets.

If P1, . . . ,Pr are the minimal path sets of T , then
T = maxj=1,...,r XPj

, where XP = mini∈P Xi .

FT (t) = Pr

(
max

j=1,...,r
XPj

> t

)
= Pr

(
∪j=1,...,r{XPj

> t}
)

=
r∑

i=1

FPi
(t)−

∑
i 6=j

FPi∪Pj
(t) + · · · ± FP1∪...Pr (t).

where FP(t) = Pr(XP > t).
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Generalized mixture representations

If K is the survival copula of (X1, . . . ,Xn), then

F(x1, . . . , xn) = K (F 1(x1), . . . ,F (xn)),

where F i (t) = Pr(Xi > t), i = 1, . . . , n.

Then
FP(t) = K (zP)

where zP = (z1, . . . , zn), zi = F i (t) for i ∈ P and zi = 1 for
i /∈ P.

Therefore
FT (t) = Qφ,K (F 1(t), . . . ,F n(t)).

In the ID case
FT (t) = qφ,K (F (t)). (2.5)
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Ordering results for systems-EXC case

Theorem (Navarro et al., NRL 2008)

If T1 = φ1(X1, . . . , Xn) and T2 = φ2(X1, . . . ,Xn) have signatures
p = (p1, . . . , pn) and q = (q1, . . . , qn), (X1, . . . ,Xn) is EXC, then:
(i) If p ≤ST q, then T1 ≤ST T2.
(ii) If p ≤HR q and X1:n ≤HR · · · ≤HR Xn:n holds, then T1 ≤HR T2.
(iii) If p ≤HR q and X1:n ≤MRL · · · ≤MRL Xn:n holds, then
T1 ≤MRL T2.
(iv) If p ≤LR q and X1:n ≤LR · · · ≤LR Xn:n holds, then T1 ≤LR T2.
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Aging classes results for coherent systems

If X1, . . . ,Xn are IID

X1 NBU ⇒ T NBU,

but
X1 IHR ; T IHR

and
X1 ILR ; T ILR.
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Distorted Distributions (DD)

The distorted distributions are a way to model distortion risk
measures developed from research on premium principles, see
Wang (1996, ASTIN Bull).

The distorted distribution associated to F and to an
increasing right continuous distortion function
q : [0, 1] → [0, 1] such that q(0) = 0 and q(1) = 1, is

Fq(t) = q(F (t)). (3.1)

Some authors assume that q is continuous and strictly
increasing. Then F and Fq have the same support.

For the reliability functions we have

F q(t) = q(F (t)), (3.2)

where q(u) = 1− q(1− u) is the dual distortion function; see
Hürlimann (2004, N Am Actuarial J).

q is also increasing in (0, 1) from q(0) = 0 to q(1) = 1.
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Particular cases of Distorted Distributions (DD)

The OS in the IID case are DD (1.1).

The GOS (Records, k-Records, etc.) are DD (1.2).

The SOS in the PHR case are DD.

The CS (OS) in the ID case (includes the EXC case) are DD
(2.5).

The SOS in the general case are DD but q and F are quite
complicate.

PHR and RPHR are DD.
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Distorted Distributions (DD)
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Ordering results for distorted distributions

Conditions to get ordering results for DD were given in
Navarro, del Aguila, Sordo and Suarez-Llorens (to appear in
ASMBI, DOI: 10.1002/asmb.1917).

For example:

Theorem

Let F1 = q1(F ) and let F2 = q2(F ). Then we have the following
properties:
(i) F1 ≤ST F2 (≥ST ) for all F if and only if q1(u)/q2(u) ≥ 1 (≤)
in (0, 1).
(ii) F1 ≤HR F2 (≥HR) for all F if and only if q1(u)/q2(u) increases
(decreases) in (0, 1).
(iii) F1 ≤LR F2 (≥LR) for all F if and only if q2(q

−1
1 (u)) is concave

(convex) in (0, 1).
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Ordering results for distorted distributions

Conditions to get preservation of aging classes for DD were
given in Navarro, del Aguila, Sordo and Suarez-Llorens
(submitted).

For example:

Theorem

Let Fq = q(F ) and let αq(u) = uq′(1−u)
1−q(1−u) . Then:

(i) If αq is decreasing in (0, 1) and F is IHR, then Fq is IHR.
(ii) If αq is increasing in (0, 1) and F is DHR, then Fq is DHR.
(iii) If αq is increasing in (0, 1) and Fq is IHR, then F is IHR.
(iv) If αq is decreasing in (0, 1) and Fq is DFR, then F is DFR.
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Inference results for distorted distributions

Inference results for distorted distributions (i.e. to estimate
characteristics of F from a distorted sample from Fq) were
obtained in:

Balakrishnan, Ng and Navarro (2011, IEEE Trans. Reliab. 60,
426-440).

Balakrishnan, Ng and Navarro (2011, J. Nonparmetric Stat.
23, 741-752).

Ng, Navarro and Balakrishnan (2012, Metrika 75, 367-388).
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Definition Generalized Distorted Distributions (GDD)

The generalized distorted distribution associated to F1, . . . Fn

and to an increasing right continuous generalized distortion
function Q : [0, 1]n → [0, 1] such that Q(0, . . . , 0) = 0 and
Q(1, . . . , 1) = 1, is

FQ(t) = Q(F1(t), . . . ,Fn(t)), (3.3)

see Navarro, del Aguila, Sordo and Suarez-Llorens
(submitted).

For the reliability functions we have

FQ(t) = Q(F 1(t), . . . ,F n(t)), (3.4)

where Q(u1, . . . , un) = 1− Q(1− u1, . . . , 1− un) is the dual
generalized distortion function.

Q is also increasing in (0, 1)n from Q(0, . . . , 0) = 0 to
Q(1, . . . , 1) = 1.
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Particular case of Generalized Distorted Distributions

The OS in the general case (includes the INID case) are GDD.

The CS in the general case (includes the INID case) are GDD.

Ordering and aging classes properties for GDD were given in
Navarro, del Aguila, Sordo and Suarez-Llorens (submitted),
see also Marshall, Olkin and Arnold (2011, Springer).

OSDA Murcia 2012 Order statistics and related concepts



Particular case of Generalized Distorted Distributions

The OS in the general case (includes the INID case) are GDD.

The CS in the general case (includes the INID case) are GDD.

Ordering and aging classes properties for GDD were given in
Navarro, del Aguila, Sordo and Suarez-Llorens (submitted),
see also Marshall, Olkin and Arnold (2011, Springer).

OSDA Murcia 2012 Order statistics and related concepts



Particular case of Generalized Distorted Distributions

The OS in the general case (includes the INID case) are GDD.

The CS in the general case (includes the INID case) are GDD.

Ordering and aging classes properties for GDD were given in
Navarro, del Aguila, Sordo and Suarez-Llorens (submitted),
see also Marshall, Olkin and Arnold (2011, Springer).

OSDA Murcia 2012 Order statistics and related concepts



Distorted Distributions (DD)
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Example

X2:3 has the path sets P1 = {1, 2}, P2 = {1, 3}, and
P3 = {2, 3}.
Then

FT (t) = F {1,2}(t) + F {1,3}(t) + F {2,3}(t)− 2F {1,2,3}(t).

Therefore, in the ID case, we have

FT (t) = K (F (t),F (t), 1) + K (F (t), 1,F (t)) + K (1,F (t),F (t))

− 2K (F (t),F (t),F (t)).

That is FT (t) = q(F (t)) where
q(u) = K (u, u, 1) + K (u, 1, u) + K (u, u, 1)− 2K (u, u, u).

In the EXC case q(u) = qEXC
2:3 (u) = 3K (u, u, 1)− 2K (u, u, u).

In the IID case q(u) = qIID
2:3 (u) = 3u2 − 2u3.
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Example

As

FT (t) = F {1,2}(t) + F {1,3}(t) + F {2,3}(t)− 2F {1,2,3}(t).

In the general case, we have

FT (t) = K (F 1(t),F 2(t), 1) + K (F 1(t), 1,F 3(t))

+ K (1,F 2(t),F 3(t))− 2K (F 1(t),F 2(t),F 3(t)).

That is FT (t) = Q(F 1(t),F 2(t),F 3(t)) where

Q(u1, u2, u3) = K (u1, u2, 1) + K (u1, 1, u3) + K (u1, u2, 1)

− 2K (u1, u2, u3).

In the I case:

Q(u1, u2, u3) = u1u2 + u1u3 + u1u2 − 2u1u2u3.
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Connectivity problems in Networks

A graph (or network) is an ordered pair G = (V ,E )
comprising a set V of nodes together with a set E of edges,
which are 2-element subsets of V .

A directed graph is an ordered pair G = (V ,E ) comprising a
set V of nodes together with a set E of edges, which are
elements of V × V .

Let us assume that in a graph (directed graph) the nodes
cannot fail but the edges can fail. Let X1, . . . ,Xn be the edges
lifetimes.

Suppose that we want to study a given connectivity problem
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