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Definition Distorted Distributions (DD)

The distorted distributions were introduced in Yaari’s dual
theory of choice under risk (Econometrica 55 (1987):95–115).

The distorted distribution (DD) associated to a distribution
function (DF) F and to an increasing continuous distortion
function q : [0, 1] → [0, 1] such that q(0) = 0 and q(1) = 1, is

Fq(t) = q(F (t)). (1.1)

If q is strictly increasing, then F and Fq have the same
support.

For the reliability functions (RF) F = 1− F , F q = 1− Fq, we
have

F q(t) = q(F (t)), (1.2)

where q(u) = 1− q(1− u) is the dual distortion function.
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Generalized Distorted Distributions (GDD)

The generalized distorted distribution (GDD) associated to n
DF F1, . . . ,Fn and to an increasing continuous multivariate
distortion function Q : [0, 1]n → [0, 1] such that
Q(0, . . . , 0) = 0 and Q(1, . . . , 1) = 1, is

FQ(t) = Q(F1(t), . . . ,Fn(t)). (1.3)

If Q is strictly increasing and F1, . . . ,Fn have the same
support, then FQ also has the same support.

For the RF we have

FQ(t) = Q(F 1(t), . . . ,F n(t)), (1.4)

where F = 1− F , FQ = 1− FQ and
Q(u1, . . . , un) = 1− Q(1− u1, . . . , 1− un) is the multivariate
dual distortion function.
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Proportional hazard rate (PHR) model

The PHR (Cox) model associated to a RF F is

Fα(t) =
(
F (t)

)α
= q

(
F (t)

)
for α > 0. Fα a DD with q(u) = uα and q(u) = 1− (1− u)α.

The hazard (failure) rate function is defined by
h(t) = f (t)/F (t) where f is the PDF.

Under the PHR model, hα(t) = αh(t).

The proportional reversed hazard rate (PRHR) model is

Fα(t) = (F (t))α = q (F (t))

for α > 0. Fα is a DD with q(u) = uα.
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Order statistics (OS)

X1, . . . ,Xn IID∼ F random variables.

X1, . . . ,Xn exchangeable (EXC), i.e., for any permutation σ

(X1, . . . ,Xn) =ST (Xσ(1), . . . ,Xσ(n)).

(X1, . . . ,Xn) is an arbitrary random vector with

F(x1, . . . , xn) = Pr(X1 ≤ x1, . . . ,Xn ≤ xn)

F(x1, . . . , xn) = Pr(X1 > x1, . . . ,Xn > xn).

Let X1:n, . . . ,Xn:n be the associated OS.

Let Fi :n(t) = Pr(Xi :n ≤ t) be the DF.

Let F i :n(t) = Pr(Xi :n > t) be the RF.
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Distorted Distribution Representation-IID case

In the IID case, we have

Fi :n(t) =
n∑

j=i

(−1)j−i

(
n

j

)(
j − 1

i − 1

)
Fj :j(t) = qi :n(F (t)), (1.5)

(see David and Nagaraja 2003, p. 46) where

Fj :j(t) = Pr(Xj :j ≤ t) = Pr(max(X1, . . . ,Xj) ≤ t) = F j(t)

and

qi :n(u) =
n∑

j=i

(−1)j−i

(
n

j

)(
j − 1

i − 1

)
uj

is a strictly increasing polinomial in [0, 1].

Both Fj :j and Fi :n are DD from F .
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Distorted Distribution Representation-IID case

The upper OS Xj :j (lifetime of the parallel system) satisfies
the PRHR model with α = j since

Fj :j(t) = Pr(Xj :j ≤ t) = Pr(max(X1, . . . ,Xj) ≤ t) = (F (t))j .

The lower OS X1:j (lifetime of the series system) satisfies the
PHR model

F 1:j(t) = Pr(X1:j ≤ t) = Pr(min(X1, . . . ,Xj) > t) =
(
F (t)

)j
.

Both Fj :j and F1:j are DD from F .
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Distorted Distribution Representation- EXC case

In the EXC case the left hand side of (1.5) holds with

Fj :j(t) = Pr(max(X1, . . . ,Xj) ≤ t) = F(t, . . . , t︸ ︷︷ ︸
j

,∞, . . . ,∞︸ ︷︷ ︸
n−j

).

The copula representation for F is

F(x1, . . . , xn) = C (F1(x1), . . . ,Fn(xn)), (1.6)

where Fi (t) = Pr(Xi ≤ t) and C is the copula.

In the EXC case, F1 = · · · = Fn = F and

Fj :j(t) = C (F (t), . . . ,F (t), 1, . . . , 1) = qC
j :j(F (t))

Fi :n(t) =
n∑

j=i

(−1)j−i

(
n

j

)(
j − 1

i − 1

)
qC
j :j(F (t)) = qC

i :n(F (t))

Both Fj :j and Fi :n are DD from F .
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Distorted Distribution Representation-GENERAL case

In the general case

Fi :n(t) = Pr(Xi :n ≤ t) = Pr
(
∪r

j=1{XCj ≤ t}
)

where XCj = maxk∈Cj
Xk and |Cj | = i , j = 1, . . . , r , r =

(n
i

)
.

Then

Fi :n(t) =
r∑

j=1

Pr(XCj ≤ t)−
∑
j 6=k

Pr(XCj∪Ck ≤ t)+. . .±Pr(XC1∪···∪Cr ≤ t)

By using the copula representation (1.6)

FA(t) = Pr(XA ≤ t) = Pr(max
j∈A

Xj ≤ t) = C (F1(x
A
1 ), . . . ,Fn(x

A
n )),

where xA
i = t if i ∈ A and xA

i = ∞ if i /∈ A, A ⊆ {1, . . . , n}.
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Distorted Distribution Representation-GENERAL case

Therefore
FA(t) = QC

A (F1(t), . . . ,Fn(t))

for all A ⊆ {1, . . . , n}, where QC
A (u1, . . . , un) = C (uA

1 , . . . , u
A
n )

and uA
i = ui if i ∈ A and uA

i = 1 if i /∈ A.

So

Fi :n(t) =
r∑

j=1

QC
Cj

(F1(t), . . . ,Fn(t))−
∑
j 6=k

QC
Cj∪Ck

(F1(t), . . . ,Fn(t))

+ · · · ± QC
C1∪···∪Cr

(F1(t), . . . ,Fn(t))

= QC
i :n(F1(t), . . . ,Fn(t)).

Both FA and Fi :n are GDD from F1, . . . ,Fn.

Both are DD when F1 = · · · = Fn (ID).
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An example-General case

Let us consider X2:3, then C1 = {1, 2}, C2 = {1, 3},
C3 = {2, 3}

F2:3(t) = Pr
(
{X {1,2} ≤ t} ∪ {X {1,3} ≤ t} ∪ {X {2,3} ≤ t}

)
= Pr

(
X {1,2} ≤ t

)
+ Pr

(
X {1,3} ≤ t

)
+ Pr

(
X {2,3} ≤ t

)
− 2 Pr

(
X {1,2,3} ≤ t

)
= F(t, t,∞) + F(t,∞, t) + F(∞, t, t)− 2F(t, t, t)

= C (F1(t),F2(t), 1) + C (F1(t), 1,F3(t)) + C (1,F2(t),F3(t))

− 2C (F1(t),F2(t),F3(t)) = QC
2:3(F1(t),F2(t),F3(t)),

where

QC
2:3(u1, u2, u3) = C (u1, u2, 1)+C (u1, 1, u3)+C (1, u2, u3)−2C (u1, u2, u3).
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An example-Particular cases

In the EXC case, we get

F2:3(t) = C (F (t),F (t), 1) + C (F (t), 1,F (t)) + C (1,F (t),F (t))

− 2C (F (t),F (t),F (t))

= 3C (F (t),F (t), 1)− 2C (F (t),F (t),F (t)) = qC
2:3(F (t)),

where qC
2:3(u) = 3C (u, u, 1)− 2C (u, u, u).

In the IID case, for q2:3(u) = 3u2 − 2u3, we have

F2:3(t) = F 2(t)− 3F 3(t) = q2:3(F (t)).

In the INID case, we get

F2:3(t) = F1(t)F2(t) + F1(t)F3(t) + F2(t)F3(t)− 2F1(t)F2(t)F3(t)

= Q2:3(F1(t),F2(t),F3(t)),

where Q2:3(u1, u2, u3) = u1u2 + u1u3 + u2u3 − 2u1u2u3.
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Coherent systems

A coherent system is

φ = φ(x1, . . . , xn) : {0, 1}n → {0, 1},

where xi ∈ {0, 1} (it represents the state of the ith
component) and where φ (which represents the state of the
system) is increasing in x1, . . . , xn and strictly increasing in xi

for at least a point (x1, . . . , xn), for all i = 1, . . . , n.

If X1, . . . ,Xn are the component lifetimes, then there exists ψ
such that the system lifetime T = ψ(X1, . . . ,Xn).

X1:n, . . . ,Xn:n are the lifetimes of k-out-of-n systems.

X1:n is the series system lifetime and Xn:n is the parallel
system lifetime.
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Coherent systems- IID and EXC case

Samaniego (IEEE TR, 1985), IID case:

FT (t) =
n∑

i=1

piF i :n(t), (1.7)

where pi = Pr(T = Xi :n).

p = (p1, . . . , pn) is the signature of the system.

IID case: pi only depends on φ

pi =

∣∣{σ : φ(x1, . . . , xn) = xi :n, when xσ(1) < . . . < xσ(n)}
∣∣

n!
(1.8)

Navarro, Samaniego, Balakrishnan and Bhathacharya (NRL,
2008), (1.7) holds for EXC r.v. when p is given by (1.8).

In both cases FT is a DD from F .
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Generalized mixture representations

Navarro, Ruiz and Sandoval (CSTM, 2007), EXC case:

FT (t) =
n∑

i=1

aiF 1:i (t). (1.9)

a = (a1, . . . , an) is the minimal signature of T .

ai only depends on φ but can be negative and so (1.9) is
called a generalized mixture.

In the IID case:

FT (t) =
n∑

i=1

aiF
i
(t) = qφ(F (t)), (1.10)

qφ(x) =
∑n

i=1 aix
i is the domination (reliability) polynomial.
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Coherent systems-General case

A path set of T is a set P ⊆ {1, . . . , n} such that if all the
components in P work, then the system works.

A minimal path set of T is a path set which does not
contains other path sets.

If P1, . . . ,Pr are the minimal path sets of T , then
T = maxj=1,...,r XPj

, where XP = mini∈P Xi and

FT (t) = Pr

(
max

j=1,...,r
XPj

> t

)
= Pr

(
∪r

j=1{XPj
> t}

)
=

r∑
i=1

FPi
(t)−

∑
i 6=j

FPi∪Pj
(t) + · · · ± FP1∪···∪Pr (t)

where FP(t) = Pr(XP > t).
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Coherent systems-General case

The copula representation for the RF of (X1, . . . ,Xn) is

F(x1, . . . , xn) = K (F 1(x1), . . . ,F (xn)),

where F i (t) = Pr(Xi > t) and K is the survival copula.

Then
FP(t) = QP,K (F 1(t), . . . ,F n(t)),

where QP,K (u1, . . . , un) = K (uP
1 , . . . , u

P
n ) and uP

i = ui for
i ∈ P and uP

i = 1 for i /∈ P.

Therefore, from the minimal path set repres., we get

FT (t) = Qφ,K (F 1(t), . . . ,F n(t)).

In the ID case
FT (t) = qφ,K (F (t)). (1.11)
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Example

Figure: Duglas DC 10
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3
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2

Coherent system lifetime T = min(X1,max(X2,X3)).

11th International Conference on Ordered Statistical Data Jorge Navarro, E-mail: jorgenav@um.es



Distorted Distributions
Preservation results
Parrondo’s paradox

References

Proportional hazard rate model
Order statistics
Coherent systems
Other examples

Example

1��
��

��
��

3

��
��

2

3! = 6 permutations.
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X1 < X2 < X3 ⇒ T = X1 = X1:3
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IID F cont.: p = (2/6, 4/6, 0) = (1/3, 2/3, 0).
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IID F cont.: FT (t) = 1
3F 1:3(t) + 2

3F 2:3(t).
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Example-general case

1��
��

��
��

3

��
��

2

Coherent system lifetime T = max(min(X1,X2),min(X1,X3))
Minimal path sets P1 = {1, 2} and P1 = {1, 3}.
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FT (t) = Pr({X{1,3} > t} ∪ {X{1,2} > t})
= F {1,2}(t) + F {1,3}(t)− F {1,2,3}(t).
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Example-general case
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F {1,2}(t) = F(t, t, 0) = K (F 1(t),F 2(t), 1),...

FT (t) = Qφ,K (F 1(t),F 2(t),F 3(t)) where
Qφ,K (u1, u2, u3) = K (u1, u2, 1) + K (u1, 1, u3)− K (u1, u2, u3).
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Example-general case
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2

EXC: FT (t) = 2F 1:2(t)− F 1:3(t) = qφ,K (F (t)),
where qφ,K (u) = 2K (u, u, 1)− K (u, u, u).
Minimal signature a = (0, 2,−1).
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IID: FT (t) = 2F
2
(t)− F

3
(t) = qφ(F (t)),

where qφ(u) = 2u2 − u3.
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Example-general case
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The minimal signatures for n ≤ 5 can be seen in:
Navarro and Rubio (2010, Comm Stat Simul Comp 39, 68–84).
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Generalized Order Statistics (GOS)

For an arbitrary DF F , GOS XGOS
1:n , . . . ,XGOS

n:n based on F can
be obtained (Kamps, 1995, B. G. Teubner Stuttgart, p.49) via
the quantile transformation

XGOS
r :n = F−1(UGOS

r :n ), r = 1, . . . , n,

where (U∗
1:n, . . . ,U

∗
n:n) has the joint PDF

gGOS(u1, . . . , un) = k

n−1∏
j=1

γj

(n−1∏
i=1

(1− ui )
mi

)
(1−un)

k−1

for 0 ≤ u1 ≤ . . . ≤ un < 1, n ≥ 2, k ≥ 1, γ1, . . . , γn > 0 and
mi = γi − γi+1 − 1.
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Generalized Order statistics (GOS)

If γ1, . . . , γn are pairwise different, then

FGOS
r :n (t) = 1− cr−1

r∑
i=1

ai ,r

γi
(1− F (t))γi = qGOS

r :n (F (t))

with the constants

cr−1 =
r∏

j=1

γj , ai ,r =
r∏

j=1
j 6=i

1

γj − γi
, 1 ≤ i ≤ r ≤ n

where the empty product
∏

∅ is defined to be 1.

Then the GOS are DD from F .
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Particular cases of GOS

The GOS include:

OS, IID case (m1 = · · · = mn−1 = 0 and k = 1).

kRV, k-th record values (m1 = · · · = mn−1 = −1 and
k = 1, 2, . . . ).

RV, record values (m1 = · · · = mn−1 = −1 and k = 1).

SOS, Sequential Order Statistics under the Proportional
Hazard Rate (PHR) model, i.e., with F r = F

αr
for

r = 1, . . . , n (γr = (n − r + 1)αr and k = αn).

The SOS can be seen as OS in EXC models. So they are DD.
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Stochastic orders-DD
Stochastic orders-GDD
Stochastic aging classes
Examples

Preservation results

If q1 and q2 are two DF,

q1(F ) ≤ord q2(F ) for all F?

If q is a DF,

F ≤ord G ⇒ q(F ) ≤ord q(G )?

If Q1 and Q2 are two MDF,

Q1(F1, . . . ,Fn) ≤ord Q2(F1, . . . ,Fn)?

If Q is a MDF,

Fi ≤ord Gi , i = 1, . . . , n,⇒ Q(F1, . . . ,Fn) ≤ord Q(G1, . . . ,Gn)?

Navarro, del Aguila, Sordo and Suárez-Llorens (2013, ASMBI)
and (2014, submitted) and Navarro (2014, submitted).
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Stochastic orders-DD
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Stochastic aging classes
Examples

Main stochastic orderings

X ≤ST Y ⇔ FX (t) ≤ FY (t), stochastic order.

X ≤HR Y ⇔ hX (t) ≥ hY (t), hazard rate order.

X ≤HR Y ⇔ (X − t|X > t) ≤ST (Y − t|Y > t) for all t.

X ≤MRL Y ⇔ E (X − t|X > t) ≤ E (Y − t|Y > t) for all t.

X ≤LR Y ⇔ fY (t)/fX (t) is nondecreasing, likelihood ratio
order.

X ≤RHR Y ⇔ (t − X |X < t) ≥ST (t − Y |Y < t) for all t.

Then

X ≤RHR Y X ≤MRL Y ⇒ E (X ) ≤ E (Y )
⇑ ⇑ ⇑

X ≤LR Y ⇒ X ≤HR Y ⇒ X ≤ST Y
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X ≤LR Y ⇔ fY (t)/fX (t) is nondecreasing, likelihood ratio
order.

X ≤RHR Y ⇔ (t − X |X < t) ≥ST (t − Y |Y < t) for all t.

Then

X ≤RHR Y X ≤MRL Y ⇒ E (X ) ≤ E (Y )
⇑ ⇑ ⇑

X ≤LR Y ⇒ X ≤HR Y ⇒ X ≤ST Y
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Preservation of stochastic orders-DD

If Ti has the DD qi (F (t)), i = 1, 2, then:

T1 ≤ST T2 for all F if and only if q1(u)/q2(u) ≥ 1 in (0, 1).

T1 ≤HR T2 for all F if and only if q2/q1 decreases in (0, 1).

T1 ≤LR T2 (≥LR) for all F if and only if q2(q
−1
1 (u)) is

concave (convex) in (0, 1).

T1 ≤LR T2 for all F if and only if q′1(u)/q′2(u) decreases.
NEW T1 ≤MRL T2 for all F if E (T1) ≤ E (T2) and q2/q1 is
bathtub in (0, 1).
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Preservation of stochastic orders-DD

F1 ≤ST F2 ⇒ q(F1) ≤ST q(F2).

If α(u) is decreasing in (0, 1), then

F1 ≤HR F2 ⇒ q(F1) ≤HR q(F2),

where α(u) = uq′(1− u)/(1− q(1− u)) = uq′(u)/q(u).

If βq(u) is decreasing and nonnegative in (0, 1), then

F1 ≤LR F2 ⇒ q(F1) ≤LR q(F2),

where βq(u) = −uq′′(1− u)q′(1− u) = uq′′(u)/q′(u).
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Preservation of stochastic orders-GDDNEW

If Gi = Qi (F1, . . . ,Fn), i = 1, 2, then:

G1 ≤ST G2 for all F1, . . . ,Fn if and only if Q1/Q2 ≥ 1 in
(0, 1)n.

G1 ≤HR G2 for all F1, . . . ,Fn if and only if Q2/Q1 is
decreasing in (0, 1)n.

G1 ≤HR G2 for all F1, . . . ,Fn if αQ1
i ≥ αQ2

i in (0, 1)n for
i = 1, . . . , n, where

αΦ
i (u1, . . . , un) =

uiDiΦ(u1, . . . , un)

Φ(u1, . . . , un)
(2.1)

and DiQ(u1, . . . , un) = ∂
∂ui

Q(u1, . . . , un).

G1 ≤RHR G2 for all F1, . . . ,Fn if and only if Q2/Q1 is
increasing in (0, 1)n.
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Preservation of stochastic orders-GDDNEW

If FQ = Q(F1, . . . ,Fn) and GQ = Q(G1, . . . ,Gn), then:

Fi ≤ST Gi for i = 1, . . . , n ⇒ FQ ≤ST GQ .

If Fi ≤HR Gi for i = 1, . . . , n, then FQ ≤HR GQ for all MDF Q

such that αQ
i is decreasing in (0, 1)n for i = 1, . . . , n.

If Fi ≤RHR Gi for i = 1, . . . , n, then FQ ≤RHR GQ for all MDF
Q such that αQ

i is decreasing in (0, 1)n for i = 1, . . . , n.
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Preservation of stochastic orders-GDDNEW

If Fi ≤HR Gi for i = 1, . . . , n, then FQ ≤HR GQ for all MDF Q
such that

βQ =
Q(u1v1, . . . , unvn)

Q(u1, . . . , un)
. (2.2)

is decreasing in u1, . . . , un and increasing in v1, . . . , vn in
(0, 1)n × (1,∞)n.

If Fi ≤LR Gi and Fi is IHR (DHR) for i = 1, . . . , n, then
FQ ≤LR GQ for all MDF Q such that

γQ =
w1z1u1D1Q(u1v1, . . . , unvn) + · · ·+ wnznunDnQ(u1v1, . . . , unvn)

z1u1D1Q(u1, . . . , un) + · · ·+ znunDnQ(u1, . . . , un)

is decreasing in u1, . . . , un, increasing in v1, . . . , vn,w1, . . . ,wn

and increasing (decreasing) in zi in
(0, 1)n × (1,∞)× (0,∞)2n.
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Preservation of stochastic orders-GDDNEW

If FQ = Q(F1,F2, . . . ,Fn) and GQ = Q(G1,F2, . . . ,Fn), then:
If F1 ≤HR G1 and F1 ≥HR Fi (≤HR) for i = 2, . . . , n, then
FQ ≤HR GQ for all MDF Q such that

δQ =
Q(u1v1, u1v2, . . . , u1vn)

Q(u1, u1v2, . . . , u1vn)
(2.3)

is decreasing in u1 and decreasing (increasing) in vi ,
i = 1, . . . , n.
If F1 ≤LR G1 and F1 ≤LR Fi (≥LR) for i = 2, . . . , n, then
FQ ≤LR GQ for all MDF Q such that

λQ =
w1D1Q(u1v1, . . . , u1vn) + · · ·+ wnDnQ(u1v1, . . . , u1vn)

D1Q(u1, u1v2, . . . , u1vn) + · · ·+ DnQ(u1, u1v2, . . . , u1vn)

is decreasing in u1, increasing in v1 and increasing
(decreasing) in vi and wi for i = 2, . . . , n.
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Preservation results of aging classes

Let C be an aging class.

If q is a distorted function,

F ∈ C ⇒ q(F ) ∈ C?

If Q is a multivariate distorted function,

Fi ∈ C, i = 1, . . . , n,⇒ Q(F1, . . . ,Fn) ∈ C?

Navarro, del Aguila, Sordo and Suárez-Llorens (2013, Appl
Stoch Mod Bus Ind, doi:10.1002/asmb.1985).
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Stochastic aging classes

X is Increasing (Decreasing) Hazard Rate IHR (DHR) if h is
increasing (decreasing).

X is IHR ⇔ (X − s|X > s) ≥ST (X − t|X > t) for all s < t.

X is New Better (Worse) than Used NBU (NWU) if
X ≥ST (X − t|X > t) (≤ST ) for all t > 0.

X is Increasing (Decreasing) Likelihood Ratio ILR (DLR) if f
is log-concave (log-convex).

X is ILR ⇔ (X − s|X > s) ≥LR (X − t|X > t) for all s < t.

ILR ⇒ IHR ⇒ NBU.

11th International Conference on Ordered Statistical Data Jorge Navarro, E-mail: jorgenav@um.es



Distorted Distributions
Preservation results
Parrondo’s paradox

References

Stochastic orders-DD
Stochastic orders-GDD
Stochastic aging classes
Examples

Stochastic aging classes

X is Increasing (Decreasing) Hazard Rate IHR (DHR) if h is
increasing (decreasing).

X is IHR ⇔ (X − s|X > s) ≥ST (X − t|X > t) for all s < t.

X is New Better (Worse) than Used NBU (NWU) if
X ≥ST (X − t|X > t) (≤ST ) for all t > 0.

X is Increasing (Decreasing) Likelihood Ratio ILR (DLR) if f
is log-concave (log-convex).

X is ILR ⇔ (X − s|X > s) ≥LR (X − t|X > t) for all s < t.

ILR ⇒ IHR ⇒ NBU.

11th International Conference on Ordered Statistical Data Jorge Navarro, E-mail: jorgenav@um.es



Distorted Distributions
Preservation results
Parrondo’s paradox

References

Stochastic orders-DD
Stochastic orders-GDD
Stochastic aging classes
Examples

Stochastic aging classes

X is Increasing (Decreasing) Hazard Rate IHR (DHR) if h is
increasing (decreasing).

X is IHR ⇔ (X − s|X > s) ≥ST (X − t|X > t) for all s < t.

X is New Better (Worse) than Used NBU (NWU) if
X ≥ST (X − t|X > t) (≤ST ) for all t > 0.

X is Increasing (Decreasing) Likelihood Ratio ILR (DLR) if f
is log-concave (log-convex).

X is ILR ⇔ (X − s|X > s) ≥LR (X − t|X > t) for all s < t.

ILR ⇒ IHR ⇒ NBU.

11th International Conference on Ordered Statistical Data Jorge Navarro, E-mail: jorgenav@um.es



Distorted Distributions
Preservation results
Parrondo’s paradox

References

Stochastic orders-DD
Stochastic orders-GDD
Stochastic aging classes
Examples

Stochastic aging classes

X is Increasing (Decreasing) Hazard Rate IHR (DHR) if h is
increasing (decreasing).

X is IHR ⇔ (X − s|X > s) ≥ST (X − t|X > t) for all s < t.

X is New Better (Worse) than Used NBU (NWU) if
X ≥ST (X − t|X > t) (≤ST ) for all t > 0.

X is Increasing (Decreasing) Likelihood Ratio ILR (DLR) if f
is log-concave (log-convex).

X is ILR ⇔ (X − s|X > s) ≥LR (X − t|X > t) for all s < t.

ILR ⇒ IHR ⇒ NBU.

11th International Conference on Ordered Statistical Data Jorge Navarro, E-mail: jorgenav@um.es



Distorted Distributions
Preservation results
Parrondo’s paradox

References

Stochastic orders-DD
Stochastic orders-GDD
Stochastic aging classes
Examples

Stochastic aging classes

X is Increasing (Decreasing) Hazard Rate IHR (DHR) if h is
increasing (decreasing).

X is IHR ⇔ (X − s|X > s) ≥ST (X − t|X > t) for all s < t.

X is New Better (Worse) than Used NBU (NWU) if
X ≥ST (X − t|X > t) (≤ST ) for all t > 0.

X is Increasing (Decreasing) Likelihood Ratio ILR (DLR) if f
is log-concave (log-convex).

X is ILR ⇔ (X − s|X > s) ≥LR (X − t|X > t) for all s < t.

ILR ⇒ IHR ⇒ NBU.

11th International Conference on Ordered Statistical Data Jorge Navarro, E-mail: jorgenav@um.es



Distorted Distributions
Preservation results
Parrondo’s paradox

References

Stochastic orders-DD
Stochastic orders-GDD
Stochastic aging classes
Examples

Stochastic aging classes

X is Increasing (Decreasing) Hazard Rate IHR (DHR) if h is
increasing (decreasing).

X is IHR ⇔ (X − s|X > s) ≥ST (X − t|X > t) for all s < t.

X is New Better (Worse) than Used NBU (NWU) if
X ≥ST (X − t|X > t) (≤ST ) for all t > 0.

X is Increasing (Decreasing) Likelihood Ratio ILR (DLR) if f
is log-concave (log-convex).

X is ILR ⇔ (X − s|X > s) ≥LR (X − t|X > t) for all s < t.

ILR ⇒ IHR ⇒ NBU.

11th International Conference on Ordered Statistical Data Jorge Navarro, E-mail: jorgenav@um.es



Distorted Distributions
Preservation results
Parrondo’s paradox

References

Stochastic orders-DD
Stochastic orders-GDD
Stochastic aging classes
Examples

Preservation of Stochastic aging classes DD

Let Fq = q(F ) and α(u) = uq′(u)/q(u). Then:

The IHR class is preserved (i.e. Fq is IHR for all F IHR) if and
only if α is decreasing in (0, 1).

The DHR class is preserved if and only if α is increasing in
(0, 1).

The IHR and DHR classes are preserved if and only if the
PHR holds (α is constant).

The NBU (NWU) class is preserved if and only if

q(uv) ≤ q(u)q(v) (≥), 0 ≤ u, v ≤ 1. (2.4)

The NBU (NWU) class is preserved if the IHR (DHR) class is
preserved.
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Preservation of Stochastic aging classes

In the IID case:

The IHR class and the HR order are preserved for Xi :n since
αi :n(u) is decreasing (Esary and Proschan 1963, Tech.).

The DHR class is not necessarily preserved for Xi :n! It is only
preserved for X1:n since α1:n(u) is constant.

The IHR and DHR classes are not necessarily preserved under
the formation of coherent systems! It depends on the system
structure.

In the ID case the IHR class is not necessarily preserved for
Xi :n! It depends on the copula (dependence).
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Preservation of Stochastic aging classes DD

Let Fq = q(F ) and let

β(u) = uq′′(u)/q′(u),

and
β(u) = (1− u)q′′(u)/q′(u).

Then:

If F is ILR and there exists a ∈ [0, 1] such that β is
non-negative and decreasing in (0, a) and β is non-positive
and decreasing in (a, 1), then Fq is ILR.

If F is DLR with support (l ,∞) (l ≥ 0), β is non-negative and
increasing in (0, 1), then Fq is DLR.
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Preservation of Stochastic aging classes GDD

Let FQ = Q(F 1, . . . ,F n) and

αi (u1, . . . , un) =
uiDiQ(u1, . . . , un)

Q(u1, . . . , un)
.

Then:

The IHR (DHR) class is preserved if αi is decreasing
(increasing) in (0, 1)n for i = 1, . . . , n.

The NBU (NWU) class is preserved if

Q(u1v1, . . . , unvn) ≤ Q(u1, . . . , un)Q(v1, . . . , vn) (≥)

for all u1, . . . , un, v1, . . . , vn ∈ (0, 1),

The NBU (NWU) class is preserved if the IHR (DHR) class is
preserved.
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The IHR (DHR) class is preserved if αi is decreasing
(increasing) in (0, 1)n for i = 1, . . . , n.

The NBU (NWU) class is preserved if

Q(u1v1, . . . , unvn) ≤ Q(u1, . . . , un)Q(v1, . . . , vn) (≥)

for all u1, . . . , un, v1, . . . , vn ∈ (0, 1),

The NBU (NWU) class is preserved if the IHR (DHR) class is
preserved.
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Preservation of Stochastic aging classes GDD

If X1, . . . ,Xn are independent, then:

The NBU class is preserved under the formation of coherent
systems (Esary, Marshall and Proschan, 1970, SIAM J Appl
Math).

The IHR class is not preserved under the formation of
coherent systems (order statistics) in the independent case.
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Example-system IID case

1��
��

��
��

3

��
��

2

Coherent system lifetime T = min(X1,max(X2,X3)).

In the IID case: q(u) = u + u2 − u3 and q(u) = 2u2 − 3u3.

Then α(u) = 4−3u
2−u is strictly decreasing.

The HR order is preserved.

The IHR class is preserved and the DHR is not always
preserved.
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Example- paradoxical system IID case
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Coherent system lifetime T = max(X1,min(X2,X3)).
In the IID case: q(u) = u + u2 − u3 and q(u) = 2u2 − 3u3.

Then α(u) = 1+2u−3u2

1+u−u2 is strictly increasing in (0, u0) and

strictly decreasing in (u0, 1), with u0 =
√

5− 2 = 0.236068.
The HR order is not necessarily preserved.
Neither the IHR class nor the DHR are preserved.
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Figure: HR (left) and RF (left) of the residual lifetimes (T − t|T > t) of
the system T = max(X1,min(X2,X3)) when Xi are IID∼ Exp(µ = 1)
with t = 0, 1, 2, 3 (black, blue, red, green).
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Figure: HR X1 (left) and T = max(X1,min(X2,X3)) (right) when Xi are
IID with F (t) = 1− (1− e−t)a for t > 0 and a = 2, 5 (blue, black).

11th International Conference on Ordered Statistical Data Jorge Navarro, E-mail: jorgenav@um.es



Distorted Distributions
Preservation results
Parrondo’s paradox

References

Stochastic orders-DD
Stochastic orders-GDD
Stochastic aging classes
Examples

Example-DID case

Series system X1:n = min(X1, . . . ,Xn) with ID components
having a Clayton-Oakes survival copula

K (u1, . . . , un) =

(
n∑

i=1

u1−θ
i − (n − 1)

)1/(1−θ)

, θ > 1.

Then

q(u) = K (u, . . . , u) = (nu1−θ − n + 1)1/(1−θ).

As α(u) = n
n−(n−1)uθ−1 is a strictly increasing function for all

θ > 1, the DHR class is preserved for all n.

However, the IHR class is not necessarily preserved.

The HR order is not necessarily preserved.
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Figure: HR of T = min(X1,X2) when (X1,X2) has a C-O survival copula
with θ = 2 and F i (t) = exp(−ta), t > 0, i = 1, 2 with a = 1 (black,
Exponential), a = 1.1, 1.2, 1.3, 1.4 (blue, red, green, purple, IHR Weibull).
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Example-Parallel system IND case

Parallel system X1:2 = max(X1,X2) with IND components.
Then Q2:2(u1, u2) = u1 + u2 − u1u2.

As αQ
1 (u1, u2) = (u1 − u1u2)/(u1 + u2 − u1u2) is increasing in

u1 and decreasing in u2, then the IHR and DHR classes are
not necessarily preserved.
For the series system Q1:2(u) = u1u2 and as

Q2:2(u1, u2)

Q1:2(u1, u2)
=

1

u1
+

1

u2
− 1

is decreasing, then X1:2 ≤HR X2:2.
X1 and X2:2 are not always HR-ordered since

Q2:2(u1, u2)

u1
= 1 +

u2

u1
− u2

is decreasing in u1 but increasing in u2.
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Figure: HR of Xi (red), X1:2 (blue) and X2:2 (black) when
Xi ∼ Exp(µ = 1/i), i = 1, 2. Xi are IHR and DHR but X2:2 is neither
IHR nor DHR.
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Parrondo’s paradox
Randomized GDD.
Example

Parrondo’s paradox series systems-IID case

Parrondo’s paradox shows (Game Theory) how, in some
games, a random strategy might be better than any
deterministic strategy.
The same paradox holds for coherent systems.
Let us assume that we have two kind of units with reliability
functions F 1 ≥ F 2 (in a similar number) to build series
systems with two independent units.
Let T = min(X1,X2) be the system obtained when
F i (t) = Pr(Xi > t), i = 1, 2.
Let S be the system obtained when the units are chosen
randomly.
Then T ≤ST S since

FT (t) = F 1(t)F 2(t) ≤ (0.5F 1(t) + 0.5F 1(t))
2 = F S(t).
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FT (t) = F 1(t)F 2(t) ≤ (0.5F 1(t) + 0.5F 1(t))
2 = F S(t).

11th International Conference on Ordered Statistical Data Jorge Navarro, E-mail: jorgenav@um.es



Distorted Distributions
Preservation results
Parrondo’s paradox

References

Parrondo’s paradox
Randomized GDD.
Example

Parrondo’s paradox series systems-IID case

Parrondo’s paradox shows (Game Theory) how, in some
games, a random strategy might be better than any
deterministic strategy.
The same paradox holds for coherent systems.
Let us assume that we have two kind of units with reliability
functions F 1 ≥ F 2 (in a similar number) to build series
systems with two independent units.
Let T = min(X1,X2) be the system obtained when
F i (t) = Pr(Xi > t), i = 1, 2.
Let S be the system obtained when the units are chosen
randomly.
Then T ≤ST S since

FT (t) = F 1(t)F 2(t) ≤ (0.5F 1(t) + 0.5F 1(t))
2 = F S(t).

11th International Conference on Ordered Statistical Data Jorge Navarro, E-mail: jorgenav@um.es



Distorted Distributions
Preservation results
Parrondo’s paradox

References

Parrondo’s paradox
Randomized GDD.
Example

Figure: Reliability functions of systems T (black) and S (blue) when the
units have exponential distributions with means 5 and 1.
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Parrondo’s paradox in other systems

The same happen with series systems of size n with
independent components.

The orderings are reversed for parallel systems.

In both cases, we compare the GDD Q(F1, . . . ,Fn) and
Q(G , . . . ,G ), where G = F1 + · · ·+ Fn)/n.

A function g : Rn → R is weakly Schur-concave (convex) if

g(u1, u2, . . . , un) ≤ g(u, u, . . . , u) (≥)

for all (u1, u2, . . . , un), where u = (u1 + u2 + . . .+ un)/n.
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Parrondo’s paradox

Theorem (Navarro and Spizzichino, ASMBI 2010)

If (X1,X2, . . . ,Xn) and (Y1,Y2, . . . ,Yn) have the same copula,
F i (t) = Pr(Xi > t) and
G (t) = (F 1(t) + . . .+ F n(t))/n = Pr(Yi > t) for i = 1, . . . , n, and
Qφ,K is weakly Schur-concave (convex), then

T = φ(X1, . . . ,Xn) ≤ST S = φ(Y1, . . . ,Yn) (≥ST ).
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Parrondo’s paradox in other systems

This theorem can be applied to GDD.

For X1:n with independent components
Q1:n(u1, . . . , un) = u1 . . . un which is Schur-concave and so
Parrondo’s paradox holds.

For X1:n with dependent components
Q1:n,K (u1, . . . , un) = K (u1, . . . , un).

Many copulas are Schur-concave (e.g. Archimedean copulas)
and so Parrondo’s paradox holds in many series systems.

However there are copulas which are weakly Schur-convex and
hence the ordering can be reversed for series systems (see
Navarro and Spizzichino, ASMBI 2010).

The preceding properties are reversed for parallel systems.
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Randomized GDD

If Q is a GDF, we consider the GDD with RF

F k(t) = Q
(
FX (t), . . . ,FX (t)︸ ︷︷ ︸

k−times

,FY (t), . . . ,FY (t)︸ ︷︷ ︸
(n−k)−times

)
, k = 0, . . . , n

(3.1)

Here, e.g., we can assume X ≥ST Y .

The randomized GDD is obtained when the number k of “god
components” is chosen randomly according to a discrete
random variable K with support included in {0, . . . , n}.
It is represented by the random variable TK .
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Proposition (Navarro, Pellerey and Di Crecenzo, 2014)

If k is chosen randomly according to K1 or K2 and

ϕ(k) = Q(u, . . . , u︸ ︷︷ ︸
k−times

, v , . . . , v︸ ︷︷ ︸
(n−k)−times

)

is convex (concave) in {0, 1, . . . ,m} for all u, v ∈ (0, 1), then:
(i) K1 ≤CX K2 implies TK1 ≤ST TK2 (≥st).
(ii) X ≥ST Y and K1 ≤ICX K2 (≤ICV ) imply TK1 ≤ST TK2 .
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Figure: Reliability functions of systems T (black) and S (blue) when the
units have exponential distributions with means 1 and 5.
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Parrondo paradox example

T = min(X1,X2) with Q(u, v) = uv .
It is obtained with K1 such that Pr(K1 = 1) = 1.
S is obtained with K2 such that Pr(K2 = 1) = 1/2 and
Pr(K2 = 0) = Pr(K2 = 2) = 1/4.
Another reasonable option is obtained with K3 such that
Pr(K3 = i) = 1/3 for i = 0, 1, 2.
The green line is obtained with K4 such that
Pr(K4 = 0) = Pr(K4 = 2) = 1/2.
Note that E (Ki ) = 1 for i = 1, 2, 3, 4.
As ϕ(k) = ukv1−k is convex and
K1 ≤CX K2 ≤Cx K3 ≤CX K4, then

FK1 ≤ST FK2 ≤ST FK3 ≤ST FK4 .

Actually, K4 is the best option (the most convex) whenever
E (K ) = 1.

11th International Conference on Ordered Statistical Data Jorge Navarro, E-mail: jorgenav@um.es



Distorted Distributions
Preservation results
Parrondo’s paradox

References

Parrondo’s paradox
Randomized GDD.
Example

Parrondo paradox example

T = min(X1,X2) with Q(u, v) = uv .
It is obtained with K1 such that Pr(K1 = 1) = 1.
S is obtained with K2 such that Pr(K2 = 1) = 1/2 and
Pr(K2 = 0) = Pr(K2 = 2) = 1/4.
Another reasonable option is obtained with K3 such that
Pr(K3 = i) = 1/3 for i = 0, 1, 2.
The green line is obtained with K4 such that
Pr(K4 = 0) = Pr(K4 = 2) = 1/2.
Note that E (Ki ) = 1 for i = 1, 2, 3, 4.
As ϕ(k) = ukv1−k is convex and
K1 ≤CX K2 ≤Cx K3 ≤CX K4, then

FK1 ≤ST FK2 ≤ST FK3 ≤ST FK4 .

Actually, K4 is the best option (the most convex) whenever
E (K ) = 1.

11th International Conference on Ordered Statistical Data Jorge Navarro, E-mail: jorgenav@um.es



Distorted Distributions
Preservation results
Parrondo’s paradox

References

Parrondo’s paradox
Randomized GDD.
Example

Parrondo paradox example

T = min(X1,X2) with Q(u, v) = uv .
It is obtained with K1 such that Pr(K1 = 1) = 1.
S is obtained with K2 such that Pr(K2 = 1) = 1/2 and
Pr(K2 = 0) = Pr(K2 = 2) = 1/4.
Another reasonable option is obtained with K3 such that
Pr(K3 = i) = 1/3 for i = 0, 1, 2.
The green line is obtained with K4 such that
Pr(K4 = 0) = Pr(K4 = 2) = 1/2.
Note that E (Ki ) = 1 for i = 1, 2, 3, 4.
As ϕ(k) = ukv1−k is convex and
K1 ≤CX K2 ≤Cx K3 ≤CX K4, then

FK1 ≤ST FK2 ≤ST FK3 ≤ST FK4 .

Actually, K4 is the best option (the most convex) whenever
E (K ) = 1.

11th International Conference on Ordered Statistical Data Jorge Navarro, E-mail: jorgenav@um.es



Distorted Distributions
Preservation results
Parrondo’s paradox

References

Parrondo’s paradox
Randomized GDD.
Example

Parrondo paradox example

T = min(X1,X2) with Q(u, v) = uv .
It is obtained with K1 such that Pr(K1 = 1) = 1.
S is obtained with K2 such that Pr(K2 = 1) = 1/2 and
Pr(K2 = 0) = Pr(K2 = 2) = 1/4.
Another reasonable option is obtained with K3 such that
Pr(K3 = i) = 1/3 for i = 0, 1, 2.
The green line is obtained with K4 such that
Pr(K4 = 0) = Pr(K4 = 2) = 1/2.
Note that E (Ki ) = 1 for i = 1, 2, 3, 4.
As ϕ(k) = ukv1−k is convex and
K1 ≤CX K2 ≤Cx K3 ≤CX K4, then

FK1 ≤ST FK2 ≤ST FK3 ≤ST FK4 .

Actually, K4 is the best option (the most convex) whenever
E (K ) = 1.

11th International Conference on Ordered Statistical Data Jorge Navarro, E-mail: jorgenav@um.es



Distorted Distributions
Preservation results
Parrondo’s paradox

References

Parrondo’s paradox
Randomized GDD.
Example

Parrondo paradox example

T = min(X1,X2) with Q(u, v) = uv .
It is obtained with K1 such that Pr(K1 = 1) = 1.
S is obtained with K2 such that Pr(K2 = 1) = 1/2 and
Pr(K2 = 0) = Pr(K2 = 2) = 1/4.
Another reasonable option is obtained with K3 such that
Pr(K3 = i) = 1/3 for i = 0, 1, 2.
The green line is obtained with K4 such that
Pr(K4 = 0) = Pr(K4 = 2) = 1/2.
Note that E (Ki ) = 1 for i = 1, 2, 3, 4.
As ϕ(k) = ukv1−k is convex and
K1 ≤CX K2 ≤Cx K3 ≤CX K4, then

FK1 ≤ST FK2 ≤ST FK3 ≤ST FK4 .

Actually, K4 is the best option (the most convex) whenever
E (K ) = 1.

11th International Conference on Ordered Statistical Data Jorge Navarro, E-mail: jorgenav@um.es



Distorted Distributions
Preservation results
Parrondo’s paradox

References

Parrondo’s paradox
Randomized GDD.
Example

Parrondo paradox example

T = min(X1,X2) with Q(u, v) = uv .
It is obtained with K1 such that Pr(K1 = 1) = 1.
S is obtained with K2 such that Pr(K2 = 1) = 1/2 and
Pr(K2 = 0) = Pr(K2 = 2) = 1/4.
Another reasonable option is obtained with K3 such that
Pr(K3 = i) = 1/3 for i = 0, 1, 2.
The green line is obtained with K4 such that
Pr(K4 = 0) = Pr(K4 = 2) = 1/2.
Note that E (Ki ) = 1 for i = 1, 2, 3, 4.
As ϕ(k) = ukv1−k is convex and
K1 ≤CX K2 ≤Cx K3 ≤CX K4, then

FK1 ≤ST FK2 ≤ST FK3 ≤ST FK4 .

Actually, K4 is the best option (the most convex) whenever
E (K ) = 1.

11th International Conference on Ordered Statistical Data Jorge Navarro, E-mail: jorgenav@um.es



Distorted Distributions
Preservation results
Parrondo’s paradox

References

Parrondo’s paradox
Randomized GDD.
Example

Parrondo paradox example

T = min(X1,X2) with Q(u, v) = uv .
It is obtained with K1 such that Pr(K1 = 1) = 1.
S is obtained with K2 such that Pr(K2 = 1) = 1/2 and
Pr(K2 = 0) = Pr(K2 = 2) = 1/4.
Another reasonable option is obtained with K3 such that
Pr(K3 = i) = 1/3 for i = 0, 1, 2.
The green line is obtained with K4 such that
Pr(K4 = 0) = Pr(K4 = 2) = 1/2.
Note that E (Ki ) = 1 for i = 1, 2, 3, 4.
As ϕ(k) = ukv1−k is convex and
K1 ≤CX K2 ≤Cx K3 ≤CX K4, then

FK1 ≤ST FK2 ≤ST FK3 ≤ST FK4 .

Actually, K4 is the best option (the most convex) whenever
E (K ) = 1.

11th International Conference on Ordered Statistical Data Jorge Navarro, E-mail: jorgenav@um.es



Distorted Distributions
Preservation results
Parrondo’s paradox

References

Parrondo’s paradox
Randomized GDD.
Example

Parrondo paradox example

T = min(X1,X2) with Q(u, v) = uv .
It is obtained with K1 such that Pr(K1 = 1) = 1.
S is obtained with K2 such that Pr(K2 = 1) = 1/2 and
Pr(K2 = 0) = Pr(K2 = 2) = 1/4.
Another reasonable option is obtained with K3 such that
Pr(K3 = i) = 1/3 for i = 0, 1, 2.
The green line is obtained with K4 such that
Pr(K4 = 0) = Pr(K4 = 2) = 1/2.
Note that E (Ki ) = 1 for i = 1, 2, 3, 4.
As ϕ(k) = ukv1−k is convex and
K1 ≤CX K2 ≤Cx K3 ≤CX K4, then

FK1 ≤ST FK2 ≤ST FK3 ≤ST FK4 .

Actually, K4 is the best option (the most convex) whenever
E (K ) = 1.

11th International Conference on Ordered Statistical Data Jorge Navarro, E-mail: jorgenav@um.es



Distorted Distributions
Preservation results
Parrondo’s paradox

References

Parrondo’s paradox
Randomized GDD.
Example

Figure: Reliability functions of systems T = TK1 (black), S = TK2 (blue),
TK3 (purple) and TK4 (green) when the units have exponential
distributions with means 5 and 1.

11th International Conference on Ordered Statistical Data Jorge Navarro, E-mail: jorgenav@um.es



Distorted Distributions
Preservation results
Parrondo’s paradox

References

Our Main References

Navarro and Rychlik (2010). Comparisons and bounds for
expected lifetimes of reliability systems. European J Oper Res
207, 309–317.

Navarro and Spizzichino (2010). Comparisons of series and
parallel systems with components sharing the same copula.
Appl Stoch Mod Bus Ind 26, 775–791.

Navarro, del Aguila, Sordo and Suarez-Llorens (2013).
Stochastic ordering properties for systems with dependent
identically distributed components. Appl Stoch Mod Bus Ind
29, 264–278.

Navarro, del Aguila, Sordo and Suarez-Llorens (2013).
Preservation of reliability classes under the formation of
coherent systems. Appl Stoch Mod Bus Ind,
doi:10.1002/asmb.1985.

11th International Conference on Ordered Statistical Data Jorge Navarro, E-mail: jorgenav@um.es



Distorted Distributions
Preservation results
Parrondo’s paradox

References

Our Main References

Navarro, del Aguila, Sordo and Suarez-Llorens (2014).
Preservation of stochastic orders under the formation of
generalized distorted distributions. Applications to coherent
systems and other concepts. Submitted.

Navarro, Pellerey and Di Crescenzo (2014). Orderings of
coherent systems with randomized dependent components.
Submitted.

Navarro (2014). Orderings residual lifetimes of coherent
systems. Submitted.

11th International Conference on Ordered Statistical Data Jorge Navarro, E-mail: jorgenav@um.es



Distorted Distributions
Preservation results
Parrondo’s paradox

References

References on inference from DD

Balakrishnan, Ng and Navarro (2011). Linear Inference for
Type-II Censored Lifetime Data of Reliability Systems with
Known Signatures. IEEE Trans Reliab 60, 426–440.

Balakrishnan, Ng and Navarro (2011).Exact Nonparametric
Inference for Component Lifetime Distribution based on
Lifetime Data from Systems with Known Signatures. J
Nonpar Stat 23, 741–752.

Navarro, Ng and Balakrishnan (2012). Parametric Inference
for Component Distributions from Lifetimes of Systems with
Dependent Components. Naval Res Log 59, 487–496.

Ng, Navarro and Balakrishnan (2012). Parametric inference
from system lifetime data under a proportional hazard rate
model. Metrika 75, 367–388.

11th International Conference on Ordered Statistical Data Jorge Navarro, E-mail: jorgenav@um.es



Distorted Distributions
Preservation results
Parrondo’s paradox

References

References

For the more references, please visit my personal web page:

https : //webs.um.es/jorgenav/

Thank you for your attention!!

11th International Conference on Ordered Statistical Data Jorge Navarro, E-mail: jorgenav@um.es



Distorted Distributions
Preservation results
Parrondo’s paradox

References

References

For the more references, please visit my personal web page:

https : //webs.um.es/jorgenav/

Thank you for your attention!!

11th International Conference on Ordered Statistical Data Jorge Navarro, E-mail: jorgenav@um.es


	Distorted Distributions
	Proportional hazard rate model
	Order statistics
	Coherent systems
	Other examples

	Preservation results
	Stochastic orders-DD
	Stochastic orders-GDD
	Stochastic aging classes
	Examples

	Parrondo's paradox
	Parrondo's paradox
	Randomized GDD.
	Example

	References

