Dependence Models and Copulas in Coherent Systems

Jorge Navarro ${ }^{1}$
Universidad de Murcia, Spain.
E-mail: jorgenav@um.es,

10th International Conference on Computational and Financial Econometrics (CFE 2016).

Sevilla, 9-11 December 2016.
${ }^{1}$ Supported by Ministerio de Economía y Competitividad under Grant MTM2012-34023-FEDER.

Notation

- X_{1}, \ldots, X_{n} component lifetimes with RF

$$
\bar{F}_{i}(t)=\operatorname{Pr}\left(X_{i}>t\right)
$$

- $T=\phi\left(X_{1}, \ldots, X_{n}\right)$ system (network) lifetime with RF

$$
\bar{F}_{T}(t)=\operatorname{Pr}(T>t) .
$$

- We assume $\bar{F}_{i}(t)=\operatorname{Pr}\left(X_{i}>t\right)>0$ and $\bar{F}_{T}(t)>0$ for $t \geq 0$.
- Component residual lifetimes $X_{i, t}=\left(X_{i}-t \mid X_{i}>t\right)$ with RF:

Notation

- X_{1}, \ldots, X_{n} component lifetimes with RF

$$
\bar{F}_{i}(t)=\operatorname{Pr}\left(X_{i}>t\right)
$$

- $T=\phi\left(X_{1}, \ldots, X_{n}\right)$ system (network) lifetime with RF

$$
\bar{F}_{T}(t)=\operatorname{Pr}(T>t)
$$

- We assume $\bar{F}_{i}(t)=\operatorname{Pr}\left(X_{i}>t\right)>0$ and $\bar{F}_{T}(t)>0$ for $t \geq 0$.
- Component residual lifetimes $X_{i, t}=\left(X_{i}-t \mid X_{i}>t\right)$ with RF:

Notation

- X_{1}, \ldots, X_{n} component lifetimes with RF

$$
\bar{F}_{i}(t)=\operatorname{Pr}\left(X_{i}>t\right)
$$

- $T=\phi\left(X_{1}, \ldots, X_{n}\right)$ system (network) lifetime with RF

$$
\bar{F}_{T}(t)=\operatorname{Pr}(T>t)
$$

- We assume $\bar{F}_{i}(t)=\operatorname{Pr}\left(X_{i}>t\right)>0$ and $\bar{F}_{T}(t)>0$ for $t \geq 0$.
- Component residual lifetimes $X_{i, t}=\left(X_{i}-t \mid X_{i}>t\right)$ with RF:

Notation

- X_{1}, \ldots, X_{n} component lifetimes with RF

$$
\bar{F}_{i}(t)=\operatorname{Pr}\left(X_{i}>t\right)
$$

- $T=\phi\left(X_{1}, \ldots, X_{n}\right)$ system (network) lifetime with RF

$$
\bar{F}_{T}(t)=\operatorname{Pr}(T>t)
$$

- We assume $\bar{F}_{i}(t)=\operatorname{Pr}\left(X_{i}>t\right)>0$ and $\bar{F}_{T}(t)>0$ for $t \geq 0$.
- Component residual lifetimes $X_{i, t}=\left(X_{i}-t \mid X_{i}>t\right)$ with RF:

$$
\bar{F}_{i, t}(x)=\operatorname{Pr}\left(X_{i, t}>x\right)=\operatorname{Pr}\left(X_{i}-t>x \mid X_{i}>t\right)=\frac{\bar{F}_{i}(t+x)}{\bar{F}_{i}(t)}
$$

System residual lifetimes

- We have two main options to define the system residual lifetime at time $t>0$:
- The usual residual lifetime $T_{t}=(T-t \mid T>t)$ with RF

- The residual lifetime at the system level $T_{t}^{*}=\left(T-t \mid X_{1}>t, \ldots, X_{n}>t\right)$ with RF

when $\operatorname{Pr}\left(X_{1}>t, \ldots, X_{n}>t\right)>0$.

System residual lifetimes

- We have two main options to define the system residual lifetime at time $t>0$:
- The usual residual lifetime $T_{t}=(T-t \mid T>t)$ with RF

$$
\bar{F}_{t}(x)=\operatorname{Pr}(T-t>x \mid T>t)=\frac{\bar{F}_{T}(t+x)}{\bar{F}_{T}(t)}
$$

- The residual lifetime at the system level

when $\operatorname{Pr}\left(X_{1}>t, \ldots, X_{n}>t\right)>0$.

System residual lifetimes

- We have two main options to define the system residual lifetime at time $t>0$:
- The usual residual lifetime $T_{t}=(T-t \mid T>t)$ with RF

$$
\bar{F}_{t}(x)=\operatorname{Pr}(T-t>x \mid T>t)=\frac{\bar{F}_{T}(t+x)}{\bar{F}_{T}(t)}
$$

- The residual lifetime at the system level

$$
\begin{aligned}
& T_{t}^{*}=\left(T-t \mid X_{1}>t, \ldots, X_{n}>t\right) \text { with RF } \\
& \bar{F}_{t}^{*}(x)=\operatorname{Pr}\left(T_{t}^{*}>x\right)=\frac{\operatorname{Pr}\left(T>t+x, X_{1}>t, \ldots, X_{n}>t\right)}{\operatorname{Pr}\left(X_{1}>t, \ldots, X_{n}>t\right)}
\end{aligned}
$$

when $\operatorname{Pr}\left(X_{1}>t, \ldots, X_{n}>t\right)>0$.

System residual lifetimes

- Which one is the best system?
- Intuitively, it seems that T_{t}^{*} should be always better than T_{t}
- It should be better to know that all the components are working at time t !
- For $T=\min \left(X_{1}, \ldots, X_{n}\right), T_{t}=S T T_{t}^{*}($ where $=S T$ denotes
equality in distribution) for all $t>0$.

System residual lifetimes

- Which one is the best system?
- Intuitively, it seems that T_{t}^{*} should be always better than T_{t}.
- It should be better to know that all the components are working at time t !
- For $T=\min \left(X_{1}, \ldots, X_{n}\right), T_{t}=S T T_{t}^{*}$ (where $=S T$ denotes equality in distribution) for all $t>0$.

System residual lifetimes

- Which one is the best system?
- Intuitively, it seems that T_{t}^{*} should be always better than T_{t}.
- It should be better to know that all the components are working at time t !

System residual lifetimes

- Which one is the best system?
- Intuitively, it seems that T_{t}^{*} should be always better than T_{t}.
- It should be better to know that all the components are working at time t !
- For $T=\min \left(X_{1}, \ldots, X_{n}\right), T_{t}=s T T_{t}^{*}($ where $=s T$ denotes equality in distribution) for all $t>0$.

System residual lifetimes

- If X_{1}, \ldots, X_{n} are independent, then

$$
\begin{equation*}
T_{t}=(T-t \mid T>t) \leq s T T_{t}^{*}=\left(T-t \mid X_{1}>t, \ldots, X_{n}>t\right) \tag{1}
\end{equation*}
$$

see Pellerey and Petakos (IEEE Tr Rel, 2002) and Li and Lu (PEIS, 2003).

- Conditions on $\left(X_{1}, \ldots, X_{n}\right)$ to have (1) were given in Li, Pellerey and You (2013)
- They also proved that (1) is not necessarily true in the dependent (discrete) case.

System residual lifetimes

- If X_{1}, \ldots, X_{n} are independent, then

$$
\begin{equation*}
T_{t}=(T-t \mid T>t) \leq s T T_{t}^{*}=\left(T-t \mid X_{1}>t, \ldots, X_{n}>t\right) \tag{1}
\end{equation*}
$$

see Pellerey and Petakos (IEEE Tr Rel, 2002) and Li and Lu (PEIS, 2003).

- Conditions on $\left(X_{1}, \ldots, X_{n}\right)$ to have (1) were given in Li , Pellerey and You (2013).
- They also proved that (1) is not necessarily true in the dependent (discrete) case.

System residual lifetimes

- If X_{1}, \ldots, X_{n} are independent, then

$$
\begin{equation*}
T_{t}=(T-t \mid T>t) \leq s T T_{t}^{*}=\left(T-t \mid X_{1}>t, \ldots, X_{n}>t\right) \tag{1}
\end{equation*}
$$

see Pellerey and Petakos (IEEE Tr Rel, 2002) and Li and Lu (PEIS, 2003).

- Conditions on $\left(X_{1}, \ldots, X_{n}\right)$ to have (1) were given in Li , Pellerey and You (2013).
- They also proved that (1) is not necessarily true in the dependent (discrete) case.

Outline

- 1. Representations as distorted distributions for these systems are obtained.
- 2. These representations are used to compare these systems under different orderings.
- Conditions to get (1) for some orders are given when the dependence (copula) structure is known.
- 3. Some illustrative examples are given.
- They show that (1) holds (or does not hold) for some copulas, system structures and stochastic orders.
- Surprisingly, in some cases, the ordering in (1) does not hold or it can be reversed!

Outline

- 1. Representations as distorted distributions for these systems are obtained.
- 2. These representations are used to compare these systems under different orderings.
- Conditions to get (1) for some orders are given when the dependence (copula) structure is known
- 3. Some illustrative examples are given.
- They show that (1) holds (or does not hold) for some copulas, system structures and stochastic orders.
- Surprisingly, in some cases, the ordering in (1) does not hold or it can be reversed!

Outline

- 1. Representations as distorted distributions for these systems are obtained.
- 2. These representations are used to compare these systems under different orderings.
- Conditions to get (1) for some orders are given when the dependence (copula) structure is known.
- 3. Some illustrative examples are given
- They show that (1) holds (or does not hold) for some copulas, system structures and stochastic orders.
- Surprisingly, in some cases, the ordering in (1) does not hold or it can be reversed!

Outline

- 1. Representations as distorted distributions for these systems are obtained.
- 2. These representations are used to compare these systems under different orderings.
- Conditions to get (1) for some orders are given when the dependence (copula) structure is known.
- 3. Some illustrative examples are given.
- They show that (1) holds (or does not hold) for some copulas, system structures and stochastic orders.
- Surprisingly, in some cases, the ordering in (1) does not hold or it can be reversed!

Outline

- 1. Representations as distorted distributions for these systems are obtained.
- 2. These representations are used to compare these systems under different orderings.
- Conditions to get (1) for some orders are given when the dependence (copula) structure is known.
- 3. Some illustrative examples are given.
- They show that (1) holds (or does not hold) for some copulas, system structures and stochastic orders.
- Surprisingly, in some cases, the ordering in (1) does not hold or it can be reversed!

Outline

- 1. Representations as distorted distributions for these systems are obtained.
- 2. These representations are used to compare these systems under different orderings.
- Conditions to get (1) for some orders are given when the dependence (copula) structure is known.
- 3. Some illustrative examples are given.
- They show that (1) holds (or does not hold) for some copulas, system structures and stochastic orders.
- Surprisingly, in some cases, the ordering in (1) does not hold or it can be reversed!

Generalized distorted distribution

- The generalized distorted distribution (GDD) associated to n DF F_{1}, \ldots, F_{n} and to an increasing continuous multivariate distortion (aggregation) function $Q:[0,1]^{n} \rightarrow[0,1]$ such that $Q(0, \ldots, 0)=0$ and $Q(1, \ldots, 1)=1$, is

$$
\begin{equation*}
F_{Q}(t)=Q\left(F_{1}(t), \ldots, F_{n}(t)\right) \tag{2}
\end{equation*}
$$

- For the RF we have

$$
\bar{F}_{Q}(t)=\bar{Q}\left(\bar{F}_{1}(t), \ldots, \bar{F}_{n}(t)\right),
$$

 dual distortion function; see Navarro et al. (MCAP 2015).

Generalized distorted distribution

- The generalized distorted distribution (GDD) associated to n DF F_{1}, \ldots, F_{n} and to an increasing continuous multivariate distortion (aggregation) function $Q:[0,1]^{n} \rightarrow[0,1]$ such that $Q(0, \ldots, 0)=0$ and $Q(1, \ldots, 1)=1$, is

$$
\begin{equation*}
F_{Q}(t)=Q\left(F_{1}(t), \ldots, F_{n}(t)\right) \tag{2}
\end{equation*}
$$

- For the RF we have

$$
\begin{equation*}
\bar{F}_{Q}(t)=\bar{Q}\left(\bar{F}_{1}(t), \ldots, \bar{F}_{n}(t)\right), \tag{3}
\end{equation*}
$$

where $\bar{F}_{i}=1-F_{i}, \bar{F}_{Q}=1-F_{Q}$ and
$\bar{Q}\left(u_{1}, \ldots, u_{n}\right)=1-Q\left(1-u_{1}, \ldots, 1-u_{n}\right)$ is the multivariate dual distortion function; see Navarro et al. (MCAP 2015).

Distorted distribution

- The distorted distribution (DD) associated to n DF F and to an increasing continuous distortion function $q:[0,1] \rightarrow[0,1]$ such that $q(0)=0$ and $q(1)=1$, is

$$
\begin{equation*}
F_{q}(t)=q(F(t)) \tag{4}
\end{equation*}
$$

- They appear in Risk Theory.
- For the RF we have

$$
\bar{F}_{q}(t)=\bar{q}(\bar{F}(t)),
$$

where $\bar{F}=1-F, \bar{F}_{q}=1-F_{q}$ and $\bar{q}(u)=1-q(1-u)$ is called the dual distortion function.

Distorted distribution

- The distorted distribution (DD) associated to n DF F and to an increasing continuous distortion function $q:[0,1] \rightarrow[0,1]$ such that $q(0)=0$ and $q(1)=1$, is

$$
\begin{equation*}
F_{q}(t)=q(F(t)) \tag{4}
\end{equation*}
$$

- They appear in Risk Theory.
- For the RF we have

$$
\bar{F}_{q}(t)=\bar{q}(\bar{F}(t)),
$$

where $\bar{F}=1-F, \bar{F}_{q}=1-F_{q}$ and $\bar{q}(u)=1-q(1-u)$ is called the dual distortion function.

Distorted distribution

- The distorted distribution (DD) associated to n DF F and to an increasing continuous distortion function
$q:[0,1] \rightarrow[0,1]$ such that $q(0)=0$ and $q(1)=1$, is

$$
\begin{equation*}
F_{q}(t)=q(F(t)) \tag{4}
\end{equation*}
$$

- They appear in Risk Theory.
- For the RF we have

$$
\begin{equation*}
\bar{F}_{q}(t)=\bar{q}(\bar{F}(t)), \tag{5}
\end{equation*}
$$

where $\bar{F}=1-F, \bar{F}_{q}=1-F_{q}$ and $\bar{q}(u)=1-q(1-u)$ is called the dual distortion function.

Coherent systems-GENERAL case

- A path set of T is a set $P \subseteq\{1, \ldots, n\}$ such that if all the components in P work, then the system works.
- A minimal path set of T is a path set which does not contain other path sets.
- If P_{1}, \ldots, P_{m} are the minimal path sets of T, then $T=\max _{j=1, \ldots, m} X_{P_{j}}$, where $X_{P}=\min _{i \in P} X_{i}$ and

where $\bar{F}_{P}(t)=\operatorname{Pr}\left(X_{P}>t\right)$.

Coherent systems-GENERAL case

- A path set of T is a set $P \subseteq\{1, \ldots, n\}$ such that if all the components in P work, then the system works.
- A minimal path set of T is a path set which does not contain other path sets.

where $\bar{F}_{P}(t)=\operatorname{Pr}\left(X_{P}>t\right)$.

Coherent systems-GENERAL case

- A path set of T is a set $P \subseteq\{1, \ldots, n\}$ such that if all the components in P work, then the system works.
- A minimal path set of T is a path set which does not contain other path sets.
- If P_{1}, \ldots, P_{m} are the minimal path sets of T, then $T=\max _{j=1, \ldots, m} X_{P_{j}}$, where $X_{P}=\min _{i \in P} X_{i}$ and

$$
\begin{aligned}
\bar{F}_{T}(t) & =\operatorname{Pr}\left(\max _{j=1, \ldots, m} X_{P_{j}}>t\right)=\operatorname{Pr}\left(\cup_{j=1}^{m}\left\{X_{P_{j}}>t\right\}\right) \\
& =\sum_{i=1}^{m} \bar{F}_{P_{i}}(t)-\sum_{i \neq j} \bar{F}_{P_{i} \cup P_{j}}(t)+\cdots \pm \bar{F}_{P_{1} \cup \ldots \cup P_{m}}(t)
\end{aligned}
$$

where $\bar{F}_{P}(t)=\operatorname{Pr}\left(X_{P}>t\right)$.

Coherent system representation

- The copula representation for the RF of $\left(X_{1}, \ldots, X_{n}\right)$ is

$$
\overline{\mathbf{F}}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{Pr}\left(X_{1}>x_{1}, \ldots, X_{n}>x_{n}\right)=K\left(\bar{F}_{1}\left(x_{1}\right), \ldots, \bar{F}_{n}\left(x_{n}\right)\right),
$$

where $\bar{F}_{i}(t)=\operatorname{Pr}\left(X_{i}>t\right)$ and K is the survival copula. Hence
$\bar{F}_{1: k}(t)=\operatorname{Pr}\left(X_{1}>t, \ldots, X_{k}>t\right)=K\left(\bar{F}_{1}(t), \ldots, \bar{F}_{r}(t), 1, \ldots, 1\right)$.

- Analogously, for X_{P}, we have

$$
\bar{F}_{P}(t)=K_{P}\left(\bar{F}_{1}(t), \ldots, \bar{F}_{n}(t)\right)
$$

- Hence the system reliability can be written as

Coherent system representation

- The copula representation for the RF of $\left(X_{1}, \ldots, X_{n}\right)$ is

$$
\overline{\mathbf{F}}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{Pr}\left(X_{1}>x_{1}, \ldots, X_{n}>x_{n}\right)=K\left(\bar{F}_{1}\left(x_{1}\right), \ldots, \bar{F}_{n}\left(x_{n}\right)\right),
$$

where $\bar{F}_{i}(t)=\operatorname{Pr}\left(X_{i}>t\right)$ and K is the survival copula. Hence

$$
\bar{F}_{1: k}(t)=\operatorname{Pr}\left(X_{1}>t, \ldots, X_{k}>t\right)=K\left(\bar{F}_{1}(t), \ldots, \bar{F}_{r}(t), 1, \ldots, 1\right) .
$$

- Analogously, for X_{P}, we have

$$
\bar{F}_{P}(t)=K_{P}\left(\bar{F}_{1}(t), \ldots, \bar{F}_{n}(t)\right),
$$

where $K_{P}\left(u_{1}, \ldots, u_{n}\right)=K\left(u_{1}^{P}, \ldots, u_{n}^{P}\right)$ and $u_{i}^{P}=u_{i}$ if $i \in P$ or $u_{i}^{P}=1$ if $i \notin P$.

- Hence the system reliability can be written as

Coherent system representation

- The copula representation for the RF of $\left(X_{1}, \ldots, X_{n}\right)$ is

$$
\overline{\mathbf{F}}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{Pr}\left(X_{1}>x_{1}, \ldots, X_{n}>x_{n}\right)=K\left(\bar{F}_{1}\left(x_{1}\right), \ldots, \bar{F}_{n}\left(x_{n}\right)\right),
$$

where $\bar{F}_{i}(t)=\operatorname{Pr}\left(X_{i}>t\right)$ and K is the survival copula. Hence

$$
\bar{F}_{1: k}(t)=\operatorname{Pr}\left(X_{1}>t, \ldots, X_{k}>t\right)=K\left(\bar{F}_{1}(t), \ldots, \bar{F}_{r}(t), 1, \ldots, 1\right)
$$

- Analogously, for X_{P}, we have

$$
\bar{F}_{P}(t)=K_{P}\left(\bar{F}_{1}(t), \ldots, \bar{F}_{n}(t)\right),
$$

where $K_{P}\left(u_{1}, \ldots, u_{n}\right)=K\left(u_{1}^{P}, \ldots, u_{n}^{P}\right)$ and $u_{i}^{P}=u_{i}$ if $i \in P$ or $u_{i}^{P}=1$ if $i \notin P$.

- Hence the system reliability can be written as

$$
\bar{F}_{T}(t)=\bar{Q}_{\phi, K}\left(\bar{F}_{1}(t), \ldots, \bar{F}_{n}(t)\right) .
$$

Coherent system representations

- Particular cases:
- If the components are ID, then $\bar{F}_{T}(t)=\bar{q}_{\phi, K}(\bar{F}(t))$ where

$$
\bar{q}_{\phi, K}(u)=\bar{Q}_{\phi, K}(u, \ldots, u) .
$$

- If the components are IND, then $\bar{Q}_{\phi, K}$ is a multinomial.
- If the components are IID, then $\bar{a}_{\phi, k}(u)=\sum_{i=1}^{n} a_{i} u^{i}$, where $\left(a_{1}, \ldots, a_{n}\right)$ is the minimal signature.

Coherent system representations

- Particular cases:
- If the components are ID, then $\bar{F}_{T}(t)=\bar{q}_{\phi, K}(\bar{F}(t))$ where

$$
\bar{q}_{\phi, K}(u)=\bar{Q}_{\phi, K}(u, \ldots, u) .
$$

- If the components are IND, then $\bar{Q}_{\phi, K}$ is a multinomial.
- If the components are IID, then $\bar{q}_{\phi, K}(u)=\sum_{i=1}^{n} a_{i} u^{i}$, where $\left(a_{1}, \ldots, a_{n}\right)$ is the minimal signature.

Coherent system representations

- Particular cases:
- If the components are ID, then $\bar{F}_{T}(t)=\bar{q}_{\phi, K}(\bar{F}(t))$ where

$$
\bar{q}_{\phi, K}(u)=\bar{Q}_{\phi, K}(u, \ldots, u) .
$$

- If the components are IND, then $\bar{Q}_{\phi, K}$ is a multinomial.
- If the components are IID, then $\bar{q}_{\phi, K}(u)=\sum_{i=1}^{n} a_{i} u^{i}$, where $\left(a_{1}, \ldots, a_{n}\right)$ is the minimal signature.

Coherent system representations

- Particular cases:
- If the components are ID, then $\bar{F}_{T}(t)=\bar{q}_{\phi, K}(\bar{F}(t))$ where

$$
\bar{q}_{\phi, K}(u)=\bar{Q}_{\phi, K}(u, \ldots, u) .
$$

- If the components are IND, then $\bar{Q}_{\phi, K}$ is a multinomial.
- If the components are IID, then $\bar{q}_{\phi, K}(u)=\sum_{i=1}^{n} a_{i} u^{i}$, where $\left(a_{1}, \ldots, a_{n}\right)$ is the minimal signature.

Representations for the system residual lifetimes

- The RF of $T_{t}=(T-t \mid T>t)$ is

$$
\bar{F}_{t}(x)=\frac{\bar{F}_{T}(t+x)}{\bar{F}_{T}(t)}=\frac{\bar{Q}\left(\bar{F}_{1}(t+x), \ldots, \bar{F}_{n}(t+x)\right)}{\bar{Q}\left(\bar{F}_{1}(t), \ldots, \bar{F}_{n}(t)\right)}
$$

- Then

where $\bar{F}_{i, t}(x)=\bar{F}_{i}(t+x) / \bar{F}_{i}(t)$.
- Therefore

$$
\bar{F}_{t}(x)=\bar{Q}_{t}\left(\bar{F}_{1, t}(x), \ldots, \bar{F}_{n, t}(x)\right),
$$

where

Representations for the system residual lifetimes

- The RF of $T_{t}=(T-t \mid T>t)$ is

$$
\bar{F}_{t}(x)=\frac{\bar{F}_{T}(t+x)}{\bar{F}_{T}(t)}=\frac{\bar{Q}\left(\bar{F}_{1}(t+x), \ldots, \bar{F}_{n}(t+x)\right)}{\bar{Q}\left(\bar{F}_{1}(t), \ldots, \bar{F}_{n}(t)\right)}
$$

- Then

$$
\bar{F}_{t}(x)=\frac{\bar{Q}\left(\bar{F}_{1}(t) \bar{F}_{1, t}(x), \ldots, \bar{F}_{n}(t) \bar{F}_{n, t}(x)\right)}{\bar{Q}\left(\bar{F}_{1}(t), \ldots, \bar{F}_{n}(t)\right)}
$$

where $\bar{F}_{i, t}(x)=\bar{F}_{i}(t+x) / \bar{F}_{i}(t)$.

$$
\bar{F}_{t}(x)=\bar{Q}_{t}\left(\bar{F}_{1, t}(x), \ldots, \bar{F}_{n, t}(x)\right)
$$

where

Representations for the system residual lifetimes

- The RF of $T_{t}=(T-t \mid T>t)$ is

$$
\bar{F}_{t}(x)=\frac{\bar{F}_{T}(t+x)}{\bar{F}_{T}(t)}=\frac{\bar{Q}\left(\bar{F}_{1}(t+x), \ldots, \bar{F}_{n}(t+x)\right)}{\bar{Q}\left(\bar{F}_{1}(t), \ldots, \bar{F}_{n}(t)\right)}
$$

- Then

$$
\bar{F}_{t}(x)=\frac{\bar{Q}\left(\bar{F}_{1}(t) \bar{F}_{1, t}(x), \ldots, \bar{F}_{n}(t) \bar{F}_{n, t}(x)\right)}{\bar{Q}\left(\bar{F}_{1}(t), \ldots, \bar{F}_{n}(t)\right)}
$$

where $\bar{F}_{i, t}(x)=\bar{F}_{i}(t+x) / \bar{F}_{i}(t)$.

- Therefore

$$
\bar{F}_{t}(x)=\bar{Q}_{t}\left(\bar{F}_{1, t}(x), \ldots, \bar{F}_{n, t}(x)\right)
$$

where

$$
\bar{Q}_{t}\left(u_{1}, \ldots, u_{n}\right)=\frac{\bar{Q}\left(\bar{F}_{1}(t) u_{1}, \ldots, \bar{F}_{n}(t) u_{n}\right)}{\bar{Q}\left(\bar{F}_{1}(t), \ldots, \bar{F}_{n}(t)\right)}
$$

Representations for the system residual lifetimes

- The RF of $T_{t}^{*}=\left(T-t \mid X_{1}>t, \ldots, X_{n}>t\right)$ is

$$
\bar{F}_{t}^{*}(x)=\frac{\operatorname{Pr}\left(T>t+x, X_{1}>t, \ldots, X_{n}>t\right)}{\operatorname{Pr}\left(X_{1}>t, \ldots, X_{n}>t\right)}
$$

- As $T=\max _{j=1, \ldots, m} X_{P_{j}}$ for the minimal path sets P_{1}, then

- Therefore

$$
\bar{F}_{t}^{*}(x)=\bar{Q}_{t}^{*}\left(\bar{F}_{1, t}(x), \ldots, \bar{F}_{n, t}(x)\right)
$$

where $\bar{F}_{i, t}(x)=\bar{F}_{i}(t+x) / \bar{F}_{i}(t)$.

Representations for the system residual lifetimes

- The RF of $T_{t}^{*}=\left(T-t \mid X_{1}>t, \ldots, X_{n}>t\right)$ is

$$
\bar{F}_{t}^{*}(x)=\frac{\operatorname{Pr}\left(T>t+x, X_{1}>t, \ldots, X_{n}>t\right)}{\operatorname{Pr}\left(X_{1}>t, \ldots, X_{n}>t\right)}
$$

- As $T=\max _{j=1, \ldots, m} X_{P_{j}}$ for the minimal path sets P_{1}, \ldots, P_{m}, then

$$
\bar{F}_{t}^{*}(x)=\frac{\operatorname{Pr}\left(\max _{j=1, \ldots, m} X_{P_{j}}>t+x, X_{1}>t, \ldots, X_{n}>t\right)}{K\left(\bar{F}_{1}(t), \ldots, \bar{F}_{n}(t)\right)}
$$

- Therefore

$$
\bar{F}_{t}^{*}(x)=\bar{Q}_{t}^{*}\left(\bar{F}_{1, t}(x), \ldots, \bar{F}_{n, t}(x)\right),
$$

where $\bar{F}_{i, t}(x)=\bar{F}_{i}(t+x) / \bar{F}_{i}(t)$.

Representations for the system residual lifetimes

- The RF of $T_{t}^{*}=\left(T-t \mid X_{1}>t, \ldots, X_{n}>t\right)$ is

$$
\bar{F}_{t}^{*}(x)=\frac{\operatorname{Pr}\left(T>t+x, X_{1}>t, \ldots, X_{n}>t\right)}{\operatorname{Pr}\left(X_{1}>t, \ldots, X_{n}>t\right)}
$$

- As $T=\max _{j=1, \ldots, m} X_{P_{j}}$ for the minimal path sets P_{1}, \ldots, P_{m}, then

$$
\bar{F}_{t}^{*}(x)=\frac{\operatorname{Pr}\left(\max _{j=1, \ldots, m} X_{P_{j}}>t+x, X_{1}>t, \ldots, X_{n}>t\right)}{K\left(\bar{F}_{1}(t), \ldots, \bar{F}_{n}(t)\right)}
$$

- Therefore

$$
\bar{F}_{t}^{*}(x)=\bar{Q}_{t}^{*}\left(\bar{F}_{1, t}(x), \ldots, \bar{F}_{n, t}(x)\right)
$$

where $\bar{F}_{i, t}(x)=\bar{F}_{i}(t+x) / \bar{F}_{i}(t)$.

Parallel system with two components

- $T=\max \left(X_{1}, X_{2}\right)$.
- Minimal path sets $P_{1}=\{1\}$ and $P_{2}=\{2\}$
- System reliability function:
$\bar{F}_{T}(t)=\operatorname{Pr}\left(\max \left(X_{1}, X_{2}\right)>t\right)=F_{1}(t)+F_{2}(t)-\operatorname{Pr}\left(X_{1}\right.$
- Then:

$$
\bar{F}_{T}(t)=\bar{Q}\left(\bar{F}_{1}(t), \bar{F}_{2}(t)\right),
$$

where

$$
\bar{Q}\left(u_{1}, u_{2}\right)=u_{1}+u_{2}-K\left(u_{1}, u_{2}\right) .
$$

Parallel system with two components

- $T=\max \left(X_{1}, X_{2}\right)$.
- Minimal path sets $P_{1}=\{1\}$ and $P_{2}=\{2\}$.
- System reliability function

- Then:

$$
\bar{F}_{T}(t)=\bar{Q}\left(\bar{F}_{1}(t), \bar{F}_{2}(t)\right),
$$

where

$$
\bar{Q}\left(u_{1}, u_{2}\right)=u_{1}+u_{2}-K\left(u_{1}, u_{2}\right) .
$$

Parallel system with two components

- $T=\max \left(X_{1}, X_{2}\right)$.
- Minimal path sets $P_{1}=\{1\}$ and $P_{2}=\{2\}$.
- System reliability function:

$$
\bar{F}_{T}(t)=\operatorname{Pr}\left(\max \left(X_{1}, X_{2}\right)>t\right)=\bar{F}_{1}(t)+\bar{F}_{2}(t)-\operatorname{Pr}\left(X_{1}>t, X_{2}>t\right) .
$$

$$
\bar{F}_{T}(t)=\bar{Q}\left(\bar{F}_{1}(t), \bar{F}_{2}(t)\right),
$$

where

$$
\bar{Q}\left(u_{1}, u_{2}\right)=u_{1}+u_{2}-K\left(u_{1}, u_{2}\right) .
$$

Parallel system with two components

- $T=\max \left(X_{1}, X_{2}\right)$.
- Minimal path sets $P_{1}=\{1\}$ and $P_{2}=\{2\}$.
- System reliability function:

$$
\bar{F}_{T}(t)=\operatorname{Pr}\left(\max \left(X_{1}, X_{2}\right)>t\right)=\bar{F}_{1}(t)+\bar{F}_{2}(t)-\operatorname{Pr}\left(X_{1}>t, X_{2}>t\right)
$$

- Then:

$$
\bar{F}_{T}(t)=\bar{Q}\left(\bar{F}_{1}(t), \bar{F}_{2}(t)\right)
$$

where

$$
\bar{Q}\left(u_{1}, u_{2}\right)=u_{1}+u_{2}-K\left(u_{1}, u_{2}\right)
$$

Coherent system representation

- Particular cases:
- If the components are ID, then $\bar{F}_{T}(t)=\bar{q}(\bar{F}(t))$ where

$$
\bar{q}(u)=\bar{Q}(u, u)=2 u-K(u, u) .
$$

- If the components are IND, then

$$
\bar{Q}\left(u_{1}, u_{2}\right)=u_{1}+u_{2}-u_{1} u_{2} .
$$

- If the components are IID, then

$$
\bar{q}(u)=2 u-u^{2},
$$

where $\mathbf{a}=(2,-1)$ is the minimal signature.

Coherent system representation

- Particular cases:
- If the components are ID, then $\bar{F}_{T}(t)=\bar{q}(\bar{F}(t))$ where

$$
\bar{q}(u)=\bar{Q}(u, u)=2 u-K(u, u) .
$$

- If the components are IND, then

$$
\bar{Q}\left(u_{1}, u_{2}\right)=u_{1}+u_{2}-u_{1} u_{2} .
$$

- If the components are IID, then

where $\mathbf{a}=(2,-1)$ is the minimal signature.

Coherent system representation

- Particular cases:
- If the components are ID, then $\bar{F}_{T}(t)=\bar{q}(\bar{F}(t))$ where

$$
\bar{q}(u)=\bar{Q}(u, u)=2 u-K(u, u) .
$$

- If the components are IND, then

$$
\bar{Q}\left(u_{1}, u_{2}\right)=u_{1}+u_{2}-u_{1} u_{2}
$$

- If the components are IID, then

where $\mathbf{a}=(2,-1)$ is the minimal signature.

Coherent system representation

- Particular cases:
- If the components are ID, then $\bar{F}_{T}(t)=\bar{q}(\bar{F}(t))$ where

$$
\bar{q}(u)=\bar{Q}(u, u)=2 u-K(u, u) .
$$

- If the components are IND, then

$$
\bar{Q}\left(u_{1}, u_{2}\right)=u_{1}+u_{2}-u_{1} u_{2}
$$

- If the components are IID, then

$$
\bar{q}(u)=2 u-u^{2},
$$

where $\mathbf{a}=(2,-1)$ is the minimal signature.

Parallel system with two components

- The RF of $T_{t}=(T-t \mid T>t)$ is

$$
\bar{F}_{t}(x)=\bar{Q}_{t}\left(\bar{F}_{1, t}(x), \bar{F}_{2, t}(x)\right),
$$

where

$$
\bar{Q}_{t}\left(u_{1}, u_{2}\right)=\frac{\bar{Q}\left(\bar{F}_{1}(t) u_{1}, \bar{F}_{2}(t) u_{2}\right)}{\bar{Q}\left(\bar{F}_{1}(t), \bar{F}_{2}(t)\right)} .
$$

- Then

Parallel system with two components

- The RF of $T_{t}=(T-t \mid T>t)$ is

$$
\bar{F}_{t}(x)=\bar{Q}_{t}\left(\bar{F}_{1, t}(x), \bar{F}_{2, t}(x)\right),
$$

where

$$
\bar{Q}_{t}\left(u_{1}, u_{2}\right)=\frac{\bar{Q}\left(\bar{F}_{1}(t) u_{1}, \bar{F}_{2}(t) u_{2}\right)}{\bar{Q}\left(\bar{F}_{1}(t), \bar{F}_{2}(t)\right)}
$$

- Then

$$
\bar{Q}_{t}\left(u_{1}, u_{2}\right)=\frac{\bar{F}_{1}(t) u_{1}+\bar{F}_{2}(t) u_{2}-K\left(\bar{F}_{1}(t) u_{1}, \bar{F}_{2}(t) u_{2}\right)}{\bar{F}_{1}(t)+\bar{F}_{2}(t)-K\left(\bar{F}_{1}(t), \bar{F}_{2}(t)\right)} .
$$

Parallel system with two components

- The RF of $T_{t}^{*}=\left(T-t \mid X_{1}>t, X_{2}>t\right)$ is

$$
\bar{F}_{t}^{*}(x)=\frac{\operatorname{Pr}\left(\max \left(X_{1}, X_{2}\right)>t+x, X_{1}>t, X_{2}>t\right)}{\operatorname{Pr}\left(X_{1}>t, X_{2}>t\right)}
$$

- Hence

Parallel system with two components

- The RF of $T_{t}^{*}=\left(T-t \mid X_{1}>t, X_{2}>t\right)$ is

$$
\bar{F}_{t}^{*}(x)=\frac{\operatorname{Pr}\left(\max \left(X_{1}, X_{2}\right)>t+x, X_{1}>t, X_{2}>t\right)}{\operatorname{Pr}\left(X_{1}>t, X_{2}>t\right)}
$$

- Hence

$$
\bar{F}_{t}^{*}(x)=\frac{K\left(\bar{F}_{1}(t+x), c_{2}\right)+K\left(c_{1}, \bar{F}_{2}(t+x)\right)-K\left(\bar{F}_{1}(t+x), \bar{F}_{2}(t+x)\right)}{K\left(c_{1}, c_{2}\right)},
$$

$$
\text { where } c_{1}=\bar{F}_{1}(t) \text { and } c_{2}=\bar{F}_{2}(t)
$$

- Then $\bar{F}_{t}(x)=\bar{Q}_{t}^{*}\left(\bar{F}_{1, t}(x), \bar{F}_{2, t}(x)\right)$, where

Parallel system with two components

- The RF of $T_{t}^{*}=\left(T-t \mid X_{1}>t, X_{2}>t\right)$ is

$$
\bar{F}_{t}^{*}(x)=\frac{\operatorname{Pr}\left(\max \left(X_{1}, X_{2}\right)>t+x, X_{1}>t, X_{2}>t\right)}{\operatorname{Pr}\left(X_{1}>t, X_{2}>t\right)}
$$

- Hence

$$
\bar{F}_{t}^{*}(x)=\frac{K\left(\bar{F}_{1}(t+x), c_{2}\right)+K\left(c_{1}, \bar{F}_{2}(t+x)\right)-K\left(\bar{F}_{1}(t+x), \bar{F}_{2}(t+x)\right)}{K\left(c_{1}, c_{2}\right)},
$$

where $c_{1}=\bar{F}_{1}(t)$ and $c_{2}=\bar{F}_{2}(t)$.

- Then $\bar{F}_{t}(x)=\bar{Q}_{t}^{*}\left(\bar{F}_{1, t}(x), \bar{F}_{2, t}(x)\right)$, where

$$
\bar{Q}_{t}^{*}\left(u_{1}, u_{2}\right)=\frac{K\left(c_{1} u_{1}, c_{2}\right)+K\left(c_{1}, c_{2} u_{2}\right)-K\left(c_{1} u_{1}, c_{2} u_{2}\right)}{K\left(c_{1}, c_{2}\right)} .
$$

Parallel system with two IND components

- If X_{1} and X_{2} are IND, then $K\left(u_{1}, u_{2}\right)=u_{1} u_{2}$ and

$$
\bar{Q}_{t}^{*}\left(u_{1}, u_{2}\right)=\frac{\bar{F}_{1}(t) u_{1} \bar{F}_{2}(t)+\bar{F}_{1}(t) \bar{F}_{2}(t) u_{2}-\bar{F}_{1}(t) u_{1} \bar{F}_{2}(t) u_{2}}{\bar{F}_{1}(t) \bar{F}_{2}(t)}
$$

that is,

$$
\bar{Q}_{t}^{*}\left(u_{1}, u_{2}\right)=u_{1}+u_{2}-u_{1} u_{2}=\bar{Q}\left(u_{1}, u_{2}\right)
$$

- This is a general property, i.e., if X_{1}, \ldots, X_{n} are IND, then

$$
\bar{Q}_{t}^{*}\left(u_{1}, \ldots, u_{n}\right)=\bar{Q}\left(u_{1}, \ldots, u_{n}\right) .
$$

- Some authors consider the system $T_{t}^{* *}$ with reliability function

- The meaning in practice is not clear for me.

Parallel system with two IND components

- If X_{1} and X_{2} are IND, then $K\left(u_{1}, u_{2}\right)=u_{1} u_{2}$ and

$$
\bar{Q}_{t}^{*}\left(u_{1}, u_{2}\right)=\frac{\bar{F}_{1}(t) u_{1} \bar{F}_{2}(t)+\bar{F}_{1}(t) \bar{F}_{2}(t) u_{2}-\bar{F}_{1}(t) u_{1} \bar{F}_{2}(t) u_{2}}{\bar{F}_{1}(t) \bar{F}_{2}(t)}
$$

that is,

$$
\bar{Q}_{t}^{*}\left(u_{1}, u_{2}\right)=u_{1}+u_{2}-u_{1} u_{2}=\bar{Q}\left(u_{1}, u_{2}\right)
$$

- This is a general property, i.e., if X_{1}, \ldots, X_{n} are IND, then

$$
\bar{Q}_{t}^{*}\left(u_{1}, \ldots, u_{n}\right)=\bar{Q}\left(u_{1}, \ldots, u_{n}\right)
$$

- Some authors consider the system $T_{t}^{* *}$ with reliability function

- The meaning in practice is not clear for me.

Parallel system with two IND components

- If X_{1} and X_{2} are IND, then $K\left(u_{1}, u_{2}\right)=u_{1} u_{2}$ and

$$
\bar{Q}_{t}^{*}\left(u_{1}, u_{2}\right)=\frac{\bar{F}_{1}(t) u_{1} \bar{F}_{2}(t)+\bar{F}_{1}(t) \bar{F}_{2}(t) u_{2}-\bar{F}_{1}(t) u_{1} \bar{F}_{2}(t) u_{2}}{\bar{F}_{1}(t) \bar{F}_{2}(t)}
$$

that is,

$$
\bar{Q}_{t}^{*}\left(u_{1}, u_{2}\right)=u_{1}+u_{2}-u_{1} u_{2}=\bar{Q}\left(u_{1}, u_{2}\right)
$$

- This is a general property, i.e., if X_{1}, \ldots, X_{n} are IND, then

$$
\bar{Q}_{t}^{*}\left(u_{1}, \ldots, u_{n}\right)=\bar{Q}\left(u_{1}, \ldots, u_{n}\right)
$$

- Some authors consider the system $T_{t}^{* *}$ with reliability function

$$
\bar{F}_{t}^{* *}(x)=\bar{Q}\left(\bar{F}_{1, t}(x), \bar{F}_{2, t}(x)\right) .
$$

- The meaning in practice is not clear for me.

Parallel system with two IND components

- If X_{1} and X_{2} are IND, then $K\left(u_{1}, u_{2}\right)=u_{1} u_{2}$ and

$$
\bar{Q}_{t}^{*}\left(u_{1}, u_{2}\right)=\frac{\bar{F}_{1}(t) u_{1} \bar{F}_{2}(t)+\bar{F}_{1}(t) \bar{F}_{2}(t) u_{2}-\bar{F}_{1}(t) u_{1} \bar{F}_{2}(t) u_{2}}{\bar{F}_{1}(t) \bar{F}_{2}(t)}
$$

that is,

$$
\bar{Q}_{t}^{*}\left(u_{1}, u_{2}\right)=u_{1}+u_{2}-u_{1} u_{2}=\bar{Q}\left(u_{1}, u_{2}\right)
$$

- This is a general property, i.e., if X_{1}, \ldots, X_{n} are IND, then

$$
\bar{Q}_{t}^{*}\left(u_{1}, \ldots, u_{n}\right)=\bar{Q}\left(u_{1}, \ldots, u_{n}\right)
$$

- Some authors consider the system $T_{t}^{* *}$ with reliability function

$$
\bar{F}_{t}^{* *}(x)=\bar{Q}\left(\bar{F}_{1, t}(x), \bar{F}_{2, t}(x)\right)
$$

- The meaning in practice is not clear for me.

Comparison results-DD

- If q_{1} and q_{2} are two DF,

$$
q_{1}(F) \leq_{\text {ord }} q_{2}(F) \text { for all } F ?
$$

- If q is a DF,

$$
F \leq{ }_{\text {ord }} G \Rightarrow q(F) \leq_{\text {ord }} q(G) ?
$$

- If Q_{1} and Q_{2} are two MDF,

$$
Q_{1}\left(F_{1}, \ldots, F_{n}\right) \leq \text { ord } Q_{2}\left(F_{1}, \ldots, F_{n}\right) ?
$$

- If Q is a MDF,

$$
F_{i} \leq \text { ord } G_{i}, i=1, \ldots, n, \Rightarrow Q\left(F_{1}, \ldots, F_{n}\right) \leq \text { ord } Q\left(G_{1}, \ldots, G_{n}\right) ?
$$

- Navarro, del Aguila, Sordo and Suárez-Llorens (2013, ASMBI) and (2016, MCAP) and Navarro and Gomis (2016, ASMBI).

Comparison results-DD

- If q_{1} and q_{2} are two DF,

$$
q_{1}(F) \leq_{\text {ord }} q_{2}(F) \text { for all } F \text { ? }
$$

- If q is a DF,

$$
F \leq_{\text {ord }} G \Rightarrow q(F) \leq_{\text {ord }} q(G) ?
$$

- If Q_{1} and Q_{2} are two MDF,

$$
Q_{1}\left(F_{1}, \ldots, F_{n}\right) \leq \text { ord } Q_{2}\left(F_{1}, \ldots, F_{n}\right) ?
$$

- If Q is a MDF,

- Navarro, del Aguila, Sordo and Suárez-Llorens (2013, ASMBI) and (2016, MCAP) and Navarro and Gomis (2016, ASMBI).

Comparison results-DD

- If q_{1} and q_{2} are two DF,

$$
q_{1}(F) \leq_{\text {ord }} q_{2}(F) \text { for all } F ?
$$

- If q is a DF,

$$
F \leq \leq_{\text {ord }} G \Rightarrow q(F) \leq_{\text {ord }} q(G) ?
$$

- If Q_{1} and Q_{2} are two MDF,

$$
Q_{1}\left(F_{1}, \ldots, F_{n}\right) \leq \text { ord } Q_{2}\left(F_{1}, \ldots, F_{n}\right) ?
$$

- If Q is a MDF,
$F_{i} \leq_{\text {ord }} G_{i}, i=1, \ldots, n, \Rightarrow Q\left(F_{1}, \ldots, F_{n}\right) \leq_{\text {ord }} Q\left(G_{1}, \ldots, G_{n}\right) ?$
- Navarro, del Aguila, Sordo and Suárez-Llorens (2013, ASMBI) and (2016, MCAP) and Navarro and Gomis (2016, ASMBI).

Comparison results-DD

- If q_{1} and q_{2} are two DF,

$$
q_{1}(F) \leq_{\text {ord }} q_{2}(F) \text { for all } F ?
$$

- If q is a DF,

$$
F \leq_{o r d} G \Rightarrow q(F) \leq_{\text {ord }} q(G) ?
$$

- If Q_{1} and Q_{2} are two MDF,

$$
Q_{1}\left(F_{1}, \ldots, F_{n}\right) \leq \text { ord } Q_{2}\left(F_{1}, \ldots, F_{n}\right) ?
$$

- If Q is a MDF,
$F_{i} \leq_{\text {ord }} G_{i}, i=1, \ldots, n, \Rightarrow Q\left(F_{1}, \ldots, F_{n}\right) \leq_{\text {ord }} Q\left(G_{1}, \ldots, G_{n}\right)$?
- Navarro, del Aguila, Sordo and Suárez-Llorens (2013, ASMBI) and (2016, MCAP) and Navarro and Gomis (2016, ASMBI).

Main stochastic orderings

- $X \leq_{S T} Y \Leftrightarrow \bar{F}_{X}(t) \leq \bar{F}_{Y}(t)$, stochastic order.
- $X \leq \operatorname{HR} Y \Leftrightarrow h_{X}(t) \geq h_{Y}(t)$, hazard rate order.
- $X \leq_{H R} Y \Leftrightarrow(X-t \mid X>t) \leq_{s t}(Y-t \mid Y>t)$ for all t

- $X \leq_{L R} Y \Leftrightarrow f_{Y}(t) / f_{X}(t)$ is nondecreasing, likelihood ratio order.
- $X<_{\text {RHR }} Y \Leftrightarrow(t-X \mid X<t) \geq$ ST $(t-Y \mid Y<t)$ for all t.
- Then

Main stochastic orderings

- $X \leq_{S T} Y \Leftrightarrow \bar{F}_{X}(t) \leq \bar{F}_{Y}(t)$, stochastic order.
- $X \leq_{H R} Y \Leftrightarrow h_{X}(t) \geq h_{Y}(t)$, hazard rate order.

- $X \leq_{L R} Y \Leftrightarrow f_{Y}(t) / f_{X}(t)$ is nondecreasing, likelihood ratio order.
- $X \leq_{R H R} Y \Leftrightarrow(t-X \mid X<t) \geq_{S T}(t-Y \mid Y<t)$ for all t.
- Then

Main stochastic orderings

- $X \leq_{S T} Y \Leftrightarrow \bar{F}_{X}(t) \leq \bar{F}_{Y}(t)$, stochastic order.
- $X \leq_{H R} Y \Leftrightarrow h_{X}(t) \geq h_{Y}(t)$, hazard rate order.
- $X \leq_{H R} Y \Leftrightarrow(X-t \mid X>t) \leq_{S T}(Y-t \mid Y>t)$ for all t.
- $X \leq_{M R L} Y \Leftrightarrow E(X-t \mid X>t) \leq E(Y-t \mid Y>t)$ for all t
- $X \leq_{L R} Y \Leftrightarrow f_{Y}(t) / f_{X}(t)$ is nondecreasing, likelihood ratio order.
- $X \leq_{R H R} Y \Leftrightarrow(t-X \mid X<t) \geq_{S T}(t-Y \mid Y<t)$ for all t.
- Then

Main stochastic orderings

- $X \leq_{S T} Y \Leftrightarrow \bar{F}_{X}(t) \leq \bar{F}_{Y}(t)$, stochastic order.
- $X \leq_{H R} Y \Leftrightarrow h_{X}(t) \geq h_{Y}(t)$, hazard rate order.
- $X \leq_{H R} Y \Leftrightarrow(X-t \mid X>t) \leq_{S T}(Y-t \mid Y>t)$ for all t.
- $X \leq_{M R L} Y \Leftrightarrow E(X-t \mid X>t) \leq E(Y-t \mid Y>t)$ for all t.
- $X \leq_{L R} Y \Leftrightarrow f_{Y}(t) / f_{X}(t)$ is nondecreasing, likelihood ratio order.
- $X \leq_{R H R} Y \Leftrightarrow(t-X \mid X<t) \geq S T(t-Y \mid Y<t)$ for all t
- Then

Main stochastic orderings

- $X \leq_{S T} Y \Leftrightarrow \bar{F}_{X}(t) \leq \bar{F}_{Y}(t)$, stochastic order.
- $X \leq_{H R} Y \Leftrightarrow h_{X}(t) \geq h_{Y}(t)$, hazard rate order.
- $X \leq_{H R} Y \Leftrightarrow(X-t \mid X>t) \leq_{S T}(Y-t \mid Y>t)$ for all t.
- $X \leq_{M R L} Y \Leftrightarrow E(X-t \mid X>t) \leq E(Y-t \mid Y>t)$ for all t.
- $X \leq_{L R} Y \Leftrightarrow f_{Y}(t) / f_{X}(t)$ is nondecreasing, likelihood ratio order.
- $X \leq_{R H R} Y \Leftrightarrow(t-X \mid X<t) \geq_{S T}(t-Y \mid Y<t)$ for all t.
- Then

Main stochastic orderings

- $X \leq_{S T} Y \Leftrightarrow \bar{F}_{X}(t) \leq \bar{F}_{Y}(t)$, stochastic order.
- $X \leq_{H R} Y \Leftrightarrow h_{X}(t) \geq h_{Y}(t)$, hazard rate order.
- $X \leq_{H R} Y \Leftrightarrow(X-t \mid X>t) \leq_{S T}(Y-t \mid Y>t)$ for all t.
- $X \leq_{m R L} Y \Leftrightarrow E(X-t \mid X>t) \leq E(Y-t \mid Y>t)$ for all t.
- $X \leq_{L R} Y \Leftrightarrow f_{Y}(t) / f_{X}(t)$ is nondecreasing, likelihood ratio order.
- $X \leq_{R H R} Y \Leftrightarrow(t-X \mid X<t) \geq s t(t-Y \mid Y<t)$ for all t.
- Then

Main stochastic orderings

- $X \leq_{S T} Y \Leftrightarrow \bar{F}_{X}(t) \leq \bar{F}_{Y}(t)$, stochastic order.
- $X \leq_{H R} Y \Leftrightarrow h_{X}(t) \geq h_{Y}(t)$, hazard rate order.
- $X \leq$ hr $Y \Leftrightarrow(X-t \mid X>t) \leq s t(Y-t \mid Y>t)$ for all t.
- $X \leq_{\text {MRL }} Y \Leftrightarrow E(X-t \mid X>t) \leq E(Y-t \mid Y>t)$ for all t.
- $X \leq_{L R} Y \Leftrightarrow f_{Y}(t) / f_{X}(t)$ is nondecreasing, likelihood ratio order.
- $X \leq_{R H R} Y \Leftrightarrow(t-X \mid X<t) \geq_{s T}(t-Y \mid Y<t)$ for all t.
- Then

$$
\begin{array}{cccc}
X \leq_{L R} Y & \Rightarrow & X \leq_{H R} Y & \Rightarrow \\
\Downarrow & X \leq_{M R L} Y \\
\Downarrow \\
X \leq_{R H R} Y & \Rightarrow & X \leq_{S T} Y & \Rightarrow \\
\Downarrow(X) \leq E(Y)
\end{array}
$$

Comparison results-DD

- If T_{i} has the $\mathrm{RF} \bar{q}_{i}(\bar{F}(t)), i=1,2$, then:
- $T_{1} \leq S T T_{2}$ for all F if and only if $\bar{q}_{2} / \bar{q}_{1} \geq 1$ in $(0,1)$. - $T_{1} \leq{ }_{H R} T_{2}$ for all F if and only if $\bar{q}_{2} / \bar{q}_{1}$ decreases in $(0,1)$. - $T_{1} \leq_{R H R} T_{2}$ for all F if and only if q_{2} / q_{1} increases in $(0,1)$. - $T_{1} \leq L R T_{2}$ for all F if and only if $\bar{q}_{2}^{\prime} / \bar{q}_{1}^{\prime}$ decreases. - $T_{1} \leq M R L T_{2}$ for all F such that $E\left(T_{1}\right) \leq E\left(T_{2}\right)$ if $\bar{q}_{2} / \bar{q}_{1}$ is bathtub in $(0,1)$

Comparison results-DD

- If T_{i} has the $\operatorname{RF} \bar{q}_{i}(\bar{F}(t)), i=1,2$, then:
- $T_{1} \leq_{S T} T_{2}$ for all F if and only if $\bar{q}_{2} / \bar{q}_{1} \geq 1$ in $(0,1)$.
- $T_{1} \leq H R T_{2}$ for all F if and only if $\bar{q}_{2} / \bar{q}_{1}$ decreases in $(0,1)$.
- $T_{1} \leq_{R H R} T_{2}$ for all F if and only if q_{2} / q_{1} increases in $(0,1)$
- $T_{1} \leq_{I R} T_{2}$ for all F if and only if $\bar{q}_{2}^{\prime} / \bar{q}_{1}^{\prime}$ decreases.
- $T_{1} \leq M R L T_{2}$ for all F such that $E\left(T_{1}\right) \leq E\left(T_{2}\right)$ if $\bar{q}_{2} / \bar{q}_{1}$ is bathtub in $(0,1)$

Comparison results-DD

- If T_{i} has the $\mathrm{RF} \bar{q}_{i}(\bar{F}(t)), i=1,2$, then:
- $T_{1} \leq_{S T} T_{2}$ for all F if and only if $\bar{q}_{2} / \bar{q}_{1} \geq 1$ in $(0,1)$.
- $T_{1} \leq H R T_{2}$ for all F if and only if $\bar{q}_{2} / \bar{q}_{1}$ decreases in $(0,1)$.
- $T_{1} \leq_{R H R} T_{2}$ for all F if and only if q_{2} / q_{1} increases in $(0,1)$
- $T_{1} \leq_{L R} T_{2}$ for all F if and only if $\bar{q}_{2}^{\prime} / \bar{q}_{1}^{\prime}$ decreases.
- $T_{1} \leq_{M R L} T_{2}$ for all F such that $E\left(T_{1}\right) \leq E\left(T_{2}\right)$ if $\bar{q}_{2} / \bar{q}_{1}$ is bathtub in $(0,1)$.

Comparison results-DD

- If T_{i} has the $\mathrm{RF} \bar{q}_{i}(\bar{F}(t)), i=1,2$, then:
- $T_{1} \leq_{S T} T_{2}$ for all F if and only if $\bar{q}_{2} / \bar{q}_{1} \geq 1$ in $(0,1)$.
- $T_{1} \leq H R T_{2}$ for all F if and only if $\bar{q}_{2} / \bar{q}_{1}$ decreases in $(0,1)$.
- $T_{1} \leq_{R H R} T_{2}$ for all F if and only if q_{2} / q_{1} increases in $(0,1)$.
- $T_{1} \leq L R T_{2}$ for all F if and only if $\bar{q}_{2}^{\prime} / \bar{q}_{1}^{\prime}$ decreases.
- $T_{1} \leq_{M R L} T_{2}$ for all F such that $E\left(T_{1}\right) \leq E\left(T_{2}\right)$ if $\bar{q}_{2} / \bar{q}_{1}$ is bathtub in $(0,1)$.

Comparison results-DD

- If T_{i} has the $\mathrm{RF} \bar{q}_{i}(\bar{F}(t)), i=1,2$, then:
- $T_{1} \leq_{S T} T_{2}$ for all F if and only if $\bar{q}_{2} / \bar{q}_{1} \geq 1$ in $(0,1)$.
- $T_{1} \leq H R T_{2}$ for all F if and only if $\bar{q}_{2} / \bar{q}_{1}$ decreases in $(0,1)$.
- $T_{1} \leq_{R H R} T_{2}$ for all F if and only if q_{2} / q_{1} increases in $(0,1)$.
- $T_{1} \leq_{L R} T_{2}$ for all F if and only if $\bar{q}_{2}^{\prime} / \bar{q}_{1}^{\prime}$ decreases.
bathtub in $(0,1)$.

Comparison results-DD

- If T_{i} has the $\operatorname{RF} \bar{q}_{i}(\bar{F}(t)), i=1,2$, then:
- $T_{1} \leq_{S T} T_{2}$ for all F if and only if $\bar{q}_{2} / \bar{q}_{1} \geq 1$ in $(0,1)$.
- $T_{1} \leq H R T_{2}$ for all F if and only if $\bar{q}_{2} / \bar{q}_{1}$ decreases in $(0,1)$.
- $T_{1} \leq_{R H R} T_{2}$ for all F if and only if q_{2} / q_{1} increases in $(0,1)$.
- $T_{1} \leq_{L R} T_{2}$ for all F if and only if $\bar{q}_{2}^{\prime} / \bar{q}_{1}^{\prime}$ decreases.
- $T_{1} \leq M R L T_{2}$ for all F such that $E\left(T_{1}\right) \leq E\left(T_{2}\right)$ if $\bar{q}_{2} / \bar{q}_{1}$ is bathtub in $(0,1)$.

Comparison results-GDD

- If T_{i} has RF $\bar{Q}_{i}\left(\bar{F}_{1}, \ldots, \bar{F}_{n}\right), i=1,2$, then:
- $T_{1} \leq S T T_{2}$ for all $\bar{F}_{1}, \ldots, \bar{F}_{n}$ if and only if $\bar{Q}_{1} \leq \bar{Q}_{2}$ in $(0,1)^{n}$ - $T_{1} \leq H R ~ T_{2}$ for all $\bar{F}_{1}, \ldots, \bar{F}_{n}$ if and only if $\bar{Q}_{2} / \bar{Q}_{1}$ is decreasing in $(0,1)^{n}$. - $T_{1} \leq_{R H R} T_{2}$ for all $\bar{F}_{1}, \ldots, \bar{F}_{n}$ if and only if Q_{2} / Q_{1} is increasing in $(0,1)^{n}$

Comparison results-GDD

- If T_{i} has $\operatorname{RF} \bar{Q}_{i}\left(\bar{F}_{1}, \ldots, \bar{F}_{n}\right), i=1,2$, then:
- $T_{1} \leq{ }_{S T} T_{2}$ for all $\bar{F}_{1}, \ldots, \bar{F}_{n}$ if and only if $\bar{Q}_{1} \leq \bar{Q}_{2}$ in $(0,1)^{n}$.
decreasing in $(0,1)^{n}$

Comparison results-GDD

- If T_{i} has $\operatorname{RF} \bar{Q}_{i}\left(\bar{F}_{1}, \ldots, \bar{F}_{n}\right), i=1,2$, then:
- $T_{1} \leq{ }_{S T} T_{2}$ for all $\bar{F}_{1}, \ldots, \bar{F}_{n}$ if and only if $\bar{Q}_{1} \leq \bar{Q}_{2}$ in $(0,1)^{n}$.
- $T_{1} \leq H R T_{2}$ for all $\bar{F}_{1}, \ldots, \bar{F}_{n}$ if and only if $\bar{Q}_{2} / \bar{Q}_{1}$ is decreasing in $(0,1)^{n}$.

Comparison results-GDD

- If T_{i} has RF $\bar{Q}_{i}\left(\bar{F}_{1}, \ldots, \bar{F}_{n}\right), i=1,2$, then:
- $T_{1} \leq S T T_{2}$ for all $\bar{F}_{1}, \ldots, \bar{F}_{n}$ if and only if $\bar{Q}_{1} \leq \bar{Q}_{2}$ in $(0,1)^{n}$.
- $T_{1} \leq H R T_{2}$ for all $\bar{F}_{1}, \ldots, \bar{F}_{n}$ if and only if $\bar{Q}_{2} / \bar{Q}_{1}$ is decreasing in $(0,1)^{n}$.
- $T_{1} \leq_{R H R} T_{2}$ for all $\bar{F}_{1}, \ldots, \bar{F}_{n}$ if and only if Q_{2} / Q_{1} is increasing in $(0,1)^{n}$.

Comparison results-System residual lifetimes

- These results can be applied to compare T_{t} and T_{t}^{*}. For example:
- $T_{t} \leq S T T_{t}^{*}(\geq S T)$ holds for all $\bar{F}_{1}, \ldots, \bar{F}_{n}$ if and only if

- $T_{t} \leq H R T_{t}^{*}\left(\geq_{H R}\right)$ for all $\bar{F}_{1}, \ldots, \bar{F}_{n}$ if and only if $\bar{Q}_{t}^{*} / \bar{Q}_{t}$ is decreasing (increasing) in $(0,1)^{n}$.
- $T_{t} \leq R H R T_{t}^{*}(\geq R H R)$ for all $\bar{F}_{1}, \ldots, \bar{F}_{n}$ if and only if Q_{t}^{*} / Q_{t} is increasing (decreasing) in $(0,1)^{n}$.

Comparison results-System residual lifetimes

- These results can be applied to compare T_{t} and T_{t}^{*}. For example:
- $T_{t} \leq S T T_{t}^{*}(\geq S T)$ holds for all $\bar{F}_{1}, \ldots, \bar{F}_{n}$ if and only if $\bar{Q}_{t} \leq \bar{Q}_{t}^{*}(\geq)$ in $(0,1)^{n}$.
, $T_{t} \leq H R T_{t}^{*}(\geq H R)$ for all $\bar{F}_{1}, \ldots, \bar{F}_{n}$ if and only if $\bar{Q}_{t}^{*} / \bar{Q}_{t}$ is decreasing (increasing) in $(0,1)^{n}$.
- $T_{t} \leq_{R H R} T_{t}^{*}\left(\geq_{R H R}\right)$ for all $\bar{F}_{1}, \ldots, \bar{F}_{n}$ if and only if Q_{t}^{*} / Q_{t} is increasing (decreasing) in $(0,1)^{n}$.

Comparison results-System residual lifetimes

- These results can be applied to compare T_{t} and T_{t}^{*}. For example:
- $T_{t} \leq S T T_{t}^{*}(\geq S T)$ holds for all $\bar{F}_{1}, \ldots, \bar{F}_{n}$ if and only if $\bar{Q}_{t} \leq \bar{Q}_{t}^{*}(\geq)$ in $(0,1)^{n}$.
- $T_{t} \leq_{H R} T_{t}^{*}\left(\geq_{H R}\right)$ for all $\bar{F}_{1}, \ldots, \bar{F}_{n}$ if and only if $\bar{Q}_{t}^{*} / \bar{Q}_{t}$ is decreasing (increasing) in $(0,1)^{n}$.
- $T_{t} \leq R H R T_{t}^{*}(\geq R H R)$ for all $\bar{F}_{1}, \ldots, \bar{F}_{n}$ if and only if Q_{t}^{*} / Q_{t} is increasing (decreasing) in $(0,1)^{n}$.

Comparison results-System residual lifetimes

- These results can be applied to compare T_{t} and T_{t}^{*}. For example:
- $T_{t} \leq S T T_{t}^{*}(\geq S T)$ holds for all $\bar{F}_{1}, \ldots, \bar{F}_{n}$ if and only if $\bar{Q}_{t} \leq \bar{Q}_{t}^{*}(\geq)$ in $(0,1)^{n}$.
- $T_{t} \leq_{H R} T_{t}^{*}\left(\geq_{H R}\right)$ for all $\bar{F}_{1}, \ldots, \bar{F}_{n}$ if and only if $\bar{Q}_{t}^{*} / \bar{Q}_{t}$ is decreasing (increasing) in $(0,1)^{n}$.
- $T_{t} \leq_{R H R} T_{t}^{*}\left(\geq_{R H R}\right)$ for all $\bar{F}_{1}, \ldots, \bar{F}_{n}$ if and only if Q_{t}^{*} / Q_{t} is increasing (decreasing) in $(0,1)^{n}$.

Example 1: Parallel system with two ID components

- $T=\max \left(X_{1}, X_{2}\right)$ where X_{1} and X_{2} have DF F.
- Then $F_{T}(t)=\bar{q}(\bar{F}(t))$ where

- The RF of $T_{t}=(T-t \mid T>t)$ is $\bar{F}_{t}(x)=\bar{q}_{t}\left(\bar{F}_{t}(x)\right)$ where

Example 1: Parallel system with two ID components

- $T=\max \left(X_{1}, X_{2}\right)$ where X_{1} and X_{2} have DF F.
- Then $\bar{F}_{T}(t)=\bar{q}(\bar{F}(t))$ where

$$
\bar{q}(u)=\bar{Q}(u, u)=2 u-K(u, u) .
$$

- The RF of $T_{t}=(T-t \mid T>t)$ is $\bar{F}_{t}(x)=\bar{q}_{t}\left(\bar{F}_{t}(x)\right)$ where

Example 1: Parallel system with two ID components

- $T=\max \left(X_{1}, X_{2}\right)$ where X_{1} and X_{2} have DF F.
- Then $\bar{F}_{T}(t)=\bar{q}(\bar{F}(t))$ where

$$
\bar{q}(u)=\bar{Q}(u, u)=2 u-K(u, u) .
$$

- The RF of $T_{t}=(T-t \mid T>t)$ is $\bar{F}_{t}(x)=\bar{q}_{t}\left(\bar{F}_{t}(x)\right)$ where

$$
\bar{q}_{t}(u)=\bar{Q}_{t}(u, u)=\frac{\bar{q}(c u)}{\bar{q}(c)}=\frac{2 c u-K(c u, c u)}{2 c-K(c, c)}
$$

$$
c=\bar{F}(t) \text { and } \bar{F}_{t}(x)=\bar{F}(x+t) / c
$$

Example 1: Parallel system with two ID components

- $T=\max \left(X_{1}, X_{2}\right)$ where X_{1} and X_{2} have DF F.
- Then $\bar{F}_{T}(t)=\bar{q}(\bar{F}(t))$ where

$$
\bar{q}(u)=\bar{Q}(u, u)=2 u-K(u, u) .
$$

- The RF of $T_{t}=(T-t \mid T>t)$ is $\bar{F}_{t}(x)=\bar{q}_{t}\left(\bar{F}_{t}(x)\right)$ where

$$
\bar{q}_{t}(u)=\bar{Q}_{t}(u, u)=\frac{\bar{q}(c u)}{\bar{q}(c)}=\frac{2 c u-K(c u, c u)}{2 c-K(c, c)}
$$

$$
c=\bar{F}(t) \text { and } \bar{F}_{t}(x)=\bar{F}(x+t) / c
$$

- The RF of $T_{t}^{*}=(T-t \mid T>t)$ is $\bar{F}_{t}^{*}(x)=\bar{q}_{t}^{*}\left(\bar{F}_{t}(x)\right)$ where

$$
\bar{q}_{t}^{*}(u)=\bar{Q}_{t}^{*}(u, u)=\frac{K(c u, c)+K(c, c u)-K(c u, c u)}{K(c, c)} .
$$

Example 1: Parallel system with two ID components

- $T_{t} \leq{ }_{S T} T_{t}^{*}$ for all F if and only if $\bar{q}_{t} \leq \bar{q}_{t}^{*}$ in $(0,1)$, that is,

$$
\begin{equation*}
\frac{2 c u-K(c u, c u)}{2 c-K(c, c)} \leq \frac{K(c u, c)+K(c, c u)-K(c u, c u)}{K(c, c)} . \tag{6}
\end{equation*}
$$

- If K is EXC, it is equivalent to
$\Psi(u)=[c-K(c, c)][K(c u, c)-K(c u, c u)]+c[K(c u, c)-u K(c, c)] \geq 0$.
-Condition (7) holds if

$$
\psi(u)=K(c u, c)-u K(c, c) \geq 0
$$

for all $u \in[0,1]$

Example 1: Parallel system with two ID components

- $T_{t} \leq s T T_{t}^{*}$ for all F if and only if $\bar{q}_{t} \leq \bar{q}_{t}^{*}$ in $(0,1)$, that is,

$$
\begin{equation*}
\frac{2 c u-K(c u, c u)}{2 c-K(c, c)} \leq \frac{K(c u, c)+K(c, c u)-K(c u, c u)}{K(c, c)} \tag{6}
\end{equation*}
$$

- If K is EXC, it is equivalent to

$$
\begin{equation*}
\Psi(u)=[c-K(c, c)][K(c u, c)-K(c u, c u)]+c[K(c u, c)-u K(c, c)] \geq 0 \tag{7}
\end{equation*}
$$

- Condition (7) holds if

$$
\psi^{\prime}(u)=K(c u, c)-u K(c, c) \geq 0
$$

Example 1: Parallel system with two ID components

- $T_{t} \leq_{S T} T_{t}^{*}$ for all F if and only if $\bar{q}_{t} \leq \bar{q}_{t}^{*}$ in $(0,1)$, that is,

$$
\begin{equation*}
\frac{2 c u-K(c u, c u)}{2 c-K(c, c)} \leq \frac{K(c u, c)+K(c, c u)-K(c u, c u)}{K(c, c)} \tag{6}
\end{equation*}
$$

- If K is EXC, it is equivalent to

$$
\begin{equation*}
\Psi(u)=[c-K(c, c)][K(c u, c)-K(c u, c u)]+c[K(c u, c)-u K(c, c)] \geq 0 \tag{7}
\end{equation*}
$$

- Condition (7) holds if

$$
\psi(u)=K(c u, c)-u K(c, c) \geq 0
$$

for all $u \in[0,1]$.

Example 1: Clayton copula

- If K is the Clayton copula

$$
K(u, v)=\left(u^{-\theta}+v^{-\theta}-1\right)^{-1 / \theta}, \quad \theta>0
$$

then

$$
\begin{aligned}
& \psi(u)=\left(u^{-\theta} c^{-\theta}+c^{-\theta}-1\right)^{-1 / \theta}-\left(u^{-\theta} c^{-\theta}+u^{-\theta}\left[c^{-\theta}-1\right]\right)^{-1 / \theta} . \\
& \text { Since } \theta>0 \text { and } u^{-\theta} \geq 1 \text { for } u \in(0,1), \psi \text { is nonnegative in } \\
& (0,1) \text { for all } c . \\
& \text { Therefore } T_{t} \leq s T T_{t}^{*} \text { holds for all } F \text { and all } t \geq 0 .
\end{aligned}
$$

Example 1: Clayton copula

- If K is the Clayton copula

$$
K(u, v)=\left(u^{-\theta}+v^{-\theta}-1\right)^{-1 / \theta}, \quad \theta>0
$$

then

$$
\psi(u)=\left(u^{-\theta} c^{-\theta}+c^{-\theta}-1\right)^{-1 / \theta}-\left(u^{-\theta} c^{-\theta}+u^{-\theta}\left[c^{-\theta}-1\right]\right)^{-1 / \theta}
$$

- Since $\theta>0$ and $u^{-\theta} \geq 1$ for $u \in(0,1), \psi$ is nonnegative in $(0,1)$ for all c.
- Therefore $T_{t} \leq s T T_{t}^{*}$ holds for all F and all $t \geq 0$.

Example 1: Clayton copula

- If K is the Clayton copula

$$
K(u, v)=\left(u^{-\theta}+v^{-\theta}-1\right)^{-1 / \theta}, \quad \theta>0
$$

then

$$
\psi(u)=\left(u^{-\theta} c^{-\theta}+c^{-\theta}-1\right)^{-1 / \theta}-\left(u^{-\theta} c^{-\theta}+u^{-\theta}\left[c^{-\theta}-1\right]\right)^{-1 / \theta}
$$

- Since $\theta>0$ and $u^{-\theta} \geq 1$ for $u \in(0,1), \psi$ is nonnegative in $(0,1)$ for all c.
- Therefore $T_{t} \leq_{S T} T_{t}^{*}$ holds for all F and all $t \geq 0$.

Figure: Reliability functions of T_{t} (black) and T_{t}^{*} (red) when $t=1$, $\bar{F}(x)=e^{-x}$ and $\theta=2$.

Example 1: Gumbel-Barnett Archimedean copula

- If K is the Gumbel-Barnett Archimedean copula

$$
\begin{equation*}
K(u, v)=u v \exp [-\theta(\ln u)(\ln v)], \quad \theta \in(0,1] \tag{8}
\end{equation*}
$$

then by plotting $\Psi(u)$, we see that it takes positive and negative values in the set $[0,1]$ when $\theta=1$.

- Therefore T_{t} and T_{t}^{*} are not ST ordered (for all F and t).
- These conditions lead to a Gumbel bivariate exponential with
a negative correlation.
- For example it does not hold when $t=1, \bar{F}(x)=e^{-x}$ and $\theta=1$.

Example 1: Gumbel-Barnett Archimedean copula

- If K is the Gumbel-Barnett Archimedean copula

$$
\begin{equation*}
K(u, v)=u v \exp [-\theta(\ln u)(\ln v)], \quad \theta \in(0,1] \tag{8}
\end{equation*}
$$

then by plotting $\Psi(u)$, we see that it takes positive and negative values in the set $[0,1]$ when $\theta=1$.

- Therefore T_{t} and T_{t}^{*} are not ST ordered (for all F and t).
- These conditions lead to a Gumbel bivariate exponential with
a negative correlation.
- For example it does not hold when $t=1, F(x)=e^{-x}$ and $\theta=1$.

Example 1: Gumbel-Barnett Archimedean copula

- If K is the Gumbel-Barnett Archimedean copula

$$
\begin{equation*}
K(u, v)=u v \exp [-\theta(\ln u)(\ln v)], \quad \theta \in(0,1] \tag{8}
\end{equation*}
$$

then by plotting $\Psi(u)$, we see that it takes positive and negative values in the set $[0,1]$ when $\theta=1$.

- Therefore T_{t} and T_{t}^{*} are not ST ordered (for all F and t).
- These conditions lead to a Gumbel bivariate exponential with a negative correlation.
- For example it does not hold when $t=1, \bar{F}(x)=e^{-x}$ and $\theta=1$.

Example 1: Gumbel-Barnett Archimedean copula

- If K is the Gumbel-Barnett Archimedean copula

$$
\begin{equation*}
K(u, v)=u v \exp [-\theta(\ln u)(\ln v)], \quad \theta \in(0,1] \tag{8}
\end{equation*}
$$

then by plotting $\Psi(u)$, we see that it takes positive and negative values in the set $[0,1]$ when $\theta=1$.

- Therefore T_{t} and T_{t}^{*} are not ST ordered (for all F and t).
- These conditions lead to a Gumbel bivariate exponential with a negative correlation.
- For example it does not hold when $t=1, \bar{F}(x)=e^{-x}$ and $\theta=1$.

Figure: Reliability functions of T_{t} (black) and T_{t}^{*} (red) when $t=1$, $\bar{F}(x)=e^{-x}$ and $\theta=1$.

Example 1: Gumbel-Barnett Archimedean copula

- Now we can study if $T_{t} \leq_{M R L} T_{t}^{*}$ holds.
- By plotting the ratio $g(u)=\bar{q}_{t}(u) / \bar{q}_{t}^{*}(u)$ for $t=1$ we see that it is first decreasing in $\left(0, u_{0}\right)$ and then increasing in $\left(u_{0}, 1\right]$ for a $u_{0} \in(0,1)$.

Example 1: Gumbel-Barnett Archimedean copula

- Now we can study if $T_{t} \leq_{M R L} T_{t}^{*}$ holds.
- By plotting the ratio $g(u)=\bar{q}_{t}(u) / \bar{q}_{t}^{*}(u)$ for $t=1$ we see that it is first decreasing in $\left(0, u_{0}\right)$ and then increasing in $\left(u_{0}, 1\right]$ for a $u_{0} \in(0,1)$.

Figure: Ratio $g(u)=\bar{q}_{t}(u) / \bar{q}_{t}^{*}(u)$ for $t=1, \bar{F}(x)=e^{-x}$ and $\theta=0.1,0.2, \ldots, 1$ (from the bottom to the top).

Example 1: Gumbel-Barnett Archimedean copula

- Now we can study if $T_{t} \leq_{M R L} T_{t}^{*}$ holds.
- By plotting the ratio $g(u)=\bar{q}_{t}(u) / \bar{q}_{t}^{*}(u)$ for $t=1$ we see that it is first decreasing in $\left(0, u_{0}\right)$ and then increasing in ($\left.u_{0}, 1\right]$ for a $u_{0} \in(0,1)$.
- Hence $T_{t} \geq m R L T_{t}^{*}$ for all F such that $E\left(T_{t}\right) \geq E\left(T_{t}^{*}\right)$.
- For example, if $t=1, \bar{F}(x)=e^{-x}$ and $\theta=1$, then

$$
E\left(T_{t}\right)=1.05615>E\left(T_{t}^{*}\right)=0.77366
$$

Example 1: Gumbel-Barnett Archimedean copula

- Now we can study if $T_{t} \leq_{M R L} T_{t}^{*}$ holds.
- By plotting the ratio $g(u)=\bar{q}_{t}(u) / \bar{q}_{t}^{*}(u)$ for $t=1$ we see that it is first decreasing in $\left(0, u_{0}\right)$ and then increasing in ($\left.u_{0}, 1\right]$ for a $u_{0} \in(0,1)$.
- Hence $T_{t} \geq m R L T_{t}^{*}$ for all F such that $E\left(T_{t}\right) \geq E\left(T_{t}^{*}\right)$.
- For example, if $t=1, \bar{F}(x)=e^{-x}$ and $\theta=1$, then

$$
E\left(T_{t}\right)=1.05615>E\left(T_{t}^{*}\right)=0.77366
$$

Example 1: Gumbel-Barnett Archimedean copula

- Now we can study if $T_{t} \leq_{M R L} T_{t}^{*}$ holds.
- By plotting the ratio $g(u)=\bar{q}_{t}(u) / \bar{q}_{t}^{*}(u)$ for $t=1$ we see that it is first decreasing in $\left(0, u_{0}\right)$ and then increasing in ($\left.u_{0}, 1\right]$ for a $u_{0} \in(0,1)$.
- Hence $T_{t} \geq$ mRL T_{t}^{*} for all F such that $E\left(T_{t}\right) \geq E\left(T_{t}^{*}\right)$.
- For example, if $t=1, \bar{F}(x)=e^{-x}$ and $\theta=1$, then

$$
E\left(T_{t}\right)=1.05615>E\left(T_{t}^{*}\right)=0.77366
$$

- So $T_{t} \geq M R L T_{t}^{*}$ for $t=1$ and $\bar{F}(x)=e^{-x}$!!

Example 2: Parallel system with two INID components

- If $T=X_{2: 2}=\max \left(X_{1}, X_{2}\right), X_{1}, X_{2}$ IND, then

$$
\bar{Q}_{2: 2}\left(u_{1}, u_{2}\right)=u_{1}+u_{2}-u_{1} u_{2} .
$$

- For $X_{1: 2}=\min \left(X_{1}, X_{2}\right)$, we have $Q_{1: 2}\left(u_{1}, u_{2}\right)=u_{1} u_{2}$.
- Then $X_{1: 2} \leq H R X_{2: 2}$ holds since

is decreasing in $(0,1)^{2}$.
- For X_{1}, we have $\bar{Q}_{1}\left(u_{1}, u_{2}\right)=u_{1}$.
- Then $X_{1} \leq H R X_{2: 2}$ does not hold since

is decreasing in u_{1} but increasing in u_{2}.

Example 2: Parallel system with two INID components

- If $T=X_{2: 2}=\max \left(X_{1}, X_{2}\right), X_{1}, X_{2}$ IND, then

$$
\bar{Q}_{2: 2}\left(u_{1}, u_{2}\right)=u_{1}+u_{2}-u_{1} u_{2} .
$$

- For $X_{1: 2}=\min \left(X_{1}, X_{2}\right)$, we have $\bar{Q}_{1: 2}\left(u_{1}, u_{2}\right)=u_{1} u_{2}$.

is decreasing in u_{1} but increasing in u_{2}.

Example 2: Parallel system with two INID components

- If $T=X_{2: 2}=\max \left(X_{1}, X_{2}\right), X_{1}, X_{2}$ IND, then

$$
\bar{Q}_{2: 2}\left(u_{1}, u_{2}\right)=u_{1}+u_{2}-u_{1} u_{2} .
$$

- For $X_{1: 2}=\min \left(X_{1}, X_{2}\right)$, we have $\bar{Q}_{1: 2}\left(u_{1}, u_{2}\right)=u_{1} u_{2}$.
- Then $X_{1: 2} \leq_{H R} X_{2: 2}$ holds since

$$
\frac{\bar{Q}_{2: 2}\left(u_{1}, u_{2}\right)}{\bar{Q}_{1: 2}\left(u_{1}, u_{2}\right)}=\frac{1}{u_{1}}+\frac{1}{u_{2}}-1
$$

is decreasing in $(0,1)^{2}$.

- Then $X_{1} \leq H R X_{2: 2}$ does not hold since

is decreasing in u_{1} but increasing in u_{2}.

Example 2: Parallel system with two INID components

- If $T=X_{2: 2}=\max \left(X_{1}, X_{2}\right), X_{1}, X_{2}$ IND, then

$$
\bar{Q}_{2: 2}\left(u_{1}, u_{2}\right)=u_{1}+u_{2}-u_{1} u_{2} .
$$

- For $X_{1: 2}=\min \left(X_{1}, X_{2}\right)$, we have $\bar{Q}_{1: 2}\left(u_{1}, u_{2}\right)=u_{1} u_{2}$.
- Then $X_{1: 2} \leq_{H R} X_{2: 2}$ holds since

$$
\frac{\bar{Q}_{2: 2}\left(u_{1}, u_{2}\right)}{\bar{Q}_{1: 2}\left(u_{1}, u_{2}\right)}=\frac{1}{u_{1}}+\frac{1}{u_{2}}-1
$$

is decreasing in $(0,1)^{2}$.

- For X_{1}, we have $\bar{Q}_{1}\left(u_{1}, u_{2}\right)=u_{1}$.
- Then $X_{1} \leq H R X_{2: 2}$ does not hold since

is decreasing in u_{1} but increasing in u_{2}.

Example 2: Parallel system with two INID components

- If $T=X_{2: 2}=\max \left(X_{1}, X_{2}\right), X_{1}, X_{2}$ IND, then

$$
\bar{Q}_{2: 2}\left(u_{1}, u_{2}\right)=u_{1}+u_{2}-u_{1} u_{2} .
$$

- For $X_{1: 2}=\min \left(X_{1}, X_{2}\right)$, we have $\bar{Q}_{1: 2}\left(u_{1}, u_{2}\right)=u_{1} u_{2}$.
- Then $X_{1: 2} \leq_{H R} X_{2: 2}$ holds since

$$
\frac{\bar{Q}_{2: 2}\left(u_{1}, u_{2}\right)}{\bar{Q}_{1: 2}\left(u_{1}, u_{2}\right)}=\frac{1}{u_{1}}+\frac{1}{u_{2}}-1
$$

is decreasing in $(0,1)^{2}$.

- For X_{1}, we have $\bar{Q}_{1}\left(u_{1}, u_{2}\right)=u_{1}$.
- Then $X_{1} \leq_{H R} X_{2: 2}$ does not hold since

$$
\frac{\bar{Q}_{2: 2}\left(u_{1}, u_{2}\right)}{\bar{Q}_{1}\left(u_{1}, u_{2}\right)}=1+\frac{u_{2}}{u_{1}}-u_{2}
$$

is decreasing in u_{1} but increasing in u_{2}.

Figure: Hazard rate functions of X_{i} (red), $X_{1: 2}$ (blue) and $X_{2: 2}$ (black) when $X_{i} \equiv \operatorname{Exp}(\mu=1 / i), i=1,2$.

Example 2: Parallel system with two INID components

- If X_{1}, X_{2} are IID with DF F, then $X_{1} \leq_{H R} X_{2: 2}$ holds for all F since

$$
\frac{\bar{q}(u)}{u}=\frac{2 u-u^{2}}{u}=2-u
$$

is a decreasing in u in the set $[0,1]$.

- Even more, $X_{1} \leq L R X_{2: 2}$ holds for all F since

is a decreasing function in $[0,1]$ for all $t>0$.

Example 2: Parallel system with two INID components

- If X_{1}, X_{2} are IID with DF F, then $X_{1} \leq_{H R} X_{2: 2}$ holds for all F since

$$
\frac{\bar{q}(u)}{u}=\frac{2 u-u^{2}}{u}=2-u
$$

is a decreasing in u in the set $[0,1]$.

- Even more, $X_{1} \leq_{L R} X_{2: 2}$ holds for all F since

$$
\frac{\bar{q}^{\prime}(u)}{1}=2-2 u
$$

is a decreasing function in $[0,1]$ for all $t>0$.

Example 2: Parallel system with two INID components

- For the residual lifetimes we have

$$
\begin{gathered}
\bar{Q}_{t}^{*}\left(u_{1}, u_{2}\right)=\bar{Q}_{2: 2}\left(u_{1}, u_{2}\right)=u_{1}+u_{2}-u_{1} u_{2} \\
\bar{Q}_{t}\left(u_{1}, u_{2}\right)=\frac{c_{1} u_{1}+c_{2} u_{2}-c_{1} c_{2} u_{1} u_{2}}{c_{1}+c_{2}-c_{1} c_{2}}
\end{gathered}
$$

where $c_{1}=\bar{F}_{1}(t)$ and $c_{2}=\bar{F}_{2}(t)$.

- $T_{t} \leq H R T_{t}^{*}$ holds for all F_{1}, F_{2} if and only if

is decreasing in the set $[0,1]^{2}$.
- As this property is not true, they are not HR ordered.
- Therefore Theorem 3 in Li and Lu (PEIS,2003) is not correct.

Example 2: Parallel system with two INID components

- For the residual lifetimes we have

$$
\begin{gathered}
\bar{Q}_{t}^{*}\left(u_{1}, u_{2}\right)=\bar{Q}_{2: 2}\left(u_{1}, u_{2}\right)=u_{1}+u_{2}-u_{1} u_{2} \\
\bar{Q}_{t}\left(u_{1}, u_{2}\right)=\frac{c_{1} u_{1}+c_{2} u_{2}-c_{1} c_{2} u_{1} u_{2}}{c_{1}+c_{2}-c_{1} c_{2}}
\end{gathered}
$$

where $c_{1}=\bar{F}_{1}(t)$ and $c_{2}=\bar{F}_{2}(t)$.

- $T_{t} \leq H R T_{t}^{*}$ holds for all F_{1}, F_{2} if and only if

$$
\frac{\bar{Q}\left(u_{1}, u_{2}\right)}{\bar{Q}_{t}\left(u_{1}, u_{2}\right)}=\frac{\left(u_{1}+u_{2}-u_{1} u_{2}\right)\left(c_{1}+c_{2}-c_{1} c_{2}\right)}{c_{1} u_{1}+c_{2}-c_{1} c_{2} u_{1} u_{2}}
$$

is decreasing in the set $[0,1]^{2}$.

- As this property is not true, they are not HR ordered.
- Therefore Theorem 3 in Li and Lu (PEIS,2003) is not correct.

Example 2: Parallel system with two INID components

- For the residual lifetimes we have

$$
\begin{gathered}
\bar{Q}_{t}^{*}\left(u_{1}, u_{2}\right)=\bar{Q}_{2: 2}\left(u_{1}, u_{2}\right)=u_{1}+u_{2}-u_{1} u_{2} \\
\bar{Q}_{t}\left(u_{1}, u_{2}\right)=\frac{c_{1} u_{1}+c_{2} u_{2}-c_{1} c_{2} u_{1} u_{2}}{c_{1}+c_{2}-c_{1} c_{2}}
\end{gathered}
$$

where $c_{1}=\bar{F}_{1}(t)$ and $c_{2}=\bar{F}_{2}(t)$.

- $T_{t} \leq H R T_{t}^{*}$ holds for all F_{1}, F_{2} if and only if

$$
\frac{\bar{Q}\left(u_{1}, u_{2}\right)}{\bar{Q}_{t}\left(u_{1}, u_{2}\right)}=\frac{\left(u_{1}+u_{2}-u_{1} u_{2}\right)\left(c_{1}+c_{2}-c_{1} c_{2}\right)}{c_{1} u_{1}+c_{2}-c_{1} c_{2} u_{1} u_{2}}
$$

is decreasing in the set $[0,1]^{2}$.

- As this property is not true, they are not HR ordered.

Example 2: Parallel system with two INID components

- For the residual lifetimes we have

$$
\begin{gathered}
\bar{Q}_{t}^{*}\left(u_{1}, u_{2}\right)=\bar{Q}_{2: 2}\left(u_{1}, u_{2}\right)=u_{1}+u_{2}-u_{1} u_{2} \\
\bar{Q}_{t}\left(u_{1}, u_{2}\right)=\frac{c_{1} u_{1}+c_{2} u_{2}-c_{1} c_{2} u_{1} u_{2}}{c_{1}+c_{2}-c_{1} c_{2}}
\end{gathered}
$$

where $c_{1}=\bar{F}_{1}(t)$ and $c_{2}=\bar{F}_{2}(t)$.

- $T_{t} \leq H R T_{t}^{*}$ holds for all F_{1}, F_{2} if and only if

$$
\frac{\bar{Q}\left(u_{1}, u_{2}\right)}{\bar{Q}_{t}\left(u_{1}, u_{2}\right)}=\frac{\left(u_{1}+u_{2}-u_{1} u_{2}\right)\left(c_{1}+c_{2}-c_{1} c_{2}\right)}{c_{1} u_{1}+c_{2}-c_{1} c_{2} u_{1} u_{2}}
$$

is decreasing in the set $[0,1]^{2}$.

- As this property is not true, they are not HR ordered.
- Therefore Theorem 3 in Li and $\mathrm{Lu}(P E I S, 2003)$ is not correct.

Example 2: Parallel system with two INID components

- If X_{1}, X_{2} are IID with DF F, then $T_{t} \leq H R T_{t}^{*}$ holds for all F since

$$
\frac{\bar{q}(u)}{\bar{q}_{t}(u)}=\frac{2-u}{2-u \bar{F}(t)}(2-\bar{F}(t))
$$

is decreasing in u in the set $[0,1]$.

- Even more, $T_{t} \leq L R T_{t}^{*}$ holds for all F since

is a decreasing function in $[0,1]$ for all $t>0$.

Example 2: Parallel system with two INID components

- If X_{1}, X_{2} are IID with DF F, then $T_{t} \leq H R T_{t}^{*}$ holds for all F since

$$
\frac{\bar{q}(u)}{\bar{q}_{t}(u)}=\frac{2-u}{2-u \bar{F}(t)}(2-\bar{F}(t))
$$

is decreasing in u in the set $[0,1]$.

- Even more, $T_{t} \leq L R T_{t}^{*}$ holds for all F since

$$
\frac{\bar{q}^{\prime}(u)}{\bar{q}_{t}^{\prime}(u)}=\frac{1-u}{1-u \bar{F}(t)}(2-\bar{F}(t))
$$

is a decreasing function in $[0,1]$ for all $t>0$.

Figure: Ratio $\bar{F}_{t}^{*} / \bar{F}_{t}$ for $t=1, \bar{F}_{1}(x)=e^{-x}$ and $\bar{F}_{2}(x)=e^{-x / 2}$ (black) or $\bar{F}_{2}(x)=e^{-x}($ red $)$.

Example 3: Coherent system with DID components

Figure: System in Example 3.

Example 3: Coherent system with DID components

- $T=\max \left(X_{1}, \min \left(X_{2}, X_{3}\right)\right), X_{1}, X_{2}, X_{3}$ DID with DF F.
- Then $P_{1}=\{1\}, P_{2}=\{2,3\}$ and

$$
\bar{q}(u)=u+K(1, u, u)-K(u, u, u) .
$$

- Therefore $\bar{q}_{t}(u)=\bar{q}(c u) / \bar{q}(c)$ and

where $c=\bar{F}(t)$.
- We assume a Farlie-Gumbel-Morgenstern (FGM) copula
$K(u, v, w)=\operatorname{uvw}(1+\theta(1-u)(1-v)(1-w)), \quad \theta \in[-1,1]$

Example 3: Coherent system with DID components

- $T=\max \left(X_{1}, \min \left(X_{2}, X_{3}\right)\right), X_{1}, X_{2}, X_{3}$ DID with DF F.
- Then $P_{1}=\{1\}, P_{2}=\{2,3\}$ and

$$
\bar{q}(u)=u+K(1, u, u)-K(u, u, u) .
$$

- Therefore $\bar{q}_{t}(u)=\bar{q}(c u) / \bar{q}(c)$ and

where $c=\bar{F}(t)$.
- We assume a Farlie-Gumbel-Morgenstern (FGM) copula $K(u, v, w)=u v w(1+\theta(1-u)(1-v)(1-w)), \quad \theta \in[-1,1]$.

Example 3: Coherent system with DID components

- $T=\max \left(X_{1}, \min \left(X_{2}, X_{3}\right)\right), X_{1}, X_{2}, X_{3}$ DID with DF F.
- Then $P_{1}=\{1\}, P_{2}=\{2,3\}$ and

$$
\bar{q}(u)=u+K(1, u, u)-K(u, u, u)
$$

- Therefore $\bar{q}_{t}(u)=\bar{q}(c u) / \bar{q}(c)$ and

$$
\bar{q}_{t}^{*}(u)=\frac{K(c u, c, c)+K(c, c u, c u)-K(c u, c u, c u)}{K(c, c, c)}
$$

where $c=\bar{F}(t)$.

- We assume a Farlie-Gumbel-Morgenstern (FGM) copula $K(u, v, w)=u v w(1+\theta(1-u)(1-v)(1-w)), \quad \theta \in[-1,1]$.

Example 3: Coherent system with DID components

- $T=\max \left(X_{1}, \min \left(X_{2}, X_{3}\right)\right), X_{1}, X_{2}, X_{3}$ DID with DF F.
- Then $P_{1}=\{1\}, P_{2}=\{2,3\}$ and

$$
\bar{q}(u)=u+K(1, u, u)-K(u, u, u) .
$$

- Therefore $\bar{q}_{t}(u)=\bar{q}(c u) / \bar{q}(c)$ and

$$
\bar{q}_{t}^{*}(u)=\frac{K(c u, c, c)+K(c, c u, c u)-K(c u, c u, c u)}{K(c, c, c)}
$$

where $c=\bar{F}(t)$.

- We assume a Farlie-Gumbel-Morgenstern (FGM) copula

$$
K(u, v, w)=u v w(1+\theta(1-u)(1-v)(1-w)), \quad \theta \in[-1,1] .
$$

Figure: Ratio $g(u)=\bar{q}_{t}^{*}(u) / \bar{q}_{t}(u)$ for $t=1, \bar{F}(x)=e^{-x}$ and $\theta=-1,-0.9, \ldots, 1$ (from the bottom to the top).

Example 3: Coherent system with DID components

- As $g(u)=\bar{q}_{t}^{*}(u) / \bar{q}_{t}(u) \geq 1$, then $T_{t} \leq s T T_{t}^{*}$.
- As $g(u)=\bar{q}_{t}^{*}(u) / \bar{q}_{t}(u)$ is not monotone, then T_{t} and T_{t}^{*} are not HR ordered.

Example 3: Coherent system with DID components

- As $g(u)=\bar{q}_{t}^{*}(u) / \bar{q}_{t}(u) \geq 1$, then $T_{t} \leq s T T_{t}^{*}$.
- As $g(u)=\bar{q}_{t}^{*}(u) / \bar{q}_{t}(u)$ is not monotone, then T_{t} and T_{t}^{*} are not HR ordered.

Further results

- Navarro and Durante (2016):
- Case 3: $T_{t_{1}, \ldots, t_{r}, t}^{\left(i_{1}, \ldots, i_{r}\right)}=\left(T-t \mid H_{t_{1}, \ldots, t_{r}, t}^{\left(i_{1}, \ldots, i_{r}\right)}\right)$ where the (past) history of the system can be represented as

where $0<r<n, 0<t_{1}<\cdots<t_{r}<t, \operatorname{Pr}\left(H_{t_{1}, \ldots, t_{r}, t}^{\left(i_{1}, \ldots, i_{r}\right)}\right)>0$
and the event $H_{t_{1}, \ldots, t_{r}, t}^{\left(i_{1}, \ldots, i_{r}\right)}$ implies $T>t$
- This case can also be represented as

Further results

- Navarro and Durante (2016):
- Case 3: $T_{t_{1}, \ldots, t_{r}, t}^{\left(i_{1}, \ldots, i_{r}\right)}=\left(T-t \mid H_{t_{1}, \ldots, t_{r}, t}^{\left(i_{1}, \ldots, i_{r}\right)}\right)$ where the (past)
history of the system can be represented as
$H_{t_{1}, \ldots, t_{r}, t}^{\left(i_{1}, \ldots, i_{r}\right)}=\left\{X_{i_{1}}=t_{1}, \ldots, X_{i_{r}}=t_{r}, X_{j}>t\right.$ for $\left.j \notin\left\{i_{1}, \ldots, i_{r}\right\}\right\}$, where $0<r<n, 0<t_{1}<\cdots<t_{r}<t, \operatorname{Pr}\left(H_{t_{1}, \ldots, t_{r}, t}^{\left(i_{1}, \ldots, i_{r}\right)}\right)>0$ and the event $H_{t_{1}, \ldots, t_{r}, t}^{\left(i_{1}, \ldots, i_{r}\right)}$ implies $T>t$.
- This case can also be represented as

Further results

- Navarro and Durante (2016):
- Case 3: $T_{t_{1}, \ldots, t_{r}, t}^{\left(i_{1}, \ldots, i_{r}\right)}=\left(T-t \mid H_{t_{1}, \ldots, t_{r}, t}^{\left(i_{1}, \ldots, i_{r}\right)}\right)$ where the (past)
history of the system can be represented as
$H_{t_{1}, \ldots, t_{r}, t}^{\left(i_{1}, \ldots, i_{r}\right)}=\left\{X_{i_{1}}=t_{1}, \ldots, X_{i_{r}}=t_{r}, X_{j}>t\right.$ for $\left.j \notin\left\{i_{1}, \ldots, i_{r}\right\}\right\}$,
where $0<r<n, 0<t_{1}<\cdots<t_{r}<t$, $\operatorname{Pr}\left(H_{t_{1}, \ldots, t_{r}, t}^{\left(i_{1}, \ldots, i_{r}\right)}\right)>0$ and the event $H_{t_{1}, \ldots, t_{r}, t}^{\left(i_{1}, \ldots, i_{r}\right)}$ implies $T>t$.
- This case can also be represented as

$$
\operatorname{Pr}\left(T-t>x \mid H_{t_{1}, \ldots, t_{r}, t}^{\left(i_{1}, \ldots, i_{r}\right)}\right)=\bar{Q}_{t_{1}, \ldots, t_{r}, t}^{\left(i_{1}, \ldots, i_{r}\right)}\left(\bar{F}_{1, t}(x), \ldots, \bar{F}_{n, t}(x)\right) .
$$

Further results

- Navarro, Pellerey and Longobardi (2016), Inactivity times:
- Case 1: At time t we know that the system has failed. The inactivity time is

$$
{ }_{t} T=(t-T \mid T \leq t)
$$

- Case 2: At time t we know which components W are working. The other W^{c} have failed, that is, $A_{t}=\left\{X_{W}>t, X^{W^{c}} \leq t\right\}$, where $X_{W}=\min _{i \in W} X_{i}$ and $X^{W^{c}}=\max _{i \in W^{c}} X_{i}$, for $W \subset\{1, \ldots, n\}$. If A_{t} implies $T<t$, the inactivity time is

- These cases can also be represented as DD

Further results

- Navarro, Pellerey and Longobardi (2016), Inactivity times:
- Case 1: At time t we know that the system has failed. The inactivity time is

$$
{ }_{t} T=(t-T \mid T \leq t)
$$

- Case 2: At time t we know which components W are working The other W^{c} have failed, that is, $A_{t}=\left\{X_{W}>t, X^{W^{c}} \leq t\right\}$, where $X_{W}=\min _{i \in W} X_{i}$ and $X^{W^{c}}=\max _{i \in W^{c}} X_{i}$, for $W \subset\{1, \ldots, n\}$. If A_{t} implies $T<t$, the inactivity time is

- These cases can also be represented as DD

Further results

- Navarro, Pellerey and Longobardi (2016), Inactivity times:
- Case 1: At time t we know that the system has failed. The inactivity time is

$$
{ }_{t} T=(t-T \mid T \leq t)
$$

- Case 2: At time t we know which components W are working. The other W^{c} have failed, that is, $A_{t}=\left\{X_{W}>t, X^{W^{c}} \leq t\right\}$, where $X_{W}=\min _{i \in W} X_{i}$ and $X^{W^{c}}=\max _{i \in W^{c}} X_{i}$, for $W \subset\{1, \ldots, n\}$. If A_{t} implies $T<t$, the inactivity time is

$$
{ }_{t} T^{W}=\left(t-T \mid X_{W}>t, X^{W^{c}} \leq t\right)
$$

- These cases can also be represented as DD

Further results

- Navarro, Pellerey and Longobardi (2016), Inactivity times:
- Case 1: At time t we know that the system has failed. The inactivity time is

$$
{ }_{t} T=(t-T \mid T \leq t)
$$

- Case 2: At time t we know which components W are working. The other W^{c} have failed, that is, $A_{t}=\left\{X_{W}>t, X^{W^{c}} \leq t\right\}$, where $X_{W}=\min _{i \in W} X_{i}$ and $X^{W^{c}}=\max _{i \in W^{c}} X_{i}$, for $W \subset\{1, \ldots, n\}$. If A_{t} implies $T<t$, the inactivity time is

$$
{ }_{t} T^{W}=\left(t-T \mid X_{W}>t, X^{W^{c}} \leq t\right)
$$

- These cases can also be represented as DD.

References on distorted distributions and systems.

- Navarro J., Gomis C. (2016). Comparisons in the mean residual life order of coherent systems with identically distributed components. Applied Stochastic Models in Business and Industry 32 (1), 33-47.
- Navarro J., del Aguila Y., Sordo M.A., Suarez-Llorens A.(2013). Stochastic ordering properties for systems with dependent identically distributed components. Appl Stoch Mod Bus Ind 29, 264-278.
- Navarro J., del Aguila Y., Sordo M.A., Suarez-Llorens A. (2016). Preservation of stochastic orders under the formation of generalized distorted distributions. Applications to coherent systems. Methodology and Computing in Applied Probability 18, 529-545.

References on residual lifetimes

- Navarro J. (2016). Comparisons of the residual lifetimes of coherent systems under different assumptions. To appear in Statistical Papers. Published online first June 2016. DOI 10.1007/s00362-016-0789-0
- Navarro J., Durante F. (2016). Copula-based representations for the reliability of the residual lifetimes of coherent systems with dependent components. Submitted.
- Navarro J., Pellerey F., Longobardi M. (2016). Copula representations for the inactivity times of coherent systems with dependent components. Submitted.

References

- For the more references, please visit my personal web page:

> https : //webs.um.es/jorgenav/

- Thank you for your attention!!

References

- For the more references, please visit my personal web page:
https: //webs.um.es/jorgenav/
- Thank you for your attention!!

