
Multivariate distorted distributions
Illustrative examples

Predictions
References

Conference 3: Multivariate distorted models and
applications to quantile regression

Jorge Navarro1

Universidad de Murcia, Murcia, Spain.
E-mail: jorgenav@um.es.

June 17, 2021

1Supported by Ministerio de Ciencia e Innovación of Spain under grant
PID2019-108079GB-C22/AEI/10.13039/501100011033.

Jorge Navarro, SMCS 2021 Universidad de Murcia. 1/68



Multivariate distorted distributions
Illustrative examples

Predictions
References

References

The conference is based mainly on the following reference:

I Navarro J., Calì C., Longobardi, M., Durante F. (2021).
Distortion Representations of Multivariate Distributions.
Submitted.

Jorge Navarro, SMCS 2021 Universidad de Murcia. 2/68



Multivariate distorted distributions
Illustrative examples

Predictions
References

Outline

Multivariate distorted distributions
Definitions
Main properties
Quantile regression

Illustrative examples
Residual lifetimes
Ordered paired data
Coherent systems

Predictions
Exact Quantile Regression curves
Parametric Quantile Regression curves
Non-parameric Quantile Regression curves

Jorge Navarro, SMCS 2021 Universidad de Murcia. 3/68



Multivariate distorted distributions
Illustrative examples

Predictions
References

Definitions
Main properties
Quantile regression

Notation

I (X1, . . . ,Xn) random vector over (Ω,S,Pr).

I Joint distribution function (DF)

F(x1, . . . , xn) = Pr(X1 ≤ x1, . . . ,Xn ≤ xn).

I Copula representation

F(x1, . . . , xn) = C (F1(x1), . . . ,Fn(xn)),

where F1, . . . ,Fn are the mariginals.
I A similar representation holds for the joint survival function

F(x1, . . . , xn) = Pr(X1 > x1, . . . ,Xn > xn).
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Preceding multivariate distortions

I Several multivariate distortions have been proposed in the
literature with the purpose of changing (shift) the distribution
function of a given random vector (X1, . . . ,Xn).

I The distortion of the first kind proposed in Valdez and Xiao
(2011) maintains the copula and distorts the marginals.

I The distortion of the third kind proposed there maintains the
marginals and replaces the copula by a distorted copula
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Preceding multivariate distortions

I Other authors propose alternative representations (to the
classical copula one) for a multivariate distribution F.

I Klüppelberg and Resnick (2008) proposed to use the
Pareto-copula CP to represent F.

I If G is a continuous univariate distribution function and C is a
copula, we can define

CG (v1, . . . , vn) = C (G (v1), . . . ,G (vn)), (v1, . . . , vn) ∈ Rn.

I CG is a copula only when G (x) = x for x ∈ [0, 1].
I CG can be used to obtain the following representation

F(x1, . . . , xn) = CG (G−1(F1(x1)), . . . ,G−1(Fn(xn))). (1.1)

I If G is the standard Pareto, then CG is the Pareto copula
proposed in Klüppelberg and Resnick (2008).
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Definition

Definition (Navarro et al. (2021))
A multivariate distribution function F is said to be a multivariate
distorted distribution (MDD) of the univariate distribution functions
G1, . . . ,Gn if there exists a distortion function D such that

F(x1, . . . , xn) = D(G1(x1), . . . ,Gn(xn)), ∀(x1, . . . , xn) ∈ Rn. (1.2)

We write F ≡ MDD(G1, . . . ,Gn), when F is a MDD of G1, . . . ,Gn.
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Definition

Definition (Navarro et al. (2021))
A continuous function D : [0, 1]n → [0, 1] is called (n–dimensional)
distortion function (shortly written as D ∈ Dn) if:
(i) D(u1, . . . , ui−1, 0, ui+1, . . . , un) = 0 for all u1, . . . , un ∈ [0, 1].
(ii) D(1, . . . , 1) = 1.
(iii) D is n–increasing, i.e. for all x = (x1, . . . , xn) and

y = (y1, . . . , yn) with xi ≤ yi , it holds 4y
x D ≥ 0, where

4(y1,...,yn)
(x1,...,xn)

D :=
∑

zi∈{xi ,yi}

(−1)1(z1,...,zn)D(z1, . . . , zn),

with 1(z1, . . . , zn) =
∑n

i=1 1(zi = xi ) and 1(A) = 1
(respectively, 0) if A is true (respectively, false).

Jorge Navarro, SMCS 2021 Universidad de Murcia. 8/68
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Examples

I All the copula representations are also MDD representation.

I The copula distortion of the first kind proposed in Valdez and
Xiao (2011) is

Fd1,...,dn(x1, . . . , xn) := C (d1(F1(x1)), . . . , dn(Fn(xn))),

for given univariate distortion functions d1, . . . , dn.
I It is a MDD with

D(u1, . . . , un) := C (d1(u1), . . . , dn(un))

for all (u1, . . . , un) ∈ [0, 1]n.

Jorge Navarro, SMCS 2021 Universidad de Murcia. 9/68
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Main properties

I According to Sklar’s theorem, any multivariate distribution
function can be expressed in terms of its univariate marginal
distributions via a copula representation.

I If the marginals are continuous then this representation
(copula) is unique.

I In the following result, we state a similar Sklar-type theorem
for MDD under mild conditions.

Jorge Navarro, SMCS 2021 Universidad de Murcia. 10/68
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Sklar-type theorem

Proposition
Let (X1, . . . ,Xn) be a random vector with joint continuous
distribution function F. Let G1, . . . ,Gn be arbitrary continuous
distribution functions and let us assume that Gi is strictly
increasing in the support of Xi for i = 1, . . . , n. Then there exists a
unique distortion D ∈ Dn such that

F(x1, . . . , xn) = D(G1(x1), . . . ,Gn(xn))

holds for all (x1, . . . , xn) ∈ Rn.

Jorge Navarro, SMCS 2021 Universidad de Murcia. 11/68
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Sklar-type theorem

I From the proof, it follows that D is the multivariate
distribution function of (G1(X1), . . . ,Gn(Xn)).

I Vi = Gi (Xi ) is a componentwise increasing transformation of
Xi for i = 1, . . . , n.

I Thus, for any measure of concordance κ (as Kendall’s tau or
Spearman’s rho), κ(V1, . . . ,Vn) = κ(X1, . . . ,Xn).

I In essence, D contains all the information about the
(rank-invariant) dependence structure of F.

I Actually F and D share the same copula C .

Jorge Navarro, SMCS 2021 Universidad de Murcia. 12/68
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Construction of new multivariate models

The converse of the preceding proposition can be stated as follows.

Proposition
If D ∈ Dn, then the function defined by the right-hand side of
(1.2) is a multivariate distribution function for all univariate
distribution functions G1, . . . ,Gn.

Jorge Navarro, SMCS 2021 Universidad de Murcia. 13/68
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Relationship with C

Proposition
Let (X1, . . . ,Xn) be a random vector with joint continuous
distribution function F. Let G1, . . . ,Gn be arbitrary continuous
distribution functions. Suppose that F ≡ MDD(G1, . . . ,Gn) with
distortion D. Then,

D(u1, . . . , un) = C (F1(G−1
1 (u1)), . . . ,Fn(G−1

n (un)))

for all (u1, . . . , un) ∈ [0, 1]n, where G−1
i is the quasi-inverse of Gi

and Fi is the ith marginal of F for i = 1, . . . , n .

Jorge Navarro, SMCS 2021 Universidad de Murcia. 14/68
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Joint survival function.

Proposition
Let (X1, . . . ,Xn) be a random vector with distribution function F.
If (1.2) holds for G1, . . . ,Gn and D ∈ Dn, then the joint survival
function of (X1, . . . ,Xn) can be written as

F(x1, . . . , xn) = D̂(Ḡ1(x1), . . . , Ḡn(xn)) (1.3)

for all x1, . . . , xn, where Ḡi = 1− Gi is the survival function
associated to Gi for i = 1, . . . , n and D̂ ∈ Dn.

Jorge Navarro, SMCS 2021 Universidad de Murcia. 15/68
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Marginal distributions

I A relevant property of the MDD representation
F ≡ MDD(G1, . . . ,Gn) is that all the multivariate marginal
distributions of F are also MDD from G1, . . . ,Gn.

I Let F1,...,m be the distribution function of (X1, . . . ,Xm).

I Proposition
If F ≡ MDD(G1, . . . ,Gn) and 1 ≤ m ≤ n, then

F1,...,m(x1, . . . , xm) = D1,...,m(G1(x1), . . . ,Gm(xm)) (1.4)

for all (x1, . . . , xm) ∈ Rm, where

D1,...,m(u1, . . . , um) := D(u1, . . . , um, 1, . . . , 1)

for all (u1, . . . , um) ∈ [0, 1]m and D1,...,m ∈ Dm.

Jorge Navarro, SMCS 2021 Universidad de Murcia. 16/68
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Univariate marginal distributions.

I In particular, the ith marginal distribution function of Xi can
be written as

Fi (xi ) = D(1, . . . , 1,Gi (xi ), 1, . . . , 1) = Di (Gi (xi )) (1.5)

for all xi ∈ R, where

Di (u) := D(1, . . . , 1, u, 1, . . . , 1)

and the value u is placed at the ith position.

I Clearly, we have Gi = Fi for a fixed i ∈ {1, . . . , n} when
Di (u) = u for all u ∈ [0, 1].

Jorge Navarro, SMCS 2021 Universidad de Murcia. 17/68
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Probability density function

Let us assume that F is absolutely continuous with joint probability
density function (PDF) f, where

f(x1, . . . , xn) = ∂1,...,nF(x1, . . . , xn) (a.e.).

Proposition
If F ≡ MDD(G1, . . . ,Gn) for absolutely continuous distribution
functions G1, . . . ,Gn with PDFs g1, . . . , gn, respectively, and a
distortion function D that admits continuous mixed derivatives of
order n, then

f(x1, . . . , xn) = g1(x1) . . . gn(xn) ∂1,...,nD(G1(x1), . . . ,Gn(xn)).
(1.6)
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Conditional distributions

I All the conditional distributions of F ≡ MDD(G1, . . . ,Gn)
have MDD representations.

I We just consider the DF F2|1 of (X2|X1 = x1).
I Proposition

Let (X1,X2) with F ≡ MDD(G1,G2) for a distortion function
D ∈ D2 that admits continuous mixed derivatives of order 2, then

F2|1(x2|x1) = D2|1(G2(x2)|G1(x1)) (1.7)

whenever limv→0+ ∂1D(G1(x1), v) = 0, where

D2|1(v |G1(x1)) =
∂1D(G1(x1), v)

∂1D(G1(x1), 1)

for 0 < v < 1 and x1 such that ∂1D(G1(x1), 1) > 0.
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Theoretical Quantile Regression

I The regression curve to predict X2 from X1 is

m2|1(x1) = E (X2|X1 = x1)

I If d2|1(v |u) := D ′2|1(v |u), then

m2|1(x1) =

∫ +∞

−∞
x2g2(x2)d2|1(G2(x2)|G1(x1))dx2.

I Another option is the conditional median regression curve

m̃2|1(x1) := F−1
2|1 (0.5|x1)

(see Koenker (2005) or Nelsen (2006), p. 217).
I This quantile function F−1

2|1 can be computed from (1.7) as

F−1
2|1 (q|x1) = G−1

2 (D−1
2|1 (q|G1(x1))), 0 < q < 1.
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Confidence bands

I Moreover, we can obtain α-confidence bands in a similar way
(see Koenker (2005)) with[

F−1
2|1 (β1|x1),F−1

2|1 (β1|x1)
]

taking 0 ≤ β1 < β2 ≤ 1 such that β2 − β1 = α.

I For example, the centered 50% and 90% quantile-confidence
bands for (X2|X1 = x1) are determined, respectively, by[

F−1
2|1 (0.25|x1),F−1

2|1 (0.75|x1)
]

and [
F−1

2|1 (0.05|x1),F−1
2|1 (0.95|x1)

]
.
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Generating data from (X1,X2)

I This procedure can also be used the generate data from
(X1,X2).

I First we use the inverse transform method to generate a data
from X1 as

x1 := F−1
1 (u),

where u is a random number in (0, 1).
I Then we generate the associated data for X2 as

x2 := F−1
2|1 (v |x1),

where v is another (independent) random number in (0, 1).
I By repeating n times this procedure we get a sample of size n

from (X1,X2).
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An example with a Clayton copula

I Let us assume that the DF of (X ,Y ) is

C (x , y) =
xy

x + y − xy
, x , y ∈ (0, 1).

I The marginals are

F1(x) = F2(x) = C (x , 1) = x , x ∈ (0, 1).

I The conditional distribution is

F2|1(y |x) =
∂1C (x , y)

∂1C (x , 1)
=

y2

(x + y − xy)2 , x , y ∈ (0, 1).

I Then the quantile regression curve is

m̃2|1(x) = F−1
2|1 (0.5|x).
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An example with a Clayton copula

I To get the inverse of F2|1(y |x) for 0 < q < 1 we solve

y2

(x + y − xy)2 = q

obtaining
x = (q−1/2 + x − 1)y .

I Hence
F−1

2|1 (q|x) =
x

q−1/2 + x − 1

and
m̃2|1(x) =

x

0.5−1/2 + x − 1
, x ∈ (0, 1).

I The confidence bands are obtained in a similar way.
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Quantile regression curve and confidence bands
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Figure: Quantile regression curve (red) and confidence bands (50%
continuous blue, 90% dashed blue) for a Clayton copula jointly with 100
data from this model.
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FI<-function(q,x) x/(qˆ(-1/2)+x-1)
m<-function(x) FI(0.5,x)
n<-100
x<-1:n
y<-1:n
set.seed(201)
for (i in 1:n){

x[i]<-runif(1)
y[i]<-FI(runif(1),x[i])

}
plot(x,y,xlab=’X’,ylab=’Y’,pch=20)
curve(m(x),add=T,col=’red’)
curve(FI(0.25,x),add=T,col=’blue’)
curve(FI(0.75,x),add=T,col=’blue’)
curve(FI(0.05,x),add=T,col=’blue’,lty=2)
curve(FI(0.95,x),add=T,col=’blue’,lty=2)
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Predictions

I The first data is (X1,X2) = (0.6125842, 0.2972452).

I If we want to predict X2 from X1 = x we get

m̃2|1(0.6125842) =
0.6125842

0.5−1/2 + 0.6125842− 1
= 0.5965967.

I The 90% confidence interval is [0.1499697, 0.9593175].
I The prediction is not good since the dispersion of this

conditional variable is big.
I The 50% confidence band contains 59 and the 90%, 94.
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Parametric estimation

I If we just assume a copula family with a parameter, we can
use the sample to estimate this parameter.

I For example, for the Clayton family of copulas Cθ with a
dependence parameter θ, we can use the Kendall tau to
estimate θ (see Nelsen (2006)).

I Then we use the estimation θ̂ and Cθ̂ to compute the quantile
regression curves.
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Non-parametric estimation

I Another option is to choose a parametric form for m̃ and try
to estimate it from the data.

I For example, in the linear quantile regression (LQR) we
assume that m̃θ(x) = θ0 + θ1x with θ = (θ0, θ1).

I Then we will try to minimize

J∗(θ) =
n∑

i=1

|m(Xi )− Yi | =
n∑

i=1

|θ0 + θ1Xi − Yi |.

I This procedure was proposed by Koenker and Bassett (1978).
I For the q-quantile line mq(x) = aq + bqx we minimize

Jq(a, b) = q
∑

i :Yi>a+bXi

(Yi−a−bXi )+(1−q)
∑

i :Yi<a+bXi

(a+bXi−Yi ).

I The solutions can be obtained with the R package quantreg.

Jorge Navarro, SMCS 2021 Universidad de Murcia. 29/68



Multivariate distorted distributions
Illustrative examples

Predictions
References

Definitions
Main properties
Quantile regression

Non-parametric estimation

I Another option is to choose a parametric form for m̃ and try
to estimate it from the data.

I For example, in the linear quantile regression (LQR) we
assume that m̃θ(x) = θ0 + θ1x with θ = (θ0, θ1).

I Then we will try to minimize

J∗(θ) =
n∑

i=1

|m(Xi )− Yi | =
n∑

i=1

|θ0 + θ1Xi − Yi |.

I This procedure was proposed by Koenker and Bassett (1978).
I For the q-quantile line mq(x) = aq + bqx we minimize

Jq(a, b) = q
∑

i :Yi>a+bXi

(Yi−a−bXi )+(1−q)
∑

i :Yi<a+bXi

(a+bXi−Yi ).

I The solutions can be obtained with the R package quantreg.

Jorge Navarro, SMCS 2021 Universidad de Murcia. 29/68



Multivariate distorted distributions
Illustrative examples

Predictions
References

Definitions
Main properties
Quantile regression

Non-parametric estimation

I Another option is to choose a parametric form for m̃ and try
to estimate it from the data.

I For example, in the linear quantile regression (LQR) we
assume that m̃θ(x) = θ0 + θ1x with θ = (θ0, θ1).

I Then we will try to minimize

J∗(θ) =
n∑

i=1

|m(Xi )− Yi | =
n∑

i=1

|θ0 + θ1Xi − Yi |.

I This procedure was proposed by Koenker and Bassett (1978).

I For the q-quantile line mq(x) = aq + bqx we minimize

Jq(a, b) = q
∑

i :Yi>a+bXi

(Yi−a−bXi )+(1−q)
∑

i :Yi<a+bXi

(a+bXi−Yi ).

I The solutions can be obtained with the R package quantreg.

Jorge Navarro, SMCS 2021 Universidad de Murcia. 29/68



Multivariate distorted distributions
Illustrative examples

Predictions
References

Definitions
Main properties
Quantile regression

Non-parametric estimation

I Another option is to choose a parametric form for m̃ and try
to estimate it from the data.

I For example, in the linear quantile regression (LQR) we
assume that m̃θ(x) = θ0 + θ1x with θ = (θ0, θ1).

I Then we will try to minimize

J∗(θ) =
n∑

i=1

|m(Xi )− Yi | =
n∑

i=1

|θ0 + θ1Xi − Yi |.

I This procedure was proposed by Koenker and Bassett (1978).
I For the q-quantile line mq(x) = aq + bqx we minimize

Jq(a, b) = q
∑

i :Yi>a+bXi

(Yi−a−bXi )+(1−q)
∑

i :Yi<a+bXi

(a+bXi−Yi ).

I The solutions can be obtained with the R package quantreg.

Jorge Navarro, SMCS 2021 Universidad de Murcia. 29/68



Multivariate distorted distributions
Illustrative examples

Predictions
References

Definitions
Main properties
Quantile regression

Non-parametric estimation

I Another option is to choose a parametric form for m̃ and try
to estimate it from the data.

I For example, in the linear quantile regression (LQR) we
assume that m̃θ(x) = θ0 + θ1x with θ = (θ0, θ1).

I Then we will try to minimize

J∗(θ) =
n∑

i=1

|m(Xi )− Yi | =
n∑

i=1

|θ0 + θ1Xi − Yi |.

I This procedure was proposed by Koenker and Bassett (1978).
I For the q-quantile line mq(x) = aq + bqx we minimize

Jq(a, b) = q
∑

i :Yi>a+bXi

(Yi−a−bXi )+(1−q)
∑

i :Yi<a+bXi

(a+bXi−Yi ).

I The solutions can be obtained with the R package quantreg.
Jorge Navarro, SMCS 2021 Universidad de Murcia. 29/68



Multivariate distorted distributions
Illustrative examples

Predictions
References

Definitions
Main properties
Quantile regression

install.packages(’quantreg’)
rq(y∼x)
plot(x,y,xlab=’X’,ylab=’Y’,pch=20)
abline(rq(y∼x),col=’red’)
abline(rq(y∼x,0.25),col=’blue’)
abline(rq(y∼x,0.75),col=’blue’)
abline(rq(y∼x,0.05),col=’green’)
abline(rq(y∼x,0.95),col=’green’)
d<-data.frame(y,x,xˆ2,xˆ3)
rq(d)
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Non-parametric estimation

I The quantile regression line is

m̂(x) = 0.09029761 + 0.71142861x

I The prediction for X2 for the first data with this QR line is

m̂(0.6125842) = 0.09029761+0.71142861·0.6125842 = 0.5261075.

I The real data was X2 = 0.2972452 and the prediction with the
exact QR curve was m̃2|1(0.6125842) = 0.5965967.

I With a polynomial of degree 3 we get X̂2 = 0.5727091 with

m̂3(x) = 0.00045114+1.54985173x−1.01832625x2+0.02166253x3.
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Quantile regression curve and confidence bands
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Figure: Estimated Quantile Regression line (red) and confidence bands
(50% continuous blue, 90% continuous green) for the 100 data from a
Clayton model. The dashed lines are the exact curves.
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Residual lifetimes

I X1, . . . ,Xn represent the lifetimes of n components.

I (Xi − t|Xi > t) denotes the univariate residual lifetimes at
time t > 0 with

F̄i ,t(x) := Pr(Xi − t > x |Xi > t) =
F̄i (t + x)

F̄i (t)

for every x ≥ 0, whenever F̄i (t) > 0.
I The mean residual lifetime is mi (t) = E (Xi − t|Xi > t).
I From X = (X1, . . . ,Xn), we can consider

Xt = (X1 − t, . . . ,Xn − t|X1 > t, . . . ,Xn > t)

whose survival function for x1, . . . , xn ≥ is

F̄t(x1, . . . , xn) := Pr(X1 > x1+t, . . . ,Xn > xn+t|X1 > t, . . . ,Xn > t).
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Proposition
If F̄ (t, . . . , t) > 0 for some t ≥ 0, then

F̄t(x1, . . . , xn) = D̂t(F̄1,t(x1), . . . , F̄n,t(xn)) (2.1)

for all x1, . . . , xn ≥ t and distortion function

D̂t(u1, . . . , un) :=
Ĉ (F̄1(t)u1, . . . , F̄n(t)un)

Ĉ (F̄1(t), . . . , F̄n(t))
, u1, . . . , un ∈ [0, 1],

(2.2)
which depends on F̄1(t), . . . , F̄n(t).
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Residual lifetimes

I Note that F̄i ,t is not the ith marginal survival function of the
random vector Xt .

I The ith marginal survival function is

H̄i ,t(x) = Pr(Xi − t > x |X1 > t, . . . ,Xn > t).

I Hence (2.1) is not a copula representation and D̂t is not
always a copula.

I If X1, . . . ,Xn are exponential, then F̄i ,t = F̄i 6= H̄i ,t .
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Ordered paired data

I Let us assume that X and Y have a common absolutely
continuous distribution function. Then

FX ,Y (x , y) = C (F (x),F (y)).

I We may also assume that C is permutation symmetric, i.e.,
(X ,Y ) is exchangeable (EXC).

I We assume that L = min(X ,Y ) is known and that we want to
predict U = max(X ,Y ).

I To this purpose we need the conditional distribution function

G2|1(x |t) := Pr(U ≤ x |L = t), x ≥ t.

I It can be used to compute the median regression curve and the
confidence bands.
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Ordered paired data

I We assume that we have a training sample
(X1,Y1), . . . , (Xm,Ym) from (X ,Y ).

I However, for other individuals, we may just know
L = min(X ,Y ) and we want to estimate U = max(X ,Y ).

I Note that both F and C can be estimated from the training
sample by using parametric models or empirical or kernel type
estimators.

I We want to obtain a MDD representation for the random
vector (L,U) in terms of F and C .
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Ordered paired data

I Its joint distribution function G(x , y) = Pr(L ≤ x ,U ≤ y) is

G(x , y) = Pr(U ≤ y) = Pr(X ≤ y ,Y ≤ y) = C (F (y),F (y))

for y ≤ x , while for x < y it is

G(x , y) = Pr(L ≤ x ,U ≤ y) = Pr(({X ≤ x}∪{Y ≤ x})∩{X ≤ y}∩{Y ≤ y})

I Hence, by using the inclusion-exclusion formula, we get

G(x , y) = Pr(X ≤ x ,Y ≤ y) + Pr(X ≤ y ,Y ≤ x)− Pr(X ≤ x ,Y ≤ x)

= C (F (x),F (y)) + C (F (y),F (x))− C (F (x),F (x))

for x < y .
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Ordered paired data

I Therefore, G ≡ MDD(F ,F ), i.e.

G(x , y) = D(F (x),F (y)) (2.3)

with the following distortion function

D(u, v) =

{
C (v , v) for v ≤ u;

C (u, v) + C (v , u)− C (u, u) for u < v .
(2.4)

I Then the marginal distributions of (L,U) can be written as

G1(x) := Pr(L ≤ x) = D(F (x), 1) = D1(F (x)),

G2(y) := Pr(U ≤ y) = D(1,F (y)) = D2(F (y)),

where D1(u) = D(u, 1) = 2u − C (u, u) and
D2(v) = D(1, v) = C (v , v) for all u, v ∈ [0, 1].
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Ordered paired data

I For example, if X and Y are independent, then
D1(u) = D(u, 1) = 2u − u2 6= u and
D2(u) = D(1, u) = u2 6= u for all u ∈ (0, 1).

I Note that

D(u, v) =

{
v2 for v ≤ u;

2uv − u2 for u < v .
(2.5)

is not a copula and that the marginals G1 and G2 of G do not
appear in (2.3).
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Ordered paired data

I From (1.7) and (2.3), the distribution function of (U|L = x) is

G2|1(y |x) = D2|1(F (y)|F (x)) (2.6)

for y ≥ x , where

D2|1(v |F (x)) :=
∂1D(F (x), v)

∂1D(F (x), 1)
,

∂1D(u, v) = ∂1C (u, v) + ∂2C (v , u)− ∂1C (u, u)− ∂2C (u, u),

and v > u.

I In the EXC case, we have

∂1D(u, v) = 2∂1C (u, v)− 2∂1C (u, u), u ≤ v ≤ 1.

I In the IID case, we get ∂1D(u, v) = 2(v − u) for u ≤ v ≤ 1
and D2|1(v |F (x)) = (v − F (x))/F̄ (x) for F (x) ≤ v ≤ 1.
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Coherent systems

Theorem
If T1 and T2 are two coherent systems with ID∼ F components
(X1, . . . ,Xn), then its joint distribution is MDD(F,F).

I In particular, it can be applied to the k-out-of-n systems
(order statistics).

I In a more particular case, for X1:2 and X2:2 we obtain the
distortion D of the preceding subsection.

I Other examples: Sequential order statistics, record values, ...
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Exact QR curves for paired ordered data. IID case.

I Let (Xi ,Yi ) be a sample from (X ,Y ) where X ,Y are IID∼ F .

I Let Li = min(Xi ,Yi ) and Ui = max(Xi ,Yi ).
I Note that Li and Ui are dependent.
I From (2.6), the distribution function of (U|L = x) is

G2|1(y |x) = D2|1(F (y)|F (x)) (3.1)

for y ≥ x , where

D2|1(v |F (x)) =
v − F (x)

F̄ (x)

for F (x) ≤ v ≤ 1.
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Paired ordered data. IID case.
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Figure: Independent data from two exponential distributions with mean
µ = 10 (left) and the associated paired ordered data (right).
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# Code
n<-100
set.seed(202)
mu<-10
x<-rexp(n,1/mu)
y<-rexp(n,1/mu)
plot(x,y,pch=20)
L<-pmin(x,y)
U<-pmax(x,y)
plot(L,U,pch=20)
abline(0,1,col=’red’)
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Exact QR curves for paired ordered data. IID case.

I The quantile function F−1
2|1 can be computed as

F−1
2|1 (q|x) = F−1(D−1

2|1 (q|F (x)))

for 0 < v < 1, where D−1
2|1 (q|F (x)) = F (x) + qF̄ (x) and

F−1(y) = −µ log(1− y). Then

F−1
2|1 (q|x) = −µ log

(
(1− q)e−x/µ

)
= x − µ log(1− q).

I Therefore, the exact QR curve is

m(x) = x − µ log(0.5).
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Exact QR confidence bands for paired ordered data

I Analogously, the exact QR centered 90% confidence band is

[x − µ log(0.05), x − µ log(0.95)] .

I The 50% centered confidence band is obtained in a similar way.
I The exact QR lower 90% confidence band is

[x , x − µ log(0.90)] .
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QR for paired ordered data. IID case.
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Figure: QR for the paired ordered data (L,U) associated to independent
data (X ,Y ) from two exponential distributions with mean µ = 10 jointly
with 50% and 90% centered (left) or bottom (right) confidence bands.
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Predictions

I The first ordered pair in our sample is L1 = 10.15771 and
U1 = 14.17195.

I The prediction for U1 from L1 is

m(L1) = m(10.15771) = 10.15771− µ log(0.5) = 17.08918.

I The centered 90% confidence interval for this prediction is
[10.67064, 40.11503].

I The centered 50% confidence interval for this prediction is
[13.03453, 24.02065].
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Dependent EXC data

I Let us consider now that (X ,Y ) are DID with a copula C and
a common marginal distribution F .

I We consider again the exponential model

F̄ (t) = exp(−t/µ), t ≥ 0

and the Clayton EXC copula

C (u, v) =
uv

u + v − uv
, (u, v) ∈ [0, 1]2. (3.2)
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Dependent EXC data

I To get the QR curves we need the distribution G2|1(y |x) of
(U|L = x). From (2.6) we need

∂1D(u, v) = 2∂1C (u, v)−2∂1C (u, u) =
2v2

(u + v − uv)2−
2

(2− u)2

and

∂1D(u, 1) =
2

(u + 1− u)2 −
2

(2− u)2 = 2− 2
(2− u)2 .

I Hence, for v ≥ u, we get

D2|1(v |u) =

v2

(u+v−uv)2 −
1

(2−u)2

1− 1
(2−u)2

I To compute the inverse, we need to solve in y the equation
G2|1(y |x) = q for q ∈ (0, 1).
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Dependent EXC data

I This leads to

F 2(y)

(F (x) + F (y)− F (x)F (y))2 =
1− q + q(2− F (x))2

(2− F (x))2

or

(F (x) + F (y)− F (x)F (y))2

F 2(y)
=

(2− F (x))2

1− q + q(2− F (x))2 .

I Therefore

G−1
2|1 (q|x) = y = F−1

 F (x)

F (x)− 1 + 2−F (x)√
1−q+q(2−F (x))2

 .
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Dependent EXC data

I Therefore, the exact median regression curve to predict U
from L = x is

m(x) = G−1
2|1 (0.5|x).

I Analogously, the 90% centered confidence band is[
G−1

2|1 (0.05|x),G−1
2|1 (0.95|x)

]
.

I The other confidence bands can be obtained in a similar way.
I For an exponential distribution with mean µ = 10 we get the

following curves.
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Figure: Paired ordered data (L,U) associated to dependent data (X ,Y )
from two exponential distributions and a Clayton copula.
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QR for paired ordered data. ID case.
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Figure: QR curves for paired ordered data (L,U) associated to dependent
data (X ,Y ) from two exponential distributions with centered (left) and
bottom (right) confidence bands.
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Parametric QR curves

I Our model can contain some unknown parameters.

I They can be both in F or in C .
I In the last case we need the training sample (Xi ,Yi ) from

(X ,Y ) to estimate the copula parameter.
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Parametric QR curves. IID case

I If (X ,Y ) are IID with F (t) = 1− exp(−t/µ), then µ can be
estimated as

µ̂ = X̄ =
X1 + · · ·+ Xn

n
or as

µ̂ = Ȳ =
Y1 + · · ·+ Yn

n
.

I As L = min(X ,Y ) ∼ Exp(µ/2) it can also be estimated as

µ̂ = 2L̄ = 2
L1 + · · ·+ Ln

n
.

I In our sample we get X̄ = 11.3661, Ȳ = 9.956799 and
2L̄ = 10.32929.
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Parametric QR for paired ordered data IID case
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Figure: Parametric QR curves for (L,U) associated to IID data (X ,Y )
from an exponential distribution jointly with centered (left) and bottom
(right) confidence bands. The dashed lines are the exact curves.
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Parametric QR curves. Clayton copula

I If (X ,Y ) are ID with F (t) = 1− exp(−t/µ), with µ = 10,
then µ can be estimated as

µ̂ =
X̄ + Ȳ

2
=

8.298329 + 9.229868
2

= 8.764098.

I If (X ,Y ) has a Clayton copula with an unknown parameter
θ ≥ 0

C (u, v) =
(
u−θ + v−θ − 1

)−1/θ
.

I Then its Kendall’s tau coefficient is (Nelsen 2006, p. 163)

τ =
θ

θ + 2
.
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2
=

8.298329 + 9.229868
2

= 8.764098.

I If (X ,Y ) has a Clayton copula with an unknown parameter
θ ≥ 0

C (u, v) =
(
u−θ + v−θ − 1

)−1/θ
.

I Then its Kendall’s tau coefficient is (Nelsen 2006, p. 163)

τ =
θ

θ + 2
.

Jorge Navarro, SMCS 2021 Universidad de Murcia. 59/68



Multivariate distorted distributions
Illustrative examples

Predictions
References

Exact Quantile Regression curves
Parametric Quantile Regression curves
Non-parameric Quantile Regression curves

Parametric QR curves. Clayton copula

I If (X ,Y ) are ID with F (t) = 1− exp(−t/µ), with µ = 10,
then µ can be estimated as

µ̂ =
X̄ + Ȳ
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Parametric QR curves. Clayton copula

I Then θ can be obtained from τ as

θ =
2τ

1− τ
.

I We can use library(’Kendall’) and Kendall(X,Y) to
estimate τ from (Xi ,Yi ).

I In our sample from θ = 1 we get τ̂ = 0.445 and

θ̂ =
2τ̂

1− τ̂
=

2 · 0.445
1− 0.445

= 1.603604.

I By replacing these estimations in F and C we obtain the
following QR curves.

Jorge Navarro, SMCS 2021 Universidad de Murcia. 60/68
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Parametric QR for paired ordered data ID case
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Figure: Parametric QR curves for (L,U) associated to data (X ,Y ) from
an exponential distribution with unknown mean µ and a Clayton copula
with unknown parameter θ. The dashed lines are the exact curves.
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Non-parametric QR curves.

I If we do not have a parametric model, we can use the
non-parametric models mentioned above.

I We can use library(’quantreg’) and rq(d) where
d<-data.frame(y,x,xˆ 2,...) to estimate the exact curves.
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Non-parametric QR curves. IID case.

I For the sample from two IID exponential distributions we
obtain

I With d<-data.frame(U,L):

m̂(x) = 8.9336392 + 0.8448752x .

I With d<-data.frame(U,L,Lˆ2):

m̂(x) = 6.90953311 + 1.43820751x − 0.03337719x2.

I The exact curve (line) is

m(x) = −µ log(0.5) + x = 6.931472 + x .

Jorge Navarro, SMCS 2021 Universidad de Murcia. 63/68
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Non-parametric QR for paired ordered data, IID case
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Figure: Non-parametric QR curves for paired ordered data (L,U)
associated to IID data (X ,Y ) from an exponential distribution with
µ = 10 and k = 1 (left) or k = 2 (right).
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Non-parametric QR curves. ID case.

I For the sample from the Clayton copula we obtain

I With d<-data.frame(U,L):

m(x) = 1.290607 + 1.601958x .

I With d<-data.frame(U,L,Lˆ 2):

m(x) = 0.66257664 + 2.10657913x − 0.04794258x2.

Jorge Navarro, SMCS 2021 Universidad de Murcia. 65/68
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Non-parametric QR for paired ordered data, ID case
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Figure: Non-parametric QR curves for (L,U) associated to data (X ,Y )
from an exponential distribution and a Clayton copula with θ = 1 and
k = 1 (left) or k = 2 (right). The dashed lines are the exact curves.
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Conclusions

I It is not easy to manage (predict) paired ordered data.

I Multivariate distortions and QR techniques may help in this
difficult task.

I In general, the (correct) parametric models provide better
predictions.

I But it is difficult to know when we have a “correct” parametric
model.

I Fit tests should be developed to check (confirm) these models.
I This approach can be applied to other relevant models (order

statistics, systems, records,...).
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The slides and more references can be seen in my webpage:

https : //webs.um.es/jorgenav/miwiki/doku.php
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Exercises

1. Generate a sample from a copula and plot it
jointly with the quantile regression curves.

2. Generate a sample from a copula and plot it
jointly with the estimated quantile regression lines.

3. Obtain the multivariate distortion representation
for the residual lifetimes of two components
(X1,X2) with standard exponential distributions
and a given survival copula. Try to obtain the
copula representation.

4. Obtain the multivariate distortion representation
for (X1:3,X2:3) with IID components with a standard
exponential distribution. Try to obtain the copula
representation.
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5. Simulate a sample from (X1:2,X2:2) with IID
components with a standard exponential
distribution and compute the quantile regression
curves to predict X2:2 from X1:2. What is the
prediction from X1:2 = 3?

6. Simulate a sample from (X1:2,X2:2) with ID
components with a standard exponential
distribution and a copula C and compute the
quantile regression curves to predict X2:2 from X1:2.
What is the prediction from X1:2 = 3?

7. Simulate a sample from (X1:3,X2:3) with IID
components with a standard exponential
distribution and compute the quantile regression
curves to predict X2:3 from X1:3. What is the
prediction from X1:3 = 3?
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I That’s all.

I Thank you for your attention!!
I Questions?
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