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Notation

I X random variable (lifetime) over (Ω,S,Pr).

I Distribution function (DF) F (t) = Pr(X ≤ t).
I Reliability or survival function F̄ (t) = Pr(X > t) = 1− F (t).
I Probability density function (PDF) f (t) = F ′(t) = −F̄ ′(t).
I Mean, expected lifetime or mean time to failure (MTTF):

µ = E (X ) =

∫ ∞
−∞

xf (x)dx =

∫ ∞
0

F̄ (x)dx −
∫ 0

−∞
F (x)dx .

I Hazard rate (HR) or failure rate (FR) function
h(t) = f (t)/F̄ (t), when F̄ (t) > 0.
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Distorted distributions

I The distorted distributions were introduced by Wang (1996)
and Yaari (1987) in the context of theory of choice under risk.

I The purpose was to allow a “distortion” (a change) of the
initial (or past) risk distribution function.

I Definition
The distorted distribution (DD) associated to a distribution
function (DF) F and to an increasing continuous distortion function
q : [0, 1]→ [0, 1] such that q(0) = 0 and q(1) = 1, is given by

Fq(t) = q(F (t)), for all t ∈ R. (1.1)
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Properties

I If q is a distortion function, then Fq is a proper distribution
function for all distribution functions F .

I If q is an strictly increasing distortion function, then Fq has
the same support of F .

I From (1.1), F̄ = 1− F and F̄q = 1− Fq satisfy

F̄q(t) = q̄(F̄ (t)), for all t ∈ R, (1.2)

where q̄(u) := 1− q(1− u) is called the dual distortion
function.

I (1.1) and (1.2) are equivalent.
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Properties

I The PDF of Fq is

fq(t) = q′(F (t))f (t) = q̄′(F̄ (t))f (t).

I The hazard rate of Fq is

hq(t) =
q̄′(F̄ (t))

q̄(F̄ (t))
f (t) = α(F̄ (t))h(t),

where h is the hazard rate of F and

α(u) =
uq̄′(u)

q̄(u)
, u ∈ [0, 1].
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Generalized distorted distributions

I The concept of distorted distributions was extended in
Navarro, del Águila, Sordo and Suárez-Llorens (2016) as
follows.

I Definition
The generalized distorted distribution (GDD) associated to n
distribution functions F1, . . . ,Fn and to an increasing continuous
distortion function Q : [0, 1]n → [0, 1] such that Q(0, . . . , 0) = 0
and Q(1, . . . , 1) = 1, is given by

FQ(t) = Q(F1(t), . . . ,Fn(t)), for all t ∈ R. (1.3)
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Properties

I If Q is a distortion function, then FQ is a proper distribution
function for all distribution functions F1, . . . ,Fn.

I From (1.3), F̄i = 1− Fi and F̄Q = 1− FQ satisfy

F̄Q(t) = Q̄(F̄1(t), . . . , F̄n(t)), for all t ∈ R, (1.4)

where Q̄(u1, . . . , un) := 1−Q(1− u1, . . . , 1− un) is called the
dual distortion function.

I (1.3) and (1.4) are equivalent.
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Properties

I The PDF of FQ is

fQ(t) =
n∑

i=1

fi (t)∂iQ(F1(t), . . . ,Fn(t)) =
n∑

i=1

fi (t)∂i Q̄(F̄1(t), . . . , F̄n(t)).

I The hazard rate of Fq is

hQ(t) =
n∑

i=1

∂i Q̄(F̄1(t), . . . , F̄n(t))

Q̄(F̄1(t), . . . , F̄n(t))
fi (t) =

n∑
i=1

αi (F̄1(t), . . . , F̄n(t))hi (t),

where hi is the hazard rate of Fi and

αi (u) =
ui∂i Q̄(u1, . . . , un)

Q̄(u1, . . . , un)
, ui ∈ [0, 1], i = 1, . . . , n.
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Examples of distorted distributions: PHR.

I Proportional Hazard Rate (PHR) Cox model

F̄θ(t) = F̄ θ(t), t ∈ R,

where θ > 0 is a risk (hazard) measure.

I It is a distorted distribution with q̄(u) = uθ and
q(u) = 1− (1− u)θ for u ∈ [0, 1].

I Its PDF is fθ(t) = θF̄ θ−1(t)f (t).

I Its hazard rate is

hθ(t) = θ
F̄ θ−1(t)

F̄ θ(t)
f (t) = θh(t),

that is, αθ(u) = θ for u ∈ [0, 1].
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Examples of distorted distributions: PRHR.

I Proportional Reversed Hazard Rate (PRHR) model

Fθ(t) = F θ(t), t ∈ R, θ > 0.

I It is a distorted distribution with q(u) = uθ and
q̄(u) = 1− (1− u)θ for u ∈ [0, 1].

I Its PDF is fθ(t) = θF θ−1(t)f (t).
I Its hazard rate is

hθ(t) =
θF θ−1(t)

1− (1− F̄ (t))θ
f (t) = αθ(F̄ (t))h(t),

that is, αθ(u) = θu(1−u)θ−1

1−(1−u)θ for u ∈ [0, 1].
I Its reversed hazard rate is

h̄θ(t) =
fθ(t)

Fθ(t)
= θh̄(t).
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f (t) = αθ(F̄ (t))h(t),

that is, αθ(u) = θu(1−u)θ−1

1−(1−u)θ for u ∈ [0, 1].
I Its reversed hazard rate is

h̄θ(t) =
fθ(t)

Fθ(t)
= θh̄(t).
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Examples of distorted distributions: Order statistics.

I Sample: X1, . . . ,Xn IID with distribution F .

I X1:n, . . .Xn:n the ordered values.
I Then

F̄i :n(t) =
i−1∑
j=0

(
n

j

)
F j(t)F̄ n−j(t).

I It is a distorted distribution with

q̄i :n(u) =
i−1∑
j=0

(
n

j

)
(1− u)jun−j

and

qi :n(u) =
n∑
j=i

(
n

j

)
uj(1− u)n−j .

I Note that both are polynomials.
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Examples of distorted distributions: Order statistics.

I Particular cases:

I X1:n = min(X1, . . . ,Xn) with

F̄1:n(t) =

(
n

0

)
F 0(t)F̄ n−0(t) = F̄ n(t)

for n = 1, . . . , n which belongs to the PHR model.
I Its hazard rate is h1:n(t) = nh(t).
I Xn:n = max(X1, . . . ,Xn) with

Fn:n(t) =

(
n

n

)
F n(t)F̄ n−n(t) = F n(t)

for n = 1, . . . , n which belongs to the PRHR model.
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Examples of generalized distorted distributions: Mixtures.

I The mixture distribution

Fp(t) = p1F1(t) + · · ·+ pnFn(t), t ∈ R,

where p = (p1, . . . , pn), pi ≥ 0 and p1 + · · ·+ pn = 1.

I Then
F̄p(t) = p1F̄1(t) + · · ·+ pnF̄n(t), t ∈ R.

I It is a generalized distorted distribution with

Q(u1, . . . , un) = Q̄(u1, . . . , un) = p1u1+· · ·+pnun, ui ∈ [0, 1].

I Its PDF is fp(t) = p1f1(t) + · · ·+ pnfn(t), t ∈ R.
I Its HR is

hp(t) = w1(t)h1(t) + · · ·+ wn(t)hn(t), wi (t) =
pi F̄i (t)

F̄p(t)
≥ 0.
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Systems

I (X1, . . . ,Xn) component lifetimes of a system with joint
distribution

F(x1, . . . , xn) = Pr(X1 ≤ x1, . . . ,Xn ≤ xn).

I Marginal distributions Fi (xi ) = Pr(Xi ≤ xi ), i = 1, . . . , n.
I Sklar’s theorem: There exist a copula C such that

F(x1, . . . , xn) = C (F1(x1), . . . ,Fn(xn)), x1, . . . , xn ∈ R.

Moreover, if F1, . . . ,Fn are continuous, then C is unique.
I A copula C is a multivariate distribution function with uniform

marginals over the interval (0, 1) (see Nelsen (2006)).
I Note that we just need C in [0, 1]n.
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Survival copula representation

I (X1, . . . ,Xn) with joint reliability (survival) function

F(x1, . . . , xn) = Pr(X1 > x1, . . . ,Xn > xn).

I Marginal reliability (survival) functions F̄i (xi ) = Pr(Xi > xi ),
i = 1, . . . , n.

I Sklar’s theorem: There exist a copula Ĉ (called survival
copula) such that

F(x1, . . . , xn) = Ĉ (F̄1(x1), . . . , F̄n(xn)), x1, . . . , xn ∈ R.

Moreover, if F̄1, . . . , F̄n are continuous, then Ĉ is unique.
I Ĉ is a copula (distribution function), not a survival function.
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Parallel systems

I Lifetime of a parallel system Xn:n = max(X1, . . . ,Xn).

I Its distribution function is

Fn:n(t) = Pr(Xn:n ≤ t) = Pr(X1 ≤ t, . . . ,Xn ≤ t) = F(t, . . . , t).

I Then
Fn:n(t) = C (F1(t), . . . ,Fn(t)), t ∈ R.

I It is a generalized distorted distribution from F1, . . . ,Fn with
Qn:n = C .

I All the copulas are distortion functions.
I The reverse is not true.
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Series systems

I Lifetime of a series system X1:n = min(X1, . . . ,Xn).

I Its reliability function is

F̄1:n(t) = Pr(X1:n > t) = Pr(X1 > t, . . . ,Xn > t) = F(t, . . . , t).

I Then
F̄1:n(t) = Ĉ (F̄1(t), . . . , F̄n(t)), t ∈ R.

I It is a generalized distorted distribution from F1, . . . ,Fn with
Q̄1:n = Ĉ .
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40th Annual Convention of ISPS, 2021 Jorge Navarro, E-mail: jorgenav@um.es. 20/82



Distorted distributions
Multivariate distorted distributions

References

Examples
Systems
Stochastic comparisons

Systems

Theorem (Distortion representation, general case)
If T is the lifetime of a semi-coherent system and its component
lifetimes (X1, . . . ,Xn) have the survival copula Ĉ , then the
reliability function of T can be written as

F̄T (t) = Q̄(F̄1(t), . . . , F̄n(t)) (1.5)

for all t, where Q̄ is a distortion function which depends on the
structure φ of the sytem and on Ĉ .
(see, e.g., Navarro, del Águila, Sordo and Suárez-Llorens, 2016)
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Distortion representation, ID case

Theorem (Distortion representation, ID case)
If T is the lifetime of a semi-coherent system and the component
lifetimes (X1, . . . ,Xn) have the survival copula Ĉ and a common
reliability F̄ , then the reliability function of T can be written as

F̄T (t) = q̄(F̄ (t))

for all t, where q̄ is a distortion function which only depends on φ
and on Ĉ .
Proof. Take q̄(u) = Q̄(u, . . . , u).
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Distortion representation, IID case

Theorem (Distortion representation, IID case)
If T is the lifetime of a semi-coherent system with IID component
lifetimes X1, . . . ,Xn having a common reliability F̄ , then the
reliability function of T can be written as

F̄T (t) = q̄(F̄ (t))

for all t, where q̄(u) =
∑n

i=1 aiu
i is a distortion function and

a = (a1, . . . , an) is the minimal signature which only depends on φ.
Moreover, q(u) =

∑n
i=1 biu

i where b = (b1, . . . , bn) is the maximal
signature.
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Table 1: Minimal and maximal signatures

Table: Minimal a and maximal b signatures of all the coherent systems
with 1-4 IID components.

i Ti a b
1 X1:1 = X1 (1) (1)
2 X1:2 = min(X1,X2) (2-series) (0, 1) (2,−1)
3 X2:2 = max(X1,X2) (2-parallel) (2,−1) (0, 1)
4 X1:3 = min(X1,X2,X3) (3-series) (0, 0, 1) (3,−3, 1)
5 min(X1,max(X2,X3)) (0, 2,−1) (1, 1,−1)
6 X2:3 (2-out-of-3) (0, 3,−2) (0, 3,−2)
7 max(X1,min(X2,X3)) (1, 1,−1) (0, 2,−1)
8 X3:3 = max(X1,X2,X3) (3-parallel) (3,−3, 1) (0, 0, 1)
9 X1:4 = min(X1,X2,X3,X4) (series) (0, 0, 0, 1) (4,−6, 4,−1)
10 max(min(X1,X2,X3),min(X2,X3,X4)) (0, 0, 2,−1) (2, 0,−2, 1)
11 min(X2:3,X4) (0, 0, 3,−2) (1, 3,−5, 2)
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Table 1: Minimal and maximal signatures

i Ti a b
12 min(X1,max(X2,X3),max(X3,X4)) (0, 1, 1,−1) (1, 2,−3, 1)
13 min(X1,max(X2,X3,X4)) (0, 3,−3, 1) (1, 0, 1,−1)
14 X2:4 (3-out-of-4) (0, 0, 4,−3) (0, 6,−8, 3)

15
max(min(X1,X2),min(X1,X3,X4),

min(X2,X3,X4))
(0, 1, 2,−2) (0, 5,−6, 2)

16 max(min(X1,X2),min(X3,X4)) (0, 2, 0,−1) (0, 4,−4, 1)

17
max(min(X1,X2),min(X1,X3),

min(X2,X3,X4))
(0, 2, 0,−1) (0, 4,−4, 1)

18
max(min(X1,X2),min(X2,X3),

min(X3,X4))
(0, 3,−2, 0) (0, 3,−2, 0)

19
max(min(X1,max(X2,X3,X4)),

min(X2,X3,X4))
(0, 3,−2, 0) (0, 3,−2, 0)

20
min(max(X1,X2),max(X1,X3),

max(X2,X3,X4))
(0, 4,−4, 1) (0, 2, 0,−1)

21 min(max(X1,X2),max(X3,X4)) (0, 4,−4, 1) (0, 2, 0,−1)
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Table 1: Minimal and maximal signatures

i Ti a b

22
min(max(X1,X2),max(X1,X3,X4),

max(X2,X3,X4))
(0, 5,−6, 2) (0, 1, 2,−2)

23 X3:4 (2-out-of-4) (0, 6,−8, 3) (0, 0, 4,−3)
24 max(X1,min(X2,X3,X4)) (1, 0, 1,−1) (0, 3,−3, 1)
25 max(X1,min(X2,X3),min(X3,X4)) (1, 2,−3, 1) (0, 1, 1,−1)
26 max(X2:3,X4) (1, 3,−5, 2) (0, 0, 3,−2)
27 min(max(X1,X2,X3),max(X2,X3,X4)) (2, 0,−2, 1) (0, 0, 2,−1)
28 X4:4 = max(X1,X2,X3,X4) (4-parallel) (4,−6, 4,−1) (0, 0, 0, 1)
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Main stochastic orderings

I Stochastic order: X ≤ST Y ⇔ F̄X ≤ F̄Y .

I Hazard rate order: X ≤HR Y ⇔ F̄Y /F̄X increases (or
hX ≥ hY ).

I Mean residual life order:
X ≤MRL Y ⇔ E (X − t|X > t) ≤ E (Y − t|Y > t) for all t.

I Likelihood ratio order: X ≤LR Y ⇔ fY /fX increases.
I Reversed hazard rate order: X ≤RHR Y ⇔ FY /FX increases

(or h̄X ≤ h̄Y ).
I Then

X ≤LR Y ⇒ X ≤HR Y ⇒ X ≤MRL Y
⇓ ⇓ ⇓

X ≤RHR Y ⇒ X ≤ST Y ⇒ E (X ) ≤ E (Y )
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Comparisons of distorted distributions

Theorem (Navarro, del Águila, Sordo and Suárez-Llorens
(2013); Navarro and Gomis (2016))
If Ti has the DF Fi (t) = qi (F (t)), i = 1, 2, then:

I T1 ≤ST T2 for all F iff q̄1 ≤ q̄2 (or q2 ≤ q1) in (0, 1).
I T1 ≤HR T2 for all F iff q̄2/q̄1 decreases in (0, 1).
I T1 ≤RHR T2 for all F iff q2/q1 increases in (0, 1).
I T1 ≤LR T2 for all F iff q̄′2/q̄

′
1 decreases in (0, 1).

I T1 ≤MRL T2 for all F such that E (T1) ≤ E (T2) if q̄2/q̄1 is
bathtub in (0, 1).
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Comparisons for systems with non-ID components

Theorem (Navarro and del Águila (2017))
If Ti has DF FTi

= Qi (F1, . . . ,Fn), i = 1, 2, then:

I T1 ≤ST T2 for all F1, . . . ,Fn iff Q̄1 ≤ Q̄2 in (0, 1)n.
I T1 ≤HR T2 for all F1, . . . ,Fn iff Q̄2/Q̄1 is decreasing in (0, 1)n.
I T1 ≤RHR T2 for all F1, . . . ,Fn iff Q2/Q1 is increasing in

(0, 1)n.
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I T1 ≤RHR T2 for all F1, . . . ,Fn iff Q2/Q1 is increasing in
(0, 1)n.
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Comparisons for systems with ordered components

Theorem (Navarro and del Águila (2017))
If Ti has DF FTi

= Qi (F1, . . . ,Fn), i = 1, 2, then:

I T1 ≤ST T2 for all F1 ≥ST · · · ≥ST Fn iff Q̄1 ≤ Q̄2 in
D = {(u1, . . . , un) ∈ [0, 1]n : u1 ≥ · · · ≥ un};

I T1 ≤HR T2 for all F1 ≥HR · · · ≥HR Fn iff the function

H̄(v1, . . . , vn) =
Q̄2(v1, v1v2, . . . , v1 . . . vn)

Q̄1(v1, v1v2, . . . , v1 . . . vn)
(1.6)

is decreasing in (0, 1)n;
I T1 ≤RHR T2 for all F1 ≤RHR · · · ≤RHR Fn iff the function

H(v1, . . . , vn) =
Q2(v1, v1v2, . . . , v1 . . . vn)

Q1(v1, v1v2, . . . , v1 . . . vn)
(1.7)

is increasing in (0, 1)n.
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Table 2: Dual distortions of systems with IND components

Table: Dual distortions functions of 5 systems with 1-3 IND components.

N T = ψ(X1,X2,X3) Q(u1, u2, u3)

1 X1:3 = min(X1,X2,X3) u1u2u3
2 min(X2,X3) u2u3
3 min(X1,X3) u1u3
4 min(X1,X2) u1u2
5 min(X3,max(X1,X2)) u1u3 + u2u3 − u1u2u3
6 min(X2,max(X1,X3)) u1u2 + u2u3 − u1u2u3
7 min(X1,max(X2,X3)) u1u2 + u1u3 − u1u2u3
8 X3 u3
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Table 2: Dual distortions of systems with IND components

N T = ψ(X1,X2,X3) Q(u1, u2, u3)

9 X2 u2
10 X1 u1
11 X2:3 u1u2 + u1u3 + u2u3 − 2u1u2u3
12 max(X3,min(X1,X2)) u3 + u1u2 − u1u2u3
13 max(X2,min(X1,X3)) u2 + u1u3 − u1u2u3
14 max(X1,min(X2,X3)) u1 + u2u3 − u1u2u3
15 max(X2,X3) u2 + u3 − u2u3
16 max(X1,X3) u1 + u3 − u1u3
17 max(X1,X2) u1 + u2 − u1u2
18 X3:3 = max(X1,X2,X3) u1 + u2 + u3 − u1u2 − u1u3 − u2u3

+u1u2u3
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Systems with IND components

Table: Relationships for the ST order between the coherent systems with
independent components given in Table 2. The value 2 indicates that
Ti ≤ST Tj holds for any F1,F2,F3 (i denotes the row and j the column).
The value 1 indicates that Ti ≤ST Tj holds for all F1 ≥ST F2 ≥ST F3. It
also indicates that Ti ≤ST Tj does not hold for all F1,F2,F3. The value
0 indicates that Ti ≤ST Tj does not hold for all F1 ≥ST F2 ≥ST F3.

ST 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 1 1 2 2 1 2 2 1 2 2 2 2 2 2 2 2
3 0 2 1 2 1 2 2 1 2 2 2 2 2 2 2 2 2
4 0 0 2 0 2 2 0 2 2 2 2 2 2 2 2 2 2
5 0 0 0 2 1 1 2 1 1 2 2 2 2 2 2 2 2
6 0 0 0 0 2 1 0 2 1 2 2 2 2 2 2 2 2
7 0 0 0 0 0 2 0 0 2 2 2 2 2 2 2 2 2
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Systems with IND components

ST 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
8 0 0 0 0 0 0 2 1 1 0 2 1 1 2 2 1 2
9 0 0 0 0 0 0 0 2 1 0 0 2 1 2 1 2 2
10 0 0 0 0 0 0 0 0 2 0 0 0 2 0 2 2 2
11 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2
12 0 0 0 0 0 0 0 0 0 0 2 1 1 2 2 1 2
13 0 0 0 0 0 0 0 0 0 0 0 2 1 2 1 2 2
14 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 2 2
15 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 2
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 2
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
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Systems with IND components

Table: Relationships for the HR order between the coherent systems with
independent components given in Table 2. The value 2 indicates that
Ti ≤HR Tj holds for any F1,F2,F3 (i denotes the row and j the column).
The value 1 indicates that Ti ≤HR Tj holds for all F1 ≥HR F2 ≥HR F3. It
also indicates that Ti ≤HR Tj does not hold for all F1,F2,F3. The value
0 means that Ti ≤HR Tj does not hold for all F1 ≥HR F2 ≥HR F3.

HR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 1 1 1 1 1 2 2 1 1 1 1 1 2 1 1 1
3 0 2 1 0 0 1 2 1 2 0 1 1 1 1 2 1 1
4 0 0 2 0 0 0 0 2 2 0 0 0 0 0 0 2 0
5 0 0 0 2 0 0 2 1 1 0 0 1 1 1 1 2 2
6 0 0 0 0 2 0 0 2 1 0 0 0 1 0 2 1 2
7 0 0 0 0 0 2 0 0 2 0 0 0 1 2 1 1 2
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Systems with IND components

HR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
8 0 0 0 0 0 0 2 1 1 0 0 0 0 1 1 1 1
9 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 1 0
10 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 2 0 1 1 2 2 2 2
12 0 0 0 0 0 0 0 0 0 0 2 0 1 1 1 1 1
13 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 1 0
14 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 1
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
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Notation

I (X1, . . . ,Xn) random vector over (Ω,S,Pr).

I Joint distribution function (DF)

F(x1, . . . , xn) = Pr(X1 ≤ x1, . . . ,Xn ≤ xn).

I Copula representation

F(x1, . . . , xn) = C (F1(x1), . . . ,Fn(xn)),

where F1, . . . ,Fn are the marginals.
I A similar representation holds for the joint survival function

F(x1, . . . , xn) = Pr(X1 > x1, . . . ,Xn > xn).
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Definition (Navarro, Calì, Longobardi and Durante (2021))
A multivariate distribution function F is said to be a multivariate
distorted distribution (MDD) of the univariate distribution functions
G1, . . . ,Gn if there exists a distortion function D such that

F(x1, . . . , xn) = D(G1(x1), . . . ,Gn(xn)), ∀x1, . . . , xn ∈ R. (2.1)

We write F ≡ MDD(G1, . . . ,Gn), when F is a MDD of G1, . . . ,Gn.
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Definition
A continuous function D : [0, 1]n → [0, 1] is called (n–dimensional)
distortion function (shortly written as D ∈ Dn) if:
(i) D(u1, . . . , ui−1, 0, ui+1, . . . , un) = 0 for all u1, . . . , un ∈ [0, 1].
(ii) D(1, . . . , 1) = 1.
(iii) D is n–increasing, i.e. for all x = (x1, . . . , xn) and

y = (y1, . . . , yn) with xi ≤ yi , it holds 4y
x D ≥ 0, where

4(y1,...,yn)
(x1,...,xn)

D :=
∑

zi∈{xi ,yi}

(−1)1(z1,...,zn)D(z1, . . . , zn),

with 1(z1, . . . , zn) =
∑n

i=1 1(zi = xi ) and 1(A) = 1
(respectively, 0) if A is true (respectively, false).
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Main properties

I According to Sklar’s theorem, any multivariate distribution
function can be expressed in terms of its univariate marginal
distributions via a copula representation.

I If the marginals are continuous then this representation
(copula) is unique.

I In the following result, we state a similar Sklar-type theorem
for MDD under mild conditions.
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Sklar-type theorem

Proposition
Let (X1, . . . ,Xn) be a random vector with joint continuous
distribution function F. Let G1, . . . ,Gn be arbitrary continuous
distribution functions and let us assume that Gi is strictly
increasing in the support of Xi for i = 1, . . . , n. Then there exists a
unique distortion D ∈ Dn such that

F(x1, . . . , xn) = D(G1(x1), . . . ,Gn(xn))

holds for all (x1, . . . , xn) ∈ Rn.
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Construction of new multivariate models

The converse of the preceding proposition can be stated as follows.

Proposition
If D ∈ Dn, then

D(G1(x1), . . . ,Gn(xn))

is a multivariate distribution function for all univariate distribution
functions G1, . . . ,Gn.
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Relationship with the copula

Proposition
Let (X1, . . . ,Xn) be a random vector with joint continuous
distribution function F. Let G1, . . . ,Gn be arbitrary continuous
distribution functions. Suppose that F ≡ MDD(G1, . . . ,Gn) with
distortion D. Then,

D(u1, . . . , un) = C (F1(G−1
1 (u1)), . . . ,Fn(G−1

n (un)))

for all (u1, . . . , un) ∈ [0, 1]n, where G−1
i is the quasi-inverse of Gi

and Fi is the ith marginal of F for i = 1, . . . , n .

40th Annual Convention of ISPS, 2021 Jorge Navarro, E-mail: jorgenav@um.es. 48/82



Distorted distributions
Multivariate distorted distributions

References

Main properties
Quantile regression
Examples

Joint survival function.

Proposition
Let (X1, . . . ,Xn) be a random vector with distribution function F.
If (2.1) holds for G1, . . . ,Gn and D ∈ Dn, then the joint survival
function of (X1, . . . ,Xn) can be written as

F(x1, . . . , xn) = D̂(Ḡ1(x1), . . . , Ḡn(xn)) (2.2)

for all x1, . . . , xn, where Ḡi = 1− Gi is the survival function
associated to Gi for i = 1, . . . , n and D̂ ∈ Dn.
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Marginal distributions

I A relevant property of the MDD representation
F ≡ MDD(G1, . . . ,Gn) is that all the multivariate marginal
distributions of F are also MDD from G1, . . . ,Gn.

I Let F1,...,m be the distribution function of (X1, . . . ,Xm).

I Proposition
If F ≡ MDD(G1, . . . ,Gn) and 1 ≤ m ≤ n, then

F1,...,m(x1, . . . , xm) = D1,...,m(G1(x1), . . . ,Gm(xm)) (2.3)

for all (x1, . . . , xm) ∈ Rm, where

D1,...,m(u1, . . . , um) := D(u1, . . . , um, 1, . . . , 1)

for all (u1, . . . , um) ∈ [0, 1]m and D1,...,m ∈ Dm.
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Univariate marginal distributions.

I In particular, the ith marginal distribution function of Xi can
be written as

Fi (xi ) = D(1, . . . , 1,Gi (xi ), 1, . . . , 1) = Di (Gi (xi )) (2.4)

for all xi ∈ R, where

Di (u) := D(1, . . . , 1, u, 1, . . . , 1)

and the value u is placed at the ith position.

I Clearly, we have Gi = Fi for a fixed i ∈ {1, . . . , n} when
Di (u) = u for all u ∈ [0, 1].
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Probability density function

Let us assume that F is absolutely continuous with joint probability
density function (PDF) f, where

f(x1, . . . , xn) = ∂1,...,nF(x1, . . . , xn) (a.e.).

Proposition
If F ≡ MDD(G1, . . . ,Gn) for absolutely continuous distribution
functions G1, . . . ,Gn with PDFs g1, . . . , gn, respectively, and a
distortion function D that admits continuous mixed derivatives of
order n, then

f(x1, . . . , xn) = g1(x1) . . . gn(xn) ∂1,...,nD(G1(x1), . . . ,Gn(xn)).
(2.5)
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Conditional distributions

I All the conditional distributions of F ≡ MDD(G1, . . . ,Gn)
have MDD representations.

I We just consider the DF F2|1 of (X2|X1 = x1).
I Proposition

Let (X1,X2) with F ≡ MDD(G1,G2) for a distortion function
D ∈ D2 that admits continuous mixed derivatives of order 2, then

F2|1(x2|x1) = D2|1(G2(x2)|G1(x1)) (2.6)

whenever limv→0+ ∂1D(G1(x1), v) = 0, where

D2|1(v |G1(x1)) =
∂1D(G1(x1), v)

∂1D(G1(x1), 1)

for 0 < v < 1 and x1 such that ∂1D(G1(x1), 1) > 0.
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Theoretical Quantile Regression

I The (mean) regression curve to predict X2 from X1 is

m2|1(x1) = E (X2|X1 = x1)

I If d2|1(v |u) := D ′2|1(v |u), then

m2|1(x1) =

∫ +∞

−∞
x2g2(x2)d2|1(G2(x2)|G1(x1))dx2.

I Another option is the conditional median regression curve

m̃2|1(x1) := F−1
2|1 (0.5|x1)

(see Koenker (2005) or Nelsen (2006), p. 217).
I This quantile function F−1

2|1 can be computed from (2.6) as

F−1
2|1 (q|x1) = G−1

2 (D−1
2|1 (q|G1(x1))), 0 < q < 1.
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Confidence bands

I Moreover, we can obtain α-confidence bands in a similar way
with [

F−1
2|1 (β1|x1),F−1

2|1 (β2|x1)
]

taking 0 ≤ β1 < β2 ≤ 1 such that β2 − β1 = α.

I For example, the centered 50% and 90% quantile-confidence
bands for (X2|X1 = x1) are determined, respectively, by[

F−1
2|1 (0.25|x1),F−1

2|1 (0.75|x1)
]

and [
F−1

2|1 (0.05|x1),F−1
2|1 (0.95|x1)

]
.
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Example 1: Residual lifetimes

I X1, . . . ,Xn represent the lifetimes of n components.

I (Xi − t|Xi > t) denotes the univariate residual lifetimes at
time t > 0 with

F̄i ,t(x) := Pr(Xi − t > x |Xi > t) =
F̄i (t + x)

F̄i (t)

for every x ≥ 0, whenever F̄i (t) > 0.
I The mean residual lifetime is mi (t) = E (Xi − t|Xi > t).
I From X = (X1, . . . ,Xn), we can consider

Xt = (X1 − t, . . . ,Xn − t|X1 > t, . . . ,Xn > t)

whose survival function for x1, . . . , xn ≥ is

F̄t(x1, . . . , xn) := Pr(X1 > x1+t, . . . ,Xn > xn+t|X1 > t, . . . ,Xn > t).
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Example 1: Residual lifetimes

Proposition
If F̄ (t, . . . , t) > 0 for some t ≥ 0, then

F̄t(x1, . . . , xn) = D̂t(F̄1,t(x1), . . . , F̄n,t(xn)) (2.7)

for all x1, . . . , xn ≥ t and distortion function

D̂t(u1, . . . , un) :=
Ĉ (F̄1(t)u1, . . . , F̄n(t)un)

Ĉ (F̄1(t), . . . , F̄n(t))
, u1, . . . , un ∈ [0, 1],

(2.8)
which depends on F̄1(t), . . . , F̄n(t).
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Example 1: Residual lifetimes

I Note that F̄i ,t is not the ith marginal survival function of the
random vector Xt .

I The ith marginal survival function is

H̄i ,t(x) = Pr(Xi − t > x |X1 > t, . . . ,Xn > t).

I Hence (2.7) is not a copula representation and D̂t is not
always a copula.

I If X1, . . . ,Xn are exponential, then F̄i ,t = F̄i 6= H̄i ,t .
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Example 2: Ordered paired data

I Let us assume that X and Y have a common absolutely
continuous distribution function F . Then

FX ,Y (x , y) = C (F (x),F (y)).

I Sometimes, we may also assume that C is permutation
symmetric, i.e., (X ,Y ) is exchangeable (EXC).

I We assume that L = min(X ,Y ) is known and that we want to
predict U = max(X ,Y ).

I To this purpose we need the conditional distribution function

G2|1(s|t) := Pr(U ≤ s|L = t), s ≥ t.

I It can be used to compute the median regression curve and the
confidence bands.
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Example 2: Ordered paired data

I We assume that we have a training sample
(X1,Y1), . . . , (Xm,Ym) from (X ,Y ).

I However, for other individuals, we may just know
L = min(X ,Y ) and we want to estimate U = max(X ,Y ).

I Note that both F and C can be estimated from the training
sample by using parametric models or empirical or kernel type
estimators.

I So, we want to obtain a MDD representation for the random
vector (L,U) in terms of F and C .
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Example 2: Ordered paired data

I The joint distribution function G(x , y) = Pr(L ≤ x ,U ≤ y) of
(L,U) is

G(x , y) =

{
C (F (y),F (y)) for y ≤ x ;

C (F (x),F (y)) + C (F (y),F (x))− C (F (x),F (x)) for y > x .

I Therefore, G ≡ MDD(F ,F ), i.e.

G(x , y) = D(F (x),F (y)) (2.9)

with the following distortion function

D(u, v) =

{
C (v , v) for v ≤ u;

C (u, v) + C (v , u)− C (u, u) for u < v .
(2.10)
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Example 2: Ordered paired data

I Then the marginal distributions of (L,U) can be written as

G1(x) := Pr(L ≤ x) = D(F (x), 1) = D1(F (x)),

G2(y) := Pr(U ≤ y) = D(1,F (y)) = D2(F (y)),

where
D1(u) = D(u, 1) = 2u − C (u, u)

and
D2(v) = D(1, v) = C (v , v)

for all u, v ∈ [0, 1].
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Example 2: Ordered paired data, IID case

I For example, if X and Y are independent, then

D1(u) = D(u, 1) = 2u − u2 6= u

and
D2(u) = D(1, u) = u2 6= u

for all u ∈ (0, 1).

I The distortion function is

D(u, v) =

{
v2 for v ≤ u;

2uv − u2 for u < v .
(2.11)

I Note that it is not a copula and that the marginals G1 and G2
of G do not appear in (2.9) (we use F instead).
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Example 2: Ordered paired data

I From (2.6) and (2.9), the distribution function of (U|L = x) is

G2|1(y |x) = D2|1(F (y)|F (x)) (2.12)

for y ≥ x , where

D2|1(v |F (x)) :=
∂1D(F (x), v)

∂1D(F (x), 1)
,

∂1D(u, v) = ∂1C (u, v)+∂2C (v , u)−∂1C (u, u)−∂2C (u, u), for v > u.

I In the EXC case, we have

∂1D(u, v) = 2∂1C (u, v)− 2∂1C (u, u), u ≤ v ≤ 1.
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Example 3: Coherent systems

Theorem
If T1 and T2 are two coherent systems with ID∼ F components
(X1, . . . ,Xn), then its joint distribution is MDD(F,F).

I In particular, it can be applied to the k-out-of-n systems
(order statistics).

I In a more particular case, for X1:2 and X2:2 we obtain the
distortion D of the preceding subsection.

I Other examples: Sequential order statistics, record values, ...
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Exact QR curves for paired ordered data. IID case.

I Let (Xi ,Yi ) be a sample from (X ,Y ) where X ,Y are IID∼ F .

I Let Li = min(Xi ,Yi ) and Ui = max(Xi ,Yi ).
I Note that Li and Ui are dependent.
I From (2.12), the distribution function of (U|L = x) is

G2|1(y |x) = D2|1(F (y)|F (x)) (2.13)

for y ≥ x , where

D2|1(v |F (x)) =
v − F (x)

F̄ (x)

for F (x) ≤ v ≤ 1.
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Paired ordered data. IID case.
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Figure: Independent data from two exponential distributions with mean
µ = 10 (left) and the associated paired ordered data (right).
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Exact QR curves for paired ordered data. IID case.

I The quantile function F−1
2|1 can be computed as

F−1
2|1 (q|x) = F−1(D−1

2|1 (q|F (x)))

for 0 < v < 1, where D−1
2|1 (q|F (x)) = F (x) + qF̄ (x), when

F̄ (x) = exp(−x/µ) and F−1(y) = −µ log(1− y). Then

F−1
2|1 (q|x) = −µ log

(
(1− q)e−x/µ

)
= x − µ log(1− q).

I Therefore, the exact QR curve is

m(x) = x − µ log(0.5).
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Exact QR confidence bands for paired ordered data

I Analogously, the exact QR centered 90% confidence band is

[x − µ log(0.05), x − µ log(0.95)] .

I The 50% centered confidence band is obtained in a similar way.
I The exact QR lower 90% confidence band is

[x , x − µ log(0.90)] .
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QR for paired ordered data. IID case.
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Figure: QR for the paired ordered data (L,U) associated to independent
data (X ,Y ) from two exponential distributions with mean µ = 10 jointly
with 50% and 90% centered (left) or bottom (right) confidence bands.
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Predictions

I The first ordered pair in our sample is L1 = 10.15771 and
U1 = 14.17195.

I The prediction for U1 from L1 is

m(L1) = m(10.15771) = 10.15771− µ log(0.5) = 17.08918.

I The centered 90% confidence interval for this prediction is
[10.67064, 40.11503].

I The centered 50% confidence interval for this prediction is
[13.03453, 24.02065].
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Dependent EXC data

I Let us consider now that (X ,Y ) are DID with a copula C and
a common marginal distribution F .

I We consider again the exponential model

F̄ (t) = exp(−t/µ), t ≥ 0

and the Clayton EXC copula

C (u, v) =
uv

u + v − uv
, (u, v) ∈ [0, 1]2. (2.14)
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Dependent EXC data

I To get the QR curves we need the distribution G2|1(y |x) of
(U|L = x). From (2.12) we need

∂1D(u, v) = 2∂1C (u, v)−2∂1C (u, u) =
2v2

(u + v − uv)2−
2

(2− u)2

and

∂1D(u, 1) =
2

(u + 1− u)2 −
2

(2− u)2 = 2− 2
(2− u)2 .

I Hence, for v ≥ u, we get

D2|1(v |u) =

v2

(u+v−uv)2 −
1

(2−u)2

1− 1
(2−u)2

I To compute the inverse, we need to solve in y the equation
G2|1(y |x) = q for q ∈ (0, 1).
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Dependent EXC data

I This leads to

G−1
2|1 (q|x) = y = F−1

 F (x)

F (x)− 1 + 2−F (x)√
1−q+q(2−F (x))2


for 0 < q < 1.

I Therefore, the exact median regression curve to predict U
from L = x is

m(x) = G−1
2|1 (0.5|x).

I Analogously, the 90% centered confidence band is[
G−1

2|1 (0.05|x),G−1
2|1 (0.95|x)

]
.

I The other confidence bands can be obtained in a similar way.
I For an exponential distribution with µ = 10 we get
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Dependent EXC data

I This leads to

G−1
2|1 (q|x) = y = F−1

 F (x)

F (x)− 1 + 2−F (x)√
1−q+q(2−F (x))2


for 0 < q < 1.

I Therefore, the exact median regression curve to predict U
from L = x is

m(x) = G−1
2|1 (0.5|x).

I Analogously, the 90% centered confidence band is[
G−1

2|1 (0.05|x),G−1
2|1 (0.95|x)

]
.

I The other confidence bands can be obtained in a similar way.
I For an exponential distribution with µ = 10 we get
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QR for paired ordered data. ID case.
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Figure: QR curves for paired ordered data (L,U) associated to dependent
data (X ,Y ) from two exponential distributions with centered (left) and
bottom (right) confidence bands.
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Parametric QR curves

I Our model can contain some unknown parameters.

I They can be both in F or in C .
I We can use the training sample (Xi ,Yi ) from (X ,Y ) to

estimate the unknown parameters.
I Then we can use the MDD representation with the estimated

parameters to get the estimated QR curves.
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Parametric QR curves

I Our model can contain some unknown parameters.
I They can be both in F or in C .
I We can use the training sample (Xi ,Yi ) from (X ,Y ) to

estimate the unknown parameters.
I Then we can use the MDD representation with the estimated

parameters to get the estimated QR curves.
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Parametric QR for paired ordered data IID case
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Figure: Parametric QR curves for (L,U) associated to IID data (X ,Y )
from an exponential distribution jointly with centered (left) and bottom
(right) confidence bands. The dashed lines are the exact curves.

40th Annual Convention of ISPS, 2021 Jorge Navarro, E-mail: jorgenav@um.es. 77/82



Distorted distributions
Multivariate distorted distributions

References

Main properties
Quantile regression
Examples

Parametric QR for paired ordered data ID case
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Figure: Parametric QR curves for (L,U) associated to data (X ,Y ) from
an exponential distribution with unknown mean µ and a Clayton copula
with unknown parameter θ. The dashed lines are the exact curves.
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Non-parametric QR curves.

I If we do not have a parametric model, we can use
non-parametric estimators for F and C .

I We can also use the statistical program R with
library(’quantreg’) to estimate the exact curves from the
training sample (see Koenker, 2005; Koenker and Bassett,
1978).
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Non-parametric QR curves.

I If we do not have a parametric model, we can use
non-parametric estimators for F and C .

I We can also use the statistical program R with
library(’quantreg’) to estimate the exact curves from the
training sample (see Koenker, 2005; Koenker and Bassett,
1978).
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Non-parametric QR for paired ordered data, IID case
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Figure: Non-parametric QR curves for paired ordered data (L,U)
associated to IID data (X ,Y ) from an exponential distribution with
µ = 10 and k = 1 (left) or k = 2 (right).
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Non-parametric QR for paired ordered data, ID case
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Figure: Non-parametric QR curves for (L,U) associated to data (X ,Y )
from an exponential distribution and a Clayton copula with θ = 1 and
k = 1 (left) or k = 2 (right). The dashed lines are the exact curves.
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