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Coherent systems

I A system with n components is a Boolean function

φ : {0, 1}n → {0, 1}

where φ(x1, . . . , xn) represents the state of the system when
we know the states x1, . . . , xn for the components.

I A system is semi-coherent if φ is increasing, φ(0, . . . , 0) = 0
and φ(1, . . . , 1) = 1.

I A system is coherent if φ is increasing and it is strictly
increasing in at least a point in each variable (i.e. it does not
contain irrelevant components).
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Basic properties

I A set P ⊆ {1, . . . , n} is a path set of a system φ if

φ(x1, . . . , xn) = 1

when xi = 1 for all i ∈ P .

I A path set is a minimal pat set if does not contain other
path sets.

I If P1, . . . ,Pr are the minimal path sets of a system φ, then

φ(x1, . . . , xn) = max
i=1,...,n

min
j∈Pi

xj .
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Basic properties

I If T is the lifetime of a system, then F̄T (t) = Pr(T > t) is the
system reliability function for t ≥ 0.

I If X1, . . . ,Xn are the lifetimes of the components of a system,
then F̄i (t) = Pr(Xi > t) is the reliability function of the ith
component and

Pr(X1 > t1, . . . ,Xn > tn) = Ĉ (F̄1(t1), . . . , F̄n(tn))

is the joint reliability function of the components.
I If P1, . . . ,Pr are the minimal path sets of a system φ, then

T = φ(X1, . . . ,Xn) = max
i=1,...,n

min
j∈Pi

Xj .
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Basic references on coherent systems

I Barlow, R.E. and Proschan, F. (1975). Statistical Theory of
Reliability and Life Testing. Holt, Rinehart and Winston.

I My new book:
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Distortion representations

I The system reliability function can be written as

F̄T (t) = Q̄(F̄1(t), . . . , F̄n(t)) for all t ∈ R, (1.1)

where Q̄ : [0, 1]n → [0, 1] is a distortion function, i.e., Q̄ is
continuous, is increasing and satisfies Q̄(0, . . . , 0) = 0 and
Q̄(1, . . . , 1) = 1. Q̄ only depends on P1, . . . ,Pr and Ĉ .

I If the components are identically distributed (ID), then

F̄T (t) = q̄(F̄ (t)), for all t ∈ R, (1.2)

where q̄(u) = Q̄(u, . . . , u) is a distortion function and
F̄ = F̄1 = · · · = F̄n.
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Distortion representations

Definition (Navarro, Calì, Longobardi and Durante (2022))
A multivariate distribution function F is said to be a multivariate
distorted distribution (MDD) of the univariate distribution
functions G1, . . . ,Gn if there exists a multivariate distortion
function D such that

F(x1, . . . , xn) = D(G1(x1), . . . ,Gn(xn)), ∀x1, . . . , xn ∈ R. (1.3)

D is a continuous multivariate distribution function with support
contained in [0, 1]n.
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Distortion representations

I If T1 and T2 are the lifetimes of two coherent systems with
common ID component lifetimes X1, . . . ,Xn then

Pr(T1 > t1,T2 > t2) = D(F̄ (t1), F̄ (t2)) for all t1, t2 ∈ R,
(1.4)

where D is a bivariate distortion function which depends on
φ1, φ2 and Ĉ .

I The purpose of the paper is to use (1.4) to predict T2 when
we know T1 and we assume T1 ≤ T2.

I To this end we will use quantile regression techniques that also
provide prediction intervals for T2.
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Conditional distributions

I All the conditional distributions of a multivariate distorted
distribution (MDD) have also MDD representations.

I In particular (T2|T1 = t1) has a distortion representation, i.e.,

F̄2|1(t2|t1) = Pr(T2 > t2|T1 = t1) = D2|1(F̄ (t2)|F̄ (t1)) (1.5)

where

D2|1(v |u) =
∂1D(u, v)− ∂1D(u, 0+)

∂1D(u, 1)

is a distortion function for all 0 < u < 1 such that
∂1D(u, 1) > 0.
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Quantile regression

I The (mean) regression curve to predict T2 from T1 is

m̃(t1) = E (T2|T1 = t1).

I Another option to predict T2 from T1 is the conditional
median regression curve

m(t1) := F̄−1
2|1 (0.5|t1)

(see Koenker (2005) or Nelsen (2006), p. 217).
I The quantile function F−1

2|1 can be computed from (1.5).
I Moreover, it can be used to obtain α-prediction bands for T2[

F̄−1
2|1 (β2|t1), F̄−1

2|1 (β1|t1)
]

taking 0 ≤ β1 < β2 ≤ 1 such that β2 − β1 = α ∈ (0, 1).
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Case I: T1 < T
Case II: T1 ≤ T
Case III: T1 < T2 < T

Typical cases

I Let us consider three typical cases:

I Case I: T1 < T . For example, T1 = min(X1, . . . ,Xn) and T
is a system that does not fail with the first component failure.

I Case II: T1 ≤ T . Here we have two options:
I Case II.a: In the a priori option, i.e., before the failure of T1,

we can provide a protocol to predict T without the knowledge
of the event T1 = T . Here we use (T |T1 = t ≤ T ).

I Case II,b: In the a posteriori option, i.e., when we are at time
t = T1, we could assume T > t since if T = t we do not need
to predict it. Here we use (T2|T1 = t < T2).

I Case III: We can predict the system lifetime T from two
preceding system lifetimes T1 < T2 < T .
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Case I: T1 < T

Theorem
If T1 and T are the lifetimes of two coherent systems satisfying
T1 < T based on the same ID component lifetimes and (T1,T )
has a joint absolutely continuous distribution, then there exists a
bivariate distortion function D̂ : [0, 1]2 → [0, 1] such that

Ḡ (x , y) := Pr(T1 > x ,T > y) = D̂(F̄ (x), F̄ (y)) (2.1)

for all x , y . Moreover, the reliability function of (T |T1 = t) is

ḠT |T1(y |t) := Pr(T > y |T1 = t) =
∂1D̂(F̄ (t), F̄ (y))− ∂1D̂(F̄ (t), 0+)
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Examples

Case I: T1 < T
Case II: T1 ≤ T
Case III: T1 < T2 < T

Case I: T1 < T

I Note that (2.1) is not a copula representation since F̄ is
neither the reliability function of T1 nor that of T .

I The proof of Theorem 2.1 shows how to get D̂.
I In many cases ∂1D̂(u, 0+) = 0 holds and then

ḠT |T1(y |t) =
∂1D̂(F̄ (t), F̄ (y))

∂1D̂(F̄ (t), 1)
. (2.3)

I This expression can be used to both compute

m̃(t) = E (T |T1 = t) =

∫ ∞
0

ḠT |T1(y |t)dy =

∫ ∞
0

∂1D̂(F̄ (t), F̄ (y))

∂1D̂(F̄ (t), 1)
dy ,

and to get the quantiles of (T |T1 = t).
I For the latter, we will need the inverse function of ḠT |T1(y |t),

denoted as Ḡ−1
T |T1

(w |t), obtained by solving ḠT |T1(y |t) = w

for 0 < w < 1.
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ḠT |T1(y |t)dy =

∫ ∞
0

∂1D̂(F̄ (t), F̄ (y))

∂1D̂(F̄ (t), 1)
dy ,

and to get the quantiles of (T |T1 = t).
I For the latter, we will need the inverse function of ḠT |T1(y |t),
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Case I: T1 < T
Case II: T1 ≤ T
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Case I: T1 < T

I Then, the median regression curve to predict T from T1 is
obtained with w = 0.5 as

m(t) = Ḡ−1
T |T1

(0.5|t) for t ≥ 0

I The centered prediction band for T at level 90% is obtained
with w = 0.05 and w = 0.95 as

I90(t) =
[
Ḡ−1
T |T1

(0.95|t), Ḡ−1
T |T1

(0.05|t)
]
.

I Of course, Pr(T ∈ I90(t)|T1 = t) = 0.90 for all t ≥ 0.
I Other prediction bands can be obtained similarly.
I The median regression curve is an excellent alternative to the

conditional expectation, and the prediction bands allow us to
give more accurate predictions.
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T |T1

(0.5|t) for t ≥ 0

I The centered prediction band for T at level 90% is obtained
with w = 0.05 and w = 0.95 as

I90(t) =
[
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Examples

Case I: T1 < T
Case II: T1 ≤ T
Case III: T1 < T2 < T

Case II: T1 ≤ T

I This is the most complex case because (T1,T ) has a singular
part over the line T = T1.

I In practice, two options can be considered.
I In the first case (II.a), we are at time zero, and we want to

know a priori what will happen when the failure of T1 occurs
at a time t.

I This case includes when both lifetimes coincide, that is,
T1 = T = t.

I In the second case (II.b), we are at a time t > 0 and we know
that T1 = t and that T > t.

I Note that if T = t, we do not need to predict T .
I Let us see how these cases can be managed.
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Predicting system failures

Examples

Case I: T1 < T
Case II: T1 ≤ T
Case III: T1 < T2 < T

Case II.b: (T |T1 = t < T ).

I First, we note that the joint reliability function of (T1,T ) can
be written as in (2.1) for this case as well.

I Now we might have a singular part in T = T1.
I However, if the components have an absolutely continuous

joint distribution, then the joint distribution of (T1,T ) in the
set T > T1 is absolutely continuous as well.

I Then (2.2) holds for y > t ≥ 0 and can be completed by
adding that ḠT |T1(y |t) = 1 for 0 ≤ y ≤ t.

I However, note that, in this case

α(t) := Pr(T > t|T1 = t) = lim
y→t+

ḠT |T1(y |t)

can be less than 1 and if ∂1D̂(F̄ (t), 0+) = 0 then

Pr(T > y |T1 = t < T ) =
Pr(T > y |T1 = t)

Pr(T > t|T1 = t)
=

∂1D̂(F̄ (t), F̄ (y))

α(t)∂1D̂(F̄ (t), 1)
(2.4)

for y > t, being one for 0 ≤ y ≤ t. This expression can be
used to get the curve for the median regression by solving the
equation obtained for the value 0.5, that is,

Pr(T > y |T1 = t < T ) = 0.5.

Note that m(t) > t for all t ≥ 0. The prediction bands are
obtained similarly.
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adding that ḠT |T1(y |t) = 1 for 0 ≤ y ≤ t.

I However, note that, in this case

α(t) := Pr(T > t|T1 = t) = lim
y→t+
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adding that ḠT |T1(y |t) = 1 for 0 ≤ y ≤ t.

I However, note that, in this case

α(t) := Pr(T > t|T1 = t) = lim
y→t+
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Case II.a: (T |T1 = t ≤ T ).

I This case is actually straightforward, and we can directly use
the reliability function given in (2.2).

I Now this function might have a jump at t, that is, it might
have a mass Pr(T = t|T1 = t) = 1− α(t) at time t.

I In this case, it is better to use bottom prediction bands instead
of centered ones.

I For example the bottom prediction band for T at level 90% is
obtained with w = 0.10 as

I bottom90 (t) =
[
t, Ḡ−1

T |T1
(0.10|t)

]
.

I It might also happen that the median regression curve satisfies
m(t) = t for some values of t.

12th Int. Conf. on Mathematical Methods in Reliability Jorge Navarro, Email: jorgenav@um.es. 21/49



Preliminary results
Predicting system failures

Examples

Case I: T1 < T
Case II: T1 ≤ T
Case III: T1 < T2 < T

Case II.a: (T |T1 = t ≤ T ).

I This case is actually straightforward, and we can directly use
the reliability function given in (2.2).

I Now this function might have a jump at t, that is, it might
have a mass Pr(T = t|T1 = t) = 1− α(t) at time t.

I In this case, it is better to use bottom prediction bands instead
of centered ones.

I For example the bottom prediction band for T at level 90% is
obtained with w = 0.10 as

I bottom90 (t) =
[
t, Ḡ−1
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Case I: T1 < T
Case II: T1 ≤ T
Case III: T1 < T2 < T

Case III: T1 < T2 < T

I Here the purpose is to use all the information available.

I We consider a simple case where we know a first failure at a
time T1 = t1.

I Then, we know a second failure T2 = t2 for t2 ≥ t1, and we
assume T > T2 (with probability one).

I The other options can be solved similarly.
I As in the preceding cases, if the components are ID∼ F̄ , then

the joint reliability of (T1,T2,T ) can be written as

Ḡ (t1, t2, t) = D̂(F̄ (t1), F̄ (t2), F̄ (t))

for all t1, t2, t, where we assume that this joint reliability is
absolutely continuous. Then its PDF is

g(t1, t2, t) = f (t1)f (t2)f (t)∂1,2,3D̂(F̄ (t1), F̄ (t2), F̄ (t))

for all 0 ≤ t1 ≤ t2 ≤ t.
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Case III: T1 < T2 < T

I The joint reliability function of (T1,T2) can be written as

Ḡ1,2(t1, t2) = Ḡ (t1, t2, 0) = D̂(F̄ (t1), F̄ (t2), 1)

for all t1, t2, t and its PDF is

g1,2(t1, t2) = f (t1)f (t2)∂1,2D̂(F̄ (t1), F̄ (t2), 1) for all 0 ≤ t1 ≤ t2.

I Hence, the PDF of (T |T1 = t1,T2 = t2) is

g3|1,2(t|t1, t2) =
g(t1, t2, t)

g1,2(t1, t2)
=
∂1,2,3D̂(F̄ (t1), F̄ (t2), F̄ (t))

∂1,2D̂(F̄ (t1), F̄ (t2), 1)
f (t)

for 0 ≤ t1 ≤ t2 ≤ t such that f (t1)f (t2) 6= 0.
I Therefore, the conditional reliability function is

Ḡ3|1,2(t|t1, t2) =
∂1,2D̂(F̄ (t1), F̄ (t2), F̄ (t))− ∂1,2D̂(F̄ (t1), F̄ (t2), 0+)

∂1,2D̂(F̄ (t1), F̄ (t2), 1)
(2.5)

for 0 ≤ t1 ≤ t2 ≤ t (one for 0 ≤ t < t2).
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Ḡ1,2(t1, t2) = Ḡ (t1, t2, 0) = D̂(F̄ (t1), F̄ (t2), 1)

for all t1, t2, t and its PDF is

g1,2(t1, t2) = f (t1)f (t2)∂1,2D̂(F̄ (t1), F̄ (t2), 1) for all 0 ≤ t1 ≤ t2.

I Hence, the PDF of (T |T1 = t1,T2 = t2) is

g3|1,2(t|t1, t2) =
g(t1, t2, t)

g1,2(t1, t2)
=
∂1,2,3D̂(F̄ (t1), F̄ (t2), F̄ (t))

∂1,2D̂(F̄ (t1), F̄ (t2), 1)
f (t)

for 0 ≤ t1 ≤ t2 ≤ t such that f (t1)f (t2) 6= 0.

I Therefore, the conditional reliability function is
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Example 1, case I

I We consider the system lifetime T = max(X1,min(X2,X3)).

I Its minimal path sets are P1 = {1} and P2 = {2, 3}.
I Thence

F̄T (t) = Pr(X1 > t)+Pr(X{2,3} > t)−Pr(X{1,2,3} > t). (3.1)

I If the components are IID∼ F̄ , then

F̄T (t) = F̄ (t) + F̄ 2(t)− F̄ 3(t) = q̄(F̄ (t))

for t ≥ 0, where q̄(u) = u + u2 − u3 for u ∈ [0, 1].
I Then

E (T ) =

∫ ∞
0

q̄(F̄ (t))dy .

I If F̄ (t) = e−t/µ for t ≥ 0, then E (T ) = 7µ/6 = 1.166667µ.
I This is the prediction (expected value) at time t = 0.
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Example 1, case I

I Now let us predict T at the first component failure
T1 = X1:3 = t for t ≥ 0.

I From Theorem 2.1, the joint reliability function of (T1,T ) is

Ḡ (x , y) = Pr(T1 > x ,T > y) = Pr(T1 > x) = F̄ 3(x)

for 0 ≤ y < x and

Ḡ (x , y) = F̄ 2(x)F̄ (y) + F̄ (x)F̄ 2(y)− F̄ 3(y)

for 0 ≤ x ≤ y .
I Hence Ḡ (x , y) = D̂(F̄ (x), F̄ (y)) for all x , y , where

D̂(u, v) =

{
u3 for 0 ≤ u < v ≤ 1;

u2v + uv2 − v3 for 0 ≤ v ≤ u ≤ 1.
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Example 1, case I

I Hence

∂1D̂(u, v) =

{
3u2 for 0 ≤ u < v ≤ 1;

2uv + v2 for 0 ≤ v ≤ u ≤ 1.

I Note that limv→0+ ∂1D̂(u, v) = 0.
I Then, from (2.3), we get

ḠT |T1(y |t) =
∂1D̂(F̄ (t), F̄ (y))

∂1D̂(F̄ (t), 1)
=

2F̄ (y)F̄ (t) + F̄ 2(y)

3F̄ 2(t)

for 0 ≤ t ≤ y (1 for y ≤ t).
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I Note that limv→0+ ∂1D̂(u, v) = 0.

I Then, from (2.3), we get

ḠT |T1(y |t) =
∂1D̂(F̄ (t), F̄ (y))

∂1D̂(F̄ (t), 1)
=

2F̄ (y)F̄ (t) + F̄ 2(y)

3F̄ 2(t)

for 0 ≤ t ≤ y (1 for y ≤ t).
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Example 1, case I

I By solving the quadratic equation

F̄ 2(y) + 2F̄ (t)F̄ (y)− 3wF̄ 2(t) = 0,

for 0 < w < 1 we get the quantile function

Ḡ−1
T |T1

(w |t) = F̄−1
(
−F̄ (t) + F̄ (t)

√
1 + 3w

)
.

I Therefore, the median regression curve to predict T is

m(t) = Ḡ−1
T |T1

(0.5|t) = F̄−1
(
F̄ (t)

(√
2.5− 1

))
I The centered 90% prediction band for T are

I90(t) =
[
F̄−1

(
F̄ (t)

(√
3.85− 1

))
, F̄−1

(
F̄ (t)

(√
1.15− 1

))]
.
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Example 1, case I

I If the components have an exponential distribution, then

m(t) = t − µ log
(√

2.5− 1
)

= t + 0.5427656µ,

and the mean regression curve is

m̃(t) = E (T |T1 = t) =

∫ ∞
0

ḠT |T1(y |t)dy = t + 0.8333333µ.

I The quantile regression curves are also straight lines.
I As expected from the independence assumption and the lack

of memory property of the exponential distribution, the
predictions for the residual lifetime (T − t|T1 = t) do not
depend on t.
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ḠT |T1(y |t)dy = t + 0.8333333µ.

I The quantile regression curves are also straight lines.

I As expected from the independence assumption and the lack
of memory property of the exponential distribution, the
predictions for the residual lifetime (T − t|T1 = t) do not
depend on t.

12th Int. Conf. on Mathematical Methods in Reliability Jorge Navarro, Email: jorgenav@um.es. 29/49



Preliminary results
Predicting system failures

Examples

Case I
Case II
Case III

Example 1, case I

I If the components have an exponential distribution, then

m(t) = t − µ log
(√

2.5− 1
)

= t + 0.5427656µ,

and the mean regression curve is

m̃(t) = E (T |T1 = t) =

∫ ∞
0
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Example 1, case I

I In the following figure (left) we provide the plots of the median
(red) and mean (green) regression curves and the prediction
bands for a standard exponential distribution jointly with a
scatterplot of a simulated sample from (T1,T ) of size 100.

I In the right plot we estimate these curves (lines) by using
linear quantile regression (LQR) (for m and the prediction
band limits) and linear regression (for m̃). The basic theory for
LQR can be seen in Koenker (2005).
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Figure: Scatterplots of a sample from (T1,T ) for the systems in Example
1 jointly with the theoretical (left) and estimated (right) median (red)
and mean (green) regression curves and prediction bands with confidence
levels 50% (dark grey) and 90% (light grey).
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Example 1, case I

I Note that the prediction bands explain better the uncertainty
in these predictions than the single mean or median regression
curves.

I For example, the first data in our sample is T1 = 0.4632196
and T = 0.8434573.

I The predictions for T at this failure time for T1 are
m(T1) = 1.105407 and m̃(T1) = 1.296553, which are quite far
from the exact value.

I However, the centered prediction intervals for this value are
I50 = [0.8554071, 1.355407] and I90 = [0.6554071, 1.555407].

I The first one does not contain the exact value (it is close to
the left margin) but the second does.
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Example 2, case I

I Let us assume now that the components in this system are
dependent with the following Clayton type survival copula

Ĉ (u1, u2, u3) =
u1u2u3

u2 + u3 − u2u3

for u1, u2, u3 ∈ [0, 1].

I Then we get the following regression curves.
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Figure: Scatterplots of a sample from (T1,T ) for the systems in Example
2 jointly with the theoretical (left) and estimated (right) median (red)
and mean (green) regression curves and prediction bands with confidence
levels 50% (dark grey) and 90% (light grey).
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Example 3, case II

I Let us study the system T = min(X1,max(X2,X3)).

I The minimal path sets are P1 = {1, 2} and P2 = {1, 3}.
I Hence we get

F̄T (t) = Pr(X{1,2} > t) + Pr(X{2,3} > t)− Pr(X{1,2,3} > t).

I If we assume that the component lifetimes are IID∼ F̄ , then
F̄T (t) = q̄(F̄ (t)), where q̄(u) = 2u2 − u3 for u ∈ [0, 1].

I Hence

E (T ) =

∫ ∞
0

q̄(F̄ (t))dt = 2
∫ ∞

0
F̄ 2(t)dt −

∫ ∞
0

F̄ 3(t)dt.

I If F̄ (t) = e−t/µ for t ≥ 0, then E (T ) = 2µ/3 = 0.666667µ.
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Example 3, case II

I As in the preceding examples we choose T1 = X1:3, that is, it
is the first component failure.

I However, now

Pr(T = T1) = Pr(T1 = X1) = 1/3

and (T1,T ) have a singular part at T = T1 with probability
1/3 (even when the component lifetimes are IID and
absolutely continuous).

I Therefore, we are in case II.
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Example 3, case II

I The joint reliability function of (T1,T ) is

Ḡ (x , y) = Pr(T1 > x ,T > y) = Pr(T1 > x) = F̄ 3(x)

for 0 ≤ y ≤ x , and

Ḡ (x , y) = 2F̄ (x)F̄ 2(y)− F̄ 3(y)

for 0 ≤ x < y .

I Note that Ḡ is continuous but not absolutely continuous.
I Moreover, Ḡ (x , y) = D̂(F̄ (x), F̄ (y)) for all x , y , where

D̂(u, v) =

{
u3 for 0 ≤ u ≤ v ≤ 1;

2uv2 − v3 for 0 ≤ v < u ≤ 1;

and

∂1D̂(u, v) =

{
3u2 for 0 ≤ u < v ≤ 1;
2v2 for 0 ≤ v < u ≤ 1.
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Example 3, case II.a

I To solve case II.a, we use (2.2) obtaining

ḠT |T1(y |t) = Pr(T > y |T1 = t) =
2F̄ 2(y)

3F̄ 2(t)

for y > t (one for 0 ≤ y ≤ t).

I Note that

α(t) = Pr(T > T1|T1 = t) = lim
y→t+

ḠT |T1(y |t) =
2
3
,

and that 1− α(t) = Pr(T = T1|T1 = t) = 1/3.
I In this case, they do not depend on t and so they coincide

with Pr(T > T1) and Pr(T = T1), respectively.
I Then the median regression curve is

m(t) = Ḡ−1
T |T1

(0.5|t) = F̄−1
(√

0.75F̄ (t)
)

for t ≥ 0.
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Example 3, case II.a

I In the exponential case, we get

m(t) = t − 0.5µ ln(0.75) = t + 0.143841µ.

I The regression curve is

m̃(t) =

∫ ∞
0

ḠT |T1(y |t)dy = t +

∫ ∞
0

2F̄ 2(y)

3F̄ 2(t)
dy = t +

1
3
µ.

I The prediction bands can be obtained in a similar way.
I For example, the 90% bottom prediction band is

I bottom90 (t) =
[
t, F̄−1

(√
0.15F̄ (t)

)]
= [t, t + 0.94856µ] .

I The 50% bottom prediction band is I bottom50 (t) = [t,m(t)].
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Example 3, case II.b

I To solve case II.b we assume that the first component failure
happens at a time t (T1 = t) and that at this time we know
that the system is still alive (T > t).

I Then we want to predict T under these assumptions.
I To this end, we need to solve

Pr(T > y |T1 = t,T > t) =
∂1D̂(F̄ (t), F̄ (y))

α(t)∂1D̂(F̄ (t), 1)
=

F̄ 2(y)

F̄ 2(t)
= w

(3.2)
for y > t and 0 < w < 1.

I Thus the median regression curve is

m(t) = F̄−1
(√

0.5F̄ (t)
)
.
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Example 3, Case II.a

I In the exponential case, we get

m(t) = t − 0.5µ ln(0.5) = t + 0.3465736µ.

I The mean regression curve in the exponential case is

m̃(t) = t +

∫ ∞
0

F̄ 2(y)

F̄ 2(t)
dy = t + 0.5µ.

I The bottom prediction bands are obtained similarly.
I In the following figure we provide the predictions for both

cases jointly with a simulated sample.
I We have 39 data satisfying T = T1.
I For the 61 remaining points, we get 54 in the bottom 90%

prediction band. Only 7 data are not contained in this band.
I The bottom 50% prediction band contains 32 out of 61 data.
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Figure: Scatterplots of a sample from (T1,T ) for the systems in Example
3 jointly with the plots of theoretical median (red) and mean (green)
regression curves and the bottom prediction bands with confidence levels
50% (dark grey) and 90% (light grey) for cases II.a (left) and II.b (right).
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Example 4, Case II

I Let us consider the same system but with dependent ID
components having the following Farlie-Gumbel-Morgenstern
(FGM) survival copula

Ĉ (u1, u2, u3) = u1u2u3+θu1u2u3(1−u1)(1−u2)(1−u3) (3.3)

for u1, u2, u3 ∈ [0, 1] and θ ∈ [−1, 1].

I Then we get the following curves.
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Figure: Scatterplots of a sample from (T1,T ) for the systems in Example
4 jointly with the plots of theoretical median (red) and mean (green)
regression curves and the bottom prediction bands with confidence levels
50% (dark grey) and 90% (light grey) for cases II.a (left) and II.b (right).
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Example 5, case III

I Let us consider T = X3:3 = max(X1,X2,X3).

I Let us assume that we know T1 = X1:3 = t1 and
T2 = X2:3 = t2 for 0 < t1 < t2.

I We assume that (X1,X2,X3) are exchangeable.
I Then the joint reliability function Ḡ of (T1,T2,T ) is

Ḡ (t1, t2, t) = 6F(t1, t2, t)−3F(t2, t2, t)−3F(t1, t, t)+F(t, t, t)

for 0 ≤ t1 ≤ t2 ≤ t, where
F(x1, x2, x3) = Pr(X1 > x1,X2 > x2,X3 > x3).

I Therefore, Ḡ (t1, t2, t) = D̂(F̄ (t1), F̄ (t2), F̄ (t)), where

D̂(u, v ,w) = 6Ĉ (u, v ,w)−3Ĉ (v , v ,w)−3Ĉ (u,w ,w)+Ĉ (w ,w ,w)

for 0 ≤ w ≤ v ≤ u ≤ 1.
I The expressions for D̂ in the other cases can be obtained

similarly.
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Example 5, case III

I The joint reliability function of (T1,T2) is

Ḡ1,2(t1, t2) = 3F(t1, t2, t2)− 2F(t2, t2, t2)

for 0 ≤ t1 ≤ t2, that is, Ḡ1,2(t1, t2) = D̂(F̄ (t1), F̄ (t2), 1) with

D̂(u, v , 1) = 3Ĉ (u, v , v)− 2Ĉ (v , v , v)

for 0 ≤ v ≤ u ≤ 1.

I Therefore, by differentiating these expressions we get

∂1,2D̂(u, v ,w) = 6∂1,2Ĉ (u, v ,w),

∂1,2D̂(u, v , 1) = 6∂1,2Ĉ (u, v , v)

and the reliability function of (T |T1 = t1,T2 = t2) is

Ḡ3|1,2(t|t1, t2) =
∂1,2Ĉ (F̄ (t1), F̄ (t2), F̄ (t))

∂1,2Ĉ (F̄ (t1), F̄ (t2), F̄ (t2))

for t ≥ t2 (one for 0 ≤ t < t2).

12th Int. Conf. on Mathematical Methods in Reliability Jorge Navarro, Email: jorgenav@um.es. 46/49



Preliminary results
Predicting system failures

Examples

Case I
Case II
Case III

Example 5, case III

I The joint reliability function of (T1,T2) is
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for 0 ≤ t1 ≤ t2, that is, Ḡ1,2(t1, t2) = D̂(F̄ (t1), F̄ (t2), 1) with
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Example 5, case III

I If Ĉ is the product copula (independent components), we have
∂1,2Ĉ (u, v ,w) = w and

Ḡ3|1,2(t|t1, t2) =
∂1,2Ĉ (F̄ (t1), F̄ (t2), F̄ (t))

∂1,2Ĉ (F̄ (t1), F̄ (t2), F̄ (t2))
=

F̄ (t)

F̄ (t2)

for t ≥ t2 (Markovian property of the OS).

I If assume the FGM copula of Example 4, then

∂1,2Ĉ (u1, u2, u3) = u3 + θu3(1− u3)(1− 2u1)(1− 2u2)

for all u1, u2, u3 ∈ [0, 1], and we get

Ḡ3|1,2(t|t1, t2) =
F̄ (t)

F̄ (t2)
· 1 + θF (t)(1− 2F̄ (t1))(1− 2F̄ (t2))

1 + θF (t2)(1− 2F̄ (t1))(1− 2F̄ (t2))

for t ≥ t2 (one for 0 ≤ t < t2).
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Example 5, case III

I For θ = 0, it coincides with the expression for the IID case.

I For θ 6= 0, it depends on t1.
I To get its inverse function, we need to solve

θa(t1, t2)F̄ 2(t)− (1 + θa(t1, t2))F̄ (t) + wc(t1, t2) = 0,

where a(t1, t2) = (1− 2F̄ (t1))(1− 2F̄ (t2)) ∈ [−1, 1] and

c(t1, t2) = F̄ (t2)+θF̄ (t2)F (t2)(1−2F̄ (t1))(1−2F̄ (t2)) ∈ [0, 1].

I This equation has a unique solution in [0, 1] given by

F̄ (t) =
1 + θa(t1, t2)−

√
(1 + θa(t1, t2))2 − 4θwa(t1, t2)c(t1, t2)

2θa(t1, t2)

for θa(t1, t2) 6= 0.
I From this expression we can compute Ḡ−1

3|1,2(w |t1, t2) for
0 < w < 1, 0 ≤ t1 ≤ t2 and θ ∈ [−1, 1].
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Figure: Scatterplots of a sample from (T1,T2) (left) and (T1,T ) (right)
for the systems in Example 5 jointly with the theoretical median
regression curve (red) and the centered prediction bands (right plot) with
levels 50% (dark grey) and 90% (light grey). In the left plot, we only give
the level curves (predictions) of the median regression map m(t1, t2).
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