Predicting system failures

Jorge Navarro¹ Universidad de Murcia, Murcia, Spain.

¹Partially supported by Ministerio de Ciencia e Innovación of Spain under grant PID2019-108079GB-C22/AEI/10.13039/501100011033.

12th Int. Conf. on Mathematical Methods in Reliability Jorge Navarro, Email: jorgenav@um.es.

References

The conference is based on the following references:

- Navarro J, Calì C, Longobardi M, Durante F. (2022). Distortion representations of multivariate distributions. Statistical Methods & Applications 31, 925–954. DOI: 10.1007/s10260-021-00613-2.
- Navarro J., Arriaza A. Suárez-Llorens A. (2023). Predicting system failure times. Submitted.

Outline

Preliminary results

Coherent systems Distortion representations

Predicting system failures

Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

Examples

Case I Case II Case III

Coherent systems Distortion representations

Preliminary results

Coherent systems Distortion representations

Coherent systems

A system with n components is a Boolean function

 $\phi:\{\mathbf{0},\mathbf{1}\}^n\to\{\mathbf{0},\mathbf{1}\}$

where $\phi(x_1, \ldots, x_n)$ represents the state of the system when we know the states x_1, \ldots, x_n for the components.

Coherent systems Distortion representations

Coherent systems

A system with n components is a Boolean function

 $\phi:\{\mathbf{0},\mathbf{1}\}^n\to\{\mathbf{0},\mathbf{1}\}$

where $\phi(x_1, \ldots, x_n)$ represents the state of the system when we know the states x_1, \ldots, x_n for the components.

A system is semi-coherent if \(\phi\) is increasing, \(\phi(0,...,0) = 0\) and \(\phi(1,...,1) = 1\).

Coherent systems Distortion representations

Coherent systems

A system with n components is a Boolean function

 $\phi:\{\mathbf{0},\mathbf{1}\}^n\to \{\mathbf{0},\mathbf{1}\}$

where $\phi(x_1, \ldots, x_n)$ represents the state of the system when we know the states x_1, \ldots, x_n for the components.

- A system is semi-coherent if \(\phi\) is increasing, \(\phi(0,...,0) = 0\) and \(\phi(1,...,1) = 1\).
- A system is coherent if \u03c6 is increasing and it is strictly increasing in at least a point in each variable (i.e. it does not contain irrelevant components).

Coherent systems Distortion representations

Basic properties

▶ A set $P \subseteq \{1, ..., n\}$ is a **path set** of a system ϕ if

 $\phi(x_1,\ldots,x_n)=1$

when $x_i = 1$ for all $i \in P$.

Coherent systems Distortion representations

Basic properties

▶ A set $P \subseteq \{1, ..., n\}$ is a **path set** of a system ϕ if

 $\phi(x_1,\ldots,x_n)=1$

when $x_i = 1$ for all $i \in P$.

A path set is a minimal pat set if does not contain other path sets.

Coherent systems Distortion representations

Basic properties

A set $P \subseteq \{1, \ldots, n\}$ is a **path set** of a system ϕ if

 $\phi(x_1,\ldots,x_n)=1$

when $x_i = 1$ for all $i \in P$.

A path set is a minimal pat set if does not contain other path sets.

▶ If P_1, \ldots, P_r are the minimal path sets of a system ϕ , then

$$\phi(x_1,\ldots,x_n)=\max_{i=1,\ldots,n}\min_{j\in P_i}x_j.$$

Coherent systems Distortion representations

Basic properties

▶ If T is the lifetime of a system, then $\overline{F}_T(t) = \Pr(T > t)$ is the system reliability function for $t \ge 0$.

Coherent systems Distortion representations

Basic properties

- ▶ If T is the lifetime of a system, then $\overline{F}_T(t) = \Pr(T > t)$ is the system reliability function for $t \ge 0$.
- ▶ If $X_1, ..., X_n$ are the lifetimes of the components of a system, then $\overline{F}_i(t) = \Pr(X_i > t)$ is the reliability function of the *i*th component and

$$\Pr(X_1 > t_1, \ldots, X_n > t_n) = \hat{C}(\bar{F}_1(t_1), \ldots, \bar{F}_n(t_n))$$

is the joint reliability function of the components.

Coherent systems Distortion representations

Basic properties

- ▶ If T is the lifetime of a system, then $\overline{F}_T(t) = \Pr(T > t)$ is the system reliability function for $t \ge 0$.
- ▶ If $X_1, ..., X_n$ are the lifetimes of the components of a system, then $\overline{F}_i(t) = \Pr(X_i > t)$ is the reliability function of the *i*th component and

$$\Pr(X_1 > t_1, \ldots, X_n > t_n) = \hat{C}(\bar{F}_1(t_1), \ldots, \bar{F}_n(t_n))$$

is the joint reliability function of the components.

▶ If P_1, \ldots, P_r are the minimal path sets of a system ϕ , then

$$T = \phi(X_1, \ldots, X_n) = \max_{i=1,\ldots,n} \min_{j \in P_i} X_j.$$

Coherent systems Distortion representations

Basic references on coherent systems

Barlow, R.E. and Proschan, F. (1975). Statistical Theory of Reliability and Life Testing. Holt, Rinehart and Winston.

Coherent systems Distortion representations

Basic references on coherent systems

- Barlow, R.E. and Proschan, F. (1975). Statistical Theory of Reliability and Life Testing. Holt, Rinehart and Winston.
- My new book:

Coherent systems Distortion representations

Distortion representations

The system reliability function can be written as

$$ar{F}_T(t) = ar{Q}(ar{F}_1(t), \dots, ar{F}_n(t)) ext{ for all } t \in \mathbb{R},$$
 (1.1)

where $\bar{Q} : [0,1]^n \to [0,1]$ is a distortion function, i.e., \bar{Q} is continuous, is increasing and satisfies $\bar{Q}(0,\ldots,0) = 0$ and $\bar{Q}(1,\ldots,1) = 1$. \bar{Q} only depends on P_1,\ldots,P_r and \hat{C} .

Coherent systems Distortion representations

Distortion representations

The system reliability function can be written as

$$ar{F}_{\mathcal{T}}(t) = ar{Q}(ar{F}_1(t), \dots, ar{F}_n(t)) ext{ for all } t \in \mathbb{R},$$
 (1.1)

where $\bar{Q}: [0,1]^n \to [0,1]$ is a distortion function, i.e., \bar{Q} is continuous, is increasing and satisfies $\bar{Q}(0,\ldots,0) = 0$ and $\bar{Q}(1,\ldots,1) = 1$. \bar{Q} only depends on P_1,\ldots,P_r and \hat{C} .

If the components are identically distributed (ID), then

$$ar{F}_{\mathcal{T}}(t) = ar{q}(ar{F}(t)), ext{ for all } t \in \mathbb{R}, ext{ (1.2)}$$

where $\bar{q}(u) = \bar{Q}(u, ..., u)$ is a distortion function and $\bar{F} = \bar{F}_1 = \cdots = \bar{F}_n$.

Coherent systems Distortion representations

Distortion representations

Definition (Navarro, Calì, Longobardi and Durante (2022))

A multivariate distribution function **F** is said to be a *multivariate* distorted distribution (MDD) of the univariate distribution functions G_1, \ldots, G_n if there exists a **multivariate distortion** function D such that

$$\mathbf{F}(x_1,\ldots,x_n)=D(G_1(x_1),\ldots,G_n(x_n)), \ \forall x_1,\ldots,x_n\in\mathbb{R}.$$
 (1.3)

D is a continuous multivariate distribution function with support contained in $[0, 1]^n$.

Coherent systems Distortion representations

Distortion representations

If T₁ and T₂ are the lifetimes of two coherent systems with common ID component lifetimes X₁,..., X_n then

$$\Pr(T_1 > t_1, T_2 > t_2) = D(\bar{F}(t_1), \bar{F}(t_2)) \text{ for all } t_1, t_2 \in \mathbb{R},$$

$$(1.4)$$
here *D* is a bivariate distortion function which depends on

where D is a bivariate distortion function which depends on ϕ_1, ϕ_2 and \hat{C} .

Coherent systems Distortion representations

Distortion representations

If T₁ and T₂ are the lifetimes of two coherent systems with common ID component lifetimes X₁,..., X_n then

$$\Pr(T_1 > t_1, T_2 > t_2) = D(\bar{F}(t_1), \bar{F}(t_2)) \text{ for all } t_1, t_2 \in \mathbb{R},$$
(1.4)

where D is a bivariate distortion function which depends on ϕ_1, ϕ_2 and \hat{C} .

The purpose of the paper is to use (1.4) to predict T_2 when we know T_1 and we assume $T_1 \leq T_2$.

Coherent systems Distortion representations

Distortion representations

If T₁ and T₂ are the lifetimes of two coherent systems with common ID component lifetimes X₁,..., X_n then

$$\Pr(T_1 > t_1, T_2 > t_2) = D(\bar{F}(t_1), \bar{F}(t_2)) \text{ for all } t_1, t_2 \in \mathbb{R},$$
(1.4)

where D is a bivariate distortion function which depends on ϕ_1, ϕ_2 and \hat{C} .

- The purpose of the paper is to use (1.4) to predict T_2 when we know T_1 and we assume $T_1 \leq T_2$.
- To this end we will use quantile regression techniques that also provide prediction intervals for T₂.

Coherent systems Distortion representations

Conditional distributions

All the conditional distributions of a multivariate distorted distribution (MDD) have also MDD representations.

Coherent systems Distortion representations

Conditional distributions

- All the conditional distributions of a multivariate distorted distribution (MDD) have also MDD representations.
- ▶ In particular $(T_2 | T_1 = t_1)$ has a distortion representation, i.e.,

$$\bar{F}_{2|1}(t_2|t_1) = \Pr(T_2 > t_2|T_1 = t_1) = D_{2|1}(\bar{F}(t_2)|\bar{F}(t_1))$$
 (1.5)

where

$$D_{2|1}(v|u) = \frac{\partial_1 D(u,v) - \partial_1 D(u,0^+)}{\partial_1 D(u,1)}$$

is a distortion function for all 0 < u < 1 such that $\partial_1 D(u, 1) > 0$.

Coherent systems Distortion representations

Quantile regression

• The (mean) regression curve to predict T_2 from T_1 is

$$\tilde{m}(t_1)=E(T_2|T_1=t_1).$$

Coherent systems Distortion representations

Quantile regression

• The (mean) regression curve to predict T_2 from T_1 is

$$\tilde{m}(t_1) = E(T_2|T_1 = t_1).$$

Another option to predict T₂ from T₁ is the conditional median regression curve

$$m(t_1) := \bar{F}_{2|1}^{-1}(0.5|t_1)$$

(see Koenker (2005) or Nelsen (2006), p. 217).

Coherent systems Distortion representations

Quantile regression

• The (mean) regression curve to predict T_2 from T_1 is

$$\tilde{m}(t_1) = E(T_2|T_1 = t_1).$$

Another option to predict T₂ from T₁ is the conditional median regression curve

$$m(t_1) := \bar{F}_{2|1}^{-1}(0.5|t_1)$$

(see Koenker (2005) or Nelsen (2006), p. 217).

Coherent systems Distortion representations

Quantile regression

• The (mean) regression curve to predict T_2 from T_1 is

$$\tilde{m}(t_1) = E(T_2|T_1 = t_1).$$

Another option to predict T₂ from T₁ is the conditional median regression curve

$$m(t_1) := \bar{F}_{2|1}^{-1}(0.5|t_1)$$

(see Koenker (2005) or Nelsen (2006), p. 217).

• The quantile function $F_{2|1}^{-1}$ can be computed from (1.5).

Coherent systems Distortion representations

Quantile regression

• The (mean) regression curve to predict T_2 from T_1 is

$$\tilde{m}(t_1)=E(T_2|T_1=t_1).$$

Another option to predict T₂ from T₁ is the conditional median regression curve

$$m(t_1) := \bar{F}_{2|1}^{-1}(0.5|t_1)$$

(see Koenker (2005) or Nelsen (2006), p. 217).

- The quantile function $F_{2|1}^{-1}$ can be computed from (1.5).
- Moreover, it can be used to obtain α -prediction bands for T_2

$$\left[\bar{F}_{2|1}^{-1}(\beta_2|t_1),\bar{F}_{2|1}^{-1}(\beta_1|t_1)\right]$$

taking $0 \leq \beta_1 < \beta_2 \leq 1$ such that $\beta_2 - \beta_1 = \alpha \in (0, 1)$.

Preliminary results	Case I: $T_1 < T$
Predicting system failures	Case II: $T_1 \leq T$
Examples	Case III: $T_1 < T_2 < T$

Predicting system failures

Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

Typical cases

Let us consider three typical cases:

Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

- Let us consider three typical cases:
- ▶ Case I: $T_1 < T$. For example, $T_1 = \min(X_1, \ldots, X_n)$ and T is a system that does not fail with the first component failure.

Preliminary results Case Predicting system failures Case Examples Case

Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

- Let us consider three typical cases:
- ▶ Case I: $T_1 < T$. For example, $T_1 = \min(X_1, \ldots, X_n)$ and T is a system that does not fail with the first component failure.
- **Case II:** $T_1 \leq T$. Here we have two options:

Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

- Let us consider three typical cases:
- ▶ Case I: $T_1 < T$. For example, $T_1 = \min(X_1, \ldots, X_n)$ and T is a system that does not fail with the first component failure.
- **Case II:** $T_1 \leq T$. Here we have two options:
- ► Case II.a: In the a priori option, i.e., before the failure of T_1 , we can provide a protocol to predict T without the knowledge of the event $T_1 = T$. Here we use $(T|T_1 = t \le T)$.

Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

- Let us consider three typical cases:
- ▶ Case I: $T_1 < T$. For example, $T_1 = \min(X_1, \ldots, X_n)$ and T is a system that does not fail with the first component failure.
- **Case II:** $T_1 \leq T$. Here we have two options:
- ▶ Case II.a: In the a priori option, i.e., before the failure of T_1 , we can provide a protocol to predict T without the knowledge of the event $T_1 = T$. Here we use $(T|T_1 = t \le T)$.
- Case II,b: In the a posteriori option, i.e., when we are at time t = T₁, we could assume T > t since if T = t we do not need to predict it. Here we use (T₂|T₁ = t < T₂).

Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

- Let us consider three typical cases:
- ▶ Case I: $T_1 < T$. For example, $T_1 = \min(X_1, \ldots, X_n)$ and T is a system that does not fail with the first component failure.
- **Case II:** $T_1 \leq T$. Here we have two options:
- ▶ Case II.a: In the a priori option, i.e., before the failure of T_1 , we can provide a protocol to predict T without the knowledge of the event $T_1 = T$. Here we use $(T|T_1 = t \le T)$.
- Case II,b: In the a posteriori option, i.e., when we are at time t = T₁, we could assume T > t since if T = t we do not need to predict it. Here we use (T₂|T₁ = t < T₂).
- Case III: We can predict the system lifetime T from two preceding system lifetimes T₁ < T₂ < T.</p>

Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

Case I: $T_1 < T$

Theorem

If T_1 and T are the lifetimes of two coherent systems satisfying $T_1 < T$ based on the same ID component lifetimes and (T_1, T) has a joint absolutely continuous distribution, then there exists a bivariate distortion function $\widehat{D} : [0,1]^2 \to [0,1]$ such that

$$\overline{G}(x,y) := \Pr(T_1 > x, T > y) = \widehat{D}(\overline{F}(x), \overline{F}(y))$$
(2.1)

for all x, y. Moreover, the reliability function of $(T|T_1 = t)$ is

$$\begin{split} \bar{G}_{T|T_1}(y|t) &:= \Pr(T > y | T_1 = t) = \frac{\partial_1 \widehat{D}(\bar{F}(t), \bar{F}(y)) - \partial_1 \widehat{D}(\bar{F}(t), 0^+)}{\partial_1 \widehat{D}(\bar{F}(t), 1)} \\ \text{for } y \ge t, \text{ where } \partial_1 \widehat{D}(u, 0^+) &:= \lim_{v \to 0^+} \partial_1 \widehat{D}(u, v). \end{split}$$

$$(2.2)$$
Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

Case I: $T_1 < T$

Note that (2.1) is not a copula representation since F is neither the reliability function of T₁ nor that of T.

Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

Case I: $T_1 < T$

- Note that (2.1) is not a copula representation since \overline{F} is neither the reliability function of T_1 nor that of T.
- The proof of Theorem 2.1 shows how to get \widehat{D} .

Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

Case I: $T_1 < T$

- Note that (2.1) is not a copula representation since \overline{F} is neither the reliability function of T_1 nor that of T.
- The proof of Theorem 2.1 shows how to get \widehat{D} .
- ▶ In many cases $\partial_1 \widehat{D}(u, 0^+) = 0$ holds and then

$$\bar{G}_{\mathcal{T}|\mathcal{T}_1}(y|t) = \frac{\partial_1 \widehat{D}(\bar{F}(t), \bar{F}(y))}{\partial_1 \widehat{D}(\bar{F}(t), 1)}.$$
(2.3)

Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

Case I: $T_1 < T$

- Note that (2.1) is not a copula representation since \overline{F} is neither the reliability function of T_1 nor that of T.
- The proof of Theorem 2.1 shows how to get \widehat{D} .
- In many cases $\partial_1 \widehat{D}(u, 0^+) = 0$ holds and then

$$\bar{G}_{T|T_1}(y|t) = \frac{\partial_1 \widehat{D}(\bar{F}(t), \bar{F}(y))}{\partial_1 \widehat{D}(\bar{F}(t), 1)}.$$
(2.3)

This expression can be used to both compute

$$\tilde{m}(t) = E(T|T_1 = t) = \int_0^\infty \bar{G}_{T|T_1}(y|t)dy = \int_0^\infty \frac{\partial_1 \widehat{D}(\bar{F}(t), \bar{F}(y))}{\partial_1 \widehat{D}(\bar{F}(t), 1)}dy,$$

and to get the quantiles of $(T|T_1 = t)$.

Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

Case I: $T_1 < T$

- Note that (2.1) is not a copula representation since \overline{F} is neither the reliability function of T_1 nor that of T.
- The proof of Theorem 2.1 shows how to get \widehat{D} .
- In many cases $\partial_1 \widehat{D}(u, 0^+) = 0$ holds and then

$$\bar{G}_{T|T_1}(y|t) = \frac{\partial_1 \widehat{D}(\bar{F}(t), \bar{F}(y))}{\partial_1 \widehat{D}(\bar{F}(t), 1)}.$$
(2.3)

This expression can be used to both compute

$$\tilde{m}(t) = E(T|T_1 = t) = \int_0^\infty \bar{G}_{T|T_1}(y|t)dy = \int_0^\infty \frac{\partial_1 \widehat{D}(\bar{F}(t), \bar{F}(y))}{\partial_1 \widehat{D}(\bar{F}(t), 1)}dy,$$

and to get the quantiles of $(T|T_1 = t)$.

For the latter, we will need the inverse function of $\bar{G}_{T|T_1}(y|t)$, denoted as $\bar{G}_{T|T_1}^{-1}(w|t)$, obtained by solving $\bar{G}_{T|T_1}(y|t) = w$ for 0 < w < 1.

12th Int. Conf. on Mathematical Methods in Reliability

.

Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

Case I: $T_1 < T$

Then, the median regression curve to predict T from T₁ is obtained with w = 0.5 as

$$m(t) = ar{G}_{\mathcal{T}|\mathcal{T}_1}^{-1}(0.5|t) \;\; ext{for} \; t \geq 0$$

Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

Case I: $T_1 < T$

Then, the median regression curve to predict T from T₁ is obtained with w = 0.5 as

$$m(t)=ar{G}_{\mathcal{T}|\mathcal{T}_1}^{-1}(0.5|t) \hspace{0.2cm} ext{for} \hspace{0.2cm} t\geq 0$$

▶ The centered prediction band for T at level 90% is obtained with w = 0.05 and w = 0.95 as

$$I_{90}(t) = \left[\bar{G}_{T|T_1}^{-1}(0.95|t), \bar{G}_{T|T_1}^{-1}(0.05|t)\right].$$

Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

Case I: $T_1 < T$

Then, the median regression curve to predict T from T₁ is obtained with w = 0.5 as

$$m(t) = ar{G}_{{\mathcal{T}}|{\mathcal{T}}_1}^{-1}(0.5|t) \;\; {
m for} \; t \geq 0$$

▶ The centered prediction band for T at level 90% is obtained with w = 0.05 and w = 0.95 as

$$I_{90}(t) = \left[ar{G}_{T|T_1}^{-1}(0.95|t), ar{G}_{T|T_1}^{-1}(0.05|t)
ight].$$

• Of course, $\Pr(T \in I_{90}(t) | T_1 = t) = 0.90$ for all $t \ge 0$.

Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

Case I: $T_1 < T$

Then, the median regression curve to predict T from T₁ is obtained with w = 0.5 as

$$m(t)=ar{G}_{\mathcal{T}|\mathcal{T}_1}^{-1}(0.5|t) \hspace{0.2cm} ext{for} \hspace{0.2cm} t\geq 0$$

▶ The centered prediction band for T at level 90% is obtained with w = 0.05 and w = 0.95 as

$$I_{90}(t) = \left[ar{G}_{T|T_1}^{-1}(0.95|t), ar{G}_{T|T_1}^{-1}(0.05|t)
ight].$$

- Of course, $\Pr(T \in I_{90}(t) | T_1 = t) = 0.90$ for all $t \ge 0$.
- Other prediction bands can be obtained similarly.

Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

Case I: $T_1 < T$

Then, the median regression curve to predict T from T₁ is obtained with w = 0.5 as

$$m(t)=ar{G}_{\mathcal{T}|\mathcal{T}_1}^{-1}(0.5|t) \hspace{0.2cm} ext{for} \hspace{0.2cm} t\geq 0$$

▶ The centered prediction band for T at level 90% is obtained with w = 0.05 and w = 0.95 as

$$I_{90}(t) = \left[ar{G}_{T|T_1}^{-1}(0.95|t), ar{G}_{T|T_1}^{-1}(0.05|t)
ight].$$

- Of course, $\Pr(T \in I_{90}(t) | T_1 = t) = 0.90$ for all $t \ge 0$.
- Other prediction bands can be obtained similarly.
- The median regression curve is an excellent alternative to the conditional expectation, and the prediction bands allow us to give more accurate predictions.

Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

Case II: $T_1 \leq T$

This is the most complex case because (T_1, T) has a singular part over the line $T = T_1$.

Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

- This is the most complex case because (T_1, T) has a singular part over the line $T = T_1$.
- In practice, two options can be considered.

Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

- This is the most complex case because (T_1, T) has a singular part over the line $T = T_1$.
- In practice, two options can be considered.
- In the first case (II.a), we are at time zero, and we want to know a priori what will happen when the failure of T₁ occurs at a time t.

 $\begin{array}{ll} \text{Case I: } \mathcal{T}_{1} < \mathcal{T} \\ \text{Case II: } \mathcal{T}_{1} \leq \mathcal{T} \\ \text{Case III: } \mathcal{T}_{1} < \mathcal{T}_{2} < \mathcal{T} \end{array}$

- ▶ This is the most complex case because (T_1, T) has a singular part over the line $T = T_1$.
- In practice, two options can be considered.
- ► In the first case (II.a), we are at time zero, and we want to know a priori what will happen when the failure of T₁ occurs at a time t.
- ► This case includes when both lifetimes coincide, that is, $T_1 = T = t$.

Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

- This is the most complex case because (T_1, T) has a singular part over the line $T = T_1$.
- In practice, two options can be considered.
- In the first case (II.a), we are at time zero, and we want to know a priori what will happen when the failure of T₁ occurs at a time t.
- This case includes when both lifetimes coincide, that is, $T_1 = T = t$.
- In the second case (II.b), we are at a time t > 0 and we know that $T_1 = t$ and that T > t.

Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

- This is the most complex case because (T_1, T) has a singular part over the line $T = T_1$.
- In practice, two options can be considered.
- In the first case (II.a), we are at time zero, and we want to know a priori what will happen when the failure of T₁ occurs at a time t.
- This case includes when both lifetimes coincide, that is, $T_1 = T = t$.
- In the second case (II.b), we are at a time t > 0 and we know that $T_1 = t$ and that T > t.
- Note that if T = t, we do not need to predict T.

Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

- This is the most complex case because (T_1, T) has a singular part over the line $T = T_1$.
- In practice, two options can be considered.
- In the first case (II.a), we are at time zero, and we want to know a priori what will happen when the failure of T₁ occurs at a time t.
- This case includes when both lifetimes coincide, that is, $T_1 = T = t$.
- In the second case (II.b), we are at a time t > 0 and we know that $T_1 = t$ and that T > t.
- Note that if T = t, we do not need to predict T.
- Let us see how these cases can be managed.

Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

Case II.b: $(T|T_1 = t < T)$.

First, we note that the joint reliability function of (T₁, T) can be written as in (2.1) for this case as well.

Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

Case II.b: $(T|T_1 = t < T)$.

- ► First, we note that the joint reliability function of (T₁, T) can be written as in (2.1) for this case as well.
- Now we might have a singular part in $T = T_1$.

Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

Case II.b: $(T|T_1 = t < T)$.

- ► First, we note that the joint reliability function of (T₁, T) can be written as in (2.1) for this case as well.
- Now we might have a singular part in $T = T_1$.
- ▶ However, if the components have an absolutely continuous joint distribution, then the joint distribution of (T_1, T) in the set $T > T_1$ is absolutely continuous as well.

Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

Case II.b: $(T|T_1 = t < T)$.

- ► First, we note that the joint reliability function of (T₁, T) can be written as in (2.1) for this case as well.
- Now we might have a singular part in $T = T_1$.
- ▶ However, if the components have an absolutely continuous joint distribution, then the joint distribution of (T_1, T) in the set $T > T_1$ is absolutely continuous as well.
- ► Then (2.2) holds for $y > t \ge 0$ and can be completed by adding that $\bar{G}_{T|T_1}(y|t) = 1$ for $0 \le y \le t$.

Case II: $T_1 < T$

Case II.b: $(T|T_1 = t < T)$.

- First, we note that the joint reliability function of (T_1, T) can be written as in (2.1) for this case as well.
- Now we might have a singular part in $T = T_1$.
- However, if the components have an absolutely continuous joint distribution, then the joint distribution of (T_1, T) in the set $T > T_1$ is absolutely continuous as well.
- Then (2.2) holds for $y > t \ge 0$ and can be completed by adding that $\overline{G}_{T|T_1}(y|t) = 1$ for $0 \le y \le t$.

However, note that, in this case

$$\alpha(t) := \Pr(T > t | T_1 = t) = \lim_{y \to t^+} \overline{G}_{T|T_1}(y|t)$$

can be less than 1 and if $\partial_1 \widehat{D}(\overline{F}(t), 0^+) = 0$ then

$$\Pr(T > y | T_1 = t < T) = \frac{\Pr(T > y | T_1 = t)}{\Pr(T > t | T_1 = t)} = \frac{\partial_1 \widehat{D}(\bar{F}(t), \bar{F}(y))}{\alpha(t) \partial_1 \widehat{D}(\bar{F}(t), 1)}$$

Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

Case II.a: $(T|T_1 = t \le T)$.

This case is actually straightforward, and we can directly use the reliability function given in (2.2).

Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

Case II.a: $(T|T_1 = t \le T)$.

- This case is actually straightforward, and we can directly use the reliability function given in (2.2).
- Now this function might have a jump at t, that is, it might have a mass $Pr(T = t | T_1 = t) = 1 \alpha(t)$ at time t.

Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

Case II.a: $(T|T_1 = t \le T)$.

- This case is actually straightforward, and we can directly use the reliability function given in (2.2).
- Now this function might have a jump at t, that is, it might have a mass $Pr(T = t | T_1 = t) = 1 \alpha(t)$ at time t.
- In this case, it is better to use bottom prediction bands instead of centered ones.

Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

Case II.a: $(T|T_1 = t \le T)$.

- This case is actually straightforward, and we can directly use the reliability function given in (2.2).
- Now this function might have a jump at t, that is, it might have a mass $Pr(T = t | T_1 = t) = 1 \alpha(t)$ at time t.
- In this case, it is better to use bottom prediction bands instead of centered ones.
- For example the bottom prediction band for T at level 90% is obtained with w = 0.10 as

$$I_{90}^{bottom}(t) = \left[t, \bar{G}_{T|T_1}^{-1}(0.10|t)\right].$$

Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

Case II.a: $(T|T_1 = t \le T)$.

- This case is actually straightforward, and we can directly use the reliability function given in (2.2).
- Now this function might have a jump at t, that is, it might have a mass $Pr(T = t | T_1 = t) = 1 \alpha(t)$ at time t.
- In this case, it is better to use bottom prediction bands instead of centered ones.
- For example the bottom prediction band for T at level 90% is obtained with w = 0.10 as

$$I_{90}^{bottom}(t) = \left[t, \bar{G}_{T|T_1}^{-1}(0.10|t)\right].$$

It might also happen that the median regression curve satisfies m(t) = t for some values of t.

 $\begin{array}{ll} \mbox{Case I: } \mathcal{T}_{1} < \mathcal{T} \\ \mbox{Case II: } \mathcal{T}_{1} \leq \mathcal{T} \\ \mbox{Case III: } \mathcal{T}_{1} < \mathcal{T}_{2} < \mathcal{T} \end{array}$

Case III: $T_1 < T_2 < T$

Here the purpose is to use all the information available.

Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

Case III: $T_1 < T_2 < T$

- ▶ Here the purpose is to use all the information available.
- We consider a simple case where we know a first failure at a time T₁ = t₁.

Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

Case III: $T_1 < T_2 < T$

- Here the purpose is to use all the information available.
- We consider a simple case where we know a first failure at a time T₁ = t₁.
- ▶ Then, we know a second failure $T_2 = t_2$ for $t_2 \ge t_1$, and we assume $T > T_2$ (with probability one).

Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

Case III: $T_1 < T_2 < T$

- Here the purpose is to use all the information available.
- We consider a simple case where we know a first failure at a time T₁ = t₁.
- ▶ Then, we know a second failure $T_2 = t_2$ for $t_2 \ge t_1$, and we assume $T > T_2$ (with probability one).
- The other options can be solved similarly.

Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

Case III: $T_1 < T_2 < T$

- Here the purpose is to use all the information available.
- We consider a simple case where we know a first failure at a time T₁ = t₁.
- ▶ Then, we know a second failure $T_2 = t_2$ for $t_2 \ge t_1$, and we assume $T > T_2$ (with probability one).
- The other options can be solved similarly.
- As in the preceding cases, if the components are ID $\sim \overline{F}$, then the joint reliability of (T_1, T_2, T) can be written as

$$\bar{G}(t_1, t_2, t) = \widehat{D}(\bar{F}(t_1), \bar{F}(t_2), \bar{F}(t))$$

for all t_1, t_2, t , where we assume that this joint reliability is absolutely continuous. Then its PDF is

$$g(t_1, t_2, t) = f(t_1)f(t_2)f(t)\partial_{1,2,3}\widehat{D}(\bar{F}(t_1), \bar{F}(t_2), \bar{F}(t))$$

For all $0 \le t_1 \le t_2 \le t$.

Preliminary results Predicting system failures Examples Case II: 7 Case II: 7 Case II: 7

Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

Case III: $T_1 < T_2 < T_1$

• The joint reliability function of (T_1, T_2) can be written as

$$ar{G}_{1,2}(t_1,t_2)=ar{G}(t_1,t_2,0)=\widehat{D}(ar{F}(t_1),ar{F}(t_2),1)$$

for all t_1, t_2, t and its PDF is

$$g_{1,2}(t_1,t_2) = f(t_1)f(t_2)\partial_{1,2}\widehat{D}(\bar{F}(t_1),\bar{F}(t_2),1) ext{ for all } 0 \leq t_1 \leq t_2.$$

Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

Case III: $T_1 < T_2 < T$

 The joint reliability function of (T₁, T₂) can be written as *G*_{1,2}(t₁, t₂) = *G*(t₁, t₂, 0) = *D*(*F*(t₁), *F*(t₂), 1) for all t₁, t₂, t and its PDF is g_{1,2}(t₁, t₂) = f(t₁)f(t₂)∂_{1,2}*D*(*F*(t₁), *F*(t₂), 1) for all 0 ≤ t₁ ≤ t₂.
 Hence, the PDF of (T|T₁ = t₁, T₂ = t₂) is g_{3|1,2}(t|t₁, t₂) = g(t₁, t₂, t) g_{1,2}(t₁, t₂) = d(t₁, t₂, t)/(g_{1,2}(t₁, t₂)) = ∂(t_{1,2}, D(*F*(t₁), *F*(t₂), *F*(t))/(∂(t₁), *F*(t₂), 1) f(t)

for $0 \leq t_1 \leq t_2 \leq t$ such that $f(t_1)f(t_2) \neq 0$.

Case I: $T_1 < T$ Case II: $T_1 \leq T$ Case III: $T_1 < T_2 < T$

Case III: $T_1 < T_2 < T$

► The joint reliability function of (T_1, T_2) can be written as $\bar{G}_{1,2}(t_1, t_2) = \bar{G}(t_1, t_2, 0) = \widehat{D}(\bar{F}(t_1), \bar{F}(t_2), 1)$

for all t_1, t_2, t and its PDF is

 $g_{1,2}(t_1,t_2) = f(t_1)f(t_2)\partial_{1,2}\widehat{D}(\bar{F}(t_1),\bar{F}(t_2),1) ext{ for all } 0 \leq t_1 \leq t_2.$

• Hence, the PDF of $(T|T_1 = t_1, T_2 = t_2)$ is

$$g_{3|1,2}(t|t_1,t_2) = \frac{g(t_1,t_2,t)}{g_{1,2}(t_1,t_2)} = \frac{\partial_{1,2,3}\widehat{D}(\bar{F}(t_1),\bar{F}(t_2),\bar{F}(t))}{\partial_{1,2}\widehat{D}(\bar{F}(t_1),\bar{F}(t_2),1)}f(t)$$

for $0 \le t_1 \le t_2 \le t$ such that $f(t_1)f(t_2) \ne 0$. Therefore, the conditional reliability function is

$$\bar{G}_{3|1,2}(t|t_1, t_2) = \frac{\partial_{1,2}\widehat{D}(\bar{F}(t_1), \bar{F}(t_2), \bar{F}(t)) - \partial_{1,2}\widehat{D}(\bar{F}(t_1), \bar{F}(t_2), 0^+)}{\partial_{1,2}\widehat{D}(\bar{F}(t_1), \bar{F}(t_2), 1)}$$

Preliminary results	Case I
Predicting system failures	Case II
Examples	Case III

12th Int. Conf. on Mathematical Methods in Reliability Jorge Navarro, Email: jorgenav@um.es. 24/49
Case I Case II Case III

Example 1, case I

• We consider the system lifetime $T = \max(X_1, \min(X_2, X_3))$.

- We consider the system lifetime $T = \max(X_1, \min(X_2, X_3))$.
- Its minimal path sets are $P_1 = \{1\}$ and $P_2 = \{2, 3\}$.

Example 1, case I

- We consider the system lifetime $T = \max(X_1, \min(X_2, X_3))$.
- Its minimal path sets are $P_1 = \{1\}$ and $P_2 = \{2, 3\}$.

Thence

$$\bar{F}_{T}(t) = \Pr(X_{1} > t) + \Pr(X_{\{2,3\}} > t) - \Pr(X_{\{1,2,3\}} > t).$$
 (3.1)

• If the components are IID
$$\sim \bar{F}$$
, then

$$ar{F}_{T}(t) = ar{F}(t) + ar{F}^{2}(t) - ar{F}^{3}(t) = ar{q}(ar{F}(t))$$

for $t \ge 0$, where $\bar{q}(u) = u + u^2 - u^3$ for $u \in [0, 1]$.

Case I Case II Case III

Example 1, case I

- We consider the system lifetime $T = \max(X_1, \min(X_2, X_3))$.
- Its minimal path sets are $P_1 = \{1\}$ and $P_2 = \{2,3\}$.

Thence

$$\bar{F}_{T}(t) = \Pr(X_{1} > t) + \Pr(X_{\{2,3\}} > t) - \Pr(X_{\{1,2,3\}} > t).$$
 (3.1)

▶ If the components are IID $\sim \bar{F}$, then

$$ar{F}_{\mathcal{T}}(t)=ar{F}(t)+ar{F}^2(t)-ar{F}^3(t)=ar{q}(ar{F}(t))$$

for $t \geq 0$, where $\bar{q}(u) = u + u^2 - u^3$ for $u \in [0, 1]$.

Then

$$E(T)=\int_0^\infty \bar{q}(\bar{F}(t))dy.$$

Preliminary results Case I Predicting system failures Case I Examples Case I

Example 1, case I

- We consider the system lifetime $T = \max(X_1, \min(X_2, X_3))$.
- Its minimal path sets are $P_1 = \{1\}$ and $P_2 = \{2, 3\}$.

Thence

$$\bar{F}_{T}(t) = \Pr(X_{1} > t) + \Pr(X_{\{2,3\}} > t) - \Pr(X_{\{1,2,3\}} > t).$$
 (3.1)

• If the components are IID $\sim \bar{F}$, then

$$ar{\mathcal{F}}_{\mathcal{T}}(t)=ar{\mathcal{F}}(t)+ar{\mathcal{F}}^2(t)-ar{\mathcal{F}}^3(t)=ar{q}(ar{\mathcal{F}}(t))$$

for $t\geq 0$, where $ar{q}(u)=u+u^2-u^3$ for $u\in [0,1].$

Then

$$E(T)=\int_0^\infty \bar{q}(\bar{F}(t))dy.$$

• If $\bar{F}(t) = e^{-t/\mu}$ for $t \ge 0$, then $E(T) = 7\mu/6 = 1.166667\mu$.

Example 1, case I

- We consider the system lifetime $T = \max(X_1, \min(X_2, X_3))$.
- Its minimal path sets are $P_1 = \{1\}$ and $P_2 = \{2, 3\}$.

Thence

$$\bar{F}_{T}(t) = \Pr(X_{1} > t) + \Pr(X_{\{2,3\}} > t) - \Pr(X_{\{1,2,3\}} > t).$$
 (3.1)

 \blacktriangleright If the components are IID $\sim \overline{F}$, then

$$ar{\mathcal{F}}_{\mathcal{T}}(t)=ar{\mathcal{F}}(t)+ar{\mathcal{F}}^2(t)-ar{\mathcal{F}}^3(t)=ar{q}(ar{\mathcal{F}}(t))$$

for t > 0, where $\bar{q}(u) = u + u^2 - u^3$ for $u \in [0, 1]$.

Then

$$E(T)=\int_0^\infty \bar{q}(\bar{F}(t))dy.$$

▶ If $\overline{F}(t) = e^{-t/\mu}$ for $t \ge 0$, then $E(T) = 7\mu/6 = 1.166667\mu$. • This is the prediction (expected value) at time t = 0.

Case I Case II Case III

Example 1, case I

Now let us predict *T* at the first component failure *T*₁ = *X*_{1:3} = *t* for *t* ≥ 0.

Case |

Example 1, case I

Now let us predict T at the first component failure $T_1 = X_{1:3} = t$ for t > 0.

From Theorem 2.1, the joint reliability function of (T_1, T) is

$$\bar{G}(x,y) = \Pr(T_1 > x, T > y) = \Pr(T_1 > x) = \bar{F}^3(x)$$

for 0 < y < x and

$$ar{G}(x,y) = ar{F}^2(x)ar{F}(y) + ar{F}(x)ar{F}^2(y) - ar{F}^3(y)$$

for 0 < x < y.

Case |

Example 1, case I

Now let us predict T at the first component failure $T_1 = X_{1:3} = t$ for t > 0.

From Theorem 2.1, the joint reliability function of (T_1, T) is

$$\bar{\mathcal{G}}(x,y) = \Pr(T_1 > x, T > y) = \Pr(T_1 > x) = \bar{\mathcal{F}}^3(x)$$

for 0 < y < x and

$$ar{G}(x,y) = ar{F}^2(x)ar{F}(y) + ar{F}(x)ar{F}^2(y) - ar{F}^3(y)$$

for 0 < x < y. • Hence $\overline{G}(x, y) = \widehat{D}(\overline{F}(x), \overline{F}(y))$ for all x, y, where

$$\widehat{D}(u,v) = \left\{ egin{array}{ccc} u^3 & {
m for} & 0 \leq u < v \leq 1; \\ u^2v + uv^2 - v^3 & {
m for} & 0 \leq v \leq u \leq 1. \end{array}
ight.$$

Case I Case II Case III

Example 1, case I

$$\partial_1 \widehat{D}(u, v) = \begin{cases} 3u^2 & \text{for } 0 \le u < v \le 1; \\ 2uv + v^2 & \text{for } 0 \le v \le u \le 1. \end{cases}$$

Case I Case II Case III

$$\partial_1 \widehat{D}(u, v) = \begin{cases} 3u^2 & \text{for } 0 \le u < v \le 1; \\ 2uv + v^2 & \text{for } 0 \le v \le u \le 1. \end{cases}$$

• Note that
$$\lim_{v\to 0^+} \partial_1 \widehat{D}(u, v) = 0$$
.

Case I Case II Case III

Example 1, case I

Hence

$$\partial_1 \widehat{D}(u, v) = \begin{cases} 3u^2 & \text{for } 0 \le u < v \le 1; \\ 2uv + v^2 & \text{for } 0 \le v \le u \le 1. \end{cases}$$

$$\bar{G}_{T|T_1}(y|t) = \frac{\partial_1 \widehat{D}(\bar{F}(t), \bar{F}(y))}{\partial_1 \widehat{D}(\bar{F}(t), 1)} = \frac{2\bar{F}(y)\bar{F}(t) + \bar{F}^2(y)}{3\bar{F}^2(t)}$$

for $0 \le t \le y$ (1 for $y \le t$).

Case I Case II Case III

Example 1, case I

By solving the quadratic equation

$$\bar{F}^{2}(y) + 2\bar{F}(t)\bar{F}(y) - 3w\bar{F}^{2}(t) = 0,$$

for 0 < w < 1 we get the quantile function

$$\bar{G}_{T|T_1}^{-1}(w|t) = \bar{F}^{-1}\left(-\bar{F}(t) + \bar{F}(t)\sqrt{1+3w}\right).$$

Case I Case II Case III

Example 1, case I

By solving the quadratic equation

$$\bar{F}^{2}(y) + 2\bar{F}(t)\bar{F}(y) - 3w\bar{F}^{2}(t) = 0,$$

for 0 < w < 1 we get the quantile function

$$\bar{G}_{T|T_1}^{-1}(w|t) = \bar{F}^{-1}\left(-\bar{F}(t) + \bar{F}(t)\sqrt{1+3w}\right).$$

> Therefore, the median regression curve to predict T is

$$m(t) = \bar{G}_{T|T_1}^{-1}(0.5|t) = \bar{F}^{-1}\left(\bar{F}(t)\left(\sqrt{2.5}-1\right)\right)$$

Case I Case II Case III

Example 1, case I

By solving the quadratic equation

$$ar{F}^2(y) + 2ar{F}(t)ar{F}(y) - 3war{F}^2(t) = 0,$$

for 0 < w < 1 we get the quantile function

$$ar{G}_{T|T_1}^{-1}(w|t) = ar{F}^{-1}\left(-ar{F}(t) + ar{F}(t)\sqrt{1+3w}\right).$$

> Therefore, the median regression curve to predict T is

$$m(t) = \bar{G}_{T|T_1}^{-1}(0.5|t) = \bar{F}^{-1}\left(\bar{F}(t)\left(\sqrt{2.5}-1\right)\right)$$

> The centered 90% prediction band for T are

$$I_{90}(t) = \left[\bar{F}^{-1}\left(\bar{F}(t)\left(\sqrt{3.85}-1\right)\right), \bar{F}^{-1}\left(\bar{F}(t)\left(\sqrt{1.15}-1\right)\right)\right].$$

Preliminary results Cas Predicting system failures Cas Examples Cas

Case I Case II Case III

Example 1, case I

If the components have an exponential distribution, then

$$m(t) = t - \mu \log \left(\sqrt{2.5} - 1\right) = t + 0.5427656\mu,$$

and the mean regression curve is

$$\tilde{m}(t) = E(T|T_1 = t) = \int_0^\infty \bar{G}_{T|T_1}(y|t)dy = t + 0.8333333\mu.$$

Preliminary results Cas Predicting system failures Cas Examples Cas

Case I Case II Case III

Example 1, case I

If the components have an exponential distribution, then

$$m(t) = t - \mu \log \left(\sqrt{2.5} - 1\right) = t + 0.5427656\mu,$$

and the mean regression curve is

$$\tilde{m}(t) = E(T|T_1 = t) = \int_0^\infty \bar{G}_{T|T_1}(y|t)dy = t + 0.8333333\mu.$$

▶ The quantile regression curves are also straight lines.

Case I Case II Case III

Example 1, case I

If the components have an exponential distribution, then

$$m(t) = t - \mu \log \left(\sqrt{2.5} - 1\right) = t + 0.5427656\mu,$$

and the mean regression curve is

$$\tilde{m}(t) = E(T|T_1 = t) = \int_0^\infty \bar{G}_{T|T_1}(y|t) dy = t + 0.83333334\mu.$$

- ▶ The quantile regression curves are also straight lines.
- As expected from the independence assumption and the lack of memory property of the exponential distribution, the predictions for the residual lifetime $(T t | T_1 = t)$ do not depend on *t*.

Case I Case II Case III

Example 1, case I

In the following figure (left) we provide the plots of the median (red) and mean (green) regression curves and the prediction bands for a standard exponential distribution jointly with a scatterplot of a simulated sample from (T₁, T) of size 100.

Case I Case II Case III

- In the following figure (left) we provide the plots of the median (red) and mean (green) regression curves and the prediction bands for a standard exponential distribution jointly with a scatterplot of a simulated sample from (T₁, T) of size 100.
- In the right plot we estimate these curves (lines) by using linear quantile regression (LQR) (for *m* and the prediction band limits) and linear regression (for *m*). The basic theory for LQR can be seen in Koenker (2005).

Figure: Scatterplots of a sample from (T_1, T) for the systems in Example 1 jointly with the theoretical (left) and estimated (right) median (red) and mean (green) regression curves and prediction bands with confidence levels 50% (dark grey) and 90% (light grey).

Example 1, case I

Note that the prediction bands explain better the uncertainty in these predictions than the single mean or median regression curves.

Case I Case II Case III

- Note that the prediction bands explain better the uncertainty in these predictions than the single mean or median regression curves.
- For example, the first data in our sample is $T_1 = 0.4632196$ and T = 0.8434573.

Case I Case II Case III

- Note that the prediction bands explain better the uncertainty in these predictions than the single mean or median regression curves.
- For example, the first data in our sample is $T_1 = 0.4632196$ and T = 0.8434573.
- ▶ The predictions for T at this failure time for T_1 are $m(T_1) = 1.105407$ and $\tilde{m}(T_1) = 1.296553$, which are quite far from the exact value.

Case I Case II Case III

- Note that the prediction bands explain better the uncertainty in these predictions than the single mean or median regression curves.
- For example, the first data in our sample is $T_1 = 0.4632196$ and T = 0.8434573.
- ▶ The predictions for T at this failure time for T_1 are $m(T_1) = 1.105407$ and $\tilde{m}(T_1) = 1.296553$, which are quite far from the exact value.
- ▶ However, the centered prediction intervals for this value are $I_{50} = [0.8554071, 1.355407]$ and $I_{90} = [0.6554071, 1.555407]$.

Case I Case II Case III

- Note that the prediction bands explain better the uncertainty in these predictions than the single mean or median regression curves.
- For example, the first data in our sample is $T_1 = 0.4632196$ and T = 0.8434573.
- ▶ The predictions for T at this failure time for T_1 are $m(T_1) = 1.105407$ and $\tilde{m}(T_1) = 1.296553$, which are quite far from the exact value.
- ▶ However, the centered prediction intervals for this value are $I_{50} = [0.8554071, 1.355407]$ and $I_{90} = [0.6554071, 1.555407]$.
- The first one does not contain the exact value (it is close to the left margin) but the second does.

Case I Case II Case III

Example 2, case I

Let us assume now that the components in this system are dependent with the following Clayton type survival copula

$$\widehat{C}(u_1, u_2, u_3) = \frac{u_1 u_2 u_3}{u_2 + u_3 - u_2 u_3}$$

for $u_1, u_2, u_3 \in [0, 1]$.

Case I Case II Case III

Example 2, case I

Let us assume now that the components in this system are dependent with the following Clayton type survival copula

$$\widehat{C}(u_1, u_2, u_3) = \frac{u_1 u_2 u_3}{u_2 + u_3 - u_2 u_3}$$

for $u_1, u_2, u_3 \in [0, 1]$.

Then we get the following regression curves.

Figure: Scatterplots of a sample from (T_1, T) for the systems in Example 2 jointly with the theoretical (left) and estimated (right) median (red) and mean (green) regression curves and prediction bands with confidence levels 50% (dark grey) and 90% (light grey).

Case I Case II Case III

Example 3, case II

• Let us study the system $T = \min(X_1, \max(X_2, X_3))$.

12th Int. Conf. on Mathematical Methods in Reliability Jorge Navarro, Email: jorgenav@um.es. 35/49

Case I Case II Case III

- Let us study the system $T = \min(X_1, \max(X_2, X_3))$.
- The minimal path sets are $P_1 = \{1, 2\}$ and $P_2 = \{1, 3\}$.

Case I Case II Case III

- Let us study the system $T = \min(X_1, \max(X_2, X_3))$.
- The minimal path sets are $P_1 = \{1, 2\}$ and $P_2 = \{1, 3\}$.
- Hence we get

$$\bar{F}_{T}(t) = \Pr(X_{\{1,2\}} > t) + \Pr(X_{\{2,3\}} > t) - \Pr(X_{\{1,2,3\}} > t).$$

Case I Case II Case III

Example 3, case II

- Let us study the system $T = \min(X_1, \max(X_2, X_3))$.
- The minimal path sets are $P_1 = \{1, 2\}$ and $P_2 = \{1, 3\}$.
- Hence we get

$$ar{\mathcal{F}}_{\mathcal{T}}(t) = \Pr(X_{\{1,2\}} > t) + \Pr(X_{\{2,3\}} > t) - \Pr(X_{\{1,2,3\}} > t).$$

▶ If we assume that the component lifetimes are IID~ \bar{F} , then $\bar{F}_T(t) = \bar{q}(\bar{F}(t))$, where $\bar{q}(u) = 2u^2 - u^3$ for $u \in [0, 1]$.

Case I Case II Case III

- Let us study the system $T = \min(X_1, \max(X_2, X_3))$.
- The minimal path sets are $P_1 = \{1,2\}$ and $P_2 = \{1,3\}$.
- Hence we get

$$ar{\mathcal{F}}_{\mathcal{T}}(t) = \Pr(X_{\{1,2\}} > t) + \Pr(X_{\{2,3\}} > t) - \Pr(X_{\{1,2,3\}} > t).$$

- ▶ If we assume that the component lifetimes are IID~ \bar{F} , then $\bar{F}_T(t) = \bar{q}(\bar{F}(t))$, where $\bar{q}(u) = 2u^2 u^3$ for $u \in [0, 1]$.
- Hence

$$E(T)=\int_0^\infty \bar{q}(\bar{F}(t))dt=2\int_0^\infty \bar{F}^2(t)dt-\int_0^\infty \bar{F}^3(t)dt.$$

Case II

Example 3, case II

- Let us study the system $T = \min(X_1, \max(X_2, X_3))$.
- The minimal path sets are $P_1 = \{1, 2\}$ and $P_2 = \{1, 3\}$.
- Hence we get

$$ar{\mathcal{F}}_{\mathcal{T}}(t) = \Pr(X_{\{1,2\}} > t) + \Pr(X_{\{2,3\}} > t) - \Pr(X_{\{1,2,3\}} > t).$$

▶ If we assume that the component lifetimes are IID ~ \overline{F} , then $\bar{F}_{\tau}(t) = \bar{q}(\bar{F}(t))$, where $\bar{q}(u) = 2u^2 - u^3$ for $u \in [0, 1]$.

Hence

$$E(T)=\int_0^\infty \bar{q}(\bar{F}(t))dt=2\int_0^\infty \bar{F}^2(t)dt-\int_0^\infty \bar{F}^3(t)dt.$$

• If $\overline{F}(t) = e^{-t/\mu}$ for $t \ge 0$, then $E(T) = 2\mu/3 = 0.666667\mu$.

(4月) (3日) (3日) 日

Case I Case II Case III

Example 3, case II

As in the preceding examples we choose $T_1 = X_{1:3}$, that is, it is the first component failure.
Case I Case II Case III

Example 3, case II

- As in the preceding examples we choose $T_1 = X_{1:3}$, that is, it is the first component failure.
- However, now

$$\Pr(T = T_1) = \Pr(T_1 = X_1) = 1/3$$

and (T_1, T) have a singular part at $T = T_1$ with probability 1/3 (even when the component lifetimes are IID and absolutely continuous).

Case I Case II Case III

Example 3, case II

- As in the preceding examples we choose $T_1 = X_{1:3}$, that is, it is the first component failure.
- However, now

$$\Pr(T = T_1) = \Pr(T_1 = X_1) = 1/3$$

and (T_1, T) have a singular part at $T = T_1$ with probability 1/3 (even when the component lifetimes are IID and absolutely continuous).

► Therefore, we are in case II.

Case I Case II Case III

Example 3, case II

The joint reliability function of (T_1, T) is $\overline{G}(x, y) = \Pr(T_1 > x, T > y) = \Pr(T_1 > x) = \overline{F}^3(x)$ for $0 \le y \le x$, and $\overline{G}(x, y) = 2\overline{F}(x)\overline{F}^2(y) - \overline{F}^3(y)$ for $0 \le x < y$.

Case I Case II Case III

Example 3, case II

The joint reliability function of (T_1, T) is $\overline{G}(x, y) = \Pr(T_1 > x, T > y) = \Pr(T_1 > x) = \overline{F}^3(x)$ for $0 \le y \le x$, and $\overline{G}(x, y) = 2\overline{F}(x)\overline{F}^2(y) - \overline{F}^3(y)$

for $0 \le x < y$.

Note that \overline{G} is continuous but not absolutely continuous.

Case I Case II Case III

Example 3, case II

The joint reliability function of (T_1, T) is $\overline{G}(x, y) = \Pr(T_1 > x, T > y) = \Pr(T_1 > x) = \overline{F}^3(x)$ for $0 \le y \le x$, and $\overline{G}(x, y) = 2\overline{F}(x)\overline{F}^2(y) - \overline{F}^3(y)$

for $0 \le x < y$.

Note that \overline{G} is continuous but not absolutely continuous.

• Moreover, $\overline{G}(x, y) = \widehat{D}(\overline{F}(x), \overline{F}(y))$ for all x, y, where

$$\widehat{D}(u,v) = \left\{ egin{array}{ccc} u^3 & {
m for} & 0 \leq u \leq v \leq 1; \ 2uv^2 - v^3 & {
m for} & 0 \leq v < u \leq 1; \end{array}
ight.$$

and

$$\partial_1 \widehat{D}(u, v) = \begin{cases} 3u^2 & \text{for } 0 \le u < v \le 1; \\ 2v^2 & \text{for } 0 \le v < u \le 1. \end{cases}$$

Case I Case II Case III

Example 3, case II.a

▶ To solve case II.a, we use (2.2) obtaining

$$ar{G}_{T|T_1}(y|t) = \Pr(T > y|T_1 = t) = rac{2ar{F}^2(y)}{3ar{F}^2(t)}$$

for $y > t$ (one for $0 \le y \le t$).

Case I Case II Case III

Example 3, case II.a

a

▶ To solve case II.a, we use (2.2) obtaining

$$ar{G}_{T|T_1}(y|t) = \Pr(T > y|T_1 = t) = rac{2ar{F}^2(y)}{3ar{F}^2(t)}$$

for y > t (one for $0 \le y \le t$). Note that

$$\alpha(t) = \Pr(T > T_1 | T_1 = t) = \lim_{y \to t^+} \bar{G}_{T|T_1}(y|t) = \frac{2}{3},$$

nd that $1 - \alpha(t) = \Pr(T = T_1 | T_1 = t) = 1/3.$

Case I Case II Case III

Example 3, case II.a

▶ To solve case II.a, we use (2.2) obtaining

$$\bar{G}_{T|T_1}(y|t) = \Pr(T > y|T_1 = t) = \frac{2\bar{F}^2(y)}{3\bar{F}^2(t)}$$

for y > t (one for $0 \le y \le t$). Note that

$$\alpha(t) = \Pr(T > T_1 | T_1 = t) = \lim_{y \to t^+} \bar{G}_{T|T_1}(y|t) = \frac{2}{3},$$

and that $1 - \alpha(t) = \Pr(T = T_1 | T_1 = t) = 1/3$.

In this case, they do not depend on t and so they coincide with $Pr(T > T_1)$ and $Pr(T = T_1)$, respectively.

Case I Case II Case III

Example 3, case II.a

▶ To solve case II.a, we use (2.2) obtaining

$$\bar{G}_{T|T_1}(y|t) = \Pr(T > y|T_1 = t) = \frac{2\bar{F}^2(y)}{3\bar{F}^2(t)}$$

for y > t (one for $0 \le y \le t$).

Note that

$$\alpha(t) = \Pr(T > T_1 | T_1 = t) = \lim_{y \to t^+} \bar{G}_{T|T_1}(y|t) = \frac{2}{3},$$

and that $1 - \alpha(t) = \Pr(T = T_1 | T_1 = t) = 1/3$.

- In this case, they do not depend on t and so they coincide with Pr(T > T₁) and Pr(T = T₁), respectively.
- Then the median regression curve is

$$m(t) = \bar{G}_{T|T_1}^{-1}(0.5|t) = \bar{F}^{-1}\left(\sqrt{0.75}\bar{F}(t)\right)$$

12th Int. Conf. on Mathematical Methods in Reliability

for t > 0

Case I Case II Case III

Example 3, case II.a

In the exponential case, we get

 $m(t) = t - 0.5\mu \ln(0.75) = t + 0.143841\mu.$

Case I Case II Case III

Example 3, case II.a

In the exponential case, we get

$$m(t) = t - 0.5\mu \ln(0.75) = t + 0.143841\mu.$$

► The regression curve is

$$\tilde{m}(t) = \int_0^\infty \bar{G}_{T|T_1}(y|t) dy = t + \int_0^\infty \frac{2\bar{F}^2(y)}{3\bar{F}^2(t)} dy = t + \frac{1}{3}\mu.$$

Case I Case II Case III

Example 3, case II.a

In the exponential case, we get

$$m(t) = t - 0.5\mu \ln(0.75) = t + 0.143841\mu.$$

The regression curve is

$$\tilde{m}(t) = \int_0^\infty \bar{G}_{T|T_1}(y|t) dy = t + \int_0^\infty \frac{2\bar{F}^2(y)}{3\bar{F}^2(t)} dy = t + \frac{1}{3}\mu.$$

The prediction bands can be obtained in a similar way.

Case I Case II Case III

Example 3, case II.a

In the exponential case, we get

$$m(t) = t - 0.5\mu \ln(0.75) = t + 0.143841\mu.$$

The regression curve is

$$\tilde{m}(t) = \int_0^\infty \bar{G}_{T|T_1}(y|t) dy = t + \int_0^\infty \frac{2\bar{F}^2(y)}{3\bar{F}^2(t)} dy = t + \frac{1}{3}\mu.$$

- The prediction bands can be obtained in a similar way.
- ▶ For example, the 90% bottom prediction band is

$$I_{90}^{bottom}(t) = \left[t, \bar{F}^{-1}\left(\sqrt{0.15}\bar{F}(t)\right)\right] = [t, t + 0.94856\mu].$$

Case I Case II Case III

Example 3, case II.a

In the exponential case, we get

$$m(t) = t - 0.5\mu \ln(0.75) = t + 0.143841\mu.$$

The regression curve is

$$\tilde{m}(t) = \int_0^\infty \bar{G}_{T|T_1}(y|t) dy = t + \int_0^\infty \frac{2\bar{F}^2(y)}{3\bar{F}^2(t)} dy = t + \frac{1}{3}\mu.$$

The prediction bands can be obtained in a similar way.

▶ For example, the 90% bottom prediction band is

$$I_{90}^{bottom}(t) = \left[t, \bar{F}^{-1}\left(\sqrt{0.15}\bar{F}(t)\right)\right] = [t, t + 0.94856\mu].$$

▶ The 50% bottom prediction band is $I_{50}^{bottom}(t) = [t, m(t)]$.

Case I Case II Case III

Example 3, case II.b

▶ To solve case II.b we assume that the first component failure happens at a time t ($T_1 = t$) and that at this time we know that the system is still alive (T > t).

Case I Case II Case III

Example 3, case II.b

- ▶ To solve case II.b we assume that the first component failure happens at a time t ($T_1 = t$) and that at this time we know that the system is still alive (T > t).
- ▶ Then we want to predict *T* under these assumptions.

Case II

Example 3, case II.b

- To solve case II.b we assume that the first component failure happens at a time t $(T_1 = t)$ and that at this time we know that the system is still alive (T > t).
- Then we want to predict T under these assumptions.
- To this end, we need to solve

$$\Pr(T > y | T_1 = t, T > t) = \frac{\partial_1 \widehat{D}(\overline{F}(t), \overline{F}(y))}{\alpha(t) \partial_1 \widehat{D}(\overline{F}(t), 1)} = \frac{\overline{F}^2(y)}{\overline{F}^2(t)} = w$$
(3.2)

for y > t and 0 < w < 1.

Example 3, case II.b

- ▶ To solve case II.b we assume that the first component failure happens at a time t ($T_1 = t$) and that at this time we know that the system is still alive (T > t).
- Then we want to predict T under these assumptions.
- To this end, we need to solve

$$\Pr(T > y | T_1 = t, T > t) = \frac{\partial_1 \widehat{D}(\overline{F}(t), \overline{F}(y))}{\alpha(t) \partial_1 \widehat{D}(\overline{F}(t), 1)} = \frac{\overline{F}^2(y)}{\overline{F}^2(t)} = w$$
(3.2)

for y > t and 0 < w < 1.

Thus the median regression curve is

$$m(t)=\bar{F}^{-1}\left(\sqrt{0.5}\bar{F}(t)\right).$$

Case I Case II Case III

Example 3, Case II.a

In the exponential case, we get

$$m(t) = t - 0.5\mu \ln(0.5) = t + 0.3465736\mu$$

12th Int. Conf. on Mathematical Methods in Reliability Jorge Navarro, Email: jorgenav@um.es. 41/49

Case I Case II Case III

Example 3, Case II.a

In the exponential case, we get

$$m(t) = t - 0.5\mu \ln(0.5) = t + 0.3465736\mu$$

$$\tilde{m}(t) = t + \int_0^\infty \frac{\bar{F}^2(y)}{\bar{F}^2(t)} dy = t + 0.5\mu$$

Case I Case II Case III

Example 3, Case II.a

In the exponential case, we get

$$m(t) = t - 0.5\mu \ln(0.5) = t + 0.3465736\mu$$

The mean regression curve in the exponential case is

$$ilde{m}(t) = t + \int_0^\infty rac{ar{F}^2(y)}{ar{F}^2(t)} dy = t + 0.5 \mu.$$

The bottom prediction bands are obtained similarly.

Case I Case II Case III

Example 3, Case II.a

In the exponential case, we get

$$m(t) = t - 0.5\mu \ln(0.5) = t + 0.3465736\mu$$
.

$$ilde{m}(t)=t+\int_0^\infty rac{ar{F}^2(y)}{ar{F}^2(t)}dy=t+0.5\mu.$$

- The bottom prediction bands are obtained similarly.
- In the following figure we provide the predictions for both cases jointly with a simulated sample.

Case I Case II Case III

Example 3, Case II.a

In the exponential case, we get

$$m(t) = t - 0.5\mu \ln(0.5) = t + 0.3465736\mu$$
.

$$ilde{m}(t) = t + \int_0^\infty rac{ar{F}^2(y)}{ar{F}^2(t)} dy = t + 0.5 \mu.$$

- The bottom prediction bands are obtained similarly.
- In the following figure we provide the predictions for both cases jointly with a simulated sample.
- We have 39 data satisfying $T = T_1$.

Case I Case II Case III

Example 3, Case II.a

In the exponential case, we get

$$m(t) = t - 0.5\mu \ln(0.5) = t + 0.3465736\mu$$
.

$$ilde{m}(t) = t + \int_0^\infty rac{ar{F}^2(y)}{ar{F}^2(t)} dy = t + 0.5 \mu.$$

- The bottom prediction bands are obtained similarly.
- In the following figure we provide the predictions for both cases jointly with a simulated sample.
- We have 39 data satisfying $T = T_1$.
- For the 61 remaining points, we get 54 in the bottom 90% prediction band. Only 7 data are not contained in this band.

Case I Case II Case III

Example 3, Case II.a

In the exponential case, we get

$$m(t) = t - 0.5\mu \ln(0.5) = t + 0.3465736\mu.$$

The mean regression curve in the exponential case is

$$ilde{m}(t) = t + \int_0^\infty rac{ar{F}^2(y)}{ar{F}^2(t)} dy = t + 0.5 \mu.$$

- The bottom prediction bands are obtained similarly.
- In the following figure we provide the predictions for both cases jointly with a simulated sample.
- We have 39 data satisfying $T = T_1$.
- For the 61 remaining points, we get 54 in the bottom 90% prediction band. Only 7 data are not contained in this band.
- The bottom 50% prediction band contains 32 out of 61 data.

41/49

Figure: Scatterplots of a sample from (T_1, T) for the systems in Example 3 jointly with the plots of theoretical median (red) and mean (green) regression curves and the bottom prediction bands with confidence levels 50% (dark grey) and 90% (light grey) for cases II.a (left) and II.b (right).

Case I Case II Case III

Example 4, Case II

 Let us consider the same system but with dependent ID components having the following Farlie-Gumbel-Morgenstern (FGM) survival copula

$$\widehat{C}(u_1, u_2, u_3) = u_1 u_2 u_3 + \theta u_1 u_2 u_3 (1 - u_1)(1 - u_2)(1 - u_3) \quad (3.3)$$

for $u_1, u_2, u_3 \in [0, 1]$ and $\theta \in [-1, 1]$.

Case I Case II Case III

Example 4, Case II

 Let us consider the same system but with dependent ID components having the following Farlie-Gumbel-Morgenstern (FGM) survival copula

$$\widehat{C}(u_1, u_2, u_3) = u_1 u_2 u_3 + \theta u_1 u_2 u_3 (1 - u_1)(1 - u_2)(1 - u_3) \quad (3.3)$$

for $u_1, u_2, u_3 \in [0, 1]$ and $\theta \in [-1, 1]$.

Then we get the following curves.

Figure: Scatterplots of a sample from (T_1, T) for the systems in Example 4 jointly with the plots of theoretical median (red) and mean (green) regression curves and the bottom prediction bands with confidence levels 50% (dark grey) and 90% (light grey) for cases II.a (left) and II.b (right).

Case I Case II Case III

Example 5, case III

• Let us consider
$$T = X_{3:3} = \max(X_1, X_2, X_3)$$
.

Case III

Example 5, case III

- Let us consider $T = X_{3:3} = \max(X_1, X_2, X_3)$.
- Let us assume that we know $T_1 = X_{1:3} = t_1$ and $T_2 = X_{2,3} = t_2$ for $0 < t_1 < t_2$.
- We assume that (X_1, X_2, X_3) are exchangeable.

Case III

Example 5, case III

- Let us consider $T = X_{3,3} = \max(X_1, X_2, X_3)$.
- Let us assume that we know $T_1 = X_{1,3} = t_1$ and $T_2 = X_{2,3} = t_2$ for $0 < t_1 < t_2$.
- We assume that (X_1, X_2, X_3) are exchangeable.
- ▶ Then the joint reliability function \overline{G} of (T_1, T_2, T) is

$$\overline{G}(t_1, t_2, t) = 6\overline{F}(t_1, t_2, t) - 3\overline{F}(t_2, t_2, t) - 3\overline{F}(t_1, t, t) + \overline{F}(t, t, t)$$

for $0 < t_1 < t_2 < t$, where $\overline{\mathbf{F}}(x_1, x_2, x_3) = \Pr(X_1 > x_1, X_2 > x_2, X_3 > x_3).$

Case III

Example 5, case III

- Let us consider $T = X_{3:3} = \max(X_1, X_2, X_3)$.
- Let us assume that we know $T_1 = X_{1:3} = t_1$ and $T_2 = X_{2,3} = t_2$ for $0 < t_1 < t_2$.
- We assume that (X_1, X_2, X_3) are exchangeable.
- ▶ Then the joint reliability function \overline{G} of (T_1, T_2, T) is

$$\overline{G}(t_1, t_2, t) = 6\overline{F}(t_1, t_2, t) - 3\overline{F}(t_2, t_2, t) - 3\overline{F}(t_1, t, t) + \overline{F}(t, t, t)$$

for
$$0 \le t_1 \le t_2 \le t$$
, where
 $\overline{F}(x_1, x_2, x_3) = \Pr(X_1 > x_1, X_2 > x_2, X_3 > x_3).$
Therefore, $\overline{G}(t_1, t_2, t) = \widehat{D}(\overline{F}(t_1), \overline{F}(t_2), \overline{F}(t))$, where
 $\widehat{D}(u, v, w) = 6\widehat{C}(u, v, w) - 3\widehat{C}(v, v, w) - 3\widehat{C}(u, w, w) + \widehat{C}(w, w, w)$
for $0 \le w \le v \le u \le 1$.

Case III

Example 5, case III

- Let us consider $T = X_{3,3} = \max(X_1, X_2, X_3)$.
- Let us assume that we know $T_1 = X_{1:3} = t_1$ and $T_2 = X_{2,3} = t_2$ for $0 < t_1 < t_2$.
- We assume that (X_1, X_2, X_3) are exchangeable.
- ▶ Then the joint reliability function \overline{G} of (T_1, T_2, T) is

$$\overline{G}(t_1, t_2, t) = 6\overline{F}(t_1, t_2, t) - 3\overline{F}(t_2, t_2, t) - 3\overline{F}(t_1, t, t) + \overline{F}(t, t, t)$$

for
$$0 \le t_1 \le t_2 \le t$$
, where
 $\overline{F}(x_1, x_2, x_3) = \Pr(X_1 > x_1, X_2 > x_2, X_3 > x_3).$
Therefore, $\overline{G}(t_1, t_2, t) = \widehat{D}(\overline{F}(t_1), \overline{F}(t_2), \overline{F}(t))$, where
 $\widehat{D}(u, v, w) = 6\widehat{C}(u, v, w) - 3\widehat{C}(v, v, w) - 3\widehat{C}(u, w, w) + \widehat{C}(w, w, w)$
for $0 \le w \le v \le u \le 1$.

• The expressions for \widehat{D} in the other cases can be obtained similarly.

12th Int. Conf. on Mathematical Methods in Reliability

Case III

Example 5, case III

 \blacktriangleright The joint reliability function of (T_1, T_2) is $\overline{G}_{1,2}(t_1, t_2) = 3\overline{F}(t_1, t_2, t_2) - 2\overline{F}(t_2, t_2, t_2)$ for $0 \le t_1 \le t_2$, that is, $\bar{G}_{1,2}(t_1, t_2) = \widehat{D}(\bar{F}(t_1), \bar{F}(t_2), 1)$ with $\widehat{D}(u, v, 1) = 3\widehat{C}(u, v, v) - 2\widehat{C}(v, v, v)$ for 0 < v < u < 1.

Preliminary results Predicting system failures Examples Case II Case II

Example 5, case III

• The joint reliability function of (T_1, T_2) is

$$ar{G}_{1,2}(t_1,t_2) = 3\overline{F}(t_1,t_2,t_2) - 2\overline{F}(t_2,t_2,t_2)$$

for $0 \le t_1 \le t_2$, that is, $ar{G}_{1,2}(t_1,t_2) = \widehat{D}(ar{F}(t_1),ar{F}(t_2),1)$ with
 $\widehat{D}(u,v,1) = 3\widehat{C}(u,v,v) - 2\widehat{C}(v,v,v)$

for $0 \le v \le u \le 1$.

Therefore, by differentiating these expressions we get

$$\partial_{1,2}\widehat{D}(u,v,w) = 6\partial_{1,2}\widehat{C}(u,v,w),$$

$$\partial_{1,2}\widehat{D}(u,v,1) = 6\partial_{1,2}\widehat{C}(u,v,v)$$

and the reliability function of $(T|T_1 = t_1, T_2 = t_2)$ is

$$\bar{G}_{3|1,2}(t|t_1,t_2) = \frac{\partial_{1,2}\widehat{C}(\bar{F}(t_1),\bar{F}(t_2),\bar{F}(t))}{\partial_{1,2}\widehat{C}(\bar{F}(t_1),\bar{F}(t_2),\bar{F}(t_2))}$$
Case III

Example 5, case III

• If \widehat{C} is the product copula (independent components), we have $\partial_{1,2}\widehat{C}(u,v,w) = w$ and

$$\bar{\mathcal{G}}_{3|1,2}(t|t_1, t_2) = \frac{\partial_{1,2}\widehat{C}(\bar{\mathcal{F}}(t_1), \bar{\mathcal{F}}(t_2), \bar{\mathcal{F}}(t))}{\partial_{1,2}\widehat{C}(\bar{\mathcal{F}}(t_1), \bar{\mathcal{F}}(t_2), \bar{\mathcal{F}}(t_2))} = \frac{\bar{\mathcal{F}}(t)}{\bar{\mathcal{F}}(t_2)}$$

for $t \ge t_2$ (Markovian property of the OS).

Case III

Example 5, case III

▶ If \hat{C} is the product copula (independent components), we have $\partial_{1,2}\widehat{C}(u,v,w) = w$ and

$$\bar{G}_{3|1,2}(t|t_1,t_2) = \frac{\partial_{1,2}\widehat{C}(\bar{F}(t_1),\bar{F}(t_2),\bar{F}(t))}{\partial_{1,2}\widehat{C}(\bar{F}(t_1),\bar{F}(t_2),\bar{F}(t_2))} = \frac{\bar{F}(t)}{\bar{F}(t_2)}$$

for $t \geq t_2$ (Markovian property of the OS). If assume the FGM copula of Example 4, then

$$\partial_{1,2}\widehat{C}(u_1, u_2, u_3) = u_3 + \theta u_3(1-u_3)(1-2u_1)(1-2u_2)$$

for all $u_1, u_2, u_3 \in [0, 1]$, and we get

$$\bar{G}_{3|1,2}(t|t_1,t_2) = \frac{\bar{F}(t)}{\bar{F}(t_2)} \cdot \frac{1 + \theta F(t)(1 - 2\bar{F}(t_1))(1 - 2\bar{F}(t_2))}{1 + \theta F(t_2)(1 - 2\bar{F}(t_1))(1 - 2\bar{F}(t_2))}$$

for $t > t_2$ (one for $0 < t < t_2$).

Case I Case II Case III

Example 5, case III

For $\theta = 0$, it coincides with the expression for the IID case.

Case III

Example 5, case III

- For $\theta = 0$, it coincides with the expression for the IID case.
- For $\theta \neq 0$, it depends on t_1 .

Example 5, case III

- For $\theta = 0$, it coincides with the expression for the IID case.
- For $\theta \neq 0$, it depends on t_1 .

To get its inverse function, we need to solve

$$\begin{split} &\theta a(t_1,t_2)\bar{F}^2(t)-(1+\theta a(t_1,t_2))\bar{F}(t)+wc(t_1,t_2)=0,\\ &\text{where }a(t_1,t_2)=(1-2\bar{F}(t_1))(1-2\bar{F}(t_2))\in[-1,1] \text{ and }\\ &c(t_1,t_2)=\bar{F}(t_2)+\theta\bar{F}(t_2)F(t_2)(1-2\bar{F}(t_1))(1-2\bar{F}(t_2))\in[0,1]. \end{split}$$

Case III

Example 5, case III

- For $\theta = 0$, it coincides with the expression for the IID case.
- For $\theta \neq 0$, it depends on t_1 .
- To get its inverse function, we need to solve

$$heta a(t_1, t_2) ar{F}^2(t) - (1 + heta a(t_1, t_2)) ar{F}(t) + wc(t_1, t_2) = 0,$$

where $a(t_1, t_2) = (1 - 2\bar{F}(t_1))(1 - 2\bar{F}(t_2)) \in [-1, 1]$ and

- $c(t_1, t_2) = \overline{F}(t_2) + \theta \overline{F}(t_2) F(t_2) (1 2\overline{F}(t_1)) (1 2\overline{F}(t_2)) \in [0, 1].$
- This equation has a unique solution in [0, 1] given by

$$\bar{F}(t) = \frac{1 + \theta a(t_1, t_2) - \sqrt{(1 + \theta a(t_1, t_2))^2 - 4\theta wa(t_1, t_2)c(t_1, t_2)}}{2\theta a(t_1, t_2)}$$

for $\theta a(t_1, t_2) \neq 0$.

Example 5, case III

- For $\theta = 0$, it coincides with the expression for the IID case.
- For $\theta \neq 0$, it depends on t_1 .
- To get its inverse function, we need to solve

$$\theta a(t_1, t_2) \bar{F}^2(t) - (1 + \theta a(t_1, t_2)) \bar{F}(t) + wc(t_1, t_2) = 0,$$

where $a(t_1,t_2) = (1-2ar{F}(t_1))(1-2ar{F}(t_2)) \in [-1,1]$ and

- $c(t_1, t_2) = \overline{F}(t_2) + \theta \overline{F}(t_2) F(t_2) (1 2\overline{F}(t_1)) (1 2\overline{F}(t_2)) \in [0, 1].$
- This equation has a unique solution in [0,1] given by

$$ar{F}(t) = rac{1 + heta a(t_1, t_2) - \sqrt{(1 + heta a(t_1, t_2))^2 - 4 heta wa(t_1, t_2)c(t_1, t_2)}}{2 heta a(t_1, t_2)}$$

for $\theta a(t_1, t_2) \neq 0$. From this expression we can compute $\overline{G}_{3|1,2}^{-1}(w|t_1, t_2)$ for $0 < w < 1, 0 \le t_1 \le t_2$ and $\theta \in [-1, 1]$.

12th Int. Conf. on Mathematical Methods in Reliability Jo

Figure: Scatterplots of a sample from (T_1, T_2) (left) and (T_1, T) (right) for the systems in Example 5 jointly with the theoretical median regression curve (red) and the centered prediction bands (right plot) with levels 50% (dark grey) and 90% (light grey). In the left plot, we only give the level curves (predictions) of the median regression map $m(t_1, t_2)$.

References

- Barlow, R.E. and Proschan, F. (1975). Statistical Theory of Reliability and Life Testing. Holt, Rinehart and Winston.
- Buono F, Navarro J (2022). Simulations and predictions of future values in the time homogeneous load-sharing model. To appear in Statistical Papers. Published online first Feb, 2023. DOI: 10.1007/s00362-023-01404-5.
- Koenker R (2005). Quantile Regression. Cambridge University Press.
- Navarro, J (2021). Prediction of record values by using quantile regression curves and distortion functions. To appear in *Metrika*. Published online first Nov. 2021.
 DOI: 10.1007/s00184-021-00847-w.

Navarro J (2022). Introduction to System Reliability Theory Springer.

Navarro J., Arriaza A., Suárez-Llorens (2023). Predicting system failure times. Submitted.

Navarro J, Buono F (2022). Predicting future failure times by using quantile regression. To appear in *Metrika*. Published online first Sept 2022. Open access. DOI: 10.1007/s00184-022-00884-z

Navarro J, Calì C, Longobardi M, Durante F (2022). Distortion representations of multivariate distributions. *Statistical Methods & Applications*. 31, 925–954.
DOI: 10.1007/s10260-021-00613-2.

Nelsen RB (2006). An introduction to copulas. Second edition. Springer, New York.

12th Int. Conf. on Mathematical Methods in Reliability

Case I Case II Case III

Final slide

More references in my web page

https://webs.um.es/jorgenav/miwiki/doku.php

12th Int. Conf. on Mathematical Methods in Reliability Jorge Navarro, Email: jorgenav@um.es. 49/49

Case I Case II Case III

Final slide

More references in my web page

https://webs.um.es/jorgenav/miwiki/doku.php

That's all. Thank you for your attention!!

Case I Case II Case III

Final slide

More references in my web page

https://webs.um.es/jorgenav/miwiki/doku.php

- That's all. Thank you for your attention!!
- Questions?