Predicting record values by using bivariate distortions

Jorge Navarro ${ }^{1}$
 Universidad de Murcia, Murcia, Spain.

${ }^{1}$ Supported by Ministerio de Ciencia e Innovación of Spain under grant PID2019-108079GB-C22/AEI/10.13039/501100011033.

References

The conference is based on the following references:

- Navarro J, Calì C, Longobardi M, Durante F. Distortion representations of multivariate distributions. To appear in Statistical Methods \& Applications. Published online first Jan. 2022. DOI: 10.1007/s10260-021-00613-2.
- Navarro J. Prediction of record values by using quantile regression curves and distortion functions. To appear in Metrika. Published online first Nov. 2021. DOI: 10.1007/s00184-021-00847-w.

Outline

Distorted distributions

Univariate distorted distributions
Multivariate distorted distributions
Main properties

Record values
Representations
Predictions
Examples

Distorted distributions
Record values References

Distorted distributions

Univariate distorted distributions

- The distorted distributions were introduced by Wang (1996) and Yaari (1987) in the context of theory of choice under risk.

Univariate distorted distributions

- The distorted distributions were introduced by Wang (1996) and Yaari (1987) in the context of theory of choice under risk.
- The purpose was to allow a "distortion" (a change) of the initial (or past) risk distribution function.

Univariate distorted distributions

- The distorted distributions were introduced by Wang (1996) and Yaari (1987) in the context of theory of choice under risk.
- The purpose was to allow a "distortion" (a change) of the initial (or past) risk distribution function.

Definition

The distorted distribution (DD) associated to a distribution function (DF) F and to an increasing continuous distortion function $q:[0,1] \rightarrow[0,1]$ such that $q(0)=0$ and $q(1)=1$, is given by

$$
\begin{equation*}
F_{q}(t)=q(F(t)), \text { for all } t \in \mathbb{R} \tag{1.1}
\end{equation*}
$$

Properties

- If q is a distortion function, then F_{q} is a proper distribution function for all distribution functions F.

Properties

- If q is a distortion function, then F_{q} is a proper distribution function for all distribution functions F.
From (1.1), $\bar{F}=1-F$ and $\bar{F}_{q}=1-F_{q}$ satisfy

$$
\begin{equation*}
\bar{F}_{q}(t)=\bar{q}(\bar{F}(t)), \text { for all } t \in \mathbb{R}, \tag{1.2}
\end{equation*}
$$

where $\bar{q}(u):=1-q(1-u)$ is called the dual distortion function.

Properties

- If q is a distortion function, then F_{q} is a proper distribution function for all distribution functions F.
- From (1.1), $\bar{F}=1-F$ and $\bar{F}_{q}=1-F_{q}$ satisfy

$$
\begin{equation*}
\bar{F}_{q}(t)=\bar{q}(\bar{F}(t)), \text { for all } t \in \mathbb{R} \tag{1.2}
\end{equation*}
$$

where $\bar{q}(u):=1-q(1-u)$ is called the dual distortion function.

- (1.1) and (1.2) are equivalent.

Examples of distorted distributions.

- Proportional Hazard Rate (PHR) Cox model $\bar{F}_{\theta}(t)=\bar{F}^{\theta}(t)$, where $\bar{q}(u)=u^{\theta}$ and $\theta>0$.

Examples of distorted distributions.

- Proportional Hazard Rate (PHR) Cox model $\bar{F}_{\theta}(t)=\bar{F}^{\theta}(t)$, where $\bar{q}(u)=u^{\theta}$ and $\theta>0$.
- Proportional Reversed Hazard Rate (PRHR) model $F_{\theta}(t)=F^{\theta}(t)$, where $q(u)=u^{\theta}$ and $\theta>0$.

Examples of distorted distributions.

- Proportional Hazard Rate (PHR) Cox model $\bar{F}_{\theta}(t)=\bar{F}^{\theta}(t)$, where $\bar{q}(u)=u^{\theta}$ and $\theta>0$.
- Proportional Reversed Hazard Rate (PRHR) model $F_{\theta}(t)=F^{\theta}(t)$, where $q(u)=u^{\theta}$ and $\theta>0$.
- Order statistics $X_{1: n}, \ldots X_{n: n}$. Then

$$
\bar{F}_{i: n}(t)=\sum_{j=0}^{i-1}\binom{n}{j} F^{j}(t) \bar{F}^{n-j}(t)=\bar{q}_{i: n}(\bar{F}(t))
$$

where $\bar{q}_{i: n}(u)=\sum_{j=0}^{i-1}\binom{n}{j}(1-u)^{j} u^{n-j}$.

Examples of distorted distributions.

- Proportional Hazard Rate (PHR) Cox model $\bar{F}_{\theta}(t)=\bar{F}^{\theta}(t)$, where $\bar{q}(u)=u^{\theta}$ and $\theta>0$.
- Proportional Reversed Hazard Rate (PRHR) model $F_{\theta}(t)=F^{\theta}(t)$, where $q(u)=u^{\theta}$ and $\theta>0$.
- Order statistics $X_{1: n}, \ldots X_{n: n}$. Then

$$
\bar{F}_{i: n}(t)=\sum_{j=0}^{i-1}\binom{n}{j} F^{j}(t) \bar{F}^{n-j}(t)=\bar{q}_{i: n}(\bar{F}(t))
$$

where $\bar{q}_{i: n}(u)=\sum_{j=0}^{i-1}\binom{n}{j}(1-u)^{j} u^{n-j}$.

- Coherent system lifetimes T:

$$
\begin{equation*}
\bar{F}_{T}(t)=\bar{Q}\left(\bar{F}_{1}(t), \ldots, \bar{F}_{n}(t)\right), \tag{1.3}
\end{equation*}
$$

where $\bar{Q}:[0,1]^{n} \rightarrow[0,1]$ is a generalized distortion function, see e.g. Navarro (2022).

Notation

- $\left(X_{1}, \ldots, X_{n}\right)$ random vector over $(\Omega, \mathcal{S}, \operatorname{Pr})$.

Notation

- $\left(X_{1}, \ldots, X_{n}\right)$ random vector over $(\Omega, \mathcal{S}, \operatorname{Pr})$.
- Joint distribution function (DF)

$$
\mathbf{F}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{Pr}\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right) .
$$

Notation

- $\left(X_{1}, \ldots, X_{n}\right)$ random vector over $(\Omega, \mathcal{S}, \operatorname{Pr})$.
- Joint distribution function (DF)

$$
\mathrm{F}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{Pr}\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right) .
$$

- Copula representation

$$
F\left(x_{1}, \ldots, x_{n}\right)=C\left(F_{1}\left(x_{1}\right), \ldots, F_{n}\left(x_{n}\right)\right),
$$

where F_{1}, \ldots, F_{n} are the marginals.

Notation

- $\left(X_{1}, \ldots, X_{n}\right)$ random vector over $(\Omega, \mathcal{S}, \operatorname{Pr})$.
- Joint distribution function (DF)

$$
\mathbf{F}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{Pr}\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right) .
$$

- Copula representation

$$
\mathbf{F}\left(x_{1}, \ldots, x_{n}\right)=C\left(F_{1}\left(x_{1}\right), \ldots, F_{n}\left(x_{n}\right)\right),
$$

where F_{1}, \ldots, F_{n} are the marginals.

- A similar representation holds for the joint survival function

$$
\overline{\mathbf{F}}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{Pr}\left(X_{1}>x_{1}, \ldots, x_{n}>x_{n}\right) .
$$

Definition

Definition (Navarro, Calì, Longobardi and Durante (2022))

A multivariate distribution function \mathbf{F} is said to be a multivariate distorted distribution (MDD) of the univariate distribution functions G_{1}, \ldots, G_{n} if there exists a distortion function D such that

$$
\begin{equation*}
\mathbf{F}\left(x_{1}, \ldots, x_{n}\right)=D\left(G_{1}\left(x_{1}\right), \ldots, G_{n}\left(x_{n}\right)\right), \forall x_{1}, \ldots, x_{n} \in \mathbb{R} \tag{1.4}
\end{equation*}
$$

We write $\mathbf{F} \equiv \operatorname{MDD}\left(G_{1}, \ldots, G_{n}\right)$, when \mathbf{F} is a MDD of G_{1}, \ldots, G_{n}.

Definition

Definition

A continuous function $D:[0,1]^{n} \rightarrow[0,1]$ is called (n-dimensional) distortion function (shortly written as $D \in \mathcal{D}_{n}$) if:
(i) $D\left(u_{1}, \ldots, u_{i-1}, 0, u_{i+1}, \ldots, u_{n}\right)=0$ for all $u_{1}, \ldots, u_{n} \in[0,1]$.
(ii) $D(1, \ldots, 1)=1$.
(iii) D is n-increasing, i.e. for all $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$ with $x_{i} \leq y_{i}$, it holds $\triangle_{\mathrm{x}}^{\mathrm{y}} D \geq 0$, where

$$
\triangle_{\left(x_{1}, \ldots, x_{n}\right)}^{\left(y_{1}, \ldots, y_{n}\right)} D:=\sum_{z_{i} \in\left\{x_{i}, y_{i}\right\}}(-1)^{\mathbf{1}\left(z_{1}, \ldots, z_{n}\right)} D\left(z_{1}, \ldots, z_{n}\right),
$$

with $1\left(z_{1}, \ldots, z_{n}\right)=\sum_{i=1}^{n} 1\left(z_{i}=x_{i}\right)$ and $1(A)=1$ (respectively, 0) if A is true (respectively, false).

Main properties

- As in Sklar's theorem for copulas, the MDD representation is unique for fixed continuous DF G_{1}, \ldots, G_{n}.

Main properties

- As in Sklar's theorem for copulas, the MDD representation is unique for fixed continuous DF G_{1}, \ldots, G_{n}.
- If $D \in \mathcal{D}_{n}$, then

$$
D\left(G_{1}\left(x_{1}\right), \ldots, G_{n}\left(x_{n}\right)\right)
$$

is a multivariate distribution function for all DF G_{1}, \ldots, G_{n}.

Main properties

- As in Sklar's theorem for copulas, the MDD representation is unique for fixed continuous DF G_{1}, \ldots, G_{n}.
- If $D \in \mathcal{D}_{n}$, then

$$
D\left(G_{1}\left(x_{1}\right), \ldots, G_{n}\left(x_{n}\right)\right)
$$

is a multivariate distribution function for all DF G_{1}, \ldots, G_{n}.

- If $\mathbf{F} \equiv \operatorname{MDD}\left(G_{1}, \ldots, G_{n}\right)$, then

$$
\begin{equation*}
\overline{\mathbf{F}}\left(x_{1}, \ldots, x_{n}\right)=\widehat{D}\left(\bar{G}_{1}\left(x_{1}\right), \ldots, \bar{G}_{n}\left(x_{n}\right)\right) \tag{1.5}
\end{equation*}
$$

where $\bar{G}_{i}=1-G_{i}$ and $\widehat{D} \in \mathcal{D}_{n}$.

Marginal distributions

- If $\mathbf{F} \equiv \operatorname{MDD}\left(G_{1}, \ldots, G_{n}\right)$, then all the marginal distributions of F are also MDD from G_{1}, \ldots, G_{n}.

Marginal distributions

- If $\mathbf{F} \equiv \operatorname{MDD}\left(G_{1}, \ldots, G_{n}\right)$, then all the marginal distributions of F are also MDD from G_{1}, \ldots, G_{n}.
- In particular, the i th marginal is

$$
\begin{equation*}
F_{i}\left(x_{i}\right)=D\left(1, \ldots, 1, G_{i}\left(x_{i}\right), 1, \ldots, 1\right)=D_{i}\left(G_{i}\left(x_{i}\right)\right) \tag{1.6}
\end{equation*}
$$

where $D_{i}(u):=D(1, \ldots, 1, u, 1, \ldots, 1)$ and the value u is placed at the i th position.

Marginal distributions

- If $\mathbf{F} \equiv \operatorname{MDD}\left(G_{1}, \ldots, G_{n}\right)$, then all the marginal distributions of F are also MDD from G_{1}, \ldots, G_{n}.
- In particular, the i th marginal is

$$
\begin{equation*}
F_{i}\left(x_{i}\right)=D\left(1, \ldots, 1, G_{i}\left(x_{i}\right), 1, \ldots, 1\right)=D_{i}\left(G_{i}\left(x_{i}\right)\right) \tag{1.6}
\end{equation*}
$$

where $D_{i}(u):=D(1, \ldots, 1, u, 1, \ldots, 1)$ and the value u is placed at the i th position.

- Clearly, we have $G_{i}=F_{i}$ for a fixed $i \in\{1, \ldots, n\}$ when $D_{i}(u)=u$ for all $u \in[0,1]$.

Conditional distributions

- All the conditional distributions of $\mathbf{F} \equiv \operatorname{MDD}\left(G_{1}, \ldots, G_{n}\right)$ have MDD representations.

Conditional distributions

- All the conditional distributions of $\mathbf{F} \equiv \operatorname{MDD}\left(G_{1}, \ldots, G_{n}\right)$ have MDD representations.
- We just consider the DF $F_{2 \mid 1}$ of $\left(X_{2} \mid X_{1}=x_{1}\right)$.

Conditional distributions

- All the conditional distributions of $\mathbf{F} \equiv \operatorname{MDD}\left(G_{1}, \ldots, G_{n}\right)$ have MDD representations.
- We just consider the DF $F_{2 \mid 1}$ of $\left(X_{2} \mid X_{1}=x_{1}\right)$.

Proposition

Let $\left(X_{1}, X_{2}\right)$ with $\mathbf{F} \equiv \operatorname{MDD}\left(G_{1}, G_{2}\right)$ for $D \in \mathcal{D}_{2}$, then

$$
\begin{equation*}
F_{2 \mid 1}\left(x_{2} \mid x_{1}\right)=D_{2 \mid 1}\left(G_{2}\left(x_{2}\right) \mid G_{1}\left(x_{1}\right)\right) \tag{1.7}
\end{equation*}
$$

whenever $\lim _{v \rightarrow 0^{+}} \partial_{1} D\left(G_{1}\left(x_{1}\right), v\right)=0$, where

$$
D_{2 \mid 1}\left(v \mid G_{1}\left(x_{1}\right)\right)=\frac{\partial_{1} D\left(G_{1}\left(x_{1}\right), v\right)}{\partial_{1} D\left(G_{1}\left(x_{1}\right), 1\right)}
$$

for $0<v<1$ and x_{1} such that $\partial_{1} D\left(G_{1}\left(x_{1}\right), 1\right)>0$.

Theoretical Quantile Regression

- The (mean) regression curve to predict X_{2} from X_{1} is $E\left(X_{2} \mid X_{1}=x_{1}\right)$.

Theoretical Quantile Regression

The (mean) regression curve to predict X_{2} from X_{1} is $E\left(X_{2} \mid X_{1}=x_{1}\right)$.

- Another option to predict X_{2} from X_{1} is the conditional median regression curve $m_{2 \mid 1}\left(x_{1}\right):=F_{2 \mid 1}^{-1}\left(0.5 \mid x_{1}\right)$ (see Koenker (2005) or Nelsen (2006), p. 217).

Theoretical Quantile Regression

The (mean) regression curve to predict X_{2} from X_{1} is $E\left(X_{2} \mid X_{1}=x_{1}\right)$.

- Another option to predict X_{2} from X_{1} is the conditional median regression curve $m_{2 \mid 1}\left(x_{1}\right):=F_{2 \mid 1}^{-1}\left(0.5 \mid x_{1}\right)$ (see Koenker (2005) or Nelsen (2006), p. 217).

Theoretical Quantile Regression

The (mean) regression curve to predict X_{2} from X_{1} is $E\left(X_{2} \mid X_{1}=x_{1}\right)$.

- Another option to predict X_{2} from X_{1} is the conditional median regression curve $m_{2 \mid 1}\left(x_{1}\right):=F_{2 \mid 1}^{-1}\left(0.5 \mid x_{1}\right)$ (see Koenker (2005) or Nelsen (2006), p. 217).
- This quantile function $F_{2 \mid 1}^{-1}$ can be computed from (1.7) as

$$
F_{2 \mid 1}^{-1}\left(q \mid x_{1}\right)=G_{2}^{-1}\left(D_{2 \mid 1}^{-1}\left(q \mid G_{1}\left(x_{1}\right)\right)\right), 0<q<1 .
$$

Theoretical Quantile Regression

- The (mean) regression curve to predict X_{2} from X_{1} is $E\left(X_{2} \mid X_{1}=x_{1}\right)$.
- Another option to predict X_{2} from X_{1} is the conditional median regression curve $m_{2 \mid 1}\left(x_{1}\right):=F_{2 \mid 1}^{-1}\left(0.5 \mid x_{1}\right)$ (see Koenker (2005) or Nelsen (2006), p. 217).
- This quantile function $F_{2 \mid 1}^{-1}$ can be computed from (1.7) as

$$
F_{2 \mid 1}^{-1}\left(q \mid x_{1}\right)=G_{2}^{-1}\left(D_{2 \mid 1}^{-1}\left(q \mid G_{1}\left(x_{1}\right)\right)\right), 0<q<1 .
$$

- Moreover, it can be used to obtain α-prediction bands for X_{2}

$$
\left[F_{2 \mid 1}^{-1}\left(\beta_{1} \mid x_{1}\right), F_{2 \mid 1}^{-1}\left(\beta_{2} \mid x_{1}\right)\right]
$$

taking $0 \leq \beta_{1}<\beta_{2} \leq 1$ such that $\beta_{2}-\beta_{1}=\alpha \in(0,1)$.

Examples of MDD

- Multivariate residual lifetimes

$$
X_{t}=\left(X_{1}-t, \ldots, X_{n}-t \mid X_{1}>t, \ldots, X_{n}>t\right)
$$

Examples of MDD

- Multivariate residual lifetimes

$$
X_{t}=\left(X_{1}-t, \ldots, X_{n}-t \mid X_{1}>t, \ldots, X_{n}>t\right)
$$

- Paired data. If X and Y have a common distribution function $F, L=\min (X, Y)$ is known and we want to predict $U=\max (X, Y)$, then (L, U) has a MDD representation $M D D(F, F)$.

Examples of MDD

- Multivariate residual lifetimes

$$
X_{t}=\left(X_{1}-t, \ldots, X_{n}-t \mid X_{1}>t, \ldots, X_{n}>t\right)
$$

- Paired data. If X and Y have a common distribution function $F, L=\min (X, Y)$ is known and we want to predict $U=\max (X, Y)$, then (L, U) has a MDD representation $M D D(F, F)$.
- Coherent systems with ID components.

Examples of MDD

- Multivariate residual lifetimes

$$
X_{t}=\left(X_{1}-t, \ldots, X_{n}-t \mid X_{1}>t, \ldots, X_{n}>t\right)
$$

- Paired data. If X and Y have a common distribution function $F, L=\min (X, Y)$ is known and we want to predict $U=\max (X, Y)$, then (L, U) has a MDD representation $M D D(F, F)$.
- Coherent systems with ID components.
- Order statistics (k-out-of- n systems).

Examples of MDD

- Multivariate residual lifetimes

$$
X_{t}=\left(X_{1}-t, \ldots, X_{n}-t \mid X_{1}>t, \ldots, X_{n}>t\right)
$$

- Paired data. If X and Y have a common distribution function $F, L=\min (X, Y)$ is known and we want to predict $U=\max (X, Y)$, then (L, U) has a MDD representation $M D D(F, F)$.
- Coherent systems with ID components.
- Order statistics (k-out-of- n systems).
- Other examples: Sequential order statistics, record values, convolutions, ...

Record values

Univariate representations

- Let us consider the upper record values R_{1}, R_{2}, \ldots from a sequence of IID r.v. X_{1}, X_{2}, \ldots with a common abs. cont. distribution function F and $\bar{F}=1-F$.

Univariate representations

- Let us consider the upper record values R_{1}, R_{2}, \ldots from a sequence of IID r.v. X_{1}, X_{2}, \ldots with a common abs. cont. distribution function F and $\bar{F}=1-F$.
- It is well known (see, e.g., Nevzorov, 2001, p. 65) that the survival function $\bar{G}_{n}(t)=\operatorname{Pr}\left(R_{n}>t\right)$ of R_{n} is given by

$$
\begin{equation*}
\bar{G}_{n}(t)=\bar{F}(t) \sum_{k=0}^{n-1} \frac{(-\log (\bar{F}(t)))^{k}}{k!}=\bar{q}_{n}(\bar{F}(t)), \tag{2.1}
\end{equation*}
$$

where

$$
\bar{q}_{n}(u)=u \sum_{k=0}^{n-1} \frac{(-\log (u))^{k}}{k!} ; u \in[0,1], n=1,2, \ldots
$$

Univariate representations

- Let us consider the upper record values R_{1}, R_{2}, \ldots from a sequence of IID r.v. X_{1}, X_{2}, \ldots with a common abs. cont. distribution function F and $\bar{F}=1-F$.
- It is well known (see, e.g., Nevzorov, 2001, p. 65) that the survival function $\bar{G}_{n}(t)=\operatorname{Pr}\left(R_{n}>t\right)$ of R_{n} is given by

$$
\begin{equation*}
\bar{G}_{n}(t)=\bar{F}(t) \sum_{k=0}^{n-1} \frac{(-\log (\bar{F}(t)))^{k}}{k!}=\bar{q}_{n}(\bar{F}(t)), \tag{2.1}
\end{equation*}
$$

where

$$
\bar{q}_{n}(u)=u \sum_{k=0}^{n-1} \frac{(-\log (u))^{k}}{k!} ; u \in[0,1], n=1,2, \ldots
$$

- The function \bar{q}_{n} is a distortion function.

Multivariate representations

Proposition

The joint survival function $\overline{\mathbf{G}}$ of $\left(R_{1}, \ldots, R_{n}\right)$ can be written as

$$
\begin{equation*}
\overline{\mathbf{G}}\left(x_{1}, \ldots, x_{n}\right)=\hat{D}\left(\bar{F}\left(x_{1}\right), \ldots, \bar{F}\left(x_{n}\right)\right) \tag{2.2}
\end{equation*}
$$

for a continuous distortion function $\hat{D}:[0,1]^{n} \rightarrow[0,1]$. The probability density function $\hat{d}=\partial_{1, \ldots, n} \hat{D}$ of \hat{D} is given by

$$
\begin{equation*}
\hat{d}\left(u_{1}, \ldots, u_{n}\right)=\frac{1}{u_{1} \ldots u_{n-1}} \tag{2.3}
\end{equation*}
$$

for $1>u_{1}>\cdots>u_{n}>0$ (zero elsewhere).

Bivariate representation

- As a consequence, the different marginal distributions of $\left(R_{1}, \ldots, R_{n}\right)$ have also multivariate distorted distributions.

Bivariate representation

- As a consequence, the different marginal distributions of $\left(R_{1}, \ldots, R_{n}\right)$ have also multivariate distorted distributions.
- For example, if $1 \leq i<j \leq n$, then the joint survival function $\overline{\mathbf{G}}_{i, j}$ of $\left(R_{i}, R_{j}\right)$ can be written as

$$
\begin{equation*}
\overline{\mathbf{G}}_{i, j}\left(x_{i}, x_{j}\right)=\hat{D}_{i, j}\left(\bar{F}\left(x_{i}\right), \bar{F}\left(x_{j}\right)\right), \tag{2.4}
\end{equation*}
$$

where $\hat{D}_{i, j}(u, v)=\hat{D}(1, \ldots, 1, u, 1, \ldots, 1, v, 1, \ldots, 1)$ and u and v are placed at the i-th and j-th variables, respectively.

Bivariate representation

- As a consequence, the different marginal distributions of $\left(R_{1}, \ldots, R_{n}\right)$ have also multivariate distorted distributions.
- For example, if $1 \leq i<j \leq n$, then the joint survival function $\overline{\mathbf{G}}_{i, j}$ of $\left(R_{i}, R_{j}\right)$ can be written as

$$
\begin{equation*}
\overline{\mathbf{G}}_{i, j}\left(x_{i}, x_{j}\right)=\hat{D}_{i, j}\left(\bar{F}\left(x_{i}\right), \bar{F}\left(x_{j}\right)\right), \tag{2.4}
\end{equation*}
$$

where $\hat{D}_{i, j}(u, v)=\hat{D}(1, \ldots, 1, u, 1, \ldots, 1, v, 1, \ldots, 1)$ and u and v are placed at the i-th and j-th variables, respectively.

- This expression can be used to predict R_{j} from R_{i} for $i<j$ and to get prediction bands for this prediction. The result can be stated as follows.

Bivariate representation

Proposition

The conditional survival function $\overline{\mathbf{G}}_{j \mid i}$ of $\left(R_{j} \mid R_{i}=x_{i}\right)$ for $1 \leq i<j \leq n$ is given by

$$
\begin{equation*}
\overline{\mathbf{G}}_{j \mid i}\left(x_{j} \mid x_{i}\right)=\frac{(i-1)!}{\left(-\log \bar{F}\left(x_{i}\right)\right)^{i-1}} \partial_{1} \widehat{D}_{i, j}\left(\bar{F}\left(x_{i}\right), \bar{F}\left(x_{j}\right)\right) \tag{2.5}
\end{equation*}
$$

for $x_{j} \geq x_{i}$ whenever $f\left(x_{i}\right)>0,0<\bar{F}\left(x_{i}\right)<1$ and $\lim _{v \rightarrow 0^{+}} \partial_{1} \widehat{D}_{i, j}(u, v)=0$ for all $0<u<1$.

Bivariate representation

Proposition

The conditional survival function $\overline{\mathbf{G}}_{j \mid i}$ of $\left(R_{j} \mid R_{i}=x_{i}\right)$ for $1 \leq i<j \leq n$ is given by

$$
\begin{equation*}
\overline{\mathbf{G}}_{j \mid i}\left(x_{j} \mid x_{i}\right)=\frac{(i-1)!}{\left(-\log \bar{F}\left(x_{i}\right)\right)^{i-1}} \partial_{1} \widehat{D}_{i, j}\left(\bar{F}\left(x_{i}\right), \bar{F}\left(x_{j}\right)\right) \tag{2.5}
\end{equation*}
$$

for $x_{j} \geq x_{i}$ whenever $f\left(x_{i}\right)>0,0<\bar{F}\left(x_{i}\right)<1$ and
$\lim _{v \rightarrow 0^{+}} \partial_{1} \widehat{D}_{i, j}(u, v)=0$ for all $0<u<1$.

- Hence, the median regression curve to predict R_{j} from R_{i} is

$$
\begin{equation*}
m_{j \mid i}\left(x_{i}\right)=\overline{\mathbf{G}}_{j \mid i}^{-1}\left(0.5 \mid x_{i}\right), \tag{2.6}
\end{equation*}
$$

where $\overline{\mathbf{G}}_{j \mid i}^{-1}$ is the inverse function of $\overline{\mathbf{G}}_{j \mid i}$.

Case $i=1$ and $j=2$

- The joint survival function $\overline{\mathbf{G}}_{1,2}$ of $\left(R_{1}, R_{2}\right)$ can be written as

$$
\begin{equation*}
\overline{\mathbf{G}}_{1,2}\left(x_{1}, x_{2}\right)=\bar{F}\left(x_{2}\right)+\bar{F}\left(x_{2}\right) \log \frac{\bar{F}\left(x_{1}\right)}{\bar{F}\left(x_{1}\right)}=\widehat{D}_{1,2}\left(\bar{F}\left(x_{1}\right), \bar{F}\left(x_{2}\right)\right) \tag{2.7}
\end{equation*}
$$

for $x_{1} \leq x_{2}$, where

$$
\widehat{D}_{1,2}(u, v)=v+v \log \frac{u}{v} ; 1>u \geq v>0
$$

Case $i=1$ and $j=2$

- The joint survival function $\overline{\mathbf{G}}_{1,2}$ of $\left(R_{1}, R_{2}\right)$ can be written as

$$
\begin{equation*}
\overline{\mathbf{G}}_{1,2}\left(x_{1}, x_{2}\right)=\bar{F}\left(x_{2}\right)+\bar{F}\left(x_{2}\right) \log \frac{\bar{F}\left(x_{1}\right)}{\bar{F}\left(x_{1}\right)}=\widehat{D}_{1,2}\left(\bar{F}\left(x_{1}\right), \bar{F}\left(x_{2}\right)\right) \tag{2.7}
\end{equation*}
$$

for $x_{1} \leq x_{2}$, where

$$
\widehat{D}_{1,2}(u, v)=v+v \log \frac{u}{v} ; 1>u \geq v>0
$$

- $\widehat{D}_{1,2}$ is not a copula since $\widehat{D}_{1,2}(1, v)=v-v \log v \neq v$.

Case $i=1$ and $j=2$

- The joint survival function $\overline{\mathbf{G}}_{1,2}$ of $\left(R_{1}, R_{2}\right)$ can be written as

$$
\begin{equation*}
\overline{\mathbf{G}}_{1,2}\left(x_{1}, x_{2}\right)=\bar{F}\left(x_{2}\right)+\bar{F}\left(x_{2}\right) \log \frac{\bar{F}\left(x_{1}\right)}{\bar{F}\left(x_{1}\right)}=\widehat{D}_{1,2}\left(\bar{F}\left(x_{1}\right), \bar{F}\left(x_{2}\right)\right) \tag{2.7}
\end{equation*}
$$

for $x_{1} \leq x_{2}$, where

$$
\widehat{D}_{1,2}(u, v)=v+v \log \frac{u}{v} ; 1>u \geq v>0
$$

- $\widehat{D}_{1,2}$ is not a copula since $\widehat{D}_{1,2}(1, v)=v-v \log v \neq v$.
- Actually $\widehat{D}_{1,2}(1, v)=\bar{q}_{2}(v)$, that is, it is the dual distortion function of the second upper record given in (2.1).

Case $i=1$ and $j=2$

- The joint survival function $\overline{\mathbf{G}}_{1,2}$ of $\left(R_{1}, R_{2}\right)$ can be written as

$$
\begin{equation*}
\overline{\mathrm{G}}_{1,2}\left(x_{1}, x_{2}\right)=\bar{F}\left(x_{2}\right)+\bar{F}\left(x_{2}\right) \log \frac{\bar{F}\left(x_{1}\right)}{\bar{F}\left(x_{1}\right)}=\widehat{D}_{1,2}\left(\bar{F}\left(x_{1}\right), \bar{F}\left(x_{2}\right)\right) \tag{2.7}
\end{equation*}
$$

for $x_{1} \leq x_{2}$, where

$$
\widehat{D}_{1,2}(u, v)=v+v \log \frac{u}{v} ; 1>u \geq v>0
$$

- $\widehat{D}_{1,2}$ is not a copula since $\widehat{D}_{1,2}(1, v)=v-v \log v \neq v$.
- Actually $\widehat{D}_{1,2}(1, v)=\bar{q}_{2}(v)$, that is, it is the dual distortion function of the second upper record given in (2.1).
- \bar{F} is equal to the first marginal survival function since $\widehat{D}_{1,2}(u, 1)=u$, but it is not equal to the second one.

Case $i=1$ and $j=2$

- The joint survival function $\overline{\mathbf{G}}_{1,2}$ of $\left(R_{1}, R_{2}\right)$ can be written as

$$
\begin{equation*}
\overline{\mathbf{G}}_{1,2}\left(x_{1}, x_{2}\right)=\bar{F}\left(x_{2}\right)+\bar{F}\left(x_{2}\right) \log \frac{\bar{F}\left(x_{1}\right)}{\bar{F}\left(x_{1}\right)}=\widehat{D}_{1,2}\left(\bar{F}\left(x_{1}\right), \bar{F}\left(x_{2}\right)\right) \tag{2.7}
\end{equation*}
$$

for $x_{1} \leq x_{2}$, where

$$
\widehat{D}_{1,2}(u, v)=v+v \log \frac{u}{v} ; 1>u \geq v>0
$$

- $\widehat{D}_{1,2}$ is not a copula since $\widehat{D}_{1,2}(1, v)=v-v \log v \neq v$.
- Actually $\widehat{D}_{1,2}(1, v)=\bar{q}_{2}(v)$, that is, it is the dual distortion function of the second upper record given in (2.1).
- \bar{F} is equal to the first marginal survival function since $\widehat{D}_{1,2}(u, 1)=u$, but it is not equal to the second one.
- To get the copula representation of $\left(R_{1}, R_{2}\right)$ we need the inverse of the distribution function of R_{2}.

Case $i=1$ and $j=2$

Then, the median regression curve to predict R_{2} from R_{1} is

$$
\begin{equation*}
m_{2 \mid 1}\left(x_{1}\right)=\overline{\mathbf{G}}_{2 \mid 1}^{-1}\left(0.5 \mid x_{1}\right)=\bar{F}^{-1}\left(0.5 \bar{F}\left(x_{1}\right)\right), \tag{2.8}
\end{equation*}
$$

where \bar{F}^{-1} is the inverse function of \bar{F}.

Case $i=1$ and $j=2$

Then, the median regression curve to predict R_{2} from R_{1} is

$$
\begin{equation*}
m_{2 \mid 1}\left(x_{1}\right)=\overline{\mathbf{G}}_{2 \mid 1}^{-1}\left(0.5 \mid x_{1}\right)=\bar{F}^{-1}\left(0.5 \bar{F}\left(x_{1}\right)\right) \tag{2.8}
\end{equation*}
$$

where \bar{F}^{-1} is the inverse function of \bar{F}.

- Analogously, the centered 50% and 90% quantile prediction bands for R_{2} are given by

$$
\begin{aligned}
& {\left[\overline{\mathbf{G}}_{2 \mid 1}^{-1}\left(0.75 \mid x_{1}\right), \overline{\mathbf{G}}_{2 \mid 1}^{-1}\left(0.25 \mid x_{1}\right)\right]=\left[\bar{F}^{-1}\left(0.75 \bar{F}\left(x_{1}\right)\right), \bar{F}^{-1}\left(0.25 \bar{F}\left(x_{1}\right)\right)\right]} \\
& \quad \text { and }
\end{aligned}
$$

$\left[\overline{\mathbf{G}}_{2 \mid 1}^{-1}\left(0.95 \mid x_{1}\right), \overline{\mathbf{G}}_{2 \mid 1}^{-1}\left(0.05 \mid x_{1}\right)\right]=\left[\bar{F}^{-1}\left(0.95 \bar{F}\left(x_{1}\right)\right), \bar{F}^{-1}\left(0.05 \bar{F}\left(x_{1}\right)\right)\right]$.

Case $i=n$ and $j=n+1$

Proposition

The joint survival function $\overline{\mathbf{G}}_{n, n+1}$ of $\left(R_{n}, R_{n+1}\right)$ can be written as

$$
\overline{\mathbf{G}}_{n, n+1}\left(x_{n}, x_{n+1}\right)=\widehat{D}_{n, n+1}\left(\bar{F}\left(x_{n}\right), \bar{F}\left(x_{n+1}\right)\right)
$$

for $x_{n} \leq x_{n+1}$, where

$$
\begin{gather*}
\widehat{D}_{n, n+1}(u, v)=-\frac{1}{n!} v(-\log u)^{n}+\bar{\gamma}_{n+1}(-\log v), 1>u \geq v>0 \\
\bar{\gamma}_{n+1}(z)=\frac{1}{n!} \int_{z}^{\infty} x^{n} e^{-x} d x \tag{2.9}
\end{gather*}
$$

is the survival function of a gamma distribution with scale parameter equal to one and shape parameter equal to $n+1$.

Case $i=n$ and $j=n+1$

- Therefore, we get

$$
\partial_{1} \widehat{D}_{n, n+1}(u, v)=\frac{1}{(n-1)!}(-\log u)^{n-1} \frac{v}{u}
$$

for $1>u \geq v>0$ and the conditional survival function is
$\overline{\mathbf{G}}_{n+1 \mid n}\left(x_{n+1} \mid x_{n}\right)=(n-1)!\frac{\partial_{1} \widehat{D}_{n, n+1}\left(\bar{F}\left(x_{n}\right), \bar{F}\left(x_{n+1}\right)\right)}{\left(-\log \bar{F}\left(x_{n}\right)\right)^{n-1}}=\frac{\bar{F}\left(x_{n+1}\right)}{\bar{F}\left(x_{n}\right)}$
for $x_{n+1} \geq x_{n}$ and x_{n} such that $\bar{F}\left(x_{n}\right)>0$ and $f\left(x_{n}\right)>0$.

Case $i=n$ and $j=n+1$

- Therefore, we get

$$
\partial_{1} \widehat{D}_{n, n+1}(u, v)=\frac{1}{(n-1)!}(-\log u)^{n-1} \frac{v}{u}
$$

for $1>u \geq v>0$ and the conditional survival function is
$\overline{\mathbf{G}}_{n+1 \mid n}\left(x_{n+1} \mid x_{n}\right)=(n-1)!\frac{\partial_{1} \widehat{D}_{n, n+1}\left(\bar{F}\left(x_{n}\right), \bar{F}\left(x_{n+1}\right)\right)}{\left(-\log \bar{F}\left(x_{n}\right)\right)^{n-1}}=\frac{\bar{F}\left(x_{n+1}\right)}{\bar{F}\left(x_{n}\right)}$
for $x_{n+1} \geq x_{n}$ and x_{n} such that $\bar{F}\left(x_{n}\right)>0$ and $f\left(x_{n}\right)>0$.

- This expression is also a very well known result (see, e.g., Nevzorov, 2001, p. 68).

Case $i=n$ and $j=n+1$

- Therefore, we get

$$
\partial_{1} \widehat{D}_{n, n+1}(u, v)=\frac{1}{(n-1)!}(-\log u)^{n-1} \frac{v}{u}
$$

for $1>u \geq v>0$ and the conditional survival function is
$\overline{\mathbf{G}}_{n+1 \mid n}\left(x_{n+1} \mid x_{n}\right)=(n-1)!\frac{\partial_{1} \widehat{D}_{n, n+1}\left(\bar{F}\left(x_{n}\right), \bar{F}\left(x_{n+1}\right)\right)}{\left(-\log \bar{F}\left(x_{n}\right)\right)^{n-1}}=\frac{\bar{F}\left(x_{n+1}\right)}{\bar{F}\left(x_{n}\right)}$
for $x_{n+1} \geq x_{n}$ and x_{n} such that $\bar{F}\left(x_{n}\right)>0$ and $f\left(x_{n}\right)>0$.

- This expression is also a very well known result (see, e.g., Nevzorov, 2001, p. 68).
- Even more, the record values form a Markov chain, that is,

$$
\operatorname{Pr}\left(R_{n+1}>x_{n+1} \mid R_{1}=x_{1}, \ldots, R_{n}=x_{n}\right)=\operatorname{Pr}\left(R_{n+1}>x_{n+1} \mid R_{n}=x_{n}\right)
$$

Case $i=n$ and $j=n+1$

- Therefore, we get

$$
\partial_{1} \widehat{D}_{n, n+1}(u, v)=\frac{1}{(n-1)!}(-\log u)^{n-1} \frac{v}{u}
$$

for $1>u \geq v>0$ and the conditional survival function is
$\overline{\mathbf{G}}_{n+1 \mid n}\left(x_{n+1} \mid x_{n}\right)=(n-1)!\frac{\partial_{1} \widehat{D}_{n, n+1}\left(\bar{F}\left(x_{n}\right), \bar{F}\left(x_{n+1}\right)\right)}{\left(-\log \bar{F}\left(x_{n}\right)\right)^{n-1}}=\frac{\bar{F}\left(x_{n+1}\right)}{\bar{F}\left(x_{n}\right)}$
for $x_{n+1} \geq x_{n}$ and x_{n} such that $\bar{F}\left(x_{n}\right)>0$ and $f\left(x_{n}\right)>0$.

- This expression is also a very well known result (see, e.g., Nevzorov, 2001, p. 68).
- Even more, the record values form a Markov chain, that is,

$$
\operatorname{Pr}\left(R_{n+1}>x_{n+1} \mid R_{1}=x_{1}, \ldots, R_{n}=x_{n}\right)=\operatorname{Pr}\left(R_{n+1}>x_{n+1} \mid R_{n}=x_{n}\right)
$$

- Therefore the median regression curve to predict R_{n+1} from R_{n} is the same as that in the preceding case.

Case $i=m$ and $j=n$

Proposition

The joint survival function $\overline{\mathbf{G}}_{m, n}$ of $\left(R_{m}, R_{n}\right)$ for $1 \leq m<n$ can be written as

$$
\overline{\mathbf{G}}_{m, n}\left(x_{m}, x_{n}\right)=\widehat{D}_{m, n}\left(\bar{F}\left(x_{m}\right), \bar{F}\left(x_{n}\right)\right)
$$

for $x_{n} \leq x_{n+1}$, where
$\widehat{D}_{m, n}(u, v)=\bar{\gamma}_{m}(-\log v)+\frac{1}{(m-1)!} \int_{-\log u}^{-\log v} \frac{z^{m-1}}{e^{z}} \bar{\gamma}_{n-m}(-z-\log v) d z$
(2.10)
for $1>u \geq v>0$ and $\bar{\gamma}_{k}$ is the survival function in (2.9).

Case $i=m$ and $j=n$

- From (2.10), we obtain

$$
\partial_{1} \widehat{D}_{m, n}(u, v)=\frac{1}{(m-1)!}(-\log u)^{m-1} \bar{\gamma}_{n-m}\left(-\log \frac{v}{u}\right)
$$

for $1>u>v>0$ and, from (2.5),

$$
\overline{\mathbf{G}}_{n \mid m}\left(x_{n} \mid x_{m}\right)=(m-1)!\frac{\partial_{1} \widehat{D}_{m, n}\left(\bar{F}\left(x_{m}\right), \bar{F}\left(x_{n}\right)\right)}{\left(-\log \bar{F}\left(x_{m}\right)\right)^{m-1}}=\bar{\gamma}_{n-m}\left(-\log \frac{\bar{F}\left(x_{n}\right)}{\bar{F}\left(x_{m}\right)}\right)
$$

for $x_{n} \geq x_{m}$ since $\lim _{v \rightarrow 0^{+}} \partial_{1} \widehat{D}_{m, n}(u, v)=0$ for all $0<u<1$.

Case $i=m$ and $j=n$

- From (2.10), we obtain

$$
\partial_{1} \widehat{D}_{m, n}(u, v)=\frac{1}{(m-1)!}(-\log u)^{m-1} \bar{\gamma}_{n-m}\left(-\log \frac{v}{u}\right)
$$

for $1>u>v>0$ and, from (2.5),

$$
\overline{\mathbf{G}}_{n \mid m}\left(x_{n} \mid x_{m}\right)=(m-1)!\frac{\partial_{1} \widehat{D}_{m, n}\left(\bar{F}\left(x_{m}\right), \bar{F}\left(x_{n}\right)\right)}{\left(-\log \bar{F}\left(x_{m}\right)\right)^{m-1}}=\bar{\gamma}_{n-m}\left(-\log \frac{\bar{F}\left(x_{n}\right)}{\bar{F}\left(x_{m}\right)}\right)
$$

for $x_{n} \geq x_{m}$ since $\lim _{v \rightarrow 0^{+}} \partial_{1} \widehat{D}_{m, n}(u, v)=0$ for all $0<u<1$.

- The median regression curve to predict R_{n} from $R_{m}=x_{m}$ is

$$
\begin{equation*}
m_{n \mid m}\left(x_{m}\right)=\overline{\mathbf{G}}_{n \mid m}^{-1}\left(0.5 \mid x_{m}\right)=\bar{F}^{-1}\left(c_{n-m}(0.5) \bar{F}\left(x_{m}\right)\right), \tag{2.11}
\end{equation*}
$$

where $c_{k}(y)=\exp \left(-\gamma_{k}^{-1}(y)\right)$ and γ_{k}^{-1} is the quantile function of a gamma distribution with shape parameter k and scale parameter equal to one.

Case $i=m$ and $j=n$

- Analogously, the 50% and 90% quantile prediction bands for R_{n} are

$$
\begin{aligned}
& {\left[\bar{F}^{-1}\left(c_{n-m}(0.25) \bar{F}\left(x_{m}\right)\right), \bar{F}^{-1}\left(c_{n-m}(0.75) \bar{F}\left(x_{m}\right)\right)\right]} \\
& {\left[\bar{F}^{-1}\left(c_{n-m}(0.05) \bar{F}\left(x_{m}\right)\right), \bar{F}^{-1}\left(c_{n-m}(0.95) \bar{F}\left(x_{m}\right)\right)\right]}
\end{aligned}
$$

Case $i=m$ and $j=n$

- Analogously, the 50% and 90% quantile prediction bands for R_{n} are

$$
\begin{aligned}
& {\left[\bar{F}^{-1}\left(c_{n-m}(0.25) \bar{F}\left(x_{m}\right)\right), \bar{F}^{-1}\left(c_{n-m}(0.75) \bar{F}\left(x_{m}\right)\right)\right]} \\
& {\left[\bar{F}^{-1}\left(c_{n-m}(0.05) \bar{F}\left(x_{m}\right)\right), \bar{F}^{-1}\left(c_{n-m}(0.95) \bar{F}\left(x_{m}\right)\right)\right]}
\end{aligned}
$$

- Note that they only depend on \bar{F} and on $k=n-m$.

Case $i=m$ and $j=n$

- Analogously, the 50% and 90% quantile prediction bands for R_{n} are

$$
\begin{aligned}
& {\left[\bar{F}^{-1}\left(c_{n-m}(0.25) \bar{F}\left(x_{m}\right)\right), \bar{F}^{-1}\left(c_{n-m}(0.75) \bar{F}\left(x_{m}\right)\right)\right]} \\
& {\left[\bar{F}^{-1}\left(c_{n-m}(0.05) \bar{F}\left(x_{m}\right)\right), \bar{F}^{-1}\left(c_{n-m}(0.95) \bar{F}\left(x_{m}\right)\right)\right]}
\end{aligned}
$$

- Note that they only depend on \bar{F} and on $k=n-m$.
- Hence, if \bar{F} is known, then we have common prediction bands for the sequence of paired records $\left(R_{1}, R_{1+k}\right),\left(R_{2}, R_{2+k}\right), \ldots$

Case $i=m$ and $j=n$

- Analogously, the 50% and 90% quantile prediction bands for R_{n} are

$$
\begin{aligned}
& {\left[\bar{F}^{-1}\left(c_{n-m}(0.25) \bar{F}\left(x_{m}\right)\right), \bar{F}^{-1}\left(c_{n-m}(0.75) \bar{F}\left(x_{m}\right)\right)\right]} \\
& {\left[\bar{F}^{-1}\left(c_{n-m}(0.05) \bar{F}\left(x_{m}\right)\right), \bar{F}^{-1}\left(c_{n-m}(0.95) \bar{F}\left(x_{m}\right)\right)\right]}
\end{aligned}
$$

- Note that they only depend on \bar{F} and on $k=n-m$.
- Hence, if \bar{F} is known, then we have common prediction bands for the sequence of paired records $\left(R_{1}, R_{1+k}\right),\left(R_{2}, R_{2+k}\right), \ldots$
- This is not the case if we estimate \bar{F} (or a parameter in \bar{F}) at each R_{m} for $m=1,2, \ldots$

Uniform distribution

- The simplest case is a standard uniform distribution with $F(x)=x$ for $0 \leq x \leq 1$.

Uniform distribution

- The simplest case is a standard uniform distribution with

$$
F(x)=x \text { for } 0 \leq x \leq 1
$$

- From (2.8), the median regression curve to predict R_{n+1} from $R_{n}=x_{n}$ is

$$
m_{n+1 \mid n}\left(x_{n}\right)=\bar{F}^{-1}\left(0.5 \bar{F}\left(x_{n}\right)\right)=1-0.5\left(1-x_{n}\right)=0.5+0.5 x_{n}
$$

Uniform distribution

- The simplest case is a standard uniform distribution with $F(x)=x$ for $0 \leq x \leq 1$.
- From (2.8), the median regression curve to predict R_{n+1} from $R_{n}=x_{n}$ is

$$
m_{n+1 \mid n}\left(x_{n}\right)=\bar{F}^{-1}\left(0.5 \bar{F}\left(x_{n}\right)\right)=1-0.5\left(1-x_{n}\right)=0.5+0.5 x_{n}
$$

- In this case it coincides with the mean regression curve.

Uniform distribution

- The simplest case is a standard uniform distribution with

$$
F(x)=x \text { for } 0 \leq x \leq 1
$$

- From (2.8), the median regression curve to predict R_{n+1} from $R_{n}=x_{n}$ is

$$
m_{n+1 \mid n}\left(x_{n}\right)=\bar{F}^{-1}\left(0.5 \bar{F}\left(x_{n}\right)\right)=1-0.5\left(1-x_{n}\right)=0.5+0.5 x_{n} .
$$

- In this case it coincides with the mean regression curve.
- The 50% and 90% prediction bands are
$\left[0.25+0.75 x_{n}, 0.75+0.25 x_{n}\right]$ and $\left[0.05+0.95 x_{n}, 0.95+0.05 x_{n}\right]$.

Uniform distribution

- The simplest case is a standard uniform distribution with $F(x)=x$ for $0 \leq x \leq 1$.
- From (2.8), the median regression curve to predict R_{n+1} from $R_{n}=x_{n}$ is
$m_{n+1 \mid n}\left(x_{n}\right)=\bar{F}^{-1}\left(0.5 \bar{F}\left(x_{n}\right)\right)=1-0.5\left(1-x_{n}\right)=0.5+0.5 x_{n}$.
- In this case it coincides with the mean regression curve.
- The 50% and 90% prediction bands are
$\left[0.25+0.75 x_{n}, 0.75+0.25 x_{n}\right]$ and $\left[0.05+0.95 x_{n}, 0.95+0.05 x_{n}\right]$.
- They are plotted in the following figure jointly with $m_{n+1 \mid n}$ (black) and the sequence of the first paired records (R_{1}, R_{2}), $\ldots,\left(R_{8}, R_{9}\right)$. The sequence obtained by simulation is
$0.319,0.784,0.8729,0.9018,0.9504,0.98365,0.98411,0.99982,0.99996$.

Figure: Plots of the paired records (R_{n}, R_{n+1}) from a standard uniform distribution jointly with the median regression curve (black) and the limits for the 50% (blue) and 90% (red) centered prediction bands.

Uniform distribution

The median regression curve to predict R_{n+k} from $R_{n}=x_{n}$ is

$$
\begin{aligned}
& m_{n+k \mid n}\left(x_{n}\right)=\bar{F}^{-1}\left(c_{k}(0.5) \bar{F}\left(x_{n}\right)\right)=1-c_{k}(0.5)+c_{k}(0.5) x_{n}, \\
& \text { where } c_{k}(0.5)=\exp \left(-\gamma_{k}^{-1}(0.5)\right)
\end{aligned}
$$

Uniform distribution

- The median regression curve to predict R_{n+k} from $R_{n}=x_{n}$ is

$$
m_{n+k \mid n}\left(x_{n}\right)=\bar{F}^{-1}\left(c_{k}(0.5) \bar{F}\left(x_{n}\right)\right)=1-c_{k}(0.5)+c_{k}(0.5) x_{n}
$$

where $c_{k}(0.5)=\exp \left(-\gamma_{k}^{-1}(0.5)\right)$.

- The values of $c_{k}(0.5)$ for $k=1,2,3,4,5$ are
$0.5,0.186682309,0.068971610,0.025424023,0.009363755$.

Uniform distribution

- The median regression curve to predict R_{n+k} from $R_{n}=x_{n}$ is

$$
m_{n+k \mid n}\left(x_{n}\right)=\bar{F}^{-1}\left(c_{k}(0.5) \bar{F}\left(x_{n}\right)\right)=1-c_{k}(0.5)+c_{k}(0.5) x_{n},
$$

where $c_{k}(0.5)=\exp \left(-\gamma_{k}^{-1}(0.5)\right)$.

- The values of $c_{k}(0.5)$ for $k=1,2,3,4,5$ are
$0.5,0.186682309,0.068971610,0.025424023,0.009363755$.
- The code in R to get $c_{k}(u)$ is: $\exp (-q g a m m a(u, k))$.

Uniform distribution

- The median regression curve to predict R_{n+k} from $R_{n}=x_{n}$ is

$$
m_{n+k \mid n}\left(x_{n}\right)=\bar{F}^{-1}\left(c_{k}(0.5) \bar{F}\left(x_{n}\right)\right)=1-c_{k}(0.5)+c_{k}(0.5) x_{n}
$$

where $c_{k}(0.5)=\exp \left(-\gamma_{k}^{-1}(0.5)\right)$.

- The values of $c_{k}(0.5)$ for $k=1,2,3,4,5$ are
$0.5,0.186682309,0.068971610,0.025424023,0.009363755$.
- The code in R to get $c_{k}(u)$ is: $\exp (-q g a m m a(u, k))$.
- The 50% and 90% prediction bands for the predictions are

$$
\begin{aligned}
& {\left[1-c_{k}(0.25)+c_{k}(0.25) x_{n}, 1-c_{k}(0.75)+c_{k}(0.75) x_{n}\right]} \\
& {\left[1-c_{k}(0.05)+c_{k}(0.05) x_{n}, 1-c_{k}(0.05)+c_{k}(0.95) x_{n}\right]}
\end{aligned}
$$

Uniform distribution

- The median regression curve to predict R_{n+k} from $R_{n}=x_{n}$ is

$$
m_{n+k \mid n}\left(x_{n}\right)=\bar{F}^{-1}\left(c_{k}(0.5) \bar{F}\left(x_{n}\right)\right)=1-c_{k}(0.5)+c_{k}(0.5) x_{n}
$$

where $c_{k}(0.5)=\exp \left(-\gamma_{k}^{-1}(0.5)\right)$.

- The values of $c_{k}(0.5)$ for $k=1,2,3,4,5$ are
$0.5,0.186682309,0.068971610,0.025424023,0.009363755$.
- The code in R to get $c_{k}(u)$ is: $\exp (-q g a m m a(u, k))$.
- The 50% and 90% prediction bands for the predictions are

$$
\begin{aligned}
& {\left[1-c_{k}(0.25)+c_{k}(0.25) x_{n}, 1-c_{k}(0.75)+c_{k}(0.75) x_{n}\right]} \\
& {\left[1-c_{k}(0.05)+c_{k}(0.05) x_{n}, 1-c_{k}(0.05)+c_{k}(0.95) x_{n}\right]}
\end{aligned}
$$

- They are plotted in the following figure for $k=2$.

Figure: Plots of the paired records $\left(R_{n}, R_{n+2}\right)$ from a standard uniform distribution jointly with the median regression curve (black) and the limits for the 50% (blue) and 90% (red) centered prediction bands.

The PHR model

- If F_{θ} has a known parametric form with an unknown parameter θ and $R_{1}=x_{1}, \ldots, R_{n}=x_{n}$ are known, then we can use

$$
\ell(\theta)=h_{\theta}\left(x_{1}\right) \ldots h_{\theta}\left(x_{n}\right) \bar{F}_{\theta}\left(x_{n}\right)
$$

where h_{θ} is the hazard rate function to get the maximum likelihood estimator (MLE) $\widehat{\theta}$ of θ.

The PHR model

- If F_{θ} has a known parametric form with an unknown parameter θ and $R_{1}=x_{1}, \ldots, R_{n}=x_{n}$ are known, then we can use

$$
\ell(\theta)=h_{\theta}\left(x_{1}\right) \ldots h_{\theta}\left(x_{n}\right) \bar{F}_{\theta}\left(x_{n}\right)
$$

where h_{θ} is the hazard rate function to get the maximum likelihood estimator (MLE) $\widehat{\theta}$ of θ.

- The PHR model is defined by $h_{\theta}(x)=\theta h(x)$ or $\bar{F}_{\theta}(x)=\bar{F}^{\theta}(x)$ for known functions h and \bar{F}.

The PHR model

- If F_{θ} has a known parametric form with an unknown parameter θ and $R_{1}=x_{1}, \ldots, R_{n}=x_{n}$ are known, then we can use

$$
\ell(\theta)=h_{\theta}\left(x_{1}\right) \ldots h_{\theta}\left(x_{n}\right) \bar{F}_{\theta}\left(x_{n}\right)
$$

where h_{θ} is the hazard rate function to get the maximum likelihood estimator (MLE) $\widehat{\theta}$ of θ.

- The PHR model is defined by $h_{\theta}(x)=\theta h(x)$ or $\bar{F}_{\theta}(x)=\bar{F}^{\theta}(x)$ for known functions h and \bar{F}.
- Hence, the MLE of θ is

$$
\begin{equation*}
\widehat{\theta}_{n}=-\frac{n}{\log \bar{F}\left(x_{n}\right)} . \tag{2.12}
\end{equation*}
$$

The PHR model

- The exact median regression curve for the PHR model is

$$
m_{n+1 \mid n}\left(x_{n}\right)=\bar{F}_{\theta}^{-1}\left(0.5 \bar{F}_{\theta}\left(x_{n}\right)\right)=\bar{F}^{-1}\left(0.5^{1 / \theta} \bar{F}\left(x_{n}\right)\right) .
$$

The PHR model

- The exact median regression curve for the PHR model is

$$
m_{n+1 \mid n}\left(x_{n}\right)=\bar{F}_{\theta}^{-1}\left(0.5 \bar{F}_{\theta}\left(x_{n}\right)\right)=\bar{F}^{-1}\left(0.5^{1 / \theta} \bar{F}\left(x_{n}\right)\right)
$$

- If we replace θ with the $\operatorname{MLE} \widehat{\theta}_{n}$ given in (2.12), we obtain the estimated median regression curve (EMRC) as

$$
\widehat{m}_{n+1 \mid n}\left(x_{n}\right)=\bar{F}^{-1}\left(0.5^{1 / \widehat{\theta}_{n}} \bar{F}\left(x_{n}\right)\right)=\bar{F}^{-1}\left(\bar{F}\left(x_{n}\right) 0.5^{-\frac{1}{n} \log \bar{F}\left(x_{n}\right)}\right) .
$$

The PHR model

- The exact median regression curve for the PHR model is

$$
m_{n+1 \mid n}\left(x_{n}\right)=\bar{F}_{\theta}^{-1}\left(0.5 \bar{F}_{\theta}\left(x_{n}\right)\right)=\bar{F}^{-1}\left(0.5^{1 / \theta} \bar{F}\left(x_{n}\right)\right) .
$$

- If we replace θ with the MLE $\widehat{\theta}_{n}$ given in (2.12), we obtain the estimated median regression curve (EMRC) as

$$
\widehat{m}_{n+1 \mid n}\left(x_{n}\right)=\bar{F}^{-1}\left(0.5^{1 / \widehat{\theta}_{n}} \bar{F}\left(x_{n}\right)\right)=\bar{F}^{-1}\left(\bar{F}\left(x_{n}\right) 0.5^{-\frac{1}{n} \log \bar{F}\left(x_{n}\right)}\right) .
$$

- The estimated quantile prediction bands (EQPB) are obtained in a similar way.

The PHR model

- If we want to predict R_{n+k} from R_{n} for $k>0$, the EMRC is

$$
m_{n+k \mid n}\left(x_{n}\right)=\bar{F}_{\widehat{\theta}_{n}}^{-1}\left(c_{k}(0.5) \bar{F}_{\widehat{\theta}_{n}}\left(x_{n}\right)\right)=\bar{F}^{-1}\left(\bar{F}\left(x_{n}\right)\left(c_{k}(0.5)\right)^{-\frac{1}{n} \log \bar{F}\left(x_{n}\right)}\right) .
$$

The PHR model

- If we want to predict R_{n+k} from R_{n} for $k>0$, the EMRC is

$$
m_{n+k \mid n}\left(x_{n}\right)=\bar{F}_{\widehat{\theta}_{n}}^{-1}\left(c_{k}(0.5) \bar{F}_{\widehat{\theta}_{n}}\left(x_{n}\right)\right)=\bar{F}^{-1}\left(\bar{F}\left(x_{n}\right)\left(c_{k}(0.5)\right)^{-\frac{1}{n} \log \bar{F}\left(x_{n}\right)}\right) .
$$

- The 90% and 50% EQPB are obtained in a similar way by replacing 0.5 with $0.05,0.25,0.75,0.95$.

The PHR model: Exponential distribution.

- The exponential model with survival function $\bar{F}_{\theta}(x)=\exp (-\theta x)$ for $x \geq 0$ satisfies the PHR model with $h(x)=1$ and $\bar{F}(x)=\exp (-x)$.

The PHR model: Exponential distribution.

- The exponential model with survival function $\bar{F}_{\theta}(x)=\exp (-\theta x)$ for $x \geq 0$ satisfies the PHR model with $h(x)=1$ and $\bar{F}(x)=\exp (-x)$.
- Then, the MLE for θ is $\hat{\theta}_{n}=n / x_{n}$. This is a well known result (see, e.g., Awad and Raqab, 2000).

The PHR model: Exponential distribution.

- The exponential model with survival function $\bar{F}_{\theta}(x)=\exp (-\theta x)$ for $x \geq 0$ satisfies the PHR model with $h(x)=1$ and $\bar{F}(x)=\exp (-x)$.
- Then, the MLE for θ is $\hat{\theta}_{n}=n / x_{n}$. This is a well known result (see, e.g., Awad and Raqab, 2000).
- If θ is known, the MRC is

$$
m_{n+1 \mid n}\left(x_{n}\right)=\bar{F}^{-1}\left(0.5^{1 / \theta} \bar{F}\left(x_{n}\right)\right)=x_{n}-\log (0.5) \frac{1}{\theta}
$$

The PHR model: Exponential distribution.

- The exponential model with survival function $\bar{F}_{\theta}(x)=\exp (-\theta x)$ for $x \geq 0$ satisfies the PHR model with $h(x)=1$ and $\bar{F}(x)=\exp (-x)$.
- Then, the MLE for θ is $\hat{\theta}_{n}=n / x_{n}$. This is a well known result (see, e.g., Awad and Raqab, 2000).
- If θ is known, the MRC is

$$
m_{n+1 \mid n}\left(x_{n}\right)=\bar{F}^{-1}\left(0.5^{1 / \theta} \bar{F}\left(x_{n}\right)\right)=x_{n}-\log (0.5) \frac{1}{\theta}
$$

- If θ is unknown, the EMRC is

$$
\begin{equation*}
\widehat{m}_{n+1 \mid n}\left(x_{n}\right)=x_{n}-\log (0.5) \frac{1}{\hat{\theta}_{n}}=x_{n}-\frac{\log (0.5)}{n} x_{n} \tag{2.13}
\end{equation*}
$$

The PHR model: Exponential distribution.

- The exponential model with survival function $\bar{F}_{\theta}(x)=\exp (-\theta x)$ for $x \geq 0$ satisfies the PHR model with $h(x)=1$ and $\bar{F}(x)=\exp (-x)$.
- Then, the MLE for θ is $\hat{\theta}_{n}=n / x_{n}$. This is a well known result (see, e.g., Awad and Raqab, 2000).
- If θ is known, the MRC is

$$
m_{n+1 \mid n}\left(x_{n}\right)=\bar{F}^{-1}\left(0.5^{1 / \theta} \bar{F}\left(x_{n}\right)\right)=x_{n}-\log (0.5) \frac{1}{\theta}
$$

- If θ is unknown, the EMRC is

$$
\begin{equation*}
\widehat{m}_{n+1 \mid n}\left(x_{n}\right)=x_{n}-\log (0.5) \frac{1}{\hat{\theta}_{n}}=x_{n}-\frac{\log (0.5)}{n} x_{n} \tag{2.13}
\end{equation*}
$$

- The estimated (mean) regression curve (ERC) is

$$
\begin{equation*}
\tilde{m}_{n+1 \mid n}\left(x_{n}\right)=x_{n}+\frac{1}{\widehat{\theta}_{n}}=x_{n}+\frac{1}{n} x_{n} . \tag{2.14}
\end{equation*}
$$

Figure: Plot of the paired records $\left(R_{n}, R_{n+1}\right)$ from a standard exponential distribution jointly with the median regression curve (black), the theoretical and sample regression curves (green, purple) and the limits for the 50% (blue) and 90% (red) exact prediction bands (left). The same is done in the right plot by assuming that θ is unknown.

Table: Predicted values $\widehat{R}_{n+1}=\widehat{m}_{n+1 \mid n}\left(R_{n}\right)$ and $\tilde{R}_{n+1}=\tilde{m}_{n+1 \mid n}\left(R_{n}\right)$ and centered prediction intervals $\left[I_{n}, U_{n}\right](50 \%)$ and $\left[L_{n}, U_{n}\right](90 \%)$ for the first nine records from a standard exponential distribution when θ is unknown. R_{n+1} represents the exact values for $n=1, \ldots, 8$.

n	L_{n}	I_{n}	\widehat{R}_{n+1}	\tilde{R}_{n+1}	R_{n+1}	u_{n}	U_{n}
1	0.48045	0.58849	0.77379	0.91402	1.19403	1.09056	1.82609
2	1.22465	1.36578	1.60785	1.79105	1.74177	2.02167	2.98250
3	1.77155	1.90879	2.14420	2.32236	2.00398	2.54664	3.48106
4	2.02968	2.14811	2.35124	2.50497	2.25833	2.69850	3.50482
5	2.28149	2.38826	2.57140	2.70999	4.97619	2.88447	3.61139
6	5.01873	5.21478	5.55106	5.80556	5.84512	6.12594	7.46075
7	5.88795	6.08534	6.42391	6.68014	6.90868	7.00269	8.34661
8	6.95297	7.15712	7.50727	7.77226	14.1657	8.10586	9.49575

Additional results in Navarro (2021)

- Results for the Pareto model (PHR).

Additional results in Navarro (2021)

- Results for the Pareto model (PHR).
- Empirical quantile regression procedures to estimate these curves, see Koenker (2005).

Additional results in Navarro (2021)

- Results for the Pareto model (PHR).
- Empirical quantile regression procedures to estimate these curves, see Koenker (2005).
- Other non-parametric predictions.

Additional results in Navarro (2021)

- Results for the Pareto model (PHR).
- Empirical quantile regression procedures to estimate these curves, see Koenker (2005).
- Other non-parametric predictions.
- Comparisons with other estimators.

Additional results in Navarro (2021)

- Results for the Pareto model (PHR).
- Empirical quantile regression procedures to estimate these curves, see Koenker (2005).
- Other non-parametric predictions.
- Comparisons with other estimators.
- A case study in reliability by using lower record values (which come first when we study lifetimes).

Additional results

- Similar results for paired data (L, U) can be seen in Navarro, Calì, Longobardi and Durante (2022).

Additional results

- Similar results for paired data (L, U) can be seen in Navarro, Calì, Longobardi and Durante (2022).
- Similar results for future order statistic values can be seen in Navarro and Buono (2022) with or without dependency.

Additional results

- Similar results for paired data (L, U) can be seen in Navarro, Calì, Longobardi and Durante (2022).
- Similar results for future order statistic values can be seen in Navarro and Buono (2022) with or without dependency.
- Similar results for future order statistic values and systems based on the conditional hazard rate multivariate model can be seen in Buono and Navarro (2022).

Additional results

- Similar results for paired data (L, U) can be seen in Navarro, Calì, Longobardi and Durante (2022).
- Similar results for future order statistic values can be seen in Navarro and Buono (2022) with or without dependency.
- Similar results for future order statistic values and systems based on the conditional hazard rate multivariate model can be seen in Buono and Navarro (2022).
- Prediction for system failure times in Navarro et al. (2022).

Additional results

- Similar results for paired data (L, U) can be seen in Navarro, Calì, Longobardi and Durante (2022).
- Similar results for future order statistic values can be seen in Navarro and Buono (2022) with or without dependency.
- Similar results for future order statistic values and systems based on the conditional hazard rate multivariate model can be seen in Buono and Navarro (2022).
- Prediction for system failure times in Navarro et al. (2022).
- These representations are very useful!!

References

Awad AM, Raqab MZ (2000) Prediction intervals for the future record values from exponential distribution: comparative study. Journal of Statistical Computation and Simulation 65, 325-340.
Buono F, Navarro J (2022) Simulations and predictions of future values in the time homogeneous load-sharing model. Submitted.
Koenker R (2005). Quantile Regression. Cambridge University Press.
Navarro, J (2021). Prediction of record values by using quantile regression curves and distortion functions. To appear in Metrika. Published online first Nov. 2021. DOI: 10.1007/s00184-021-00847-w.
Navarro J (2022). Introduction to System Reliability Theory Springer.
Navarro J. et al. (2022). Predicting system failure times. In preparation.

References

Navarro J, Buono F (2022). Predicting future failure times by using quantile regression. Submitted.

Navarro J, Calì C, Longobardi M, Durante F (2022). Distortion representations of multivariate distributions. To appear in Statistical Methods \& Applications. Published online first Jan. 2022. DOI: 10.1007/s10260-021-00613-2.

Nelsen RB (2006). An introduction to copulas. Second edition. Springer, New York.

Nevzorov VB (2001) Records: Mathematical Theory. American Mathematical Society, Providence, RI.

Wang, S. (1996). Premium calculation by transforming the layer premium density. Astin Bulletin 26, 71-92.

Yaari, M.E. (1987). The dual theory of choice under risk. Econometrica 55, 95-115.

Final slide

- Publicity of my new book on System Reliability Theory.

Jorge Navarro

Introduction to System Reliability Theory

Final slide

- Publicity of my new book on System Reliability Theory.

Jorge Navarro

Introduction to System Reliability Theory

- That's all. Thank you for your attention!!

Final slide

- Publicity of my new book on System Reliability Theory.

Introduction to System Reliability Theory

- That's all. Thank you for your attention!!
- Questions?

