Prediction of future data in multivariate constant conditional hazard rate models

Jorge Navarro ${ }^{1}$
Universidad de Murcia, Murcia, Spain.

${ }^{1}$ Partially supported by Ministerio de Ciencia e Innovación of Spain under grant PID2019-108079GB-C22/AEI/10.13039/501100011033.

References

The conference is based on the following paper:

- Buono F., Navarro J. (2023). Simulations and predictions of future values in the time-homogeneous load-sharing model. To appear in Statistical Papers. Published online first Feb. 2023. https://doi.org/10.1007/s00362-023-01404-5.

Outline

Preliminary resultsConditional hazard rate functionsThe modelsProperties
Predictions
Predictions under different scenariosSimulations
Examples
Main references

Preliminary results

Hazard rate functions

- X_{1}, \ldots, X_{n} nonnegative random variables with an absolutely continuous joint distribution.

Hazard rate functions

- X_{1}, \ldots, X_{n} nonnegative random variables with an absolutely continuous joint distribution.
- The marginal survival (or reliability) functions are

$$
\bar{F}_{j}(t)=\mathbb{P}\left(X_{j}>t\right) \text { for } j \in[n]=\{1, \ldots, n\} .
$$

Hazard rate functions

- X_{1}, \ldots, X_{n} nonnegative random variables with an absolutely continuous joint distribution.
- The marginal survival (or reliability) functions are $\bar{F}_{j}(t)=\mathbb{P}\left(X_{j}>t\right)$ for $j \in[n]=\{1, \ldots, n\}$.
- The marginal probability density functions (PDF) are $f_{j}(t)=-\bar{F}_{j}^{\prime}(t)$ for $j \in[n]$.

Hazard rate functions

- X_{1}, \ldots, X_{n} nonnegative random variables with an absolutely continuous joint distribution.
- The marginal survival (or reliability) functions are $\bar{F}_{j}(t)=\mathbb{P}\left(X_{j}>t\right)$ for $j \in[n]=\{1, \ldots, n\}$.
- The marginal probability density functions (PDF) are $f_{j}(t)=-\bar{F}_{j}^{\prime}(t)$ for $j \in[n]$.
- The j th hazard (or failure) rate function is

$$
\lambda_{j}(t)=\lim _{\Delta t \rightarrow 0^{+}} \frac{1}{\Delta t} \mathbb{P}\left(X_{j} \leq t+\Delta t \mid X_{j}>t\right)=\frac{f_{j}(t)}{\bar{F}_{j}(t)}
$$

Hazard rate functions

- X_{1}, \ldots, X_{n} nonnegative random variables with an absolutely continuous joint distribution.
- The marginal survival (or reliability) functions are $\bar{F}_{j}(t)=\mathbb{P}\left(X_{j}>t\right)$ for $j \in[n]=\{1, \ldots, n\}$.
- The marginal probability density functions (PDF) are $f_{j}(t)=-\bar{F}_{j}^{\prime}(t)$ for $j \in[n]$.
- The j th hazard (or failure) rate function is

$$
\lambda_{j}(t)=\lim _{\Delta t \rightarrow 0^{+}} \frac{1}{\Delta t} \mathbb{P}\left(X_{j} \leq t+\Delta t \mid X_{j}>t\right)=\frac{f_{j}(t)}{\bar{F}_{j}(t)}
$$

- The condition $\lambda_{j}(t)=c_{j}$ for $t \geq 0$ leads to the exponential distribution with $\bar{F}_{j}(t)=\exp \left(-c_{j} t\right)$ for $t \geq 0$ and $c_{i}>0$.

Hazard rate functions

- For $j \in[n]$ and $i_{1}, \ldots, i_{k} \in[n]$ with $j \notin I=\left\{i_{1}, \ldots, i_{k}\right\}$, and $0 \leq t_{1} \leq \cdots \leq t_{k}$, the j th multivariate conditional hazard rate (MCHR) function $\lambda_{j}\left(t \mid i_{1}, \ldots, i_{k} ; t_{1}, \ldots, t_{k}\right)$ is defined as:

$$
\lim _{\Delta t \rightarrow 0^{+}} \frac{1}{\Delta t} \mathbb{P}\left(X_{j} \leq t+\Delta t \mid X_{i_{1}}=t_{1}, \ldots, X_{i_{k}}=t_{k}, \min _{h \notin I} X_{h}>t\right)
$$

Hazard rate functions

\Rightarrow For $j \in[n]$ and $i_{1}, \ldots, i_{k} \in[n]$ with $j \notin I=\left\{i_{1}, \ldots, i_{k}\right\}$, and $0 \leq t_{1} \leq \cdots \leq t_{k}$, the j th multivariate conditional hazard rate (MCHR) function $\lambda_{j}\left(t \mid i_{1}, \ldots, i_{k} ; t_{1}, \ldots, t_{k}\right)$ is defined as:

$$
\lim _{\Delta t \rightarrow 0^{+}} \frac{1}{\Delta t} \mathbb{P}\left(X_{j} \leq t+\Delta t \mid X_{i_{1}}=t_{1}, \ldots, X_{i_{k}}=t_{k}, \min _{h \notin!} X_{h}>t\right)
$$

- We use the following notation for the MCHR functions with no failures (also called risk-specific or initial hazard rate)

$$
\lambda_{j}(t \mid \emptyset)=\lim _{\Delta t \rightarrow 0^{+}} \frac{1}{\Delta t} \mathbb{P}\left(X_{j} \leq t+\Delta t \mid X_{1: n}>t\right)
$$

where $X_{1: n}=\min \left(X_{1}, \ldots, X_{n}\right)$.

Particular cases

- If X_{1}, \ldots, X_{n} are independent, then, for all $j \notin\left\{i_{1}, \ldots, i_{k}\right\}$,

$$
\lambda_{j}\left(t \mid i_{1}, \ldots, i_{k} ; t_{1}, \ldots, t_{k}\right)=\lambda_{j}(t) \text { for all } t>0
$$

Particular cases

- If X_{1}, \ldots, X_{n} are independent, then, for all $j \notin\left\{i_{1}, \ldots, i_{k}\right\}$,

$$
\lambda_{j}\left(t \mid i_{1}, \ldots, i_{k} ; t_{1}, \ldots, t_{k}\right)=\lambda_{j}(t) \text { for all } t>0
$$

- If X_{1}, \ldots, X_{n} are exchangeable, i.e.,

$$
\left(X_{1}, \ldots, X_{n}\right)=s T\left(X_{\pi(1)}, \ldots, X_{\pi(n)}\right) \text { for any permutation } \pi
$$

then the MCHR functions do not depend on j and i_{1}, \ldots, i_{k} but only on k and the failure times t_{1}, \ldots, t_{k}, that is,

$$
\lambda_{j}\left(t \mid i_{1}, \ldots, i_{k} ; t_{1}, \ldots, t_{k}\right)=\lambda^{(k)}\left(t \mid t_{1}, \ldots, t_{k}\right)
$$

and

$$
\lambda_{j}(t \mid \emptyset)=\lambda^{(0)}(t)
$$

for all $k \in\{1,2, \ldots, n-1\}$ and all $0 \leq t_{1} \leq t_{2} \leq \cdots \leq t_{k} \leq t$.

Inversion formula

- In the univariate case: $\bar{F}(t)=\exp \left(-\int_{0}^{t} \lambda(x) d x\right)$ for $t \geq 0$.

Inversion formula

- In the univariate case: $\bar{F}(t)=\exp \left(-\int_{0}^{t} \lambda(x) d x\right)$ for $t \geq 0$.
\Rightarrow The PDF of $\left(X_{1}, \ldots, X_{n}\right)$ for $0 \leq t_{1} \leq t_{2} \leq \cdots \leq t_{n}$ is

$$
\begin{array}{r}
f\left(t_{1}, \ldots, t_{n}\right)=\lambda_{1}\left(t_{1} \mid \emptyset\right) \exp \left[-\sum_{j=1}^{n} \int_{0}^{t_{1}} \lambda_{j}(u \mid \emptyset) d u\right] \\
\lambda_{2}\left(t_{2} \mid 1 ; t_{1}\right) \exp \left[-\sum_{j=2}^{n} \int_{t_{1}}^{t_{2}} \lambda_{j}\left(u \mid 1 ; t_{1}\right) d u\right] \cdots
\end{array}
$$

$$
\lambda_{n}\left(t_{n} \mid 1, \ldots, n-1 ; t_{1}, \ldots, t_{n-1}\right) \exp \left[-\int_{t_{n-1}}^{t_{n}} \lambda_{n}\left(u \mid 1, \ldots, n-1 ; t_{1}, \ldots, t_{n-1}\right) d u\right]
$$

Inversion formula

- In the univariate case: $\bar{F}(t)=\exp \left(-\int_{0}^{t} \lambda(x) d x\right)$ for $t \geq 0$.
- The PDF of $\left(X_{1}, \ldots, X_{n}\right)$ for $0 \leq t_{1} \leq t_{2} \leq \cdots \leq t_{n}$ is

$$
\begin{array}{r}
f\left(t_{1}, \ldots, t_{n}\right)=\lambda_{1}\left(t_{1} \mid \emptyset\right) \exp \left[-\sum_{j=1}^{n} \int_{0}^{t_{1}} \lambda_{j}(u \mid \emptyset) d u\right] \\
\lambda_{2}\left(t_{2} \mid 1 ; t_{1}\right) \exp \left[-\sum_{j=2}^{n} \int_{t_{1}}^{t_{2}} \lambda_{j}\left(u \mid 1 ; t_{1}\right) d u\right] \ldots
\end{array}
$$

$$
\lambda_{n}\left(t_{n} \mid 1, \ldots, n-1 ; t_{1}, \ldots, t_{n-1}\right) \exp \left[-\int_{t_{n-1}}^{t_{n}} \lambda_{n}\left(u \mid 1, \ldots, n-1 ; t_{1}, \ldots, t_{n-1}\right) d u\right]
$$

- Similar expressions hold when $0 \leq t_{\pi(1)} \leq \cdots \leq t_{\pi(n)}$ for some permutation π.

Inversion formula

- In the univariate case: $\bar{F}(t)=\exp \left(-\int_{0}^{t} \lambda(x) d x\right)$ for $t \geq 0$.
- The PDF of $\left(X_{1}, \ldots, X_{n}\right)$ for $0 \leq t_{1} \leq t_{2} \leq \cdots \leq t_{n}$ is

$$
\begin{array}{r}
f\left(t_{1}, \ldots, t_{n}\right)=\lambda_{1}\left(t_{1} \mid \emptyset\right) \exp \left[-\sum_{j=1}^{n} \int_{0}^{t_{1}} \lambda_{j}(u \mid \emptyset) d u\right] \\
\lambda_{2}\left(t_{2} \mid 1 ; t_{1}\right) \exp \left[-\sum_{j=2}^{n} \int_{t_{1}}^{t_{2}} \lambda_{j}\left(u \mid 1 ; t_{1}\right) d u\right] \cdots
\end{array}
$$

$$
\lambda_{n}\left(t_{n} \mid 1, \ldots, n-1 ; t_{1}, \ldots, t_{n-1}\right) \exp \left[-\int_{t_{n-1}}^{t_{n}} \lambda_{n}\left(u \mid 1, \ldots, n-1 ; t_{1}, \ldots, t_{n-1}\right) d u\right]
$$

- Similar expressions hold when $0 \leq t_{\pi(1)} \leq \cdots \leq t_{\pi(n)}$ for some permutation π.
- For the proof see Shaked and Shanthikumar (1988).

The models

The MCHR functions are efficient tools to describe the joint distribution of lifetimes subject to load-sharing situations.

The models

- The MCHR functions are efficient tools to describe the joint distribution of lifetimes subject to load-sharing situations.
- If they do not depend on the failure times of the components, t_{1}, \ldots, t_{k}, then we have a load-sharing (LS) model.

The models

- The MCHR functions are efficient tools to describe the joint distribution of lifetimes subject to load-sharing situations.
- If they do not depend on the failure times of the components, t_{1}, \ldots, t_{k}, then we have a load-sharing (LS) model.
- In this case, the current hazard of a working component only depends on the calendar time t and on the set of working components.

The models

- The MCHR functions are efficient tools to describe the joint distribution of lifetimes subject to load-sharing situations.
- If they do not depend on the failure times of the components, t_{1}, \ldots, t_{k}, then we have a load-sharing (LS) model.
- In this case, the current hazard of a working component only depends on the calendar time t and on the set of working components.
- If in addition the MCHR functions do not depend on the calendar time t, then, they are constant functions and we talk about time-homogeneous load-sharing (THLS) models.

The models

- The MCHR functions are efficient tools to describe the joint distribution of lifetimes subject to load-sharing situations.
- If they do not depend on the failure times of the components, t_{1}, \ldots, t_{k}, then we have a load-sharing (LS) model.
- In this case, the current hazard of a working component only depends on the calendar time t and on the set of working components.
- If in addition the MCHR functions do not depend on the calendar time t, then, they are constant functions and we talk about time-homogeneous load-sharing (THLS) models.
- This model is a natural generalization of the joint distribution of a vector of independent and exponentially distributed random variables.

The models

- The MCHR functions are efficient tools to describe the joint distribution of lifetimes subject to load-sharing situations.
- If they do not depend on the failure times of the components, t_{1}, \ldots, t_{k}, then we have a load-sharing (LS) model.
- In this case, the current hazard of a working component only depends on the calendar time t and on the set of working components.
- If in addition the MCHR functions do not depend on the calendar time t, then, they are constant functions and we talk about time-homogeneous load-sharing (THLS) models.
- This model is a natural generalization of the joint distribution of a vector of independent and exponentially distributed random variables.
- For a review on these models see Spizzichino (2018).

The models

Definition

$\left(X_{1}, \ldots, X_{n}\right)$ is distributed according to a load-sharing (LS) model if, for any $i_{1}, \ldots, i_{k} \in[n]$ and $j \notin I=\left\{i_{1}, \ldots, i_{k}\right\}$, there exist functions $\mu_{j}(t \mid I)$ such that, for all $0 \leq t_{1} \leq \cdots \leq t_{k} \leq t$,

$$
\lambda_{j}\left(t \mid i_{1}, \ldots, i_{k} ; t_{1}, \ldots, t_{k}\right)=\mu_{j}(t \mid I)
$$

Furthermore, a load-sharing model is time-homogeneous (THLS) when there exist non-negative numbers $\mu_{j}(I)$ and $\mu_{j}(\emptyset)$ such that, for any $t>0$ and any $j \notin I$,

$$
\begin{aligned}
& \mu_{j}(t \mid I)=\mu_{j}(I), \\
& \lambda_{j}(t \mid \emptyset)=\mu_{j}(\emptyset) .
\end{aligned}
$$

The models

In this paper, we will consider a more general model.

Definition

$\left(X_{1}, \ldots, X_{n}\right)$ is distributed according to an order dependent load-sharing (ODLS) model if, for any $i_{1}, \ldots, i_{k} \in[n]$ and $j \notin I=\left\{i_{1}, \ldots, i_{k}\right\}$, there exist functions $\mu_{j}\left(t \mid i_{1}, \ldots, i_{k}\right)$ such that, for all $0 \leq t_{1} \leq \cdots \leq t_{k} \leq t$,

$$
\lambda_{j}\left(t \mid i_{1}, \ldots, i_{k} ; t_{1}, \ldots, t_{k}\right)=\mu_{j}\left(t \mid i_{1}, \ldots, i_{k}\right)
$$

Furthermore, an ODLS model is time-homogeneous (ODTHLS) when there exist non-negative numbers $\mu_{j}\left(i_{1}, \ldots, i_{k}\right)$ and $\mu_{j}(\emptyset)$ such that, for any $t>0$ and any $j \notin I$,

$$
\begin{aligned}
\mu_{j}\left(t \mid i_{1}, \ldots, i_{k}\right) & =\mu_{j}\left(i_{1}, \ldots, i_{k}\right), \\
\lambda_{j}(t \mid \emptyset) & =\mu_{j}(\emptyset) .
\end{aligned}
$$

The models

- If for any non-empty set $I \subset[n]$ and any $j \notin I$, the function $\mu_{j}\left(t \mid i_{1}, \ldots, i_{k}\right)$ is invariant under permutations of i_{1}, \ldots, i_{k}, then the ODLS model reduces to a LS model.

The models

- If for any non-empty set $I \subset[n]$ and any $j \notin I$, the function $\mu_{j}\left(t \mid i_{1}, \ldots, i_{k}\right)$ is invariant under permutations of i_{1}, \ldots, i_{k}, then the ODLS model reduces to a LS model.
- In the same way, if for any non-empty set $I \subset[n]$ and any $j \notin I$ the number $\mu_{j}\left(i_{1}, \ldots, i_{k}\right)$ is invariant under permutations of i_{1}, \ldots, i_{k}, then the ODTHLS model reduces to a THLS model.

The models

- If for any non-empty set $I \subset[n]$ and any $j \notin I$, the function $\mu_{j}\left(t \mid i_{1}, \ldots, i_{k}\right)$ is invariant under permutations of i_{1}, \ldots, i_{k}, then the ODLS model reduces to a LS model.
- In the same way, if for any non-empty set $I \subset[n]$ and any $j \notin I$ the number $\mu_{j}\left(i_{1}, \ldots, i_{k}\right)$ is invariant under permutations of i_{1}, \ldots, i_{k}, then the ODTHLS model reduces to a THLS model.
- Note that the LS model includes a kind of weak exchangeability property since the MCHR functions just depend on the set of broken components $I=\left\{i_{1}, \ldots, i_{k}\right\}$ instead of the vector of ordered failures $\left(i_{1}, \ldots, i_{k}\right)$ used in the ODLS model.

The models

- If for any non-empty set $I \subset[n]$ and any $j \notin I$, the function $\mu_{j}\left(t \mid i_{1}, \ldots, i_{k}\right)$ is invariant under permutations of i_{1}, \ldots, i_{k}, then the ODLS model reduces to a LS model.
- In the same way, if for any non-empty set $I \subset[n]$ and any $j \notin I$ the number $\mu_{j}\left(i_{1}, \ldots, i_{k}\right)$ is invariant under permutations of i_{1}, \ldots, i_{k}, then the ODTHLS model reduces to a THLS model.
- Note that the LS model includes a kind of weak exchangeability property since the MCHR functions just depend on the set of broken components $I=\left\{i_{1}, \ldots, i_{k}\right\}$ instead of the vector of ordered failures $\left(i_{1}, \ldots, i_{k}\right)$ used in the ODLS model.
- The same holds for the THLS and the ODTHLS models.

Inversion formula for the ODTHLS model

Proposition

The PDF of $\left(X_{1}, \ldots, X_{n}\right)$ under the ODTHLS model can be obtained for $0 \leq t_{1} \leq t_{2} \leq \cdots \leq t_{n}$ as

$$
\begin{aligned}
f\left(t_{1}, \ldots, t_{n}\right) & =\mu_{1}(\emptyset) \exp \left[-t_{1} \sum_{j=1}^{n} \mu_{j}(\emptyset)\right] \\
& \mu_{2}(1) \exp \left[-\left(t_{2}-t_{1}\right) \sum_{j=2}^{n} \mu_{j}(1)\right] \ldots \\
& \mu_{n}(1, \ldots, n-1) \exp \left[-\left(t_{n}-t_{n-1}\right) \mu_{n}(1, \ldots, n-1)\right] .
\end{aligned}
$$

Similar expressions hold when t_{1}, \ldots, t_{n} are such that $t_{\pi(1)} \leq \cdots \leq t_{\pi(n)}$ for some permutation π.

Properties

- Under the ODTHLS model we use

$$
\begin{gather*}
M\left(i_{1}, \ldots, i_{k}\right)=\sum_{h \notin\left\{i_{1}, \ldots, i_{k}\right\}} \mu_{h}\left(i_{1}, \ldots, i_{k}\right) ; \tag{1}\\
\rho_{j}\left(i_{1}, \ldots, i_{k}\right)=\frac{\mu_{j}\left(i_{1}, \ldots, i_{k}\right)}{M\left(i_{1}, \ldots, i_{k}\right)} . \tag{2}
\end{gather*}
$$

Properties

- Under the ODTHLS model we use

$$
\begin{gather*}
M\left(i_{1}, \ldots, i_{k}\right)=\sum_{h \notin\left\{i_{1}, \ldots, i_{k}\right\}} \mu_{h}\left(i_{1}, \ldots, i_{k}\right) ; \tag{1}\\
\rho_{j}\left(i_{1}, \ldots, i_{k}\right)=\frac{\mu_{j}\left(i_{1}, \ldots, i_{k}\right)}{M\left(i_{1}, \ldots, i_{k}\right)} . \tag{2}
\end{gather*}
$$

Then if π is a fixed permutation,

$$
\begin{gather*}
\mathbb{P}\left(X_{1: n}=X_{\pi(1)}, \ldots, X_{r: n}=X_{\pi(r)}\right)=\rho_{\pi(1)}(\emptyset) \rho_{\pi(2)}(\pi(1)) \\
\rho_{\pi(3)}(\pi(1), \pi(2)) \ldots \rho_{\pi(r)}(\pi(1), \ldots, \pi(r-1)) \tag{3}
\end{gather*}
$$

for $1 \leq r<n$ and
$\mathbb{P}\left(X_{1: n}=X_{\pi(1)}, \ldots, X_{n: n}=X_{\pi(n)}\right)=\mathbb{P}\left(X_{1: n}=X_{\pi(1)}, \ldots, X_{n-1: n-1}=X_{\pi(n-1)}\right)$

Properties

\Rightarrow For $\Lambda^{(r)}=\left(\lambda_{1}, \ldots, \lambda_{r}\right) \in \mathbb{R}_{+}^{r}, \bar{G}_{\Lambda^{(r)}}(t)$ is the survival function of $\sum_{s=1}^{r} \Gamma_{s}$, where $\Gamma_{1}, \ldots, \Gamma_{r}$ are independent r. v. with exponential distributions of parameters $\lambda_{1}, \ldots, \lambda_{r}$.

Properties

\Rightarrow For $\Lambda^{(r)}=\left(\lambda_{1}, \ldots, \lambda_{r}\right) \in \mathbb{R}_{+}^{r}, \bar{G}_{\Lambda^{(r)}}(t)$ is the survival function of $\sum_{s=1}^{r} \Gamma_{s}$, where $\Gamma_{1}, \ldots, \Gamma_{r}$ are independent r. v. with exponential distributions of parameters $\lambda_{1}, \ldots, \lambda_{r}$.

- Moreover, for a permutation π of $[n]$ and $r \in[n]$, we place

$$
\Lambda^{(r)}(\pi)=(M(\emptyset), M(\pi(1)), \ldots, M(\pi(1), \ldots, \pi(r-1)))
$$

Properties

- For $\Lambda^{(r)}=\left(\lambda_{1}, \ldots, \lambda_{r}\right) \in \mathbb{R}_{+}^{r}, \bar{G}_{\Lambda(r)}(t)$ is the survival function of $\sum_{s=1}^{r} \Gamma_{s}$, where $\Gamma_{1}, \ldots, \Gamma_{r}$ are independent r. v. with exponential distributions of parameters $\lambda_{1}, \ldots, \lambda_{r}$.
- Moreover, for a permutation π of $[n]$ and $r \in[n]$, we place

$$
\Lambda^{(r)}(\pi)=(M(\emptyset), M(\pi(1)), \ldots, M(\pi(1), \ldots, \pi(r-1))) .
$$

- In the ODTHLS model, for any $j \in[n]$ we have

$$
\mathbb{P}\left(X_{1: n}>t \mid X_{1: n}=X_{j}\right)=\exp (-t M(\emptyset))
$$

and for any permutation π of $[n]$ and $k \in\{2, \ldots, n\}$,

$$
\mathbb{P}\left(X_{k: n}>t \mid X_{1: n}=X_{\pi(1)}, \ldots, X_{k: n}=X_{\pi(k)}\right)=\bar{G}_{\wedge(k)(\pi)}(t) .
$$

Properties.

- In Spizzichino (2018) it is observed that conditioning on the event $\left(X_{1: n}=X_{\pi(1)}, \ldots, X_{k: n}=X_{\pi(k)}\right)$, the interarrival times $X_{1: n}, X_{2: n}-X_{1: n}, \ldots, X_{k: n}-X_{k-1: n}$ are independent random variables exponentially distributed with parameters $M(\emptyset), M(\pi(1)), \ldots, M(\pi(1), \ldots, \pi(k-1))$, respectively.

Properties.

- In Spizzichino (2018) it is observed that conditioning on the event $\left(X_{1: n}=X_{\pi(1)}, \ldots, X_{k: n}=X_{\pi(k)}\right)$, the interarrival times $X_{1: n}, X_{2: n}-X_{1: n}, \ldots, X_{k: n}-X_{k-1: n}$ are independent random variables exponentially distributed with parameters $M(\emptyset), M(\pi(1)), \ldots, M(\pi(1), \ldots, \pi(k-1))$, respectively.
- We note that $M(\emptyset), M(\pi(1)), \ldots, M(\pi(1), \ldots, \pi(k-1))$ do not depend on $\pi(k)$.

Properties.

- In Spizzichino (2018) it is observed that conditioning on the event $\left(X_{1: n}=X_{\pi(1)}, \ldots, X_{k: n}=X_{\pi(k)}\right)$, the interarrival times $X_{1: n}, X_{2: n}-X_{1: n}, \ldots, X_{k: n}-X_{k-1: n}$ are independent random variables exponentially distributed with parameters $M(\emptyset), M(\pi(1)), \ldots, M(\pi(1), \ldots, \pi(k-1))$, respectively.
- We note that $M(\emptyset), M(\pi(1)), \ldots, M(\pi(1), \ldots, \pi(k-1))$ do not depend on $\pi(k)$.
- In particular, the events $\left(X_{1: n}>t\right)$ and $\left(X_{1: n}=X_{j}\right)$ are independent.

Properties.

- In Spizzichino (2018) it is observed that conditioning on the event $\left(X_{1: n}=X_{\pi(1)}, \ldots, X_{k: n}=X_{\pi(k)}\right)$, the interarrival times $X_{1: n}, X_{2: n}-X_{1: n}, \ldots, X_{k: n}-X_{k-1: n}$ are independent random variables exponentially distributed with parameters $M(\emptyset), M(\pi(1)), \ldots, M(\pi(1), \ldots, \pi(k-1))$, respectively.
- We note that $M(\emptyset), M(\pi(1)), \ldots, M(\pi(1), \ldots, \pi(k-1))$ do not depend on $\pi(k)$.
- In particular, the events $\left(X_{1: n}>t\right)$ and $\left(X_{1: n}=X_{j}\right)$ are independent.
- Hence, under this conditioning event, the distribution of $X_{k: n}$ is a convolution of k independent exponential distributions.

Predictions

Predictions, Scenario 1

- We consider the problem of predicting future failure times in the ODTHLS model.

Predictions, Scenario 1

- We consider the problem of predicting future failure times in the ODTHLS model.
- We analyze different scenarios given by different levels of knowledge.

Predictions, Scenario 1

- We consider the problem of predicting future failure times in the ODTHLS model.
- We analyze different scenarios given by different levels of knowledge.
- We start by giving the prediction of $X_{k+1: n}$ from the observed history

$$
\mathcal{H}_{k}=\left\{X_{1: n}=X_{\pi(1)}=t_{1}, \ldots, X_{k: n}=X_{\pi(k)}=t_{k}\right\}
$$

for $k<n$, where π is a permutation of $[n]$.

Predictions

Proposition

Let $\left(X_{1}, \ldots, X_{n}\right)$ follow an ODTHLS model. Given the history \mathcal{H}_{k} for $k<n$, the median and the mean predictions of $X_{k+1: n}$ are

$$
\begin{equation*}
\widehat{X}_{k+1: n}=\mathfrak{m}\left(t_{k}\right)=t_{k}+\frac{\log 2}{M(\pi(1), \ldots, \pi(k))} \tag{4}
\end{equation*}
$$

and

$$
\tilde{X}_{k+1: n}=t_{k}+\frac{1}{M(\pi(1), \ldots, \pi(k))}
$$

Moreover, a prediction band of size $\gamma=\beta-\alpha$, with $\alpha, \beta, \gamma \in(0,1)$, is given by $\left[t_{k}+q_{\alpha}, t_{k}+q_{\beta}\right]$, where q_{α} and q_{β} are the quantiles of the exponential distribution with parameter $M(\pi(1), \ldots, \pi(k))$.

Predictions

- Note that we just need the value $X_{k: n}=t_{k}$ to get the predictions.

Predictions

- Note that we just need the value $X_{k: n}=t_{k}$ to get the predictions.
- For example, in the above proposition, the centered 90% prediction band is obtained with $\beta=0.95$ and $\alpha=0.05$ as

$$
C_{90}=\left[t_{k}-\frac{\log (0.95)}{M(\pi(1), \ldots, \pi(k))}, t_{k}-\frac{\log (0.05)}{M(\pi(1), \ldots, \pi(k))}\right] .
$$

Predictions

- Note that we just need the value $X_{k: n}=t_{k}$ to get the predictions.
- For example, in the above proposition, the centered 90% prediction band is obtained with $\beta=0.95$ and $\alpha=0.05$ as

$$
C_{90}=\left[t_{k}-\frac{\log (0.95)}{M(\pi(1), \ldots, \pi(k))}, t_{k}-\frac{\log (0.05)}{M(\pi(1), \ldots, \pi(k))}\right] .
$$

- Here, we prefer to use the predictions given by the median $\mathfrak{m}\left(t_{k}\right)$, instead of the ones based on the mean, since they are obtained by using quantiles as well as the prediction bands.

Predictions

- Note that we just need the value $X_{k: n}=t_{k}$ to get the predictions.
- For example, in the above proposition, the centered 90% prediction band is obtained with $\beta=0.95$ and $\alpha=0.05$ as

$$
C_{90}=\left[t_{k}-\frac{\log (0.95)}{M(\pi(1), \ldots, \pi(k))}, t_{k}-\frac{\log (0.05)}{M(\pi(1), \ldots, \pi(k))}\right] .
$$

- Here, we prefer to use the predictions given by the median $\mathfrak{m}\left(t_{k}\right)$, instead of the ones based on the mean, since they are obtained by using quantiles as well as the prediction bands.
- Let us denote by $m_{c}=\frac{\log 2}{c}$ the median of an exponential distribution with parameter c.

Predictions, Scenario 2

- Let $\left(X_{1}, \ldots, X_{n}\right)$ follow an ODTHLS model.

Predictions, Scenario 2

- Let $\left(X_{1}, \ldots, X_{n}\right)$ follow an ODTHLS model.
- Let us suppose to know the history

$$
X_{1: n}=X_{\pi(1)}, X_{2: n}=X_{\pi(2)}, \ldots, X_{k: n}=X_{\pi(k)}, \text { for } k<n
$$

Predictions, Scenario 2

- Let $\left(X_{1}, \ldots, X_{n}\right)$ follow an ODTHLS model.
- Let us suppose to know the history

$$
X_{1: n}=X_{\pi(1)}, X_{2: n}=X_{\pi(2)}, \ldots, X_{k: n}=X_{\pi(k)}, \text { for } k<n .
$$

- Then the median and the mean predictions for the next failure time $X_{k+1: n}$ are respectively given by

$$
\begin{aligned}
\widehat{X}_{k+1: n} & =m_{M(\emptyset)}+m_{M(\pi(1))}+\cdots+m_{M(\pi(1), \ldots, \pi(k))} \\
\tilde{X}_{k+1: n} & =\frac{1}{M(\emptyset)}+\frac{1}{M(\pi(1))}+\cdots+\frac{1}{M(\pi(1), \ldots, \pi(k))}
\end{aligned}
$$

Predictions, Scenario 2

- Let $\left(X_{1}, \ldots, X_{n}\right)$ follow an ODTHLS model.
- Let us suppose to know the history

$$
X_{1: n}=X_{\pi(1)}, X_{2: n}=X_{\pi(2)}, \ldots, X_{k: n}=X_{\pi(k)}, \text { for } k<n .
$$

- Then the median and the mean predictions for the next failure time $X_{k+1: n}$ are respectively given by

$$
\begin{aligned}
\widehat{X}_{k+1: n} & =m_{M(\emptyset)}+m_{M(\pi(1))}+\cdots+m_{M(\pi(1), \ldots, \pi(k))} \\
\tilde{X}_{k+1: n} & =\frac{1}{M(\emptyset)}+\frac{1}{M(\pi(1))}+\cdots+\frac{1}{M(\pi(1), \ldots, \pi(k))}
\end{aligned}
$$

- The prediction can also be obtained from the median of the convolution of $k+1$ independent exponential distributions with parameters $M(\emptyset), M(\pi(1)), \ldots, M(\pi(1), \ldots, \pi(k))$.

Predictions, Scenario 3

Proposition

Let $\left(X_{1}, \ldots, X_{n}\right)$ follow an ODTHLS model. Given the history \mathcal{H}_{k} for $k<n-1$, the prediction of $X_{k+2: n}$ is given by

$$
\widehat{X}_{k+2: n}=\widehat{X}_{k+1: n}+\sum_{j \notin\{\pi(1), \ldots, \pi(k)\}} \rho_{j}(\pi(1), \ldots, \pi(k)) \frac{\log 2}{M(\pi(1), \ldots, \pi(k), j)}
$$

where $\widehat{X}_{k+1: n}$ is the median prediction of $X_{k+1: n}$ obtained before.

Predictions, Scenario 3

Proposition

Let $\left(X_{1}, \ldots, X_{n}\right)$ follow an ODTHLS model. Let π be a fixed permutation of $[n]$ and $k<n-1$. Then,

$$
\mathbb{P}\left(X_{k+2: n}-t_{k}>t \mid \mathcal{H}_{k}\right)=\sum_{j \notin\{\pi(1), \ldots, \pi(k)\}} \rho_{j}(\pi(1), \ldots, \pi(k)) \bar{G}_{\Upsilon_{j}^{(k)}(\pi)}(t),
$$

where \mathcal{H}_{k} is the history defined above, $\bar{G}_{\Upsilon_{j}^{(k)}(\pi)}(t)$ is the survival function of $Y=Y_{1}+Y_{2}$, where Y_{1} and Y_{2} are independent random variables with exponential distributions of parameters $M(\pi(1), \ldots, \pi(k))$ and $M(\pi(1), \ldots, \pi(k), j)$.

Predictions, Scenario 3

- Conditioning on the observed history, the interarrival time $X_{k+2: n}-X_{k: n}$ is a mixture of $n-k$ distributions which are sums of two independent exponential distributions.

Predictions, Scenario 3

- Conditioning on the observed history, the interarrival time $X_{k+2: n}-X_{k: n}$ is a mixture of $n-k$ distributions which are sums of two independent exponential distributions.
- The analytical expressions of the survival functions of such distributions are well known.

Predictions, Scenario 3

- Conditioning on the observed history, the interarrival time $X_{k+2: n}-X_{k: n}$ is a mixture of $n-k$ distributions which are sums of two independent exponential distributions.
- The analytical expressions of the survival functions of such distributions are well known.
- It is necessary to distinguish between the case in which the exponential distributions have the same parameter or not.

Predictions, Scenario 3

- Conditioning on the observed history, the interarrival time $X_{k+2: n}-X_{k: n}$ is a mixture of $n-k$ distributions which are sums of two independent exponential distributions.
- The analytical expressions of the survival functions of such distributions are well known.
- It is necessary to distinguish between the case in which the exponential distributions have the same parameter or not.
- If they have parameters λ and μ with $\lambda \neq \mu$, then

$$
\begin{equation*}
\bar{F}_{Y}(t)=\frac{\mu}{\mu-\lambda} e^{-\lambda t}-\frac{\lambda}{\mu-\lambda} e^{-\mu t}, t \geq 0 \tag{5}
\end{equation*}
$$

Predictions, Scenario 3

- Conditioning on the observed history, the interarrival time $X_{k+2: n}-X_{k: n}$ is a mixture of $n-k$ distributions which are sums of two independent exponential distributions.
- The analytical expressions of the survival functions of such distributions are well known.
- It is necessary to distinguish between the case in which the exponential distributions have the same parameter or not.
- If they have parameters λ and μ with $\lambda \neq \mu$, then

$$
\begin{equation*}
\bar{F}_{Y}(t)=\frac{\mu}{\mu-\lambda} e^{-\lambda t}-\frac{\lambda}{\mu-\lambda} e^{-\mu t}, t \geq 0 \tag{5}
\end{equation*}
$$

- In the case $\lambda=\mu$, then

$$
\begin{equation*}
\bar{F}_{Y}(t)=(1+\lambda t) e^{-\lambda t}, t \geq 0 \tag{6}
\end{equation*}
$$

Predictions, Scenario 3

- The median of such distributions can also lead to good predictions for $X_{k+2: n}$.

Predictions, Scenario 3

- The median of such distributions can also lead to good predictions for $X_{k+2: n}$.
- Numerical methods should be used to get that medians.

Predictions, Scenario 3

- The median of such distributions can also lead to good predictions for $X_{k+2: n}$.
- Numerical methods should be used to get that medians.
- Then, if we want to get a confidence $\gamma=\beta-\alpha$, where $\alpha, \beta, \gamma \in(0,1)$ and q_{α} and q_{β} are the respective quantiles of the distribution given in the preceding proposition, we use that

$$
\mathbb{P}\left(t_{k}+q_{\alpha} \leq X_{k+2: n} \leq t_{k}+q_{\beta} \mid \mathcal{H}_{k}\right)=\gamma
$$

Predictions, Scenario 3

- The median of such distributions can also lead to good predictions for $X_{k+2: n}$.
- Numerical methods should be used to get that medians.
- Then, if we want to get a confidence $\gamma=\beta-\alpha$, where $\alpha, \beta, \gamma \in(0,1)$ and q_{α} and q_{β} are the respective quantiles of the distribution given in the preceding proposition, we use that

$$
\mathbb{P}\left(t_{k}+q_{\alpha} \leq X_{k+2: n} \leq t_{k}+q_{\beta} \mid \mathcal{H}_{k}\right)=\gamma
$$

- In this way, it is possible to predict $X_{s: n}$ for $s>k$.

Predictions, Scenario 3

- The median of such distributions can also lead to good predictions for $X_{k+2: n}$.
- Numerical methods should be used to get that medians.
- Then, if we want to get a confidence $\gamma=\beta-\alpha$, where $\alpha, \beta, \gamma \in(0,1)$ and q_{α} and q_{β} are the respective quantiles of the distribution given in the preceding proposition, we use that

$$
\mathbb{P}\left(t_{k}+q_{\alpha} \leq X_{k+2: n} \leq t_{k}+q_{\beta} \mid \mathcal{H}_{k}\right)=\gamma .
$$

- In this way, it is possible to predict $X_{s: n}$ for $s>k$.
- With the increase of s there will be more terms in the convolutions.

Simulations

- The preceding results can be used to get simulated data from an ODTHLS (or THLS) model.

Simulations

- The preceding results can be used to get simulated data from an ODTHLS (or THLS) model.
- The algorithm can be summarized as follows:

Step 1. Choose π according to the probabilities given in (3).
Step 2. Simulate n independent exponential distributions Z_{1}, \ldots, Z_{n} with parameters $M(\emptyset), M(\pi(1)), \ldots, M(\pi(1), \ldots, \pi(n-1))$.
Step 3. Compute $X_{k: n}=Z_{1}+\cdots+Z_{k}$, for $k=1, \ldots, n$.
Step 4. Compute $X_{\pi(k)}=X_{k: n}$, for $k=1, \ldots, n$.

Example 1

- Let $\left(X_{1}, X_{2}, X_{3}\right)$ be distributed according to an ODTHLS model with parameters
$\mu_{1}(\emptyset)=1, \quad \mu_{1}(2)=2, \quad \mu_{1}(3)=1, \quad \mu_{1}(2,3)=\mu_{1}(3,2)=3$,
$\mu_{2}(\emptyset)=2, \quad \mu_{2}(1)=1, \quad \mu_{2}(3)=3, \quad \mu_{2}(1,3)=\mu_{2}(3,1)=2$,
$\mu_{3}(\emptyset)=2, \quad \mu_{3}(1)=2, \quad \mu_{3}(2)=1, \quad \mu_{3}(1,2)=\mu_{3}(2,1)=2$.

Example 1

- Let $\left(X_{1}, X_{2}, X_{3}\right)$ be distributed according to an ODTHLS model with parameters

$$
\begin{array}{llll}
\mu_{1}(\emptyset)=1, & \mu_{1}(2)=2, & \mu_{1}(3)=1, & \mu_{1}(2,3)=\mu_{1}(3,2)=3, \\
\mu_{2}(\emptyset)=2, & \mu_{2}(1)=1, & \mu_{2}(3)=3, & \mu_{2}(1,3)=\mu_{2}(3,1)=2, \\
\mu_{3}(\emptyset)=2, & \mu_{3}(1)=2, & \mu_{3}(2)=1, & \mu_{3}(1,2)=\mu_{3}(2,1)=2 .
\end{array}
$$

- It is a THLS model since $\mu_{i}(j, k)=\mu_{i}(k, j)$ for all i, j and k.

Example 1

- Let $\left(X_{1}, X_{2}, X_{3}\right)$ be distributed according to an ODTHLS model with parameters

$$
\begin{array}{lll}
\mu_{1}(\emptyset)=1, & \mu_{1}(2)=2, & \mu_{1}(3)=1,
\end{array} \mu_{1}(2,3)=\mu_{1}(3,2)=3, ~(\emptyset)=2, \quad \mu_{2}(1)=1, \quad \mu_{2}(3)=3, \quad \mu_{2}(1,3)=\mu_{2}(3,1)=2, ~\left(\emptyset, ~(\emptyset)=2, \quad \mu_{3}(1)=2, \quad \mu_{3}(2)=1, \quad \mu_{3}(1,2)=\mu_{3}(2,1)=2 .\right.
$$

- It is a THLS model since $\mu_{i}(j, k)=\mu_{i}(k, j)$ for all i, j and k.
- Hence, we have

$$
\begin{aligned}
& M(\emptyset)=5, \quad M(1)=3, \quad M(2)=3, \quad M(3)=4 \\
& M(1,2)=M(2,1)=2, \quad M(1,3)=M(3,1)=2 \\
& M(2,3)=M(3,2)=3
\end{aligned}
$$

Example 1

Then

$$
\begin{array}{ll}
\rho_{1}(\emptyset)=\frac{1}{5}, & \rho_{2}(\emptyset)=\frac{2}{5}, \quad \rho_{3}(\emptyset)=\frac{2}{5}, \\
\rho_{2}(1)=\frac{1}{3}, & \rho_{3}(1)=\frac{2}{3}, \\
\rho_{1}(2)=\frac{2}{3}, & \rho_{3}(2)=\frac{1}{3}, \\
\rho_{1}(3)=\frac{1}{4}, & \rho_{2}(3)=\frac{3}{4},
\end{array}
$$

and, naturally,

$$
\rho_{1}(2,3)=\rho_{1}(3,2)=\rho_{2}(1,3)=\rho_{2}(3,1)=\rho_{3}(1,2)=\rho_{3}(2,1)=1
$$

Example 1

- For $n=3$ there are six possible permutations with probabilities

$$
\begin{aligned}
& \mathbb{P}\left(X_{1: 3}=X_{1}, X_{2: 3}=X_{2}, X_{3: 3}=X_{3}\right)=\frac{1}{15} \\
& \mathbb{P}\left(X_{1: 3}=X_{1}, X_{2: 3}=X_{3}, X_{3: 3}=X_{2}\right)=\frac{2}{15}, \\
& \mathbb{P}\left(X_{1: 3}=X_{2}, X_{2: 3}=X_{1}, X_{3: 3}=X_{3}\right)=\frac{4}{15}, \\
& \mathbb{P}\left(X_{1: 3}=X_{2}, X_{2: 3}=X_{3}, X_{3: 3}=X_{1}\right)=\frac{2}{15} \\
& \mathbb{P}\left(X_{1: 3}=X_{3}, X_{2: 3}=X_{1}, X_{3: 3}=X_{2}\right)=\frac{1}{10}, \\
& \mathbb{P}\left(X_{1: 3}=X_{3}, X_{2: 3}=X_{2}, X_{3: 3}=X_{1}\right)=\frac{3}{10} .
\end{aligned}
$$

Example 1

- By generating a uniform number in $(0,1)$, the permutation $(2,1,3)$ is chosen.

Example 1

- By generating a uniform number in $(0,1)$, the permutation $(2,1,3)$ is chosen.
- Hence, three exponential numbers are generated with parameters $M(\emptyset)=5, M(2)=3$, and $M(2,1)=2$.

Example 1

- By generating a uniform number in $(0,1)$, the permutation $(2,1,3)$ is chosen.
- Hence, three exponential numbers are generated with parameters $M(\emptyset)=5, M(2)=3$, and $M(2,1)=2$.
- In this way, the simulated interarrival times obtained are $0.17166,0.14498,0.25606$, respectively.

Example 1

- By generating a uniform number in $(0,1)$, the permutation $(2,1,3)$ is chosen.
- Hence, three exponential numbers are generated with parameters $M(\emptyset)=5, M(2)=3$, and $M(2,1)=2$.
- In this way, the simulated interarrival times obtained are $0.17166,0.14498,0.25606$, respectively.
- Then the simulated values of the order statistics are $X_{1: 3}=0.17166, X_{2: 3}=0.17166+0.14498=0.31663$ and $X_{3: 3}=0.31663+0.25606=0.57270$.

Example 1

- By generating a uniform number in $(0,1)$, the permutation $(2,1,3)$ is chosen.
- Hence, three exponential numbers are generated with parameters $M(\emptyset)=5, M(2)=3$, and $M(2,1)=2$.
- In this way, the simulated interarrival times obtained are $0.17166,0.14498,0.25606$, respectively.
- Then the simulated values of the order statistics are $X_{1: 3}=0.17166, X_{2: 3}=0.17166+0.14498=0.31663$ and $X_{3: 3}=0.31663+0.25606=0.57270$.
- Since we have chosen permutation $(2,1,3)$, the values $0.17166,0.31663$ and 0.57270 represent a simulation of X_{2}, X_{1} and X_{3}, respectively, i.e., the simulated data is (0.31663, 0.17166, 0.57270).

Example 1

- Suppose that the realization of the sample is the one that we have simulated above, i.e., $X_{1}=0.31663, X_{2}=0.17166$ and $X_{3}=0.57270$.

Example 1

- Suppose that the realization of the sample is the one that we have simulated above, i.e., $X_{1}=0.31663, X_{2}=0.17166$ and $X_{3}=0.57270$.
- Suppose now that we just know $X_{1: 3}=X_{2}=0.17166$ and that our purpose is to predict $X_{2: 3}$ and $X_{3: 3}$.
- The mean and the median predictions of $X_{2: 3}=0.31663$ are

$$
\tilde{X}_{2: 3}=X_{1: 3}+\frac{1}{M(2)}=0.50499
$$

and

$$
\widehat{X}_{2: 3}=\mathfrak{m}\left(X_{1: 3}\right)=X_{1: 3}+\frac{\log 2}{M(2)}=0.40270
$$

Example 1

- Furthermore, the centered 90% and 50% prediction bands are

$$
\begin{aligned}
& C_{90}=\left[X_{1: 3}-\frac{\log (0.95)}{M(2)}, X_{1: 3}-\frac{\log (0.05)}{M(2)}\right]=[0.18875,1.17023] \\
& \text { and } C_{50}=[0.26755,0.63375]
\end{aligned}
$$

Example 1

- Furthermore, the centered 90% and 50% prediction bands are

$$
\begin{aligned}
& C_{90}=\left[X_{1: 3}-\frac{\log (0.95)}{M(2)}, X_{1: 3}-\frac{\log (0.05)}{M(2)}\right]=[0.18875,1.17023] \\
& \text { and } C_{50}=[0.26755,0.63375]
\end{aligned}
$$

- The true value of $X_{2: 3}=0.31663$ belongs to both regions.

Example 1

- Furthermore, the centered 90% and 50% prediction bands are

$$
\begin{aligned}
& C_{90}=\left[X_{1: 3}-\frac{\log (0.95)}{M(2)}, X_{1: 3}-\frac{\log (0.05)}{M(2)}\right]=[0.18875,1.17023] \\
& \text { and } C_{50}=[0.26755,0.63375] .
\end{aligned}
$$

- The true value of $X_{2: 3}=0.31663$ belongs to both regions.
- Once $X_{2: 3}$ has been predicted, also $X_{3: 3}$ can be predicted.

Example 1

- Furthermore, the centered 90% and 50% prediction bands are

$$
\begin{aligned}
& C_{90}=\left[X_{1: 3}-\frac{\log (0.95)}{M(2)}, X_{1: 3}-\frac{\log (0.05)}{M(2)}\right]=[0.18875,1.17023] \\
& \text { and } C_{50}=[0.26755,0.63375]
\end{aligned}
$$

- The true value of $X_{2: 3}=0.31663$ belongs to both regions.
- Once $X_{2: 3}$ has been predicted, also $X_{3: 3}$ can be predicted.
- In this case the median prediction of $X_{3: 3}=0.57270$ is given by

$$
\widehat{X}_{3: 3}=\widehat{X}_{2: 3}+\rho_{1}(2) \frac{\log 2}{M(2,1)}+\rho_{3}(2) \frac{\log 2}{M(2,3)}=0.4027+\frac{2}{3} \cdot \frac{\log 2}{2}+\frac{1}{3} \cdot \frac{\log 2}{3}=0.710
$$

Example 1

- We can get a different prediction for $X_{3: 3}$ from

$$
\begin{aligned}
\bar{G}_{3 \mid 1}(t) & =\mathbb{P}\left(X_{3: 3}-X_{1: 3}>t \mid X_{1: 3}=X_{2}=0.17166\right) \\
& =\rho_{1}(2) \bar{G}_{Y_{1,1}+Y_{1,2}}(t)+\rho_{3}(2) \bar{G}_{Y_{2,1}+Y_{2,2}}(t),
\end{aligned}
$$

where $Y_{1,1}, Y_{1,2}, Y_{2,1}$ and $Y_{2,2}$ are independent and exponentially distributed with parameters

$$
M(2)=3, M(2,1)=2, M(2)=3 \text { and } M(2,3)=3 .
$$

Example 1

- We can get a different prediction for $X_{3: 3}$ from

$$
\begin{aligned}
\bar{G}_{3 \mid 1}(t) & =\mathbb{P}\left(X_{3: 3}-X_{1: 3}>t \mid X_{1: 3}=X_{2}=0.17166\right) \\
& =\rho_{1}(2) \bar{G}_{Y_{1,1}+Y_{1,2}}(t)+\rho_{3}(2) \bar{G}_{Y_{2,1}+Y_{2,2}}(t),
\end{aligned}
$$

where $Y_{1,1}, Y_{1,2}, Y_{2,1}$ and $Y_{2,2}$ are independent and exponentially distributed with parameters

$$
M(2)=3, M(2,1)=2, M(2)=3 \text { and } M(2,3)=3 .
$$

- Hence, we obtain

$$
\bar{G}_{3 \mid 1}(t)=\rho_{1}(2) \frac{M(2) e^{-M(2,1) t}-M(2,1) e^{-M(2) t}}{M(2)-M(2,1)}+\rho_{3}(2)(1+M(2) t) e^{-M(2) t} .
$$

Example 1

- We can get a different prediction for $X_{3: 3}$ from

$$
\begin{aligned}
\bar{G}_{3 \mid 1}(t) & =\mathbb{P}\left(X_{3: 3}-X_{1: 3}>t \mid X_{1: 3}=X_{2}=0.17166\right) \\
& =\rho_{1}(2) \bar{G}_{Y_{1,1}+Y_{1,2}}(t)+\rho_{3}(2) \bar{G}_{Y_{2,1}+Y_{2,2}}(t),
\end{aligned}
$$

where $Y_{1,1}, Y_{1,2}, Y_{2,1}$ and $Y_{2,2}$ are independent and exponentially distributed with parameters

$$
M(2)=3, M(2,1)=2, M(2)=3 \text { and } M(2,3)=3 .
$$

- Hence, we obtain

$$
\bar{G}_{3 \mid 1}(t)=\rho_{1}(2) \frac{M(2) e^{-M(2,1) t}-M(2,1) e^{-M(2) t}}{M(2)-M(2,1)}+\rho_{3}(2)(1+M(2) t) e^{-M(2) t} .
$$

- By resolving $\bar{G}_{3 \mid 1}(t)=0.5$ we obtain a prediction for the difference $X_{3: 3}-X_{1: 3}$ that is 0.64409 , from which

$$
\widehat{X}_{3: 3}=0.17166+0.64409=0.81575
$$

Example 1

- By resolving $\bar{G}_{3 \mid 1}(t)=\alpha$, for $\alpha=0.05,0.25,0.75,0.95$, we obtain the 90% and 50% centered prediction bands as $C_{90}=[0.30639,2.04858]$ and $C_{50}=[0.53811,1.21520]$.

Example 1

- By resolving $\bar{G}_{3 \mid 1}(t)=\alpha$, for $\alpha=0.05,0.25,0.75,0.95$, we obtain the 90% and 50% centered prediction bands as $C_{90}=[0.30639,2.04858]$ and $C_{50}=[0.53811,1.21520]$.
- We observe that $X_{3: 3}=0.57270$ belongs to both regions.

Example 1

- By resolving $\bar{G}_{3 \mid 1}(t)=\alpha$, for $\alpha=0.05,0.25,0.75,0.95$, we obtain the 90% and 50% centered prediction bands as $C_{90}=[0.30639,2.04858]$ and $C_{50}=[0.53811,1.21520]$.
- We observe that $X_{3: 3}=0.57270$ belongs to both regions.
- In the following figure we plot these predictions (red) for $X_{2: 3}, X_{3: 3}$ from $X_{1: 3}$ jointly with the exact values (black points) and the prediction bands.

Figure: Predictions (red) for $X_{s: 3}$ from $X_{1: 3}$ for $s=2,3$ jointly with the exact values (black) for a simulated sample from an ODTHLS model.

Figure: Scatterplots of 100 simulated samples from $\left(X_{1: 3}, X_{2: 3}\right)$, for the case $X_{1: 3}=X_{2}$ jointly with the median regression curves (red) and 50% (dark grey) and 90% (light grey) prediction bands.

Figure: Scatterplots of 100 simulated sample from $\left(X_{1: 3}, X_{2: 3}\right)$ for the ODTHLS model jointly with the median regression curves (red) and 50% (dark grey) and 90% (light grey) prediction bands for the cases $X_{1: 3}=X_{1}$ (left) and $X_{1: 3}=X_{3}$ (right).

Example 2

- Now, suppose we just know that $X_{1.3}=X_{2}$.

Example 2

- Now, suppose we just know that $X_{1.3}=X_{2}$.
- Then the predictions for the first and the second order statistics based on the median (left) and the mean (right) are

$$
\begin{array}{ll}
\widehat{X}_{1: 3}=\frac{\log 2}{M(\emptyset)}=0.13863, & \tilde{X}_{1: 3}=\frac{1}{M(\emptyset)}=0.2 \\
\widehat{X}_{2: 3}=\frac{\log 2}{M(\emptyset)}+\frac{\log 2}{M(2)}=0.36968, & \tilde{X}_{2: 3}=\frac{1}{M(\emptyset)}+\frac{1}{M(2)}=0.53333
\end{array}
$$

Example 2

- Now, suppose we just know that $X_{1.3}=X_{2}$.
- Then the predictions for the first and the second order statistics based on the median (left) and the mean (right) are
$\widehat{X}_{1: 3}=\frac{\log 2}{M(\emptyset)}=0.13863$,

$$
\tilde{X}_{1: 3}=\frac{1}{M(\emptyset)}=0.2
$$

$\widehat{X}_{2: 3}=\frac{\log 2}{M(\emptyset)}+\frac{\log 2}{M(2)}=0.36968, \quad \tilde{X}_{2: 3}=\frac{1}{M(\emptyset)}+\frac{1}{M(2)}=0.53333$.

- The prediction of $X_{2: 3}$ can be obtained also by the median of the convolution $X_{1: 3}+\left(X_{2: 3}-X_{1: 3}\right)$.

Example 2

- Now, suppose we just know that $X_{1.3}=X_{2}$.
- Then the predictions for the first and the second order statistics based on the median (left) and the mean (right) are
$\widehat{X}_{1: 3}=\frac{\log 2}{M(\emptyset)}=0.13863$,
$\widehat{X}_{2: 3}=\frac{\log 2}{M(\emptyset)}+\frac{\log 2}{M(2)}=0.36968$,

$$
\tilde{X}_{2: 3}=\frac{1}{M(\emptyset)}+\frac{1}{M(2)}=0.53333 .
$$

- The prediction of $X_{2: 3}$ can be obtained also by the median of the convolution $X_{1: 3}+\left(X_{2: 3}-X_{1: 3}\right)$.
- Given that $X_{1: 3}=X_{2}$, these interarrival times are independent and exponential with parameters $M(\emptyset)=5$ and $M(2)=3$.

Example 2

- Now, suppose we just know that $X_{1.3}=X_{2}$.
- Then the predictions for the first and the second order statistics based on the median (left) and the mean (right) are
$\widehat{X}_{1: 3}=\frac{\log 2}{M(\emptyset)}=0.13863$,
$\widehat{X}_{2: 3}=\frac{\log 2}{M(\emptyset)}+\frac{\log 2}{M(2)}=0.36968$,

$$
\tilde{X}_{2: 3}=\frac{1}{M(\emptyset)}+\frac{1}{M(2)}=0.53333 .
$$

- The prediction of $X_{2: 3}$ can be obtained also by the median of the convolution $X_{1: 3}+\left(X_{2: 3}-X_{1: 3}\right)$.
- Given that $X_{1: 3}=X_{2}$, these interarrival times are independent and exponential with parameters $M(\emptyset)=5$ and $M(2)=3$.
- The median of such a distribution gives another prediction for $X_{2: 3}$ as 0.44139 .

Example 2

- If we know that the first and the second order statistics are assumed in X_{2} and X_{1}, the maximum $X_{3: 3}$ can be predicted by the median and the mean, respectively, as

$$
\widehat{X}_{3: 3}=\frac{\log 2}{M(\emptyset)}+\frac{\log 2}{M(2)}+\frac{\log 2}{M(2,1)}=0.71625,
$$

and

$$
\tilde{X}_{3: 3}=\frac{1}{M(\emptyset)}+\frac{1}{M(2)}+\frac{1}{M(2,1)}=1.03333
$$

Example 2

- In addition, we can obtain the prediction of $X_{3: 3}$ based on the convolution $Y=X_{1: 3}+\left(X_{2: 3}-X_{1: 3}\right)+\left(X_{3: 3}-X_{2: 3}\right)$, given that $X_{1: 3}=X_{2}, X_{2: 3}=X_{1}$.

Example 2

- In addition, we can obtain the prediction of $X_{3: 3}$ based on the convolution $Y=X_{1: 3}+\left(X_{2: 3}-X_{1: 3}\right)+\left(X_{3: 3}-X_{2: 3}\right)$, given that $X_{1: 3}=X_{2}, X_{2: 3}=X_{1}$.
- The interarrival times are independent and have exponential distributions with parameters $M(\emptyset)=5, M(2)=3$ and $M(2,1)=2$.

Example 2

- In addition, we can obtain the prediction of $X_{3: 3}$ based on the convolution $Y=X_{1: 3}+\left(X_{2: 3}-X_{1: 3}\right)+\left(X_{3: 3}-X_{2: 3}\right)$, given that $X_{1: 3}=X_{2}, X_{2: 3}=X_{1}$.
- The interarrival times are independent and have exponential distributions with parameters $M(\emptyset)=5, M(2)=3$ and $M(2,1)=2$.
- The survival function of this convolution can be obtained from the results in Akkouchi (2008).

Example 2

- In addition, we can obtain the prediction of $X_{3: 3}$ based on the convolution $Y=X_{1: 3}+\left(X_{2: 3}-X_{1: 3}\right)+\left(X_{3: 3}-X_{2: 3}\right)$, given that $X_{1: 3}=X_{2}, X_{2: 3}=X_{1}$.
- The interarrival times are independent and have exponential distributions with parameters $M(\emptyset)=5, M(2)=3$ and $M(2,1)=2$.
- The survival function of this convolution can be obtained from the results in Akkouchi (2008).
- The median of such a distribution can be numerically computed and gives the prediction $X_{3: 3}^{*}=0.90225$.

Example 2

- In addition, we can obtain the prediction of $X_{3: 3}$ based on the convolution $Y=X_{1: 3}+\left(X_{2: 3}-X_{1: 3}\right)+\left(X_{3: 3}-X_{2: 3}\right)$, given that $X_{1: 3}=X_{2}, X_{2: 3}=X_{1}$.
- The interarrival times are independent and have exponential distributions with parameters $M(\emptyset)=5, M(2)=3$ and $M(2,1)=2$.
- The survival function of this convolution can be obtained from the results in Akkouchi (2008).
- The median of such a distribution can be numerically computed and gives the prediction $X_{3: 3}^{*}=0.90225$.
- It can also be used to get the prediction intervals for $X_{3: 3}$: $C_{90}=[0.26708,2.24684]$ and $C_{50}=[0.57337,1.35021]$.

Example 2

- In addition, we can obtain the prediction of $X_{3: 3}$ based on the convolution $Y=X_{1: 3}+\left(X_{2: 3}-X_{1: 3}\right)+\left(X_{3: 3}-X_{2: 3}\right)$, given that $X_{1: 3}=X_{2}, X_{2: 3}=X_{1}$.
- The interarrival times are independent and have exponential distributions with parameters $M(\emptyset)=5, M(2)=3$ and $M(2,1)=2$.
- The survival function of this convolution can be obtained from the results in Akkouchi (2008).
- The median of such a distribution can be numerically computed and gives the prediction $X_{3: 3}^{*}=0.90225$.
- It can also be used to get the prediction intervals for $X_{3: 3}$: $C_{90}=[0.26708,2.24684]$ and $C_{50}=[0.57337,1.35021]$.
- The exact value $X_{3: 3}=0.57270$ belongs to C_{90} but it does not belong to C_{50}.

Conclusions

- The ODTHLS model is a good option to represent lifetimes subject to common loads.

Conclusions

- The ODTHLS model is a good option to represent lifetimes subject to common loads.
- It is an extension of the exponential model and can also be used to study coherent systems.

Conclusions

- The ODTHLS model is a good option to represent lifetimes subject to common loads.
- It is an extension of the exponential model and can also be used to study coherent systems.
- In these cases it is very important to predict the future failures from early failures under different assumptions.

Conclusions

- The ODTHLS model is a good option to represent lifetimes subject to common loads.
- It is an extension of the exponential model and can also be used to study coherent systems.
- In these cases it is very important to predict the future failures from early failures under different assumptions.
- Our finding jointly with quantile regression tools provide such predictions jointly with prediction bands that can be used to "control" de data.

Conclusions

- The ODTHLS model is a good option to represent lifetimes subject to common loads.
- It is an extension of the exponential model and can also be used to study coherent systems.
- In these cases it is very important to predict the future failures from early failures under different assumptions.
- Our finding jointly with quantile regression tools provide such predictions jointly with prediction bands that can be used to "control" de data.
- In practice, the parameters of the model should be estimated (see the paper).

Main references

Akkouchi, M. (2008). On the convolution of exponential distributions. Journal of the Chungcheong Mathematical Society, 21, 501-510.

Buono, F., Navarro, J. (2023). Simulations and predictions of future values in the time-homogeneous load-sharing model. To appear in Statistical Papers. Published online first Feb. 2023. https://doi.org/10.1007/s00362-023-01404-5.
Shaked, M., Shanthikumar, J. G. (1988). Multivariate conditional hazard rates and the MIFRA and MIFR properties. Journal of Applied Probability, 25, 150-168.
Spizzichino, F. (2018). Reliability, signature, and relative quality functions of systems under time-homogeneous load-sharing models. Applied Stochastic Models in Business and Industry, 35, 158-176.

Final slide

- More references in my web page
https://webs.um.es/jorgenav/miwiki/doku.php

Final slide

- More references in my web page
https://webs.um.es/jorgenav/miwiki/doku.php
- That's all. Thank you for your attention!!

Final slide

- More references in my web page
https://webs.um.es/jorgenav/miwiki/doku.php
- That's all. Thank you for your attention!!
- Questions?

