
Preliminary results
Predictions

Main references

Prediction of future data in multivariate constant
conditional hazard rate models

Jorge Navarro1

Universidad de Murcia, Murcia, Spain.

September 28, 2023

1Partially supported by Ministerio de Ciencia e Innovación of Spain under
grant PID2019-108079GB-C22/AEI/10.13039/501100011033.
XL Congreso Nacional SEIO, Elche 7-10 Nov. 2023 Jorge Navarro, Email: jorgenav@um.es. 1/43



Preliminary results
Predictions

Main references

References

The conference is based on the following paper:

I Buono F., Navarro J. (2023). Simulations and predictions of
future values in the time-homogeneous load-sharing model. To
appear in Statistical Papers. Published online first Feb. 2023.
https://doi.org/10.1007/s00362-023-01404-5.

XL Congreso Nacional SEIO, Elche 7-10 Nov. 2023 Jorge Navarro, Email: jorgenav@um.es. 2/43



Preliminary results
Predictions

Main references

Outline

Preliminary results
Conditional hazard rate functions
The models
Properties

Predictions
Predictions under different scenarios
Simulations
Examples

Main references

XL Congreso Nacional SEIO, Elche 7-10 Nov. 2023 Jorge Navarro, Email: jorgenav@um.es. 3/43



Preliminary results
Predictions

Main references

Conditional hazard rate functions
The models
Properties

Preliminary results

XL Congreso Nacional SEIO, Elche 7-10 Nov. 2023 Jorge Navarro, Email: jorgenav@um.es. 4/43



Preliminary results
Predictions

Main references

Conditional hazard rate functions
The models
Properties

Hazard rate functions

I X1, . . . ,Xn nonnegative random variables with an absolutely
continuous joint distribution.

I The marginal survival (or reliability) functions are
F̄j(t) = P (Xj > t) for j ∈ [n] = {1, . . . , n}.

I The marginal probability density functions (PDF) are
fj(t) = −F̄ ′j (t) for j ∈ [n].

I The jth hazard (or failure) rate function is

λj(t) = lim
∆t→0+

1
∆t

P (Xj ≤ t + ∆t |Xj > t ) =
fj(t)

F̄j(t)
.

I The condition λj(t) = cj for t ≥ 0 leads to the exponential
distribution with F̄j(t) = exp(−cj t) for t ≥ 0 and ci > 0.
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Hazard rate functions

I For j ∈ [n] and i1, . . . , ik ∈ [n] with j /∈ I = {i1, . . . , ik}, and
0 ≤ t1 ≤ · · · ≤ tk , the jth multivariate conditional hazard
rate (MCHR) function λj(t|i1, . . . , ik ; t1, . . . , tk) is defined as:

lim
∆t→0+

1
∆t

P
(
Xj ≤ t + ∆t

∣∣∣∣Xi1 = t1, . . . ,Xik = tk ,min
h/∈I

Xh > t

)
.

I We use the following notation for the MCHR functions with no
failures (also called risk-specific or initial hazard rate)

λj(t|∅) = lim
∆t→0+

1
∆t

P (Xj ≤ t + ∆t |X1:n > t ) ,

where X1:n = min(X1, . . . ,Xn).
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Particular cases

I If X1, . . . ,Xn are independent, then, for all j /∈ {i1, . . . , ik},

λj(t|i1, . . . , ik ; t1, . . . , tk) = λj(t) for all t > 0.

I If X1, . . . ,Xn are exchangeable, i.e.,

(X1, . . . ,Xn) =ST (Xπ(1), . . . ,Xπ(n)) for any permutation π,

then the MCHR functions do not depend on j and i1, . . . , ik
but only on k and the failure times t1, . . . , tk , that is,

λj(t|i1, . . . , ik ; t1, . . . , tk) = λ(k)(t|t1, . . . , tk)

and
λj(t|∅) = λ(0)(t),

for all k ∈ {1, 2, . . . , n− 1} and all 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ t.
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Inversion formula

I In the univariate case: F̄ (t) = exp
(
−
∫ t
0 λ(x)dx

)
for t ≥ 0.

I The PDF of (X1, . . . ,Xn) for 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn is

f (t1, . . . , tn) = λ1(t1|∅) exp

− n∑
j=1

∫ t1

0
λj(u|∅)du


λ2(t2|1; t1) exp

− n∑
j=2

∫ t2

t1

λj(u|1; t1)du

 . . .
λn(tn|1, . . . , n − 1; t1, . . . , tn−1) exp

[
−
∫ tn

tn−1

λn(u|1, . . . , n − 1; t1, . . . , tn−1)du

]
.

I Similar expressions hold when 0 ≤ tπ(1) ≤ · · · ≤ tπ(n) for some
permutation π.

I For the proof see Shaked and Shanthikumar (1988).
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The models

I The MCHR functions are efficient tools to describe the joint
distribution of lifetimes subject to load-sharing situations.

I If they do not depend on the failure times of the components,
t1, . . . , tk , then we have a load-sharing (LS) model.

I In this case, the current hazard of a working component only
depends on the calendar time t and on the set of working
components.

I If in addition the MCHR functions do not depend on the
calendar time t, then, they are constant functions and we talk
about time-homogeneous load-sharing (THLS) models.

I This model is a natural generalization of the joint distribution
of a vector of independent and exponentially distributed
random variables.

I For a review on these models see Spizzichino (2018).
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The models

Definition
(X1, . . . ,Xn) is distributed according to a load-sharing (LS) model
if, for any i1, . . . , ik ∈ [n] and j /∈ I = {i1, . . . , ik}, there exist
functions µj(t|I ) such that, for all 0 ≤ t1 ≤ · · · ≤ tk ≤ t,

λj(t|i1, . . . , ik ; t1, . . . , tk) = µj(t|I ).

Furthermore, a load-sharing model is time-homogeneous (THLS)
when there exist non-negative numbers µj(I ) and µj(∅) such that,
for any t > 0 and any j /∈ I ,

µj(t|I ) = µj(I ),

λj(t|∅) = µj(∅).
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The models

In this paper, we will consider a more general model.

Definition
(X1, . . . ,Xn) is distributed according to an order dependent
load-sharing (ODLS) model if, for any i1, . . . , ik ∈ [n] and
j /∈ I = {i1, . . . , ik}, there exist functions µj(t|i1, . . . , ik) such that,
for all 0 ≤ t1 ≤ · · · ≤ tk ≤ t,

λj(t|i1, . . . , ik ; t1, . . . , tk) = µj(t|i1, . . . , ik).

Furthermore, an ODLS model is time-homogeneous (ODTHLS)
when there exist non-negative numbers µj(i1, . . . , ik) and µj(∅)
such that, for any t > 0 and any j /∈ I ,

µj(t|i1, . . . , ik) = µj(i1, . . . , ik),

λj(t|∅) = µj(∅).
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The models

I If for any non-empty set I ⊂ [n] and any j /∈ I , the function
µj(t|i1, . . . , ik) is invariant under permutations of i1, . . . , ik ,
then the ODLS model reduces to a LS model.

I In the same way, if for any non-empty set I ⊂ [n] and any j /∈ I
the number µj(i1, . . . , ik) is invariant under permutations of
i1, . . . , ik , then the ODTHLS model reduces to a THLS model.

I Note that the LS model includes a kind of weak
exchangeability property since the MCHR functions just
depend on the set of broken components I = {i1, . . . , ik}
instead of the vector of ordered failures (i1, . . . , ik) used in the
ODLS model.

I The same holds for the THLS and the ODTHLS models.
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Inversion formula for the ODTHLS model

Proposition
The PDF of (X1, . . . ,Xn) under the ODTHLS model can be
obtained for 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn as

f (t1, . . . , tn) = µ1(∅) exp

−t1 n∑
j=1

µj(∅)


µ2(1) exp

−(t2 − t1)
n∑

j=2

µj(1)

 . . .
µn(1, . . . , n − 1) exp [−(tn − tn−1)µn(1, . . . , n − 1)] .

Similar expressions hold when t1, . . . , tn are such that
tπ(1) ≤ · · · ≤ tπ(n) for some permutation π.
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Properties

I Under the ODTHLS model we use

M(i1, . . . , ik) =
∑

h/∈{i1,...,ik}

µh(i1, . . . , ik); (1)

ρj(i1, . . . , ik) =
µj(i1, . . . , ik)

M(i1, . . . , ik)
. (2)

I Then if π is a fixed permutation,

P(X1:n = Xπ(1), . . . ,Xr :n = Xπ(r)) = ρπ(1)(∅)ρπ(2)(π(1))

ρπ(3)(π(1), π(2)) . . . ρπ(r)(π(1), . . . , π(r − 1)) (3)

for 1 ≤ r < n and

P(X1:n = Xπ(1), . . . ,Xn:n = Xπ(n)) = P(X1:n = Xπ(1), . . . ,Xn−1:n−1 = Xπ(n−1)).

XL Congreso Nacional SEIO, Elche 7-10 Nov. 2023 Jorge Navarro, Email: jorgenav@um.es. 14/43



Preliminary results
Predictions

Main references

Conditional hazard rate functions
The models
Properties

Properties

I Under the ODTHLS model we use

M(i1, . . . , ik) =
∑

h/∈{i1,...,ik}

µh(i1, . . . , ik); (1)

ρj(i1, . . . , ik) =
µj(i1, . . . , ik)

M(i1, . . . , ik)
. (2)

I Then if π is a fixed permutation,

P(X1:n = Xπ(1), . . . ,Xr :n = Xπ(r)) = ρπ(1)(∅)ρπ(2)(π(1))

ρπ(3)(π(1), π(2)) . . . ρπ(r)(π(1), . . . , π(r − 1)) (3)

for 1 ≤ r < n and

P(X1:n = Xπ(1), . . . ,Xn:n = Xπ(n)) = P(X1:n = Xπ(1), . . . ,Xn−1:n−1 = Xπ(n−1)).

XL Congreso Nacional SEIO, Elche 7-10 Nov. 2023 Jorge Navarro, Email: jorgenav@um.es. 14/43



Preliminary results
Predictions

Main references

Conditional hazard rate functions
The models
Properties

Properties

I For Λ(r) = (λ1, . . . , λr ) ∈ Rr
+, GΛ(r)(t) is the survival function

of
∑r

s=1 Γs , where Γ1, . . . , Γr are independent r. v. with
exponential distributions of parameters λ1, . . . , λr .

I Moreover, for a permutation π of [n] and r ∈ [n], we place

Λ(r)(π) = (M(∅),M(π(1)), . . . ,M(π(1), . . . , π(r − 1))).

I In the ODTHLS model, for any j ∈ [n] we have

P(X1:n > t|X1:n = Xj) = exp(−tM(∅))

and for any permutation π of [n] and k ∈ {2, . . . , n},

P(Xk:n > t|X1:n = Xπ(1), . . . ,Xk:n = Xπ(k)) = GΛ(k)(π)(t).
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Properties.

I In Spizzichino (2018) it is observed that conditioning on the
event (X1:n = Xπ(1), . . . , Xk:n = Xπ(k)), the interarrival times
X1:n,X2:n − X1:n, . . . ,Xk:n − Xk−1:n are independent random
variables exponentially distributed with parameters
M(∅),M(π(1)), . . . , M(π(1), . . . , π(k − 1)), respectively.

I We note that M(∅),M(π(1)), . . . , M(π(1), . . . , π(k − 1)) do
not depend on π(k).

I In particular, the events (X1:n > t) and (X1:n = Xj) are
independent.

I Hence, under this conditioning event, the distribution of Xk:n

is a convolution of k independent exponential distributions.
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Predictions, Scenario 1

I We consider the problem of predicting future failure times in
the ODTHLS model.

I We analyze different scenarios given by different levels of
knowledge.

I We start by giving the prediction of Xk+1:n from the observed
history

Hk = {X1:n = Xπ(1) = t1, . . . ,Xk:n = Xπ(k) = tk}

for k < n, where π is a permutation of [n].

XL Congreso Nacional SEIO, Elche 7-10 Nov. 2023 Jorge Navarro, Email: jorgenav@um.es. 18/43



Preliminary results
Predictions

Main references

Predictions under different scenarios
Simulations
Examples

Predictions, Scenario 1

I We consider the problem of predicting future failure times in
the ODTHLS model.

I We analyze different scenarios given by different levels of
knowledge.

I We start by giving the prediction of Xk+1:n from the observed
history

Hk = {X1:n = Xπ(1) = t1, . . . ,Xk:n = Xπ(k) = tk}

for k < n, where π is a permutation of [n].

XL Congreso Nacional SEIO, Elche 7-10 Nov. 2023 Jorge Navarro, Email: jorgenav@um.es. 18/43



Preliminary results
Predictions

Main references

Predictions under different scenarios
Simulations
Examples

Predictions, Scenario 1

I We consider the problem of predicting future failure times in
the ODTHLS model.

I We analyze different scenarios given by different levels of
knowledge.

I We start by giving the prediction of Xk+1:n from the observed
history

Hk = {X1:n = Xπ(1) = t1, . . . ,Xk:n = Xπ(k) = tk}

for k < n, where π is a permutation of [n].

XL Congreso Nacional SEIO, Elche 7-10 Nov. 2023 Jorge Navarro, Email: jorgenav@um.es. 18/43



Preliminary results
Predictions

Main references

Predictions under different scenarios
Simulations
Examples

Predictions

Proposition
Let (X1, . . . ,Xn) follow an ODTHLS model. Given the history Hk

for k < n, the median and the mean predictions of Xk+1:n are

X̂k+1:n = m(tk) = tk +
log 2

M(π(1), . . . , π(k))
, (4)

and
X̃k+1:n = tk +

1
M(π(1), . . . , π(k))

.

Moreover, a prediction band of size γ = β−α, with α, β, γ ∈ (0, 1),
is given by [tk + qα, tk + qβ], where qα and qβ are the quantiles of
the exponential distribution with parameter M(π(1), . . . , π(k)).
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I Note that we just need the value Xk:n = tk to get the
predictions.

I For example, in the above proposition, the centered 90%
prediction band is obtained with β = 0.95 and α = 0.05 as

C90 =

[
tk −

log(0.95)

M(π(1), . . . , π(k))
, tk −

log(0.05)

M(π(1), . . . , π(k))

]
.

I Here, we prefer to use the predictions given by the median
m(tk), instead of the ones based on the mean, since they are
obtained by using quantiles as well as the prediction bands.

I Let us denote by mc = log 2
c the median of an exponential

distribution with parameter c .
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Predictions, Scenario 2

I Let (X1, . . . ,Xn) follow an ODTHLS model.

I Let us suppose to know the history
X1:n = Xπ(1),X2:n = Xπ(2), . . . ,Xk:n = Xπ(k), for k < n.

I Then the median and the mean predictions for the next failure
time Xk+1:n are respectively given by

X̂k+1:n = mM(∅) + mM(π(1)) + · · ·+ mM(π(1),...,π(k)),

X̃k+1:n =
1

M(∅)
+

1
M(π(1))

+ · · ·+ 1
M(π(1), . . . , π(k))

.

I The prediction can also be obtained from the median of the
convolution of k + 1 independent exponential distributions
with parameters M(∅), M(π(1)), . . . ,M(π(1), . . . , π(k)).
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Proposition
Let (X1, . . . ,Xn) follow an ODTHLS model. Given the history Hk

for k < n − 1, the prediction of Xk+2:n is given by

X̂k+2:n = X̂k+1:n +
∑

j /∈{π(1),...,π(k)}

ρj(π(1), . . . , π(k))
log 2

M(π(1), . . . , π(k), j)

where X̂k+1:n is the median prediction of Xk+1:n obtained before.
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Proposition
Let (X1, . . . ,Xn) follow an ODTHLS model. Let π be a fixed
permutation of [n] and k < n − 1. Then,

P(Xk+2:n − tk > t|Hk) =
∑

j /∈{π(1),...,π(k)}

ρj(π(1), . . . , π(k))G
Υ

(k)
j (π)

(t),

where Hk is the history defined above, G
Υ

(k)
j (π)

(t) is the survival

function of Y = Y1 + Y2, where Y1 and Y2 are independent
random variables with exponential distributions of parameters
M(π(1), . . . , π(k)) and M(π(1), . . . , π(k), j).
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Predictions, Scenario 3

I Conditioning on the observed history, the interarrival time
Xk+2:n − Xk:n is a mixture of n − k distributions which are
sums of two independent exponential distributions.

I The analytical expressions of the survival functions of such
distributions are well known.

I It is necessary to distinguish between the case in which the
exponential distributions have the same parameter or not.

I If they have parameters λ and µ with λ 6= µ, then

F̄Y (t) =
µ

µ− λ
e−λt − λ

µ− λ
e−µt , t ≥ 0. (5)

I In the case λ = µ, then

F̄Y (t) = (1 + λt)e−λt , t ≥ 0. (6)
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I It is necessary to distinguish between the case in which the
exponential distributions have the same parameter or not.

I If they have parameters λ and µ with λ 6= µ, then

F̄Y (t) =
µ

µ− λ
e−λt − λ

µ− λ
e−µt , t ≥ 0. (5)

I In the case λ = µ, then

F̄Y (t) = (1 + λt)e−λt , t ≥ 0. (6)

XL Congreso Nacional SEIO, Elche 7-10 Nov. 2023 Jorge Navarro, Email: jorgenav@um.es. 24/43



Preliminary results
Predictions

Main references

Predictions under different scenarios
Simulations
Examples

Predictions, Scenario 3

I The median of such distributions can also lead to good
predictions for Xk+2:n.

I Numerical methods should be used to get that medians.
I Then, if we want to get a confidence γ = β − α, where
α, β, γ ∈ (0, 1) and qα and qβ are the respective quantiles of
the distribution given in the preceding proposition, we use that

P (tk + qα ≤ Xk+2:n ≤ tk + qβ|Hk) = γ.

I In this way, it is possible to predict Xs:n for s > k .
I With the increase of s there will be more terms in the

convolutions.
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Simulations

I The preceding results can be used to get simulated data from
an ODTHLS (or THLS) model.

I The algorithm can be summarized as follows:

Step 1. Choose π according to the probabilities given in (3).
Step 2. Simulate n independent exponential distributions Z1, . . . ,Zn

with parameters M(∅),M(π(1)), . . . , M(π(1), . . . , π(n − 1)).
Step 3. Compute Xk:n = Z1 + · · ·+ Zk , for k = 1, . . . , n.
Step 4. Compute Xπ(k) = Xk:n, for k = 1, . . . , n.
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I Let (X1,X2,X3) be distributed according to an ODTHLS
model with parameters

µ1(∅) = 1, µ1(2) = 2, µ1(3) = 1, µ1(2, 3) = µ1(3, 2) = 3,
µ2(∅) = 2, µ2(1) = 1, µ2(3) = 3, µ2(1, 3) = µ2(3, 1) = 2,
µ3(∅) = 2, µ3(1) = 2, µ3(2) = 1, µ3(1, 2) = µ3(2, 1) = 2.

I It is a THLS model since µi (j , k) = µi (k , j) for all i , j and k .
I Hence, we have

M(∅) = 5, M(1) = 3, M(2) = 3, M(3) = 4,
M(1, 2) = M(2, 1) = 2, M(1, 3) = M(3, 1) = 2,
M(2, 3) = M(3, 2) = 3.
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I Then

ρ1(∅) =
1
5
, ρ2(∅) =

2
5
, ρ3(∅) =

2
5
,

ρ2(1) =
1
3
, ρ3(1) =

2
3
,

ρ1(2) =
2
3
, ρ3(2) =

1
3
,

ρ1(3) =
1
4
, ρ2(3) =

3
4
,

and, naturally,

ρ1(2, 3) = ρ1(3, 2) = ρ2(1, 3) = ρ2(3, 1) = ρ3(1, 2) = ρ3(2, 1) = 1.
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I For n = 3 there are six possible permutations with probabilities

P(X1:3 = X1,X2:3 = X2,X3:3 = X3) =
1
15
,

P(X1:3 = X1,X2:3 = X3,X3:3 = X2) =
2
15
,

P(X1:3 = X2,X2:3 = X1,X3:3 = X3) =
4
15
,

P(X1:3 = X2,X2:3 = X3,X3:3 = X1) =
2
15
,

P(X1:3 = X3,X2:3 = X1,X3:3 = X2) =
1
10
,

P(X1:3 = X3,X2:3 = X2,X3:3 = X1) =
3
10
.
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I By generating a uniform number in (0, 1), the permutation
(2, 1, 3) is chosen.

I Hence, three exponential numbers are generated with
parameters M(∅) = 5, M(2) = 3, and M(2, 1) = 2.

I In this way, the simulated interarrival times obtained are
0.17166, 0.14498, 0.25606, respectively.

I Then the simulated values of the order statistics are
X1:3 = 0.17166, X2:3 = 0.17166 + 0.14498 = 0.31663 and
X3:3 = 0.31663 + 0.25606 = 0.57270.

I Since we have chosen permutation (2, 1, 3), the values
0.17166, 0.31663 and 0.57270 represent a simulation of
X2, X1 and X3, respectively, i.e., the simulated data is
(0.31663, 0.17166, 0.57270).
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I Suppose that the realization of the sample is the one that we
have simulated above, i.e., X1 = 0.31663, X2 = 0.17166 and
X3 = 0.57270.

I Suppose now that we just know X1:3 = X2 = 0.17166 and that
our purpose is to predict X2:3 and X3:3.

I The mean and the median predictions of X2:3 = 0.31663 are

X̃2:3 = X1:3 +
1

M(2)
= 0.50499

and
X̂2:3 = m(X1:3) = X1:3 +

log 2
M(2)

= 0.40270,
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I Furthermore, the centered 90% and 50% prediction bands are

C90 =

[
X1:3 −

log(0.95)

M(2)
,X1:3 −

log(0.05)

M(2)

]
= [0.18875, 1.17023]

and C50 = [0.26755, 0.63375].

I The true value of X2:3 = 0.31663 belongs to both regions.
I Once X2:3 has been predicted, also X3:3 can be predicted.
I In this case the median prediction of X3:3 = 0.57270 is given by

X̂3:3 = X̂2:3+ρ1(2)
log 2

M(2, 1)
+ρ3(2)

log 2
M(2, 3)

= 0.4027+
2
3
· log 2

2
+
1
3
· log 2

3
= 0.71077.
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I We can get a different prediction for X3:3 from

Ḡ3|1(t) = P(X3:3 − X1:3 > t|X1:3 = X2 = 0.17166)

= ρ1(2)GY1,1+Y1,2(t) + ρ3(2)GY2,1+Y2,2(t),

where Y1,1,Y1,2,Y2,1 and Y2,2 are independent and
exponentially distributed with parameters
M(2) = 3,M(2, 1) = 2,M(2) = 3 and M(2, 3) = 3.

I Hence, we obtain

Ḡ3|1(t) = ρ1(2)
M(2)e−M(2,1)t −M(2, 1)e−M(2)t

M(2)−M(2, 1)
+ ρ3(2)(1 + M(2)t)e−M(2)t .

I By resolving Ḡ3|1(t) = 0.5 we obtain a prediction for the
difference X3:3 − X1:3 that is 0.64409, from which

X̂3:3 = 0.17166 + 0.64409 = 0.81575.
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I By resolving Ḡ3|1(t) = α, for α = 0.05, 0.25, 0.75, 0.95, we
obtain the 90% and 50% centered prediction bands as
C90 = [0.30639, 2.04858] and C50 = [0.53811, 1.21520].

I We observe that X3:3 = 0.57270 belongs to both regions.
I In the following figure we plot these predictions (red) for

X2:3,X3:3 from X1:3 jointly with the exact values (black points)
and the prediction bands.
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Figure: Predictions (red) for Xs:3 from X1:3 for s = 2, 3 jointly with the
exact values (black) for a simulated sample from an ODTHLS model.
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Figure: Scatterplots of 100 simulated samples from (X1:3,X2:3), for the
case X1:3 = X2 jointly with the median regression curves (red) and 50%
(dark grey) and 90% (light grey) prediction bands.
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Figure: Scatterplots of 100 simulated sample from (X1:3,X2:3) for the
ODTHLS model jointly with the median regression curves (red) and 50%
(dark grey) and 90% (light grey) prediction bands for the cases X1:3 = X1
(left) and X1:3 = X3 (right).
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Example 2

I Now, suppose we just know that X1.3 = X2.

I Then the predictions for the first and the second order
statistics based on the median (left) and the mean (right) are

X̂1:3 =
log 2
M(∅)

= 0.13863, X̃1:3 =
1

M(∅)
= 0.2,

X̂2:3 =
log 2
M(∅)

+
log 2
M(2)

= 0.36968, X̃2:3 =
1

M(∅)
+

1
M(2)

= 0.53333.

I The prediction of X2:3 can be obtained also by the median of
the convolution X1:3 + (X2:3 − X1:3).

I Given that X1:3 = X2, these interarrival times are independent
and exponential with parameters M(∅) = 5 and M(2) = 3.

I The median of such a distribution gives another prediction for
X2:3 as 0.44139.
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I If we know that the first and the second order statistics are
assumed in X2 and X1, the maximum X3:3 can be predicted by
the median and the mean, respectively, as

X̂3:3 =
log 2
M(∅)

+
log 2
M(2)

+
log 2

M(2, 1)
= 0.71625,

and

X̃3:3 =
1

M(∅)
+

1
M(2)

+
1

M(2, 1)
= 1.03333.
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I In addition, we can obtain the prediction of X3:3 based on the
convolution Y = X1:3 + (X2:3 − X1:3) + (X3:3 − X2:3), given
that X1:3 = X2,X2:3 = X1.

I The interarrival times are independent and have exponential
distributions with parameters M(∅) = 5, M(2) = 3 and
M(2, 1) = 2.

I The survival function of this convolution can be obtained from
the results in Akkouchi (2008).

I The median of such a distribution can be numerically
computed and gives the prediction X ∗3:3 = 0.90225.

I It can also be used to get the prediction intervals for X3:3:
C90 = [0.26708, 2.24684] and C50 = [0.57337, 1.35021].

I The exact value X3:3 = 0.57270 belongs to C90 but it does not
belong to C50.
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Conclusions

I The ODTHLS model is a good option to represent lifetimes
subject to common loads.

I It is an extension of the exponential model and can also be
used to study coherent systems.

I In these cases it is very important to predict the future failures
from early failures under different assumptions.

I Our finding jointly with quantile regression tools provide such
predictions jointly with prediction bands that can be used to
“control” de data.

I In practice, the parameters of the model should be estimated
(see the paper).
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Final slide

I More references in my web page

https://webs.um.es/jorgenav/miwiki/doku.php

I That’s all. Thank you for your attention!!
I Questions?
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