Prediction of future data in multivariate constant conditional hazard rate models

Jorge Navarro¹ Universidad de Murcia, Murcia, Spain.

¹Partially supported by Ministerio de Ciencia e Innovación of Spain under grant PID2019-108079GB-C22/AEI/10.13039/501100011033.

XL Congreso Nacional SEIO, Elche 7-10 Nov. 2023

Jorge Navarro, Email: jorgenav@um.es. 1/43

References

The conference is based on the following paper:

Buono F., Navarro J. (2023). Simulations and predictions of future values in the time-homogeneous load-sharing model. To appear in Statistical Papers. Published online first Feb. 2023. https://doi.org/10.1007/s00362-023-01404-5.

Outline

Preliminary results

Conditional hazard rate functions The models Properties

Predictions

Predictions under different scenarios Simulations Examples

Main references

Preliminary results	Conditional hazard rate functions
Predictions	The models
Main references	Properties

Preliminary results

Conditional hazard rate functions The models Properties

Hazard rate functions

 X₁,...,X_n nonnegative random variables with an absolutely continuous joint distribution.

Conditional hazard rate functions The models Properties

Hazard rate functions

- X₁,..., X_n nonnegative random variables with an absolutely continuous joint distribution.
- ▶ The marginal survival (or reliability) functions are $\overline{F}_j(t) = \mathbb{P}(X_j > t)$ for $j \in [n] = \{1, ..., n\}$.

Conditional hazard rate functions The models Properties

Hazard rate functions

- X₁,..., X_n nonnegative random variables with an absolutely continuous joint distribution.
- ▶ The marginal survival (or reliability) functions are $\overline{F}_j(t) = \mathbb{P}(X_j > t)$ for $j \in [n] = \{1, ..., n\}$.
- ▶ The marginal probability density functions (PDF) are $f_j(t) = -\overline{F}'_j(t)$ for $j \in [n]$.

Conditional hazard rate functions The models Properties

Hazard rate functions

- X₁,..., X_n nonnegative random variables with an absolutely continuous joint distribution.
- ▶ The marginal survival (or reliability) functions are $\overline{F}_j(t) = \mathbb{P}(X_j > t)$ for $j \in [n] = \{1, ..., n\}$.
- ▶ The marginal probability density functions (PDF) are $f_j(t) = -\overline{F}'_j(t)$ for $j \in [n]$.
- The jth hazard (or failure) rate function is

$$\lambda_j(t) = \lim_{\Delta t o 0^+} rac{1}{\Delta t} \mathbb{P}\left(X_j \leq t + \Delta t \mid X_j > t
ight) = rac{f_j(t)}{ar{F}_j(t)}.$$

Conditional hazard rate functions The models Properties

Hazard rate functions

- X₁,..., X_n nonnegative random variables with an absolutely continuous joint distribution.
- ▶ The marginal survival (or reliability) functions are $\overline{F}_j(t) = \mathbb{P}(X_j > t)$ for $j \in [n] = \{1, ..., n\}$.
- ▶ The marginal probability density functions (PDF) are $f_j(t) = -\overline{F}'_j(t)$ for $j \in [n]$.
- The jth hazard (or failure) rate function is

$$\lambda_j(t) = \lim_{\Delta t o 0^+} rac{1}{\Delta t} \mathbb{P}\left(X_j \leq t + \Delta t \mid X_j > t
ight) = rac{f_j(t)}{ar{F}_j(t)}.$$

► The condition $\lambda_j(t) = c_j$ for $t \ge 0$ leads to the exponential distribution with $\overline{F}_j(t) = \exp(-c_j t)$ for $t \ge 0$ and $c_i > 0$.

Conditional hazard rate functions The models Properties

Hazard rate functions

▶ For $j \in [n]$ and $i_1, \ldots, i_k \in [n]$ with $j \notin I = \{i_1, \ldots, i_k\}$, and $0 \le t_1 \le \cdots \le t_k$, the *j*th multivariate conditional hazard rate (MCHR) function $\lambda_j(t|i_1, \ldots, i_k; t_1, \ldots, t_k)$ is defined as:

$$\lim_{\Delta t\to 0^+} \frac{1}{\Delta t} \mathbb{P}\left(X_j \leq t + \Delta t \left| X_{i_1} = t_1, \ldots, X_{i_k} = t_k, \min_{h \notin I} X_h > t\right.\right).$$

Conditional hazard rate functions The models Properties

Hazard rate functions

▶ For $j \in [n]$ and $i_1, \ldots, i_k \in [n]$ with $j \notin I = \{i_1, \ldots, i_k\}$, and $0 \le t_1 \le \cdots \le t_k$, the *j*th multivariate conditional hazard rate (MCHR) function $\lambda_j(t|i_1, \ldots, i_k; t_1, \ldots, t_k)$ is defined as:

$$\lim_{\Delta t\to 0^+} \frac{1}{\Delta t} \mathbb{P}\left(X_j \leq t + \Delta t \left| X_{i_1} = t_1, \ldots, X_{i_k} = t_k, \min_{h \notin I} X_h > t\right.\right).$$

We use the following notation for the MCHR functions with no failures (also called risk-specific or initial hazard rate)

$$\lambda_j(t|\emptyset) = \lim_{\Delta t o 0^+} rac{1}{\Delta t} \mathbb{P}\left(X_j \leq t + \Delta t | X_{1:n} > t
ight),$$

where
$$X_{1:n} = \min(X_1, ..., X_n)$$
.

Conditional hazard rate functions The models Properties

Particular cases

▶ If $X_1, ..., X_n$ are independent, then, for all $j \notin \{i_1, ..., i_k\}$,

 $\lambda_j(t|i_1,\ldots,i_k;t_1,\ldots,t_k) = \lambda_j(t)$ for all t > 0.

Conditional hazard rate functions The models Properties

Particular cases

▶ If
$$X_1, \ldots, X_n$$
 are independent, then, for all $j \notin \{i_1, \ldots, i_k\}$,

$$\lambda_j(t|i_1,\ldots,i_k;t_1,\ldots,t_k)=\lambda_j(t)$$
 for all $t>0.$

• If X_1, \ldots, X_n are exchangeable, i.e.,

 $(X_1,\ldots,X_n) =_{ST} (X_{\pi(1)},\ldots,X_{\pi(n)})$ for any permutation π ,

then the MCHR functions do not depend on j and i_1, \ldots, i_k but only on k and the failure times t_1, \ldots, t_k , that is,

$$\lambda_j(t|i_1,\ldots,i_k;t_1,\ldots,t_k)=\lambda^{(k)}(t|t_1,\ldots,t_k)$$

and

$$\lambda_j(t|\emptyset) = \lambda^{(0)}(t),$$

for all $k \in \{1, 2, \dots, n-1\}$ and all $0 \le t_1 \le t_2 \le \dots \le t_k \le t$.

Conditional hazard rate functions The models Properties

Inversion formula

• In the univariate case:
$$ar{F}(t) = \exp\left(-\int_0^t \lambda(x) dx\right)$$
 for $t \ge 0$.

Conditional hazard rate functions The models Properties

Inversion formula

► In the univariate case:
$$\overline{F}(t) = \exp\left(-\int_0^t \lambda(x)dx\right)$$
 for $t \ge 0$.
► The PDF of (X_1, \dots, X_n) for $0 \le t_1 \le t_2 \le \dots \le t_n$ is
 $f(t_1, \dots, t_n) = \lambda_1(t_1|\emptyset) \exp\left[-\sum_{j=1}^n \int_0^{t_1} \lambda_j(u|\emptyset)du\right]$
 $\lambda_2(t_2|1; t_1) \exp\left[-\sum_{j=2}^n \int_{t_1}^{t_2} \lambda_j(u|1; t_1)du\right] \dots$
 $\lambda_n(t_n|1, \dots, n-1; t_1, \dots, t_{n-1}) \exp\left[-\int_{t_{n-1}}^{t_n} \lambda_n(u|1, \dots, n-1; t_1, \dots, t_{n-1})du\right]$

Conditional hazard rate functions The models Properties

Inversion formula

► In the univariate case:
$$\overline{F}(t) = \exp\left(-\int_0^t \lambda(x)dx\right)$$
 for $t \ge 0$.
► The PDF of (X_1, \ldots, X_n) for $0 \le t_1 \le t_2 \le \cdots \le t_n$ is
 $f(t_1, \ldots, t_n) = \lambda_1(t_1|\emptyset) \exp\left[-\sum_{j=1}^n \int_0^{t_1} \lambda_j(u|\emptyset)du\right]$
 $\lambda_2(t_2|1; t_1) \exp\left[-\sum_{j=2}^n \int_{t_1}^{t_2} \lambda_j(u|1; t_1)du\right] \cdots$
 $\lambda_n(t_n|1, \ldots, n-1; t_1, \ldots, t_{n-1}) \exp\left[-\int_{t_{n-1}}^{t_n} \lambda_n(u|1, \ldots, n-1; t_1, \ldots, t_{n-1})du\right]$
► Similar expressions hold when $0 \le t_{\pi(1)} \le \cdots \le t_{\pi(n)}$ for some

permutation π .

Conditional hazard rate functions The models Properties

Inversion formula

In the univariate case:
$$\bar{F}(t) = \exp\left(-\int_0^t \lambda(x)dx\right)$$
 for $t \ge 0$.
The PDF of (X_1, \ldots, X_n) for $0 \le t_1 \le t_2 \le \cdots \le t_n$ is
$$f(t_1, \ldots, t_n) = \lambda_1(t_1|\emptyset) \exp\left[-\sum_{j=1}^n \int_0^{t_1} \lambda_j(u|\emptyset)du\right]$$

$$\lambda_2(t_2|1; t_1) \exp\left[-\sum_{j=2}^n \int_{t_1}^{t_2} \lambda_j(u|1; t_1)du\right] \ldots$$

$$\lambda_n(t_n|1, \ldots, n-1; t_1, \ldots, t_{n-1}) \exp\left[-\int_{t_{n-1}}^{t_n} \lambda_n(u|1, \ldots, n-1; t_1, \ldots, t_{n-1})du\right]$$

- Similar expressions hold when $0 \le t_{\pi(1)} \le \cdots \le t_{\pi(n)}$ for some permutation π .
- For the proof see Shaked and Shanthikumar (1988).

Conditional hazard rate functions The models Properties

The models

The MCHR functions are efficient tools to describe the joint distribution of lifetimes subject to load-sharing situations.

Conditional hazard rate functions The models Properties

- The MCHR functions are efficient tools to describe the joint distribution of lifetimes subject to load-sharing situations.
- ▶ If they do not depend on the failure times of the components, t_1, \ldots, t_k , then we have a load-sharing (LS) model.

Conditional hazard rate functions The models Properties

- The MCHR functions are efficient tools to describe the joint distribution of lifetimes subject to load-sharing situations.
- If they do not depend on the failure times of the components, t₁,..., t_k, then we have a load-sharing (LS) model.
- In this case, the current hazard of a working component only depends on the calendar time t and on the set of working components.

Conditional hazard rate functions The models Properties

- The MCHR functions are efficient tools to describe the joint distribution of lifetimes subject to load-sharing situations.
- If they do not depend on the failure times of the components, t₁,..., t_k, then we have a load-sharing (LS) model.
- In this case, the current hazard of a working component only depends on the calendar time t and on the set of working components.
- If in addition the MCHR functions do not depend on the calendar time t, then, they are constant functions and we talk about time-homogeneous load-sharing (THLS) models.

Conditional hazard rate functions The models Properties

- The MCHR functions are efficient tools to describe the joint distribution of lifetimes subject to load-sharing situations.
- ▶ If they do not depend on the failure times of the components, t_1, \ldots, t_k , then we have a load-sharing (LS) model.
- In this case, the current hazard of a working component only depends on the calendar time t and on the set of working components.
- If in addition the MCHR functions do not depend on the calendar time t, then, they are constant functions and we talk about time-homogeneous load-sharing (THLS) models.
- This model is a natural generalization of the joint distribution of a vector of independent and exponentially distributed random variables.

Conditional hazard rate functions The models Properties

- The MCHR functions are efficient tools to describe the joint distribution of lifetimes subject to load-sharing situations.
- ▶ If they do not depend on the failure times of the components, t_1, \ldots, t_k , then we have a load-sharing (LS) model.
- In this case, the current hazard of a working component only depends on the calendar time t and on the set of working components.
- If in addition the MCHR functions do not depend on the calendar time t, then, they are constant functions and we talk about time-homogeneous load-sharing (THLS) models.
- This model is a natural generalization of the joint distribution of a vector of independent and exponentially distributed random variables.
- ▶ For a review on these models see Spizzichino (2018).

Conditional hazard rate functions The models Properties

The models

Definition

 (X_1, \ldots, X_n) is distributed according to a load-sharing (LS) model if, for any $i_1, \ldots, i_k \in [n]$ and $j \notin I = \{i_1, \ldots, i_k\}$, there exist functions $\mu_j(t|I)$ such that, for all $0 \leq t_1 \leq \cdots \leq t_k \leq t$,

$$\lambda_j(t|i_1,\ldots,i_k;t_1,\ldots,t_k)=\mu_j(t|I).$$

Furthermore, a load-sharing model is time-homogeneous (THLS) when there exist non-negative numbers $\mu_j(I)$ and $\mu_j(\emptyset)$ such that, for any t > 0 and any $j \notin I$,

$$\mu_j(t|I) = \mu_j(I),$$

$$\lambda_j(t|\emptyset) = \mu_j(\emptyset).$$

Conditional hazard rate functions The models Properties

The models

In this paper, we will consider a more general model.

Definition

 (X_1, \ldots, X_n) is distributed according to an order dependent load-sharing (ODLS) model if, for any $i_1, \ldots, i_k \in [n]$ and $j \notin I = \{i_1, \ldots, i_k\}$, there exist functions $\mu_j(t|i_1, \ldots, i_k)$ such that, for all $0 \leq t_1 \leq \cdots \leq t_k \leq t$,

$$\lambda_j(t|i_1,\ldots,i_k;t_1,\ldots,t_k)=\mu_j(t|i_1,\ldots,i_k).$$

Furthermore, an ODLS model is time-homogeneous (ODTHLS) when there exist non-negative numbers $\mu_j(i_1, \ldots, i_k)$ and $\mu_j(\emptyset)$ such that, for any t > 0 and any $j \notin I$,

$$\mu_j(t|i_1,\ldots,i_k) = \mu_j(i_1,\ldots,i_k),$$

$$\lambda_j(t|\emptyset) = \mu_j(\emptyset). \quad \text{and } n \in \mathbb{Z} \text{ for all } n \in \mathbb{Z}$$

Conditional hazard rate functions The models Properties

The models

▶ If for any non-empty set $I \subset [n]$ and any $j \notin I$, the function $\mu_j(t|i_1, \ldots, i_k)$ is invariant under permutations of i_1, \ldots, i_k , then the ODLS model reduces to a LS model.

Conditional hazard rate functions The models Properties

- ▶ If for any non-empty set $I \subset [n]$ and any $j \notin I$, the function $\mu_j(t|i_1, \ldots, i_k)$ is invariant under permutations of i_1, \ldots, i_k , then the ODLS model reduces to a LS model.
- ▶ In the same way, if for any non-empty set $I \subset [n]$ and any $j \notin I$ the number $\mu_j(i_1, \ldots, i_k)$ is invariant under permutations of i_1, \ldots, i_k , then the ODTHLS model reduces to a THLS model.

Conditional hazard rate functions The models Properties

- ▶ If for any non-empty set $I \subset [n]$ and any $j \notin I$, the function $\mu_j(t|i_1, \ldots, i_k)$ is invariant under permutations of i_1, \ldots, i_k , then the ODLS model reduces to a LS model.
- ▶ In the same way, if for any non-empty set $I \subset [n]$ and any $j \notin I$ the number $\mu_j(i_1, \ldots, i_k)$ is invariant under permutations of i_1, \ldots, i_k , then the ODTHLS model reduces to a THLS model.
- Note that the LS model includes a kind of weak exchangeability property since the MCHR functions just depend on the set of broken components I = {i₁,..., i_k} instead of the vector of ordered failures (i₁,..., i_k) used in the ODLS model.

Conditional hazard rate functions The models Properties

- ▶ If for any non-empty set $I \subset [n]$ and any $j \notin I$, the function $\mu_j(t|i_1, \ldots, i_k)$ is invariant under permutations of i_1, \ldots, i_k , then the ODLS model reduces to a LS model.
- ▶ In the same way, if for any non-empty set $I \subset [n]$ and any $j \notin I$ the number $\mu_j(i_1, \ldots, i_k)$ is invariant under permutations of i_1, \ldots, i_k , then the ODTHLS model reduces to a THLS model.
- Note that the LS model includes a kind of weak exchangeability property since the MCHR functions just depend on the set of broken components I = {i₁,..., i_k} instead of the vector of ordered failures (i₁,..., i_k) used in the ODLS model.
- ► The same holds for the THLS and the ODTHLS models.

Conditional hazard rate functions The models Properties

Inversion formula for the ODTHLS model

Proposition

The PDF of (X_1, \ldots, X_n) under the ODTHLS model can be obtained for $0 \le t_1 \le t_2 \le \cdots \le t_n$ as

$$f(t_1, \dots, t_n) = \mu_1(\emptyset) \exp\left[-t_1 \sum_{j=1}^n \mu_j(\emptyset)\right]$$
$$\mu_2(1) \exp\left[-(t_2 - t_1) \sum_{j=2}^n \mu_j(1)\right] \dots$$
$$\mu_n(1, \dots, n-1) \exp\left[-(t_n - t_{n-1})\mu_n(1, \dots, n-1)\right].$$

Similar expressions hold when t_1, \ldots, t_n are such that $t_{\pi(1)} \leq \cdots \leq t_{\pi(n)}$ for some permutation π .

XL Congreso Nacional SEIO, Elche 7-10 Nov. 2023 Jorge Navarro, Email: jorgenav@um.es. 13/43

Conditional hazard rate functions The models Properties

Properties

Under the ODTHLS model we use

$$M(i_1,...,i_k) = \sum_{h \notin \{i_1,...,i_k\}} \mu_h(i_1,...,i_k);$$
 (1)

$$\rho_j(i_1,\ldots,i_k) = \frac{\mu_j(i_1,\ldots,i_k)}{M(i_1,\ldots,i_k)}.$$
(2)

Properties

Under the ODTHLS model we use

$$M(i_1,...,i_k) = \sum_{h \notin \{i_1,...,i_k\}} \mu_h(i_1,...,i_k);$$
 (1)

$$\rho_j(i_1,\ldots,i_k) = \frac{\mu_j(i_1,\ldots,i_k)}{M(i_1,\ldots,i_k)}.$$
(2)

 \blacktriangleright Then if π is a fixed permutation,

$$\mathbb{P}(X_{1:n} = X_{\pi(1)}, \dots, X_{r:n} = X_{\pi(r)}) = \rho_{\pi(1)}(\emptyset)\rho_{\pi(2)}(\pi(1))$$

$$\rho_{\pi(3)}(\pi(1), \pi(2)) \dots \rho_{\pi(r)}(\pi(1), \dots, \pi(r-1)) \quad (3)$$
for $1 \le r \le n$ and

TOP 1 < n and ~ 1

$$\mathbb{P}(X_{1:n} = X_{\pi(1)}, \dots, X_{n:n} = X_{\pi(n)}) = \mathbb{P}(X_{1:n} = X_{\pi(1)}, \dots, X_{n-1:n-1} = X_{\pi(n-1)})$$

Conditional hazard rate functions The models Properties

Properties

For $\Lambda^{(r)} = (\lambda_1, \ldots, \lambda_r) \in \mathbb{R}^r_+$, $\overline{G}_{\Lambda^{(r)}}(t)$ is the survival function of $\sum_{s=1}^r \Gamma_s$, where $\Gamma_1, \ldots, \Gamma_r$ are independent r. v. with exponential distributions of parameters $\lambda_1, \ldots, \lambda_r$.

Conditional hazard rate functions The models Properties

Properties

For $\Lambda^{(r)} = (\lambda_1, \dots, \lambda_r) \in \mathbb{R}^r_+$, $\overline{G}_{\Lambda^{(r)}}(t)$ is the survival function of $\sum_{s=1}^r \Gamma_s$, where $\Gamma_1, \dots, \Gamma_r$ are independent r. v. with exponential distributions of parameters $\lambda_1, \dots, \lambda_r$.

▶ Moreover, for a permutation π of [*n*] and $r \in [n]$, we place

$$\Lambda^{(r)}(\pi) = (M(\emptyset), M(\pi(1)), \dots, M(\pi(1), \dots, \pi(r-1))).$$

Conditional hazard rate functions The models Properties

Properties

- For $\Lambda^{(r)} = (\lambda_1, \ldots, \lambda_r) \in \mathbb{R}^r_+$, $\overline{G}_{\Lambda^{(r)}}(t)$ is the survival function of $\sum_{s=1}^r \Gamma_s$, where $\Gamma_1, \ldots, \Gamma_r$ are independent r. v. with exponential distributions of parameters $\lambda_1, \ldots, \lambda_r$.
- ▶ Moreover, for a permutation π of [*n*] and $r \in [n]$, we place

$$\Lambda^{(r)}(\pi) = (M(\emptyset), M(\pi(1)), \dots, M(\pi(1), \dots, \pi(r-1))).$$

▶ In the ODTHLS model, for any $j \in [n]$ we have

$$\mathbb{P}(X_{1:n} > t | X_{1:n} = X_j) = \exp(-tM(\emptyset))$$

and for any permutation π of [n] and $k \in \{2, \ldots, n\}$,

$$\mathbb{P}(X_{k:n} > t | X_{1:n} = X_{\pi(1)}, \ldots, X_{k:n} = X_{\pi(k)}) = \overline{G}_{\Lambda^{(k)}(\pi)}(t).$$

Conditional hazard rate functions The models Properties

Properties.

In Spizzichino (2018) it is observed that conditioning on the event (X_{1:n} = X_{π(1)},..., X_{k:n} = X_{π(k)}), the interarrival times X_{1:n}, X_{2:n} − X_{1:n},..., X_{k:n} − X_{k-1:n} are independent random variables exponentially distributed with parameters M(Ø), M(π(1)),..., M(π(1),...,π(k − 1)), respectively.
Conditional hazard rate functions The models Properties

Properties.

- In Spizzichino (2018) it is observed that conditioning on the event (X_{1:n} = X_{π(1)},..., X_{k:n} = X_{π(k)}), the interarrival times X_{1:n}, X_{2:n} − X_{1:n},..., X_{k:n} − X_{k−1:n} are independent random variables exponentially distributed with parameters M(Ø), M(π(1)),..., M(π(1),...,π(k − 1)), respectively.
- We note that $M(\emptyset), M(\pi(1)), \ldots, M(\pi(1), \ldots, \pi(k-1))$ do not depend on $\pi(k)$.

Conditional hazard rate functions The models Properties

Properties.

- In Spizzichino (2018) it is observed that conditioning on the event (X_{1:n} = X_{π(1)},..., X_{k:n} = X_{π(k)}), the interarrival times X_{1:n}, X_{2:n} − X_{1:n},..., X_{k:n} − X_{k-1:n} are independent random variables exponentially distributed with parameters M(Ø), M(π(1)),..., M(π(1),...,π(k − 1)), respectively.
- We note that $M(\emptyset), M(\pi(1)), \ldots, M(\pi(1), \ldots, \pi(k-1))$ do not depend on $\pi(k)$.
- ▶ In particular, the events $(X_{1:n} > t)$ and $(X_{1:n} = X_j)$ are independent.

Conditional hazard rate functions The models Properties

Properties.

- In Spizzichino (2018) it is observed that conditioning on the event (X_{1:n} = X_{π(1)},..., X_{k:n} = X_{π(k)}), the interarrival times X_{1:n}, X_{2:n} − X_{1:n},..., X_{k:n} − X_{k-1:n} are independent random variables exponentially distributed with parameters M(Ø), M(π(1)),..., M(π(1),...,π(k − 1)), respectively.
- We note that $M(\emptyset), M(\pi(1)), \ldots, M(\pi(1), \ldots, \pi(k-1))$ do not depend on $\pi(k)$.
- ▶ In particular, the events $(X_{1:n} > t)$ and $(X_{1:n} = X_j)$ are independent.
- Hence, under this conditioning event, the distribution of X_{k:n} is a convolution of k independent exponential distributions.

Preliminary results Predictions under different scenarios Predictions Simulations Main references Examples

Predictions

XL Congreso Nacional SEIO, Elche 7-10 Nov. 2023 Jorge Navarro, Email: jorgenav@um.es. 17/43

Predictions under different scenarios Simulations Examples

Predictions, Scenario 1

We consider the problem of predicting future failure times in the ODTHLS model.

Predictions under different scenarios Simulations Examples

- We consider the problem of predicting future failure times in the ODTHLS model.
- We analyze different scenarios given by different levels of knowledge.

Predictions under different scenarios Simulations Examples

Predictions, Scenario 1

- We consider the problem of predicting future failure times in the ODTHLS model.
- We analyze different scenarios given by different levels of knowledge.
- We start by giving the prediction of X_{k+1:n} from the observed history

$$\mathcal{H}_k = \{X_{1:n} = X_{\pi(1)} = t_1, \dots, X_{k:n} = X_{\pi(k)} = t_k\}$$

for k < n, where π is a permutation of [n].

Predictions under different scenarios Simulations Examples

Predictions

Proposition

Let (X_1, \ldots, X_n) follow an ODTHLS model. Given the history \mathcal{H}_k for k < n, the median and the mean predictions of $X_{k+1:n}$ are

$$\widehat{X}_{k+1:n} = \mathfrak{m}(t_k) = t_k + \frac{\log 2}{M(\pi(1), \dots, \pi(k))},$$
(4)

and

$$ilde{X}_{k+1:n} = t_k + rac{1}{M(\pi(1),\ldots,\pi(k))}.$$

Moreover, a prediction band of size $\gamma = \beta - \alpha$, with $\alpha, \beta, \gamma \in (0, 1)$, is given by $[t_k + q_\alpha, t_k + q_\beta]$, where q_α and q_β are the quantiles of the exponential distribution with parameter $M(\pi(1), \ldots, \pi(k))$.

200

Predictions under different scenarios Simulations Examples

Predictions

Note that we just need the value X_{k:n} = t_k to get the predictions.

Predictions under different scenarios Simulations Examples

.

Predictions

- Note that we just need the value X_{k:n} = t_k to get the predictions.
- For example, in the above proposition, the centered 90% prediction band is obtained with $\beta = 0.95$ and $\alpha = 0.05$ as

$$C_{90} = \left[t_k - \frac{\log(0.95)}{M(\pi(1), \dots, \pi(k))}, t_k - \frac{\log(0.05)}{M(\pi(1), \dots, \pi(k))}\right]$$

Predictions under different scenarios Simulations Examples

Predictions

- Note that we just need the value X_{k:n} = t_k to get the predictions.
- For example, in the above proposition, the centered 90% prediction band is obtained with $\beta = 0.95$ and $\alpha = 0.05$ as

$$C_{90} = \left[t_k - \frac{\log(0.95)}{M(\pi(1), \dots, \pi(k))}, t_k - \frac{\log(0.05)}{M(\pi(1), \dots, \pi(k))}\right]$$

Here, we prefer to use the predictions given by the median m(t_k), instead of the ones based on the mean, since they are obtained by using quantiles as well as the prediction bands.

Predictions under different scenarios Simulations Examples

Predictions

- Note that we just need the value X_{k:n} = t_k to get the predictions.
- For example, in the above proposition, the centered 90% prediction band is obtained with $\beta = 0.95$ and $\alpha = 0.05$ as

$$C_{90} = \left[t_k - \frac{\log(0.95)}{M(\pi(1), \dots, \pi(k))}, t_k - \frac{\log(0.05)}{M(\pi(1), \dots, \pi(k))}\right]$$

- Here, we prefer to use the predictions given by the median m(t_k), instead of the ones based on the mean, since they are obtained by using quantiles as well as the prediction bands.
- Let us denote by $m_c = \frac{\log 2}{c}$ the median of an exponential distribution with parameter *c*.

Predictions under different scenarios Simulations Examples

Predictions, Scenario 2

• Let (X_1, \ldots, X_n) follow an ODTHLS model.

Predictions under different scenarios Simulations Examples

Predictions, Scenario 2

• Let (X_1, \ldots, X_n) follow an ODTHLS model.

Let us suppose to know the history $X_{1:n} = X_{\pi(1)}, X_{2:n} = X_{\pi(2)}, \dots, X_{k:n} = X_{\pi(k)}, \text{ for } k < n.$

Predictions under different scenarios Simulations Examples

- Let (X_1, \ldots, X_n) follow an ODTHLS model.
- Let us suppose to know the history $X_{1:n} = X_{\pi(1)}, X_{2:n} = X_{\pi(2)}, \dots, X_{k:n} = X_{\pi(k)}, \text{ for } k < n.$
- Then the median and the mean predictions for the next failure time X_{k+1:n} are respectively given by

$$\begin{aligned} \widehat{X}_{k+1:n} &= m_{\mathcal{M}(\emptyset)} + m_{\mathcal{M}(\pi(1))} + \dots + m_{\mathcal{M}(\pi(1),\dots,\pi(k))}, \\ \widetilde{X}_{k+1:n} &= \frac{1}{\mathcal{M}(\emptyset)} + \frac{1}{\mathcal{M}(\pi(1))} + \dots + \frac{1}{\mathcal{M}(\pi(1),\dots,\pi(k))}. \end{aligned}$$

Predictions under different scenarios Simulations Examples

Predictions, Scenario 2

- Let (X_1, \ldots, X_n) follow an ODTHLS model.
- Let us suppose to know the history $X_{1:n} = X_{\pi(1)}, X_{2:n} = X_{\pi(2)}, \dots, X_{k:n} = X_{\pi(k)}, \text{ for } k < n.$
- Then the median and the mean predictions for the next failure time X_{k+1:n} are respectively given by

$$\begin{aligned} \widehat{X}_{k+1:n} &= m_{\mathcal{M}(\emptyset)} + m_{\mathcal{M}(\pi(1))} + \dots + m_{\mathcal{M}(\pi(1),\dots,\pi(k))}, \\ \widetilde{X}_{k+1:n} &= \frac{1}{\mathcal{M}(\emptyset)} + \frac{1}{\mathcal{M}(\pi(1))} + \dots + \frac{1}{\mathcal{M}(\pi(1),\dots,\pi(k))}. \end{aligned}$$

► The prediction can also be obtained from the median of the convolution of k + 1 independent exponential distributions with parameters $M(\emptyset)$, $M(\pi(1)), \ldots, M(\pi(1), \ldots, \pi(k))$.

Predictions under different scenarios Simulations Examples

Predictions, Scenario 3

Proposition

Let $(X_1, ..., X_n)$ follow an ODTHLS model. Given the history \mathcal{H}_k for k < n - 1, the prediction of $X_{k+2:n}$ is given by

$$\widehat{X}_{k+2:n} = \widehat{X}_{k+1:n} + \sum_{j \notin \{\pi(1), \dots, \pi(k)\}} \rho_j(\pi(1), \dots, \pi(k)) \frac{\log 2}{M(\pi(1), \dots, \pi(k), j)}$$

where $\widehat{X}_{k+1:n}$ is the median prediction of $X_{k+1:n}$ obtained before.

Predictions under different scenarios Simulations Examples

Predictions, Scenario 3

Proposition

Let (X_1, \ldots, X_n) follow an ODTHLS model. Let π be a fixed permutation of [n] and k < n - 1. Then,

$$\mathbb{P}(X_{k+2:n}-t_k>t|\mathcal{H}_k)=\sum_{j\notin\{\pi(1),\ldots,\pi(k)\}}\rho_j(\pi(1),\ldots,\pi(k))\overline{G}_{\Upsilon_j^{(k)}(\pi)}(t),$$

where \mathcal{H}_k is the history defined above, $\overline{G}_{\Upsilon_j^{(k)}(\pi)}(t)$ is the survival function of $Y = Y_1 + Y_2$, where Y_1 and Y_2 are independent random variables with exponential distributions of parameters $M(\pi(1), \ldots, \pi(k))$ and $M(\pi(1), \ldots, \pi(k), j)$.

Predictions under different scenarios Simulations Examples

Predictions, Scenario 3

Conditioning on the observed history, the interarrival time X_{k+2:n} - X_{k:n} is a mixture of n - k distributions which are sums of two independent exponential distributions.

Predictions under different scenarios Simulations Examples

- Conditioning on the observed history, the interarrival time X_{k+2:n} - X_{k:n} is a mixture of n - k distributions which are sums of two independent exponential distributions.
- The analytical expressions of the survival functions of such distributions are well known.

Predictions under different scenarios Simulations Examples

- Conditioning on the observed history, the interarrival time X_{k+2:n} - X_{k:n} is a mixture of n - k distributions which are sums of two independent exponential distributions.
- The analytical expressions of the survival functions of such distributions are well known.
- It is necessary to distinguish between the case in which the exponential distributions have the same parameter or not.

Predictions under different scenarios Simulations Examples

- Conditioning on the observed history, the interarrival time X_{k+2:n} - X_{k:n} is a mixture of n - k distributions which are sums of two independent exponential distributions.
- The analytical expressions of the survival functions of such distributions are well known.
- It is necessary to distinguish between the case in which the exponential distributions have the same parameter or not.
- ▶ If they have parameters λ and μ with $\lambda \neq \mu$, then

$$\bar{F}_{Y}(t) = \frac{\mu}{\mu - \lambda} e^{-\lambda t} - \frac{\lambda}{\mu - \lambda} e^{-\mu t}, \ t \ge 0.$$
 (5)

Predictions under different scenarios Simulations Examples

Predictions, Scenario 3

- Conditioning on the observed history, the interarrival time X_{k+2:n} - X_{k:n} is a mixture of n - k distributions which are sums of two independent exponential distributions.
- The analytical expressions of the survival functions of such distributions are well known.
- It is necessary to distinguish between the case in which the exponential distributions have the same parameter or not.
- ▶ If they have parameters λ and μ with $\lambda \neq \mu$, then

$$\bar{F}_{Y}(t) = \frac{\mu}{\mu - \lambda} e^{-\lambda t} - \frac{\lambda}{\mu - \lambda} e^{-\mu t}, \ t \ge 0.$$
 (5)

▶ In the case $\lambda = \mu$, then

$$\bar{F}_{Y}(t) = (1 + \lambda t)e^{-\lambda t}, \ t \ge 0.$$
(6)

Predictions under different scenarios Simulations Examples

Predictions, Scenario 3

The median of such distributions can also lead to good predictions for X_{k+2:n}.

Predictions under different scenarios Simulations Examples

- The median of such distributions can also lead to good predictions for X_{k+2:n}.
- Numerical methods should be used to get that medians.

Predictions under different scenarios Simulations Examples

- The median of such distributions can also lead to good predictions for X_{k+2:n}.
- Numerical methods should be used to get that medians.
- Then, if we want to get a confidence γ = β − α, where α, β, γ ∈ (0, 1) and q_α and q_β are the respective quantiles of the distribution given in the preceding proposition, we use that

$$\mathbb{P}\left(t_k+q_\alpha\leq X_{k+2:n}\leq t_k+q_\beta|\mathcal{H}_k\right)=\gamma.$$

Predictions under different scenarios Simulations Examples

Predictions, Scenario 3

- The median of such distributions can also lead to good predictions for X_{k+2:n}.
- Numerical methods should be used to get that medians.
- Then, if we want to get a confidence γ = β − α, where α, β, γ ∈ (0, 1) and q_α and q_β are the respective quantiles of the distribution given in the preceding proposition, we use that

$$\mathbb{P}\left(t_{k}+q_{\alpha}\leq X_{k+2:n}\leq t_{k}+q_{\beta}|\mathcal{H}_{k}\right)=\gamma.$$

ln this way, it is possible to predict $X_{s:n}$ for s > k.

Predictions under different scenarios Simulations Examples

- The median of such distributions can also lead to good predictions for X_{k+2:n}.
- Numerical methods should be used to get that medians.
- Then, if we want to get a confidence γ = β − α, where α, β, γ ∈ (0, 1) and q_α and q_β are the respective quantiles of the distribution given in the preceding proposition, we use that

$$\mathbb{P}\left(t_{k}+q_{\alpha}\leq X_{k+2:n}\leq t_{k}+q_{\beta}|\mathcal{H}_{k}\right)=\gamma.$$

- ln this way, it is possible to predict $X_{s:n}$ for s > k.
- With the increase of s there will be more terms in the convolutions.

Predictions under different scenarios Simulations Examples

Simulations

The preceding results can be used to get simulated data from an ODTHLS (or THLS) model.

Predictions under different scenarios Simulations Examples

Simulations

- The preceding results can be used to get simulated data from an ODTHLS (or THLS) model.
- The algorithm can be summarized as follows:
- Step 1. Choose π according to the probabilities given in (3).
- Step 2. Simulate *n* independent exponential distributions Z_1, \ldots, Z_n with parameters $M(\emptyset), M(\pi(1)), \ldots, M(\pi(1), \ldots, \pi(n-1))$.
- Step 3. Compute $X_{k:n} = Z_1 + \cdots + Z_k$, for $k = 1, \ldots, n$.
- Step 4. Compute $X_{\pi(k)} = X_{k:n}$, for $k = 1, \ldots, n$.

Predictions under different scenarios Simulations Examples

Example 1

Let (X₁, X₂, X₃) be distributed according to an ODTHLS model with parameters

$$\begin{split} & \mu_1(\emptyset) = 1, \quad \mu_1(2) = 2, \quad \mu_1(3) = 1, \quad \mu_1(2,3) = \mu_1(3,2) = 3, \\ & \mu_2(\emptyset) = 2, \quad \mu_2(1) = 1, \quad \mu_2(3) = 3, \quad \mu_2(1,3) = \mu_2(3,1) = 2, \\ & \mu_3(\emptyset) = 2, \quad \mu_3(1) = 2, \quad \mu_3(2) = 1, \quad \mu_3(1,2) = \mu_3(2,1) = 2. \end{split}$$

Predictions under different scenarios Simulations Examples

Example 1

Let (X₁, X₂, X₃) be distributed according to an ODTHLS model with parameters

$$\mu_1(\emptyset) = 1, \quad \mu_1(2) = 2, \quad \mu_1(3) = 1, \quad \mu_1(2,3) = \mu_1(3,2) = 3, \\ \mu_2(\emptyset) = 2, \quad \mu_2(1) = 1, \quad \mu_2(3) = 3, \quad \mu_2(1,3) = \mu_2(3,1) = 2, \\ \mu_3(\emptyset) = 2, \quad \mu_3(1) = 2, \quad \mu_3(2) = 1, \quad \mu_3(1,2) = \mu_3(2,1) = 2.$$

▶ It is a THLS model since $\mu_i(j, k) = \mu_i(k, j)$ for all *i*, *j* and *k*.

Predictions under different scenarios Simulations Examples

Example 1

Let (X₁, X₂, X₃) be distributed according to an ODTHLS model with parameters

$$\begin{array}{ll} \mu_1(\emptyset)=1, & \mu_1(2)=2, & \mu_1(3)=1, & \mu_1(2,3)=\mu_1(3,2)=3, \\ \mu_2(\emptyset)=2, & \mu_2(1)=1, & \mu_2(3)=3, & \mu_2(1,3)=\mu_2(3,1)=2, \\ \mu_3(\emptyset)=2, & \mu_3(1)=2, & \mu_3(2)=1, & \mu_3(1,2)=\mu_3(2,1)=2. \end{array}$$

It is a THLS model since µ_i(j, k) = µ_i(k, j) for all i, j and k.
 Hence, we have

$$M(\emptyset) = 5, \quad M(1) = 3, \quad M(2) = 3, \quad M(3) = 4,$$

 $M(1,2) = M(2,1) = 2, \quad M(1,3) = M(3,1) = 2,$
 $M(2,3) = M(3,2) = 3.$

Predictions under different scenarios Simulations Examples

Example 1

Then

$$\begin{split} \rho_1(\emptyset) &= \frac{1}{5}, \quad \rho_2(\emptyset) = \frac{2}{5}, \quad \rho_3(\emptyset) = \frac{2}{5}, \\ \rho_2(1) &= \frac{1}{3}, \quad \rho_3(1) = \frac{2}{3}, \\ \rho_1(2) &= \frac{2}{3}, \quad \rho_3(2) = \frac{1}{3}, \\ \rho_1(3) &= \frac{1}{4}, \quad \rho_2(3) = \frac{3}{4}, \end{split}$$

and, naturally,

$$\rho_1(2,3) = \rho_1(3,2) = \rho_2(1,3) = \rho_2(3,1) = \rho_3(1,2) = \rho_3(2,1) = 1.$$

Predictions under different scenarios Simulations Examples

Example 1

For n = 3 there are six possible permutations with probabilities

$$\mathbb{P}(X_{1:3} = X_1, X_{2:3} = X_2, X_{3:3} = X_3) = \frac{1}{15},$$

$$\mathbb{P}(X_{1:3} = X_1, X_{2:3} = X_3, X_{3:3} = X_2) = \frac{2}{15},$$

$$\mathbb{P}(X_{1:3} = X_2, X_{2:3} = X_1, X_{3:3} = X_3) = \frac{4}{15},$$

$$\mathbb{P}(X_{1:3} = X_2, X_{2:3} = X_3, X_{3:3} = X_1) = \frac{2}{15},$$

$$\mathbb{P}(X_{1:3} = X_3, X_{2:3} = X_1, X_{3:3} = X_2) = \frac{1}{10},$$

$$\mathbb{P}(X_{1:3} = X_3, X_{2:3} = X_2, X_{3:3} = X_1) = \frac{3}{10}.$$

Predictions under different scenarios Simulations Examples

Example 1

By generating a uniform number in (0, 1), the permutation (2, 1, 3) is chosen.
Predictions under different scenarios Simulations Examples

- By generating a uniform number in (0, 1), the permutation (2, 1, 3) is chosen.
- ▶ Hence, three exponential numbers are generated with parameters $M(\emptyset) = 5$, M(2) = 3, and M(2, 1) = 2.

Predictions under different scenarios Simulations Examples

- By generating a uniform number in (0, 1), the permutation (2, 1, 3) is chosen.
- ▶ Hence, three exponential numbers are generated with parameters $M(\emptyset) = 5$, M(2) = 3, and M(2, 1) = 2.
- In this way, the simulated interarrival times obtained are 0.17166, 0.14498, 0.25606, respectively.

Predictions under different scenarios Simulations Examples

- By generating a uniform number in (0, 1), the permutation (2, 1, 3) is chosen.
- ▶ Hence, three exponential numbers are generated with parameters $M(\emptyset) = 5$, M(2) = 3, and M(2, 1) = 2.
- In this way, the simulated interarrival times obtained are 0.17166, 0.14498, 0.25606, respectively.
- Then the simulated values of the order statistics are $X_{1:3} = 0.17166$, $X_{2:3} = 0.17166 + 0.14498 = 0.31663$ and $X_{3:3} = 0.31663 + 0.25606 = 0.57270$.

Predictions under different scenarios Simulations Examples

- By generating a uniform number in (0, 1), the permutation (2, 1, 3) is chosen.
- ▶ Hence, three exponential numbers are generated with parameters $M(\emptyset) = 5$, M(2) = 3, and M(2, 1) = 2.
- In this way, the simulated interarrival times obtained are 0.17166, 0.14498, 0.25606, respectively.
- Then the simulated values of the order statistics are $X_{1:3} = 0.17166$, $X_{2:3} = 0.17166 + 0.14498 = 0.31663$ and $X_{3:3} = 0.31663 + 0.25606 = 0.57270$.
- Since we have chosen permutation (2, 1, 3), the values 0.17166, 0.31663 and 0.57270 represent a simulation of X₂, X₁ and X₃, respectively, i.e., the simulated data is (0.31663, 0.17166, 0.57270).

Predictions under different scenarios Simulations Examples

Example 1

Suppose that the realization of the sample is the one that we have simulated above, i.e., $X_1 = 0.31663$, $X_2 = 0.17166$ and $X_3 = 0.57270$.

Predictions under different scenarios Simulations Examples

Example 1

- Suppose that the realization of the sample is the one that we have simulated above, i.e., $X_1 = 0.31663$, $X_2 = 0.17166$ and $X_3 = 0.57270$.
- Suppose now that we just know $X_{1:3} = X_2 = 0.17166$ and that our purpose is to predict $X_{2:3}$ and $X_{3:3}$.
- The mean and the median predictions of $X_{2:3} = 0.31663$ are

$$\tilde{X}_{2:3} = X_{1:3} + \frac{1}{M(2)} = 0.50499$$

and

$$\widehat{X}_{2:3} = \mathfrak{m}(X_{1:3}) = X_{1:3} + \frac{\log 2}{M(2)} = 0.40270,$$

Predictions under different scenarios Simulations Examples

Example 1

▶ Furthermore, the centered 90% and 50% prediction bands are

$$C_{90} = \left[X_{1:3} - \frac{\log(0.95)}{M(2)}, X_{1:3} - \frac{\log(0.05)}{M(2)}\right] = [0.18875, 1.17023]$$

and $C_{50} = [0.26755, 0.63375]$.

Predictions under different scenarios Simulations Examples

Example 1

▶ Furthermore, the centered 90% and 50% prediction bands are

$$C_{90} = \left[X_{1:3} - \frac{\log(0.95)}{M(2)}, X_{1:3} - \frac{\log(0.05)}{M(2)}\right] = [0.18875, 1.17023]$$

and $C_{50} = [0.26755, 0.63375]$.

• The true value of $X_{2:3} = 0.31663$ belongs to both regions.

Predictions under different scenarios Simulations Examples

Example 1

▶ Furthermore, the centered 90% and 50% prediction bands are

$$C_{90} = \left[X_{1:3} - \frac{\log(0.95)}{M(2)}, X_{1:3} - \frac{\log(0.05)}{M(2)}\right] = [0.18875, 1.17023]$$

and $C_{50} = [0.26755, 0.63375]$.

- The true value of $X_{2:3} = 0.31663$ belongs to both regions.
- Once $X_{2:3}$ has been predicted, also $X_{3:3}$ can be predicted.

Predictions under different scenarios Simulations Examples

Example 1

▶ Furthermore, the centered 90% and 50% prediction bands are

$$C_{90} = \left[X_{1:3} - \frac{\log(0.95)}{M(2)}, X_{1:3} - \frac{\log(0.05)}{M(2)}\right] = [0.18875, 1.17023]$$

and $C_{50} = [0.26755, 0.63375].$

- The true value of $X_{2:3} = 0.31663$ belongs to both regions.
- Once $X_{2:3}$ has been predicted, also $X_{3:3}$ can be predicted.
- ▶ In this case the median prediction of $X_{3:3} = 0.57270$ is given by

$$\widehat{X}_{3:3} = \widehat{X}_{2:3} + \rho_1(2) \frac{\log 2}{M(2,1)} + \rho_3(2) \frac{\log 2}{M(2,3)} = 0.4027 + \frac{2}{3} \cdot \frac{\log 2}{2} + \frac{1}{3} \cdot \frac{\log 2}{3} = 0.710$$

Preliminary results Pred Predictions Simu Main references Exar

Predictions under different scenarios Simulations Examples

Example 1

• We can get a different prediction for $X_{3:3}$ from

$$\begin{split} \bar{\mathcal{G}}_{3|1}(t) &= \mathbb{P}(X_{3:3} - X_{1:3} > t | X_{1:3} = X_2 = 0.17166) \\ &= \rho_1(2) \overline{\mathcal{G}}_{Y_{1,1}+Y_{1,2}}(t) + \rho_3(2) \overline{\mathcal{G}}_{Y_{2,1}+Y_{2,2}}(t), \end{split}$$

where $Y_{1,1}$, $Y_{1,2}$, $Y_{2,1}$ and $Y_{2,2}$ are independent and exponentially distributed with parameters M(2) = 3, M(2, 1) = 2, M(2) = 3 and M(2, 3) = 3.

Example 1

• We can get a different prediction for $X_{3:3}$ from

$$\begin{split} \bar{G}_{3|1}(t) &= \mathbb{P}(X_{3:3} - X_{1:3} > t | X_{1:3} = X_2 = 0.17166) \\ &= \rho_1(2) \overline{G}_{Y_{1,1}+Y_{1,2}}(t) + \rho_3(2) \overline{G}_{Y_{2,1}+Y_{2,2}}(t), \end{split}$$

where $Y_{1,1}$, $Y_{1,2}$, $Y_{2,1}$ and $Y_{2,2}$ are independent and exponentially distributed with parameters M(2) = 3, M(2, 1) = 2, M(2) = 3 and M(2, 3) = 3. Hence, we obtain

$$ar{G}_{3|1}(t) =
ho_1(2) rac{M(2)e^{-M(2,1)t} - M(2,1)e^{-M(2)t}}{M(2) - M(2,1)} +
ho_3(2)(1 + M(2)t)e^{-M(2)t}.$$

Example 1

• We can get a different prediction for $X_{3:3}$ from

$$\begin{split} \bar{G}_{3|1}(t) &= \mathbb{P}(X_{3:3} - X_{1:3} > t | X_{1:3} = X_2 = 0.17166) \\ &= \rho_1(2) \overline{G}_{Y_{1,1}+Y_{1,2}}(t) + \rho_3(2) \overline{G}_{Y_{2,1}+Y_{2,2}}(t), \end{split}$$

where $Y_{1,1}$, $Y_{1,2}$, $Y_{2,1}$ and $Y_{2,2}$ are independent and exponentially distributed with parameters M(2) = 3, M(2,1) = 2, M(2) = 3 and M(2,3) = 3. Hence, we obtain

$$ar{G}_{3|1}(t) =
ho_1(2) rac{M(2)e^{-M(2,1)t} - M(2,1)e^{-M(2)t}}{M(2) - M(2,1)} +
ho_3(2)(1 + M(2)t)e^{-M(2)t}.$$

▶ By resolving $\overline{G}_{3|1}(t) = 0.5$ we obtain a prediction for the difference $X_{3:3} - X_{1:3}$ that is 0.64409, from which

$$\widehat{X}_{3:3} = 0.17166 + 0.64409 = 0.81575$$

Predictions under different scenarios Simulations Examples

Example 1

▶ By resolving $\overline{G}_{3|1}(t) = \alpha$, for $\alpha = 0.05, 0.25, 0.75, 0.95$, we obtain the 90% and 50% centered prediction bands as $C_{90} = [0.30639, 2.04858]$ and $C_{50} = [0.53811, 1.21520]$.

Predictions under different scenarios Simulations Examples

- ▶ By resolving $\overline{G}_{3|1}(t) = \alpha$, for $\alpha = 0.05, 0.25, 0.75, 0.95$, we obtain the 90% and 50% centered prediction bands as $C_{90} = [0.30639, 2.04858]$ and $C_{50} = [0.53811, 1.21520]$.
- We observe that $X_{3:3} = 0.57270$ belongs to both regions.

Predictions under different scenarios Simulations Examples

- ▶ By resolving $\overline{G}_{3|1}(t) = \alpha$, for $\alpha = 0.05, 0.25, 0.75, 0.95$, we obtain the 90% and 50% centered prediction bands as $C_{90} = [0.30639, 2.04858]$ and $C_{50} = [0.53811, 1.21520]$.
- We observe that $X_{3:3} = 0.57270$ belongs to both regions.
- In the following figure we plot these predictions (red) for X_{2:3}, X_{3:3} from X_{1:3} jointly with the exact values (black points) and the prediction bands.

Preliminary results Predictions under different scenarios Main references Examples

Figure: Predictions (red) for $X_{s:3}$ from $X_{1:3}$ for s = 2, 3 jointly with the exact values (black) for a simulated sample from an ODTHLS model.

 Preliminary results
 Predictions under different scenarios

 Predictions
 Simulations

 Main references
 Examples

Figure: Scatterplots of 100 simulated samples from $(X_{1:3}, X_{2:3})$, for the case $X_{1:3} = X_2$ jointly with the median regression curves (red) and 50% (dark grey) and 90% (light grey) prediction bands.

Figure: Scatterplots of 100 simulated sample from $(X_{1:3}, X_{2:3})$ for the ODTHLS model jointly with the median regression curves (red) and 50% (dark grey) and 90% (light grey) prediction bands for the cases $X_{1:3} = X_1$ (left) and $X_{1:3} = X_3$ (right).

Predictions under different scenarios Simulations Examples

Example 2

Now, suppose we just know that $X_{1.3} = X_2$.

Predictions under different scenarios Simulations Examples

- Now, suppose we just know that $X_{1.3} = X_2$.
- Then the predictions for the first and the second order statistics based on the median (left) and the mean (right) are

$$\begin{split} \widehat{X}_{1:3} &= \frac{\log 2}{M(\emptyset)} = 0.13863, \\ \widehat{X}_{2:3} &= \frac{\log 2}{M(\emptyset)} + \frac{\log 2}{M(2)} = 0.36968, \\ \widetilde{X}_{2:3} &= \frac{1}{M(\emptyset)} + \frac{1}{M(2)} = 0.36968, \\ \end{split}$$

Predictions under different scenarios Simulations Examples

Example 2

- Now, suppose we just know that $X_{1.3} = X_2$.
- Then the predictions for the first and the second order statistics based on the median (left) and the mean (right) are

$$\begin{aligned} \widehat{X}_{1:3} &= \frac{\log 2}{M(\emptyset)} = 0.13863, \\ \widehat{X}_{2:3} &= \frac{\log 2}{M(\emptyset)} + \frac{\log 2}{M(2)} = 0.36968, \\ \widetilde{X}_{2:3} &= \frac{1}{M(\emptyset)} + \frac{1}{M(2)} = 0.36968, \end{aligned}$$

► The prediction of X_{2:3} can be obtained also by the median of the convolution X_{1:3} + (X_{2:3} - X_{1:3}).

Predictions under different scenarios Simulations Examples

- Now, suppose we just know that $X_{1.3} = X_2$.
- Then the predictions for the first and the second order statistics based on the median (left) and the mean (right) are

$$\begin{aligned} \widehat{X}_{1:3} &= \frac{\log 2}{M(\emptyset)} = 0.13863, \\ \widehat{X}_{2:3} &= \frac{\log 2}{M(\emptyset)} + \frac{\log 2}{M(2)} = 0.36968, \\ \widetilde{X}_{2:3} &= \frac{1}{M(\emptyset)} + \frac{1}{M(2)} = 0.36968, \end{aligned}$$

- ► The prediction of X_{2:3} can be obtained also by the median of the convolution X_{1:3} + (X_{2:3} X_{1:3}).
- Given that $X_{1:3} = X_2$, these interarrival times are independent and exponential with parameters $M(\emptyset) = 5$ and M(2) = 3.

Predictions under different scenarios Simulations Examples

- Now, suppose we just know that $X_{1.3} = X_2$.
- Then the predictions for the first and the second order statistics based on the median (left) and the mean (right) are

$$\widehat{X}_{1:3} = \frac{\log 2}{M(\emptyset)} = 0.13863, \qquad \qquad \widetilde{X}_{1:3} = \frac{1}{M(\emptyset)} = 0.2,$$
$$\widehat{X}_{2:3} = \frac{\log 2}{M(\emptyset)} + \frac{\log 2}{M(2)} = 0.36968, \qquad \qquad \widetilde{X}_{2:3} = \frac{1}{M(\emptyset)} + \frac{1}{M(2)} = 0.53333.$$

- ► The prediction of X_{2:3} can be obtained also by the median of the convolution X_{1:3} + (X_{2:3} X_{1:3}).
- Given that $X_{1:3} = X_2$, these interarrival times are independent and exponential with parameters $M(\emptyset) = 5$ and M(2) = 3.
- The median of such a distribution gives another prediction for $X_{2:3}$ as 0.44139.

Predictions under different scenarios Simulations Examples

Example 2

If we know that the first and the second order statistics are assumed in X₂ and X₁, the maximum X_{3:3} can be predicted by the median and the mean, respectively, as

$$\widehat{X}_{3:3} = rac{\log 2}{M(\emptyset)} + rac{\log 2}{M(2)} + rac{\log 2}{M(2,1)} = 0.71625$$

and

$$ilde{X}_{3:3} = rac{1}{M(\emptyset)} + rac{1}{M(2)} + rac{1}{M(2,1)} = 1.03333.$$

Predictions under different scenarios Simulations **Examples**

Example 2

▶ In addition, we can obtain the prediction of $X_{3:3}$ based on the convolution $Y = X_{1:3} + (X_{2:3} - X_{1:3}) + (X_{3:3} - X_{2:3})$, given that $X_{1:3} = X_2, X_{2:3} = X_1$.

- ▶ In addition, we can obtain the prediction of $X_{3:3}$ based on the convolution $Y = X_{1:3} + (X_{2:3} X_{1:3}) + (X_{3:3} X_{2:3})$, given that $X_{1:3} = X_2, X_{2:3} = X_1$.
- ► The interarrival times are independent and have exponential distributions with parameters M(Ø) = 5, M(2) = 3 and M(2,1) = 2.

- ▶ In addition, we can obtain the prediction of $X_{3:3}$ based on the convolution $Y = X_{1:3} + (X_{2:3} X_{1:3}) + (X_{3:3} X_{2:3})$, given that $X_{1:3} = X_2, X_{2:3} = X_1$.
- ► The interarrival times are independent and have exponential distributions with parameters M(Ø) = 5, M(2) = 3 and M(2, 1) = 2.
- The survival function of this convolution can be obtained from the results in Akkouchi (2008).

- ▶ In addition, we can obtain the prediction of $X_{3:3}$ based on the convolution $Y = X_{1:3} + (X_{2:3} X_{1:3}) + (X_{3:3} X_{2:3})$, given that $X_{1:3} = X_2, X_{2:3} = X_1$.
- ► The interarrival times are independent and have exponential distributions with parameters M(Ø) = 5, M(2) = 3 and M(2, 1) = 2.
- The survival function of this convolution can be obtained from the results in Akkouchi (2008).
- ► The median of such a distribution can be numerically computed and gives the prediction $X_{3:3}^* = 0.90225$.

- In addition, we can obtain the prediction of X_{3:3} based on the convolution Y = X_{1:3} + (X_{2:3} − X_{1:3}) + (X_{3:3} − X_{2:3}), given that X_{1:3} = X₂, X_{2:3} = X₁.
- ► The interarrival times are independent and have exponential distributions with parameters M(Ø) = 5, M(2) = 3 and M(2, 1) = 2.
- The survival function of this convolution can be obtained from the results in Akkouchi (2008).
- ► The median of such a distribution can be numerically computed and gives the prediction $X_{3:3}^* = 0.90225$.
- ▶ It can also be used to get the prediction intervals for $X_{3:3}$: $C_{90} = [0.26708, 2.24684]$ and $C_{50} = [0.57337, 1.35021]$.

- ▶ In addition, we can obtain the prediction of $X_{3:3}$ based on the convolution $Y = X_{1:3} + (X_{2:3} X_{1:3}) + (X_{3:3} X_{2:3})$, given that $X_{1:3} = X_2, X_{2:3} = X_1$.
- ► The interarrival times are independent and have exponential distributions with parameters M(Ø) = 5, M(2) = 3 and M(2, 1) = 2.
- The survival function of this convolution can be obtained from the results in Akkouchi (2008).
- ► The median of such a distribution can be numerically computed and gives the prediction $X_{3:3}^* = 0.90225$.
- ▶ It can also be used to get the prediction intervals for $X_{3:3}$: $C_{90} = [0.26708, 2.24684]$ and $C_{50} = [0.57337, 1.35021]$.
- ▶ The exact value $X_{3:3} = 0.57270$ belongs to C_{90} but it does not belong to C_{50} .

Predictions under different scenarios Simulations Examples

Conclusions

The ODTHLS model is a good option to represent lifetimes subject to common loads.

Predictions under different scenarios Simulations Examples

- The ODTHLS model is a good option to represent lifetimes subject to common loads.
- It is an extension of the exponential model and can also be used to study coherent systems.

Predictions under different scenarios Simulations Examples

- The ODTHLS model is a good option to represent lifetimes subject to common loads.
- It is an extension of the exponential model and can also be used to study coherent systems.
- In these cases it is very important to predict the future failures from early failures under different assumptions.

Predictions under different scenarios Simulations Examples

- The ODTHLS model is a good option to represent lifetimes subject to common loads.
- It is an extension of the exponential model and can also be used to study coherent systems.
- In these cases it is very important to predict the future failures from early failures under different assumptions.
- Our finding jointly with quantile regression tools provide such predictions jointly with prediction bands that can be used to "control" de data.

Predictions under different scenarios Simulations Examples

- The ODTHLS model is a good option to represent lifetimes subject to common loads.
- It is an extension of the exponential model and can also be used to study coherent systems.
- In these cases it is very important to predict the future failures from early failures under different assumptions.
- Our finding jointly with quantile regression tools provide such predictions jointly with prediction bands that can be used to "control" de data.
- In practice, the parameters of the model should be estimated (see the paper).
Main references

XL Congreso Nacional SEIO, Elche 7-10 Nov. 2023 Jorge Navarro, Email: jorgenav@um.es. 42/43

- Akkouchi, M. (2008). On the convolution of exponential distributions. *Journal of the Chungcheong Mathematical Society*, 21, 501–510.
- Buono, F., Navarro, J. (2023). Simulations and predictions of future values in the time-homogeneous load-sharing model. To appear in Statistical Papers. Published online first Feb. 2023. https://doi.org/10.1007/s00362-023-01404-5.
- Shaked, M., Shanthikumar, J. G. (1988). Multivariate conditional hazard rates and the MIFRA and MIFR properties. *Journal of Applied Probability*, **25**, 150–168.
- Spizzichino, F. (2018). Reliability, signature, and relative quality functions of systems under time-homogeneous load-sharing models. *Applied Stochastic Models in Business and Industry*, **35**, 158–176.

Final slide

More references in my web page

https://webs.um.es/jorgenav/miwiki/doku.php

XL Congreso Nacional SEIO, Elche 7-10 Nov. 2023 Jorge Navarro, Email: jorgenav@um.es. 43/43

Final slide

More references in my web page

https://webs.um.es/jorgenav/miwiki/doku.php

That's all. Thank you for your attention!!

Final slide

More references in my web page

https://webs.um.es/jorgenav/miwiki/doku.php

- That's all. Thank you for your attention!!
- Questions?