Are the order statistics ordered? (revisited)

Jorge Navarro ${ }^{1}$
 Universidad de Murcia, Murcia, Spain.

[^0]
References

The conference is based on the following references:

- Navarro J., Durante F., Fernández-Sánchez J. (2021) Connecting copula properties with reliability properties of coherent systems. Applied Stochastic Models in Business and Industry 37, 496-512.
- Navarro J., Torrado N., del Águila Y. (2018). Comparisons between largest order statistics from multiple-outlier models with dependence. Methodology and Computing in Applied Probability 20, 411-433.
- Navarro J., Rychlik T. and Shaked M. (2007). Are the order statistics ordered? A Survey of Recent Results. Communications in Statistics Theory and Methods 36 (7), 1273-1290.

Outline

Preliminary resultsStochastic ordersOrder statisticsDistortion representations
Ordering properties
Case I: IID
Case II: ID
Cases III \& IV: IND \& GEN
Main references

Preliminary results

Notation

- X and Y random variables.

Notation

- X and Y random variables.
- $F_{X}(t)=\operatorname{Pr}(X \leq t)$ and $F_{Y}(t)=\operatorname{Pr}(Y \leq t)$ cumulative distribution functions (CDF).

Notation

- X and Y random variables.
- $F_{X}(t)=\operatorname{Pr}(X \leq t)$ and $F_{Y}(t)=\operatorname{Pr}(Y \leq t)$ cumulative distribution functions (CDF).
- $\bar{F}_{X}(t)=1-F_{X}(t)=\operatorname{Pr}(X>t)$ and
$\bar{F}_{Y}(t)=1-F_{Y}(t)=\operatorname{Pr}(Y>t)$ survival (or reliability) functions (SF).

Notation

- X and Y random variables.
- $F_{X}(t)=\operatorname{Pr}(X \leq t)$ and $F_{Y}(t)=\operatorname{Pr}(Y \leq t)$ cumulative distribution functions (CDF).
- $\bar{F}_{X}(t)=1-F_{X}(t)=\operatorname{Pr}(X>t)$ and
$\bar{F}_{Y}(t)=1-F_{Y}(t)=\operatorname{Pr}(Y>t)$ survival (or reliability) functions (SF).
- $f_{X}=F_{X}^{\prime}$ and $f_{Y}=F_{Y}^{\prime}$ probability density functions (PDF).

Notation

- X and Y random variables.
- $F_{X}(t)=\operatorname{Pr}(X \leq t)$ and $F_{Y}(t)=\operatorname{Pr}(Y \leq t)$ cumulative distribution functions (CDF).
- $\bar{F}_{X}(t)=1-F_{X}(t)=\operatorname{Pr}(X>t)$ and
$\bar{F}_{Y}(t)=1-F_{Y}(t)=\operatorname{Pr}(Y>t)$ survival (or reliability) functions (SF).
- $f_{X}=F_{X}^{\prime}$ and $f_{Y}=F_{Y}^{\prime}$ probability density functions (PDF).
- $h_{X}=f_{X} / \bar{F}_{X}$ and $h_{Y}=f_{Y} / \bar{F}_{Y}$ hazard rate functions (HR).

Notation

- X and Y random variables.
- $F_{X}(t)=\operatorname{Pr}(X \leq t)$ and $F_{Y}(t)=\operatorname{Pr}(Y \leq t)$ cumulative distribution functions (CDF).
- $\bar{F}_{X}(t)=1-F_{X}(t)=\operatorname{Pr}(X>t)$ and
$\bar{F}_{Y}(t)=1-F_{Y}(t)=\operatorname{Pr}(Y>t)$ survival (or reliability) functions (SF).
- $f_{X}=F_{X}^{\prime}$ and $f_{Y}=F_{Y}^{\prime}$ probability density functions (PDF).
- $h_{X}=f_{X} / \bar{F}_{X}$ and $h_{Y}=f_{Y} / \bar{F}_{Y}$ hazard rate functions (HR).
- $m_{X}(t)=E(X-t \mid X>t)$ and $m_{Y}(t)=E(Y-t \mid Y>t)$ mean residual life functions (MRL).

Preliminary results

Main stochastic orders

- Stochastic order: $X \leq_{S T} Y \Leftrightarrow \bar{F}_{X} \leq \bar{F}_{Y}$.

Main stochastic orders

- Stochastic order: $X \leq_{S T} Y \Leftrightarrow \bar{F}_{X} \leq \bar{F}_{Y}$.
- Hazard rate order: $X \leq_{H R} Y \Leftrightarrow \bar{F}_{Y} / \bar{F}_{X}$ increases.

Main stochastic orders

- Stochastic order: $X \leq_{S T} Y \Leftrightarrow \bar{F}_{X} \leq \bar{F}_{Y}$.
- Hazard rate order: $X \leq_{H R} Y \Leftrightarrow \bar{F}_{Y} / \bar{F}_{X}$ increases.
- $X \leq_{H R} Y \Leftrightarrow(X-t \mid X>t) \leq_{s t}(Y-t \mid Y>t)$ for all t.

Main stochastic orders

- Stochastic order: $X \leq_{S T} Y \Leftrightarrow \bar{F}_{X} \leq \bar{F}_{Y}$.
- Hazard rate order: $X \leq_{H R} Y \Leftrightarrow \bar{F}_{Y} / \bar{F}_{X}$ increases.
- $X \leq_{H R} Y \Leftrightarrow(X-t \mid X>t) \leq_{S T}(Y-t \mid Y>t)$ for all t.
- $X \leq_{H R} Y \Leftrightarrow h_{X} \geq h_{Y}$.

Main stochastic orders

- Stochastic order: $X \leq_{S T} Y \Leftrightarrow \bar{F}_{X} \leq \bar{F}_{Y}$.
- Hazard rate order: $X \leq_{H R} Y \Leftrightarrow \bar{F}_{Y} / \bar{F}_{X}$ increases.
- $X \leq_{H R} Y \Leftrightarrow(X-t \mid X>t) \leq_{S T}(Y-t \mid Y>t)$ for all t.
- $X \leq_{H R} Y \Leftrightarrow h_{X} \geq h_{Y}$.
- Mean residual life order: $X \leq_{M R L} Y \Leftrightarrow m_{X} \leq m_{Y}$.

Main stochastic orders

- Stochastic order: $X \leq_{S T} Y \Leftrightarrow \bar{F}_{X} \leq \bar{F}_{Y}$.
- Hazard rate order: $X \leq_{H R} Y \Leftrightarrow \bar{F}_{Y} / \bar{F}_{X}$ increases.
- $X \leq_{H R} Y \Leftrightarrow(X-t \mid X>t) \leq_{S T}(Y-t \mid Y>t)$ for all t.
- $X \leq_{H R} Y \Leftrightarrow h_{X} \geq h_{Y}$.
- Mean residual life order: $X \leq_{M R L} Y \Leftrightarrow m_{X} \leq m_{Y}$.
- Llikelihood ratio order: $X \leq_{L R} Y \Leftrightarrow f_{Y} / f_{X}$ increases.

Main stochastic orders

- Stochastic order: $X \leq_{S T} Y \Leftrightarrow \bar{F}_{X} \leq \bar{F}_{Y}$.
- Hazard rate order: $X \leq_{H R} Y \Leftrightarrow \bar{F}_{Y} / \bar{F}_{X}$ increases.
- $X \leq_{H R} Y \Leftrightarrow(X-t \mid X>t) \leq_{S T}(Y-t \mid Y>t)$ for all t.
- $X \leq_{H R} Y \Leftrightarrow h_{X} \geq h_{Y}$.
- Mean residual life order: $X \leq_{M R L} Y \Leftrightarrow m_{X} \leq m_{Y}$.
- Llikelihood ratio order: $X \leq_{L R} Y \Leftrightarrow f_{Y} / f_{X}$ increases.
- Relationships:

$$
\begin{aligned}
& X \leq_{L R} Y \Rightarrow X \leq H R \\
& \Downarrow \Rightarrow \\
& X \leq_{M R L} Y \\
& \Downarrow \\
& \\
& \\
& \leq_{S T} Y \Rightarrow \\
& \hline
\end{aligned}
$$

Order statistics

- X_{1}, \ldots, X_{n} independent and identically distributed (IID).

Order statistics

- X_{1}, \ldots, X_{n} independent and identically distributed (IID).
- Order statistics: $X_{1: n} \leq \cdots \leq X_{n: n}$ (ordered values).

Order statistics

- X_{1}, \ldots, X_{n} independent and identically distributed (IID).
- Order statistics: $X_{1: n} \leq \cdots \leq X_{n: n}$ (ordered values).
- $X_{1: n}=\min \left(X_{1}, \ldots, X_{n}\right)$ sample minimum (lifetime of a series system).

Order statistics

- X_{1}, \ldots, X_{n} independent and identically distributed (IID).
- Order statistics: $X_{1: n} \leq \cdots \leq X_{n: n}$ (ordered values).
- $X_{1: n}=\min \left(X_{1}, \ldots, X_{n}\right)$ sample minimum (lifetime of a series system).
- $X_{n: n}=\max \left(X_{1}, \ldots, X_{n}\right)$ sample maximum (lifetime of a parallel system).

Order statistics

- X_{1}, \ldots, X_{n} independent and identically distributed (IID).
- Order statistics: $X_{1: n} \leq \cdots \leq X_{n: n}$ (ordered values).
- $X_{1: n}=\min \left(X_{1}, \ldots, X_{n}\right)$ sample minimum (lifetime of a series system).
- $X_{n: n}=\max \left(X_{1}, \ldots, X_{n}\right)$ sample maximum (lifetime of a parallel system).
- $X_{n-k+1: n}$ lifetime of a k-out-of-n system.

Basic properties

- Survival function (IID case):

$$
\bar{F}_{i: n}(t)=\operatorname{Pr}\left(X_{i: n}>t\right)=\sum_{j=0}^{i-1}\binom{n}{j} F^{j}(t) \bar{F}^{n-j}(t) .
$$

Basic properties

- Survival function (IID case):

$$
\bar{F}_{i: n}(t)=\operatorname{Pr}\left(X_{i: n}>t\right)=\sum_{j=0}^{i-1}\binom{n}{j} F^{j}(t) \bar{F}^{n-j}(t) .
$$

- Probability density function (IID case):

$$
f_{i: n}(t)=i\binom{n}{i} f(t) F^{i-1}(t) \bar{F}^{n-i}(t) .
$$

Basic properties

- Survival function (IID case):

$$
\bar{F}_{i: n}(t)=\operatorname{Pr}\left(X_{i: n}>t\right)=\sum_{j=0}^{i-1}\binom{n}{j} F^{j}(t) \bar{F}^{n-j}(t) .
$$

- Probability density function (IID case):

$$
f_{i: n}(t)=i\binom{n}{i} f(t) F^{i-1}(t) \bar{F}^{n-i}(t) .
$$

- Hazard rate function (IID case):

$$
h_{i: n}(t)=i\binom{n}{i} \frac{f(t) F^{i-1}(t) \bar{F}^{n-i}(t)}{\sum_{j=0}^{i-1}\binom{n}{j} F^{j}(t) \bar{F}^{n-j}(t)} .
$$

Basic references on order statistics and systems

- Arnold B.C., Balakrishnan N., Nagaraja, H.N. A First Course in Order Statistics. SIAM, 2008.

Basic references on order statistics and systems

- Arnold B.C., Balakrishnan N., Nagaraja, H.N. A First Course in Order Statistics. SIAM, 2008.
- My new book:

Introduction to System Reliability Theory

Distortion representations

- As we have seen, in the IID case we have:

$$
\bar{F}_{i: n}(t)=\bar{q}(\bar{F}(t))
$$

where $\bar{q}:[0,1] \rightarrow[0,1]$ is a distortion function, i.e., \bar{q} is continuous, is increasing and satisfies $\bar{q}(0)=0$ and $\bar{q}(1)=1$.

Distortion representations

- As we have seen, in the IID case we have:

$$
\bar{F}_{i: n}(t)=\bar{q}(\bar{F}(t))
$$

where $\bar{q}:[0,1] \rightarrow[0,1]$ is a distortion function, i.e., \bar{q} is continuous, is increasing and satisfies $\bar{q}(0)=0$ and $\bar{q}(1)=1$.

- In the general case, from any $\left(X_{1}, \ldots, X_{n}\right)$ it can be written as

$$
\begin{equation*}
\bar{F}_{i: n}(t)=\bar{Q}\left(\bar{F}_{1}(t), \ldots, \bar{F}_{n}(t)\right) \text { for all } t \in \mathbb{R} \tag{1.1}
\end{equation*}
$$

where $\bar{F}_{i}(t)=\operatorname{Pr}\left(X_{i}>t\right)$ and $\bar{Q}:[0,1]^{n} \rightarrow[0,1]$ is a distortion function, i.e., \bar{Q} is continuous, increasing and satisfies $\bar{Q}(0, \ldots, 0)=0$ and $\bar{Q}(1, \ldots, 1)=1$.

Distortion representations

- As we have seen, in the IID case we have:

$$
\bar{F}_{i: n}(t)=\bar{q}(\bar{F}(t))
$$

where $\bar{q}:[0,1] \rightarrow[0,1]$ is a distortion function, i.e., \bar{q} is continuous, is increasing and satisfies $\bar{q}(0)=0$ and $\bar{q}(1)=1$.

- In the general case, from any $\left(X_{1}, \ldots, X_{n}\right)$ it can be written as

$$
\begin{equation*}
\bar{F}_{i: n}(t)=\bar{Q}\left(\bar{F}_{1}(t), \ldots, \bar{F}_{n}(t)\right) \text { for all } t \in \mathbb{R} \tag{1.1}
\end{equation*}
$$

where $\bar{F}_{i}(t)=\operatorname{Pr}\left(X_{i}>t\right)$ and $\bar{Q}:[0,1]^{n} \rightarrow[0,1]$ is a distortion function, i.e., \bar{Q} is continuous, increasing and satisfies $\bar{Q}(0, \ldots, 0)=0$ and $\bar{Q}(1, \ldots, 1)=1$.

- \bar{Q} only depends on i, n and the survival copula \hat{C} obtained from Sklar's theorem to get:

$$
\operatorname{Pr}\left(X_{1}>x_{1}, \ldots, X_{n}>x_{n}\right)=\widehat{C}\left(\bar{F}_{1}\left(x_{1}\right), \ldots, \bar{F}_{n}\left(x_{n}\right)\right)
$$

Preliminary results

Distortion representations

- Particular cases:

Distortion representations

- Particular cases:
- If the components are identically distributed (ID), then

$$
\begin{equation*}
\bar{F}_{i: n}(t)=\bar{q}(\bar{F}(t)), \quad \text { for all } t \in \mathbb{R} \tag{1.2}
\end{equation*}
$$

where $\bar{q}(u)=\bar{Q}(u, \ldots, u)$ is a distortion function.

Distortion representations

- Particular cases:
- If the components are identically distributed (ID), then

$$
\begin{equation*}
\bar{F}_{i: n}(t)=\bar{q}(\bar{F}(t)), \quad \text { for all } t \in \mathbb{R} \tag{1.2}
\end{equation*}
$$

where $\bar{q}(u)=\bar{Q}(u, \ldots, u)$ is a distortion function.

- If the components are independent (IND), then \bar{Q} is a multinomial.

Distortion representations

- Particular cases:
- If the components are identically distributed (ID), then

$$
\begin{equation*}
\bar{F}_{i: n}(t)=\bar{q}(\bar{F}(t)), \quad \text { for all } t \in \mathbb{R} \tag{1.2}
\end{equation*}
$$

where $\bar{q}(u)=\bar{Q}(u, \ldots, u)$ is a distortion function.

- If the components are independent (IND), then \bar{Q} is a multinomial.
- If the components are IID, then \bar{q} is a polynomial.

Preliminary results

An example

- $X_{1: n}=\min \left(X_{1}, \ldots, X_{n}\right)$.

An example

- $X_{1: n}=\min \left(X_{1}, \ldots, X_{n}\right)$.
- General case:

$$
\begin{aligned}
\bar{F}_{1: n}(t) & =\operatorname{Pr}\left(X_{1: n}>t\right)=\operatorname{Pr}\left(X_{1}>t, \ldots, X_{n}>t\right) \\
& =\widehat{C}\left(\bar{F}_{1}(t), \ldots, \bar{F}_{n}(t)\right) .
\end{aligned}
$$

An example

$\triangleright X_{1: n}=\min \left(X_{1}, \ldots, X_{n}\right)$.

- General case:

$$
\begin{aligned}
\bar{F}_{1: n}(t) & =\operatorname{Pr}\left(X_{1: n}>t\right)=\operatorname{Pr}\left(X_{1}>t, \ldots, X_{n}>t\right) \\
& =\widehat{C}\left(\bar{F}_{1}(t), \ldots, \bar{F}_{n}(t)\right) .
\end{aligned}
$$

- IND case:

$$
\bar{F}_{1: n}(t)=\bar{F}_{1}(t) \ldots \bar{F}_{n}(t)
$$

An example

$\triangleright X_{1: n}=\min \left(X_{1}, \ldots, X_{n}\right)$.

- General case:

$$
\begin{aligned}
\bar{F}_{1: n}(t) & =\operatorname{Pr}\left(X_{1: n}>t\right)=\operatorname{Pr}\left(X_{1}>t, \ldots, X_{n}>t\right) \\
& =\widehat{C}\left(\bar{F}_{1}(t), \ldots, \bar{F}_{n}(t)\right)
\end{aligned}
$$

- IND case:

$$
\bar{F}_{1: n}(t)=\bar{F}_{1}(t) \ldots \bar{F}_{n}(t)
$$

ID case:

$$
\left.\bar{F}_{1: n}(t)=\widehat{C}(\bar{F}(t), \ldots, \bar{F}(t))\right)=\delta_{\hat{C}}(\bar{F}(t))
$$

where $\delta_{\hat{C}}(u)=\widehat{C}(u, \ldots, u)$ is the diagonal section of \widehat{C}.

An example

$\Rightarrow X_{1: n}=\min \left(X_{1}, \ldots, X_{n}\right)$.

- General case:

$$
\begin{aligned}
\bar{F}_{1: n}(t) & =\operatorname{Pr}\left(X_{1: n}>t\right)=\operatorname{Pr}\left(X_{1}>t, \ldots, X_{n}>t\right) \\
& =\widehat{C}\left(\bar{F}_{1}(t), \ldots, \bar{F}_{n}(t)\right) .
\end{aligned}
$$

- IND case:

$$
\bar{F}_{1: n}(t)=\bar{F}_{1}(t) \ldots \bar{F}_{n}(t)
$$

- ID case:

$$
\left.\bar{F}_{1: n}(t)=\widehat{C}(\bar{F}(t), \ldots, \bar{F}(t))\right)=\delta_{\hat{C}}(\bar{F}(t))
$$

where $\delta_{\hat{C}}(u)=\widehat{C}(u, \ldots, u)$ is the diagonal section of \widehat{C}.

- IID case:

$$
\bar{F}_{1: n}(t)=\bar{F}^{n}(t)=\bar{q}(\bar{F}(t))
$$

with $\bar{q}(u)=u^{n}$ for $u \in[0,1]$.

Comparisons of distorted distributions

- If T_{i} has the $\operatorname{SF} \bar{q}_{i}(\bar{F}(t)), i=1,2$, then:

Comparisons of distorted distributions

- If T_{i} has the SF $\bar{q}_{i}(\bar{F}(t)), i=1,2$, then:
- $T_{1} \leq s T T_{2}$ for all F iff $\bar{q}_{2}-\bar{q}_{1} \geq 0$ in $(0,1)$.

Comparisons of distorted distributions

- If T_{i} has the SF $\bar{q}_{i}(\bar{F}(t)), i=1,2$, then:
- $T_{1} \leq_{S T} T_{2}$ for all F iff $\bar{q}_{2}-\bar{q}_{1} \geq 0$ in $(0,1)$.
- $T_{1} \leq H R T_{2}$ for all F iff $\bar{q}_{2} / \bar{q}_{1}$ decreases in $(0,1)$.

Comparisons of distorted distributions

- If T_{i} has the SF $\bar{q}_{i}(\bar{F}(t)), i=1,2$, then:
- $T_{1} \leq S T T_{2}$ for all F iff $\bar{q}_{2}-\bar{q}_{1} \geq 0$ in $(0,1)$.
- $T_{1} \leq H R T_{2}$ for all F iff $\bar{q}_{2} / \bar{q}_{1}$ decreases in $(0,1)$.
- $T_{1} \leq_{R H R} T_{2}$ for all F iff q_{2} / q_{1} increases in $(0,1)$.

Comparisons of distorted distributions

- If T_{i} has the SF $\bar{q}_{i}(\bar{F}(t)), i=1,2$, then:
- $T_{1} \leq_{S T} T_{2}$ for all F iff $\bar{q}_{2}-\bar{q}_{1} \geq 0$ in $(0,1)$.
- $T_{1} \leq H R T_{2}$ for all F iff $\bar{q}_{2} / \bar{q}_{1}$ decreases in $(0,1)$.
- $T_{1} \leq_{R H R} T_{2}$ for all F iff q_{2} / q_{1} increases in $(0,1)$.
- $T_{1} \leq L R T_{2}$ for all F iff $\bar{q}_{2}^{\prime} / \bar{q}_{1}^{\prime}$ decreases in $(0,1)$.

Comparisons of distorted distributions

- If T_{i} has the SF $\bar{q}_{i}(\bar{F}(t)), i=1,2$, then:
- $T_{1} \leq S T T_{2}$ for all F iff $\bar{q}_{2}-\bar{q}_{1} \geq 0$ in $(0,1)$.
- $T_{1} \leq H R T_{2}$ for all F iff $\bar{q}_{2} / \bar{q}_{1}$ decreases in $(0,1)$.
- $T_{1} \leq_{R H R} T_{2}$ for all F iff q_{2} / q_{1} increases in $(0,1)$.
- $T_{1} \leq_{L R} T_{2}$ for all F iff $\bar{q}_{2}^{\prime} / \bar{q}_{1}^{\prime}$ decreases in $(0,1)$.
- $T_{1} \leq_{M R L} T_{2}$ for all F such that $E\left(T_{1}\right) \leq E\left(T_{2}\right)$ if $\bar{q}_{2} / \bar{q}_{1}$ is bathtub shaped in $(0,1)$.

Comparisons of distorted distributions

- If T_{i} has the SF $\bar{q}_{i}(\bar{F}(t)), i=1,2$, then:
- $T_{1} \leq S T T_{2}$ for all F iff $\bar{q}_{2}-\bar{q}_{1} \geq 0$ in $(0,1)$.
- $T_{1} \leq H R T_{2}$ for all F iff $\bar{q}_{2} / \bar{q}_{1}$ decreases in $(0,1)$.
- $T_{1} \leq_{R H R} T_{2}$ for all F iff q_{2} / q_{1} increases in $(0,1)$.
- $T_{1} \leq_{L R} T_{2}$ for all F iff $\bar{q}_{2}^{\prime} / \bar{q}_{1}^{\prime}$ decreases in $(0,1)$.
- $T_{1} \leq M R L T_{2}$ for all F such that $E\left(T_{1}\right) \leq E\left(T_{2}\right)$ if $\bar{q}_{2} / \bar{q}_{1}$ is bathtub shaped in $(0,1)$.
- Navarro et al. ASMBI, 2013 and Navarro and Gomis ASMBI, 2016.

Comparisons of generalized distorted distributions

- If T_{i} has $\mathrm{SF} \bar{Q}_{i}\left(\bar{F}_{1}, \ldots, \bar{F}_{n}\right), i=1,2$, then:

Comparisons of generalized distorted distributions

- If T_{i} has $\operatorname{SF} \bar{Q}_{i}\left(\bar{F}_{1}, \ldots, \bar{F}_{n}\right), i=1,2$, then:
$\Rightarrow T_{1} \leq_{S T} T_{2}$ for all $\bar{F}_{1}, \ldots, \bar{F}_{n}$ iff $\bar{Q}_{2}-\bar{Q}_{1} \geq 0$ in $(0,1)^{n}$.

Comparisons of generalized distorted distributions

- If T_{i} has $\operatorname{SF} \bar{Q}_{i}\left(\bar{F}_{1}, \ldots, \bar{F}_{n}\right), i=1,2$, then:
- $T_{1} \leq{ }_{S T} T_{2}$ for all $\bar{F}_{1}, \ldots, \bar{F}_{n}$ iff $\bar{Q}_{2}-\bar{Q}_{1} \geq 0$ in $(0,1)^{n}$.
$\Rightarrow T_{1} \leq H R T_{2}$ for all $\bar{F}_{1}, \ldots, \bar{F}_{n}$ iff $\bar{Q}_{2} / \bar{Q}_{1}$ is decreasing in $(0,1)^{n}$.

Comparisons of generalized distorted distributions

- If T_{i} has $\operatorname{SF} \bar{Q}_{i}\left(\bar{F}_{1}, \ldots, \bar{F}_{n}\right), i=1,2$, then:
- $T_{1} \leq{ }_{S T} T_{2}$ for all $\bar{F}_{1}, \ldots, \bar{F}_{n}$ iff $\bar{Q}_{2}-\bar{Q}_{1} \geq 0$ in $(0,1)^{n}$.
- $T_{1} \leq H R T_{2}$ for all $\bar{F}_{1}, \ldots, \bar{F}_{n}$ iff $\bar{Q}_{2} / \bar{Q}_{1}$ is decreasing in $(0,1)^{n}$.
- $T_{1} \leq_{R H R} T_{2}$ for all $\bar{F}_{1}, \ldots, \bar{F}_{r}$ iff Q_{2} / Q_{1} is increasing in $(0,1)^{n}$.

Comparisons of GDD with ordered components

- If T_{i} has $\operatorname{SF} \bar{Q}_{i}\left(\bar{F}_{1}, \ldots, \bar{F}_{n}\right), i=1,2$, then:

Comparisons of GDD with ordered components

If T_{i} has $\operatorname{SF} \bar{Q}_{i}\left(\bar{F}_{1}, \ldots, \bar{F}_{n}\right), i=1,2$, then:

- $T_{1} \leq s T T_{2}$ for all $\bar{F}_{1}, \ldots, \bar{F}_{n}$ such that

$$
F_{1} \geq_{S T} \cdots \geq_{S T} F_{n}
$$

iff $\bar{Q}_{1} \leq \bar{Q}_{2}$ in $D=\left\{\left(u_{1}, \ldots, u_{n}\right) \in[0,1]^{n}: u_{1} \geq \cdots \geq u_{n}\right\}$.

Comparisons of GDD with ordered components

- If T_{i} has $\operatorname{SF} \bar{Q}_{i}\left(\bar{F}_{1}, \ldots, \bar{F}_{n}\right), i=1,2$, then:
- $T_{1} \leq S T T_{2}$ for all $\bar{F}_{1}, \ldots, \bar{F}_{n}$ such that

$$
F_{1} \geq_{S T} \cdots \geq_{S T} F_{n}
$$

iff $\bar{Q}_{1} \leq \bar{Q}_{2}$ in $D=\left\{\left(u_{1}, \ldots, u_{n}\right) \in[0,1]^{n}: u_{1} \geq \cdots \geq u_{n}\right\}$.

- $T_{1} \leq H R T_{2}$ for all $\bar{F}_{1}, \ldots, \bar{F}_{n}$ such that

$$
\begin{equation*}
F_{1} \geq H R \cdots \geq H R ~ F_{n} \tag{1.3}
\end{equation*}
$$

iff the function

$$
\begin{equation*}
H\left(v_{1}, \ldots, v_{n}\right)=\frac{\bar{Q}_{2}\left(v_{1}, v_{1} v_{2}, \ldots, v_{1} \ldots v_{n}\right)}{\bar{Q}_{1}\left(v_{1}, v_{1} v_{2}, \ldots, v_{1} \ldots v_{n}\right)} \tag{1.4}
\end{equation*}
$$

is decreasing in $(0,1)^{n}$.

Comparisons of GDD with ordered components

- If T_{i} has $\operatorname{SF} \bar{Q}_{i}\left(\bar{F}_{1}, \ldots, \bar{F}_{n}\right), i=1,2$, then:
- $T_{1} \leq S T T_{2}$ for all $\bar{F}_{1}, \ldots, \bar{F}_{n}$ such that

$$
F_{1} \geq_{S T} \cdots \geq_{S T} F_{n}
$$

iff $\bar{Q}_{1} \leq \bar{Q}_{2}$ in $D=\left\{\left(u_{1}, \ldots, u_{n}\right) \in[0,1]^{n}: u_{1} \geq \cdots \geq u_{n}\right\}$.

- $T_{1} \leq H R T_{2}$ for all $\bar{F}_{1}, \ldots, \bar{F}_{n}$ such that

$$
\begin{equation*}
F_{1} \geq H R \cdots \geq H R ~ F_{n} \tag{1.3}
\end{equation*}
$$

iff the function

$$
\begin{equation*}
H\left(v_{1}, \ldots, v_{n}\right)=\frac{\bar{Q}_{2}\left(v_{1}, v_{1} v_{2}, \ldots, v_{1} \ldots v_{n}\right)}{\bar{Q}_{1}\left(v_{1}, v_{1} v_{2}, \ldots, v_{1} \ldots v_{n}\right)} \tag{1.4}
\end{equation*}
$$

is decreasing in $(0,1)^{n}$.

- A similar result holds for the RHR order.

```
Case I: IID
Case II: ID
Cases III & IV: IND & GEN
```


Ordering properties

Typical cases

- Let us consider the following typical cases:

Typical cases

- Let us consider the following typical cases:
- Case I: X_{1}, \ldots, X_{n} are IID with common SF \bar{F}.

Typical cases

- Let us consider the following typical cases:
- Case I: X_{1}, \ldots, X_{n} are IID with common SF \bar{F}.
- Case II: X_{1}, \ldots, X_{n} are ID with common SF \bar{F} and SC \widehat{C}.

Typical cases

- Let us consider the following typical cases:
- Case I: X_{1}, \ldots, X_{n} are IID with common SF \bar{F}.
- Case II: X_{1}, \ldots, X_{n} are ID with common SF \bar{F} and SC \widehat{C}.
- Case III: X_{1}, \ldots, X_{n} are IND with SF $\bar{F}_{1}, \ldots, \bar{F}_{n}$.

Typical cases

- Let us consider the following typical cases:
- Case I: X_{1}, \ldots, X_{n} are IID with common SF \bar{F}.
- Case II: X_{1}, \ldots, X_{n} are ID with common SF \bar{F} and SC \widehat{C}.
- Case III: X_{1}, \ldots, X_{n} are IND with SF $\bar{F}_{1}, \ldots, \bar{F}_{n}$.
- Case IV: X_{1}, \ldots, X_{n} are arbitrary (GENeral case) with SF $\bar{F}_{1}, \ldots, \bar{F}_{n}$ and SC \widehat{C}.

Case I: IID, ST order

- Are $X_{1: n} \leq_{S T} \cdots \leq_{S T} X_{n: n}$ ordered?

Case I: IID, ST order

- Are $X_{1: n} \leq_{S T} \cdots \leq_{S T} X_{n: n}$ ordered?
- Yes, since

$$
\bar{F}_{i: n}(t)=\sum_{j=0}^{i-1}\binom{n}{j} F^{j}(t) \bar{F}^{n-j}(t) \leq \sum_{j=0}^{i}\binom{n}{j} F^{j}(t) \bar{F}^{n-j}(t)=\bar{F}_{i+1: n}(t)
$$

$$
\text { for } i=1, \ldots, n-1 \text { and all } n, F
$$

Case I: IID, HR order

- Are $X_{1: n} \leq_{H R} \cdots \leq_{H R} X_{n: n}$ ordered?

Case I: IID, HR order

- Are $X_{1: n} \leq_{H R} \cdots \leq_{H R} X_{n: n}$ ordered?
- Yes, since

$$
\frac{\bar{F}_{i+1: n}(t)}{\bar{F}_{i: n}(t)}=\frac{\sum_{j=0}^{i}\binom{n}{j} F^{j}(t) \bar{F}^{n-j}(t)}{\sum_{j=0}^{i-1}\binom{n}{j} F^{j}(t) \bar{F}^{n-j}(t)}=1+\frac{\binom{n}{i} F^{i}(t) \bar{F}^{n-i}(t)}{\sum_{j=0}^{i-1}\binom{n}{j} F^{j}(t) \bar{F}^{n-j}(t)}
$$

is increasing in t for $i=1, \ldots, n-1$ and all n, F because

$$
\sum_{j=0}^{i-1}\binom{n}{j} F^{j-i}(t) \bar{F}^{i-j}(t)=\sum_{j=0}^{i-1}\binom{n}{j} \bar{H}^{i-j}(t)
$$

where $H(t)=\bar{F}(t) / F(t)=-1+1 / F(t)$ is decreasing.

Case I: IID, LR order

\Rightarrow Are $X_{1: n} \leq_{L R} \cdots \leq_{L R} X_{n: n}$ ordered?

Case I: IID, LR order

- Are $X_{1: n} \leq_{L R} \cdots \leq_{L R} X_{n: n}$ ordered?
- Yes, since

$$
\frac{\bar{f}_{i+1: n}(t)}{\bar{f}_{i: n}(t)}=\frac{(i+1)\binom{n}{i+1} f(t) F^{i}(t) \bar{F}^{n-i-1}(t)}{i\binom{n}{i} f(t) F^{i-1}(t) \bar{F}^{n-i}(t)}=\frac{c}{H(t)}
$$

is increasing in t for $i=1, \ldots, n-1$ and all n, F (because H is decreasing).

Case II: ID, ST order

- Are $X_{1: n} \leq_{S T} \cdots \leq_{S T} X_{n: n}$ ordered?

Case II: ID, ST order

- Are $X_{1: n} \leq_{S T} \cdots \leq_{S T} X_{n: n}$ ordered?
- Yes, since

$$
\bar{F}_{i: n}(t)=\bar{q}_{i: n}(\bar{F}(t)) \leq \bar{F}_{i+1: n}(t)=\bar{q}_{i+1: n}(\bar{F}(t))
$$

and $\bar{q}_{i: n} \leq \bar{q}_{i+1: n}$ for all copula \widehat{C}.

Case II: ID, ST order

- Are $X_{1: n} \leq_{S T} \cdots \leq_{S T} X_{n: n}$ ordered?
- Yes, since

$$
\bar{F}_{i: n}(t)=\bar{q}_{i: n}(\bar{F}(t)) \leq \bar{F}_{i+1: n}(t)=\bar{q}_{i+1: n}(\bar{F}(t))
$$

and $\bar{q}_{i: n} \leq \bar{q}_{i+1: n}$ for all copula \widehat{C}.

- For example, for $n=2$

$$
\bar{F}_{1: 2}(t)=\bar{q}_{1: 2}(\bar{F}(t)) \leq \bar{F}_{2: 2}(t)=\bar{q}_{2: 2}(\bar{F}(t))
$$

where $\bar{q}_{1: 2}(u)=\widehat{C}(u, u)$, and

$$
\bar{F}_{2: 2}(t)=\operatorname{Pr}\left(\max \left(X_{1}, X_{2}\right)>t\right)=\operatorname{Pr}\left(X_{1}>t\right)+\operatorname{Pr}\left(X_{2}>t\right)-\operatorname{Pr}\left(X_{1: 2}>t\right)
$$

that is, $\bar{q}_{2: 2}(u)=2 u-\widehat{C}(u, u)$ with

$$
\widehat{C}(u, u) \leq 2 u-\widehat{C}(u, u)
$$

since $\widehat{C}(u, u) \leq \widehat{C}(1, u)=u$ for all copula \widehat{C}.

Case II: ID, HR order

- Are $X_{1: n} \leq_{H R} \cdots \leq_{H R} X_{n: n}$ ordered?

Case II: ID, HR order

- Are $X_{1: n} \leq_{H R} \cdots \leq_{H R} X_{n: n}$ ordered?
- Are $X_{1: 2} \leq H R X_{2: 2}$ ordered?

Case II: ID, HR order

- Are $X_{1: n} \leq_{H R} \cdots \leq_{H R} X_{n: n}$ ordered?
- Are $X_{1: 2} \leq_{H R} X_{2: 2}$ ordered?
- It holds if and only if

$$
\frac{\bar{q}_{2: 2}(u)}{\bar{q}_{1: 2}(u)}=\frac{2 u-\widehat{C}(u, u)}{\widehat{C}(u, u)}=-1+\frac{2 u}{\widehat{C}(u, u)}
$$

is decreasing, that is, if and only if

$$
r(u)=\frac{\widehat{C}(u, u)}{u}=\frac{\delta_{\widehat{C}}(u)}{u}
$$

is increasing in $(0,1)$.

Case II: ID, HR order

- Are $X_{1: n} \leq_{H R} \cdots \leq_{H R} X_{n: n}$ ordered?
- Are $X_{1: 2} \leq_{H R} X_{2: 2}$ ordered?
- It holds if and only if

$$
\frac{\bar{q}_{2: 2}(u)}{\bar{q}_{1: 2}(u)}=\frac{2 u-\widehat{C}(u, u)}{\widehat{C}(u, u)}=-1+\frac{2 u}{\widehat{C}(u, u)}
$$

is decreasing, that is, if and only if

$$
r(u)=\frac{\widehat{C}(u, u)}{u}=\frac{\delta_{\widehat{C}}(u)}{u}
$$

is increasing in $(0,1)$.

- Is this property true for any copula?

Case II: ID, HR order

- Yes for the product copula

$$
r(u)=\frac{\widehat{C}(u, u)}{u}=\frac{u^{2}}{u}=u .
$$

Case II: ID, HR order

- Yes for the product copula

$$
r(u)=\frac{\widehat{C}(u, u)}{u}=\frac{u^{2}}{u}=u
$$

- If we consider the following Clayton copula

$$
\widehat{C}(u, v)=\frac{u v}{u+v-u v}
$$

then

$$
r(u)=\frac{C(u, u)}{u}=\frac{1}{2-u}
$$

which is increasing.

Case II: ID, HR order

- Yes for the product copula

$$
r(u)=\frac{\widehat{C}(u, u)}{u}=\frac{u^{2}}{u}=u
$$

- If we consider the following Clayton copula

$$
\widehat{C}(u, v)=\frac{u v}{u+v-u v}
$$

then

$$
r(u)=\frac{C(u, u)}{u}=\frac{1}{2-u}
$$

which is increasing.

- Hence $X_{1: 2} \leq_{H R} X_{2: 2}$ are ordered for any F and this copula.

Figure: Reliability and hazard rate functions of $X_{1: 2}$ (black line), X_{i} (red line) and $X_{2: 2}$ (blue line) when X_{1} and X_{2} are IID and have a common exponential distribution with mean one.

Figure: Reliability and hazard rate functions of $X_{1: 2}$ (black line), X_{i} (red line) and $X_{2: 2}$ (blue line) when X_{1} and X_{2} have a common exponential distribution with mean one and the Clayton copula given above.

Case II: ID, HR order

- If we choose the following copula extracted from Example 4.1 in Navarro, Torrado and del Águila (2018)

$$
\widehat{C}(u, v)=\min (u, v, 0.5 \delta(u)+0.5 \delta(v))
$$

with

$$
\delta(u)=\left\{\begin{array}{ccc}
u & \text { for } & 0 \leq u \leq 1 / 3 \\
1 / 3 & \text { for } & 1 / 3 \leq u \leq 2 / 3 \\
2 u-1 & \text { for } & 2 / 3 \leq u \leq 1
\end{array}\right.
$$

Case II: ID, HR order

- If we choose the following copula extracted from Example 4.1 in Navarro, Torrado and del Águila (2018)

$$
\widehat{C}(u, v)=\min (u, v, 0.5 \delta(u)+0.5 \delta(v))
$$

with

$$
\delta(u)=\left\{\begin{array}{ccc}
u & \text { for } & 0 \leq u \leq 1 / 3 \\
1 / 3 & \text { for } & 1 / 3 \leq u \leq 2 / 3 \\
2 u-1 & \text { for } & 2 / 3 \leq u \leq 1
\end{array}\right.
$$

- Then $\delta_{\hat{C}}(u)=\delta(u)$ and $r(u)=\delta(u) / u$ is not increasing.

Case II: ID, HR order

- If we choose the following copula extracted from Example 4.1 in Navarro, Torrado and del Águila (2018)

$$
\widehat{C}(u, v)=\min (u, v, 0.5 \delta(u)+0.5 \delta(v))
$$

with

$$
\delta(u)=\left\{\begin{array}{ccc}
u & \text { for } & 0 \leq u \leq 1 / 3 \\
1 / 3 & \text { for } & 1 / 3 \leq u \leq 2 / 3 \\
2 u-1 & \text { for } & 2 / 3 \leq u \leq 1
\end{array}\right.
$$

- Then $\delta_{\hat{C}}(u)=\delta(u)$ and $r(u)=\delta(u) / u$ is not increasing.
- So the correct answer is NO (it depends on the copula).

Case II: ID, HR order

- If we choose the following copula extracted from Example 4.1 in Navarro, Torrado and del Águila (2018)

$$
\widehat{C}(u, v)=\min (u, v, 0.5 \delta(u)+0.5 \delta(v))
$$

with

$$
\delta(u)=\left\{\begin{array}{ccc}
u & \text { for } & 0 \leq u \leq 1 / 3 \\
1 / 3 & \text { for } & 1 / 3 \leq u \leq 2 / 3 \\
2 u-1 & \text { for } & 2 / 3 \leq u \leq 1
\end{array}\right.
$$

- Then $\delta_{\hat{C}}(u)=\delta(u)$ and $r(u)=\delta(u) / u$ is not increasing.
- So the correct answer is NO (it depends on the copula).
- This surprising fact was proved first in Navarro and Shaked, Journal of Applied Probability 43 (2006), 391-408.

Figure: Reliability and hazard rate functions of $X_{1: 2}$ (black line), X_{i} (red line) and $X_{2: 2}$ (blue line) when X_{1} and X_{2} have a common exponential distribution with mean one and the copula given above.

Case II: ID, HR order

Proposition (Navarro, Torrado and del Águila (2018))

Let X_{1} and X_{2} be the lifetimes of two components having a common distribution function F and copula and survival copula C and \widehat{C}, respectively. Then the following properties are equivalent:
(i) $X_{1: 2} \leq_{H R} X_{1}$ for all F;
(ii) $X_{1} \leq H R X_{2: 2}$ for all F;
(iii) $X_{1: 2} \leq H R X_{2: 2}$ for all F;
(iv) $\widehat{C}(u, u) / u$ is increasing in $(0,1)$;
(v) $(1-C(u, u)) /(1-u)$ is increasing in $(0,1)$.

Case II: ID, LR order

- Are $X_{1: 2} \leq_{L R} X_{2: 2}$ ordered?

Case II: ID, LR order

- Are $X_{1: 2} \leq_{L R} X_{2: 2}$ ordered?
- It holds iff

$$
\frac{\bar{q}_{2: 2}^{\prime}(u)}{\bar{q}_{1: 2}^{\prime}(u)}=\frac{2-\delta_{\widehat{c}}^{\prime}(u)}{\delta_{\widehat{c}}^{\prime}(u)}
$$

is decreasing in $(0,1)$.

Case II: ID, LR order

- Are $X_{1: 2} \leq_{L R} X_{2: 2}$ ordered?
- It holds iff

$$
\frac{\bar{q}_{2: 2}^{\prime}(u)}{\bar{q}_{1: 2}^{\prime}(u)}=\frac{2-\delta_{\widehat{c}}^{\prime}(u)}{\delta_{\widehat{c}}^{\prime}(u)}
$$

is decreasing in $(0,1)$.

- So it holds iff $\delta_{\widehat{c}}^{\prime}(u)$ is increasing in $(0,1)$, i.e., iff $\delta_{\widehat{C}}(u)=\widehat{C}(u, u)$ is convex in $(0,1)$.

Case II: ID, LR order

- Are $X_{1: 2} \leq_{L R} X_{2: 2}$ ordered?
- It holds iff

$$
\frac{\bar{q}_{2: 2}^{\prime}(u)}{\bar{q}_{1: 2}^{\prime}(u)}=\frac{2-\delta_{\widehat{c}}^{\prime}(u)}{\delta_{\widehat{c}}^{\prime}(u)}
$$

is decreasing in $(0,1)$.

- So it holds iff $\delta_{\widehat{c}}^{\prime}(u)$ is increasing in $(0,1)$, i.e., iff
$\delta_{\widehat{C}}(u)=\widehat{C}(u, u)$ is convex in $(0,1)$.
- Then the correct answers is NO (it depends on the copula).

Case II: ID, LR order

Proposition (Navarro, Torrado and del Águila (2018))

Let X_{1} and X_{2} be the lifetimes of two components having a common distribution function F and copula and survival copula C and \widehat{C}, respectively. Then the following properties are equivalent:
(i) $X_{1: 2} \leq_{L R} X_{1}$ for all F;
(ii) $X_{1} \leq_{L R} X_{2: 2}$ for all F;
(iii) $X_{1: 2} \leq_{L R} X_{2: 2}$ for all F;
(iv) $\hat{C}(u, u)$ is convex in $(0,1)$;
(v) $C(u, u)$ is convex in $(0,1)$.

Cases III \& IV: ST order, GEN case

- Are $X_{1: n} \leq_{S T} \cdots \leq_{S T} X_{n: n}$ ordered in the GENeral case?

Cases III \& IV: ST order, GEN case

- Are $X_{1: n} \leq_{S T} \cdots \leq_{S T} X_{n: n}$ ordered in the GENeral case?
- Yes, since

$$
X_{1: n} \leq \cdots \leq X_{n: n}
$$

implies

$$
X_{1: n} \leq_{S T} \cdots \leq_{S T} X_{n: n}
$$

see Shaked and Shanthikumar (2007), p. 5.

Cases III \& IV: ST order, GEN case

- Are $X_{1: n} \leq_{S T} \cdots \leq_{S T} X_{n: n}$ ordered in the GENeral case?
- Yes, since

$$
X_{1: n} \leq \cdots \leq X_{n: n}
$$

implies

$$
X_{1: n} \leq_{S T} \cdots \leq_{S T} X_{n: n},
$$

see Shaked and Shanthikumar (2007), p. 5.

- $X_{i: m} \leq S T X_{j: n}$ holds iff $i \leq j$ and $m-i \leq n-j$, Arcones, Kvam and Samaniego, JASA, 2002

Cases III \& IV: HR order, GEN case

- Are $X_{1: n} \leq_{H R} \cdots \leq_{H R} X_{n: n}$ ordered in the GENeral case?

Cases III \& IV: HR order, GEN case

- Are $X_{1: n} \leq_{H R} \cdots \leq_{H R} X_{n: n}$ ordered in the GENeral case?
- NO (proved before).

Cases III \& IV: HR order, GEN case

- Are $X_{1: n} \leq_{H R} \cdots \leq_{H R} X_{n: n}$ ordered in the GENeral case?
- NO (proved before).
- Are $X_{1: n} \leq_{H R} \cdots \leq_{H R} X_{n: n}$ ordered in the INDependent case?

Cases III \& IV: HR order, GEN case

- Are $X_{1: n} \leq_{H R} \cdots \leq_{H R} X_{n: n}$ ordered in the GENeral case?
- NO (proved before).
- Are $X_{1: n} \leq_{H R} \cdots \leq_{H R} X_{n: n}$ ordered in the INDependent case?
- $X_{1: 2} \leq_{H R} X_{2: 2}$ holds iff

$$
\frac{\bar{Q}_{2: 2}(u, v)}{\bar{Q}_{1: 2}(u, v)}=\frac{u+v-\widehat{C}(u, v)}{\widehat{C}(u, v)} \text { is decreasing in }(0,1)^{2}
$$

that is, iff $\widehat{C}(u, v) /(u+v)$ is increasing.

Cases III \& IV: HR order, GEN case

- Are $X_{1: n} \leq_{H R} \cdots \leq_{H R} X_{n: n}$ ordered in the GENeral case?
- NO (proved before).
- Are $X_{1: n} \leq_{H R} \cdots \leq_{H R} X_{n: n}$ ordered in the INDependent case?
- $X_{1: 2} \leq_{H R} X_{2: 2}$ holds iff

$$
\frac{\bar{Q}_{2: 2}(u, v)}{\bar{Q}_{1: 2}(u, v)}=\frac{u+v-\widehat{C}(u, v)}{\widehat{C}(u, v)} \text { is decreasing in }(0,1)^{2}
$$

that is, iff $\widehat{C}(u, v) /(u+v)$ is increasing.

- If X_{1} and X_{2} are IND, then it holds iff

$$
\frac{\bar{Q}_{2: 2}(u, v)}{\bar{Q}_{1: 2}(u, v)}=\frac{u+v-u v}{u v}=\frac{1}{u}+\frac{1}{v}-1 \text { is decreasing in }(0,1)^{2} .
$$

Cases III \& IV: HR order, GEN case

- Are $X_{1: n} \leq_{H R} \cdots \leq_{H R} X_{n: n}$ ordered in the GENeral case?
- NO (proved before).
\Rightarrow Are $X_{1: n} \leq_{H R} \cdots \leq_{H R} X_{n: n}$ ordered in the INDependent case?
- $X_{1: 2} \leq H R X_{2: 2}$ holds iff

$$
\frac{\bar{Q}_{2: 2}(u, v)}{\bar{Q}_{1: 2}(u, v)}=\frac{u+v-\widehat{C}(u, v)}{\widehat{C}(u, v)} \text { is decreasing in }(0,1)^{2}
$$

that is, iff $\widehat{C}(u, v) /(u+v)$ is increasing.

- If X_{1} and X_{2} are IND, then it holds iff

$$
\frac{\bar{Q}_{2: 2}(u, v)}{\bar{Q}_{1: 2}(u, v)}=\frac{u+v-u v}{u v}=\frac{1}{u}+\frac{1}{v}-1 \text { is decreasing in }(0,1)^{2} .
$$

- So the correct answer is YES (Boland, El-Neweihi and Proschan, JAP, 1994).

Cases III \& IV: HR order, IND case

- Are $X_{1: 2} \leq_{H R} X_{1}$ ordered in the GENeral case?

Cases III \& IV: HR order, IND case

- Are $X_{1: 2} \leq_{H R} X_{1}$ ordered in the GENeral case?
- NO (proved before).

Cases III \& IV: HR order, IND case

- Are $X_{1: 2} \leq_{H R} X_{1}$ ordered in the GENeral case?
- NO (proved before).
- Are $X_{1: 2} \leq_{H R} X_{1}$ ordered in the IND?

Cases III \& IV: HR order, IND case

- Are $X_{1: 2} \leq_{H R} X_{1}$ ordered in the GENeral case?
- NO (proved before).
- Are $X_{1: 2} \leq_{H R} X_{1}$ ordered in the IND?
- $X_{1: 2} \leq_{H R} X_{1}$ holds iff

$$
\frac{\bar{Q}_{1}(u, v)}{\bar{Q}_{1: 2}(u, v)}=\frac{u}{\widehat{C}(u, v)} \text { is decreasing in }(0,1)^{2}
$$

that is, iff $\widehat{C}(u, v) / u$ is increasing in u, Navarro and Durante (2021).

Cases III \& IV: HR order, IND case

- Are $X_{1: 2} \leq_{H R} X_{1}$ ordered in the GENeral case?
- NO (proved before).
- Are $X_{1: 2} \leq_{H R} X_{1}$ ordered in the IND?
- $X_{1: 2} \leq_{H R} X_{1}$ holds iff

$$
\frac{\bar{Q}_{1}(u, v)}{\bar{Q}_{1: 2}(u, v)}=\frac{u}{\widehat{C}(u, v)} \text { is decreasing in }(0,1)^{2}
$$

that is, iff $\widehat{C}(u, v) / u$ is increasing in u, Navarro and Durante (2021).

- If X_{1} and X_{2} are IND, then it holds since $\widehat{C}(u, v) / u=v$ is increasing (actually $h_{1: 2}=h_{1}+h_{2}$).

Cases III \& IV: HR order, IND case

- Are $X_{1: 2} \leq_{H R} X_{1}$ ordered in the GENeral case?
- NO (proved before).
- Are $X_{1: 2} \leq_{H R} X_{1}$ ordered in the IND?
- $X_{1: 2} \leq_{H R} X_{1}$ holds iff

$$
\frac{\bar{Q}_{1}(u, v)}{\bar{Q}_{1: 2}(u, v)}=\frac{u}{\widehat{C}(u, v)} \text { is decreasing in }(0,1)^{2}
$$

that is, iff $\widehat{C}(u, v) / u$ is increasing in u, Navarro and Durante (2021).

- If X_{1} and X_{2} are IND, then it holds since $\widehat{C}(u, v) / u=v$ is increasing (actually $h_{1: 2}=h_{1}+h_{2}$).
- So the correct answer is YES.

Cases III \& IV: HR order, GEN case

Proposition (Navarro and Durante (2021))

Let X_{1} and X_{2} be the lifetimes of two components having a distribution functions F_{1} and F_{2} and survival copula \widehat{C}. Then the following properties are equivalent:
(i) $X_{1: 2} \leq_{H R} X_{1}$ for all F;
(ii) $\widehat{C}(u, v) / u$ is increasing in $u \in(0,1)$ for all $v \in(0,1)$;
(iii) $\left(X_{1}, X_{2}\right)$ is Right Tail Decreasing $\operatorname{RTD}\left(X_{2} \mid X_{1}\right)$, i.e.
$\left(X_{2} \mid X_{1}>t\right)$ is ST decreasing in t (a negative dependence property).

Cases III \& IV: HR order, IND case

- Are $X_{1} \leq_{H R} X_{2: 2}$ ordered in the GENeral case?

Cases III \& IV: HR order, IND case

- Are $X_{1} \leq_{H R} X_{2: 2}$ ordered in the GENeral case?
- NO (proved before).

Cases III \& IV: HR order, IND case

- Are $X_{1} \leq_{H R} X_{2: 2}$ ordered in the GENeral case?
- NO (proved before).
- Are $X_{1} \leq_{H R} X_{2: 2}$ ordered in the IND case?

Cases III \& IV: HR order, IND case

- Are $X_{1} \leq_{H R} X_{2: 2}$ ordered in the GENeral case?
- NO (proved before).
- Are $X_{1} \leq_{H R} X_{2: 2}$ ordered in the IND case?
- $X_{1} \leq_{H R} X_{2: 2}$ holds iff

$$
\frac{\bar{Q}_{2: 2}(u, v)}{\bar{Q}_{1}(u, v)}=\frac{u+v-\widehat{C}(u, v)}{u} \text { is decreasing in }(0,1)^{2}
$$

Cases III \& IV: HR order, IND case

- Are $X_{1} \leq_{H R} X_{2: 2}$ ordered in the GENeral case?
- NO (proved before).
- Are $X_{1} \leq_{H R} X_{2: 2}$ ordered in the IND case?
- $X_{1} \leq_{H R} X_{2: 2}$ holds iff

$$
\frac{\bar{Q}_{2: 2}(u, v)}{\bar{Q}_{1}(u, v)}=\frac{u+v-\widehat{C}(u, v)}{u} \text { is decreasing in }(0,1)^{2} .
$$

- If X_{1} and X_{2} are IND, then it holds iff

$$
\frac{\bar{Q}_{2: 2}(u, v)}{\bar{Q}_{1}(u, v)}=\frac{u+v-u v}{u}=1+\frac{v}{u}-v \text { is decreasing in }(0,1)^{2} .
$$

Cases III \& IV: HR order, IND case

- Are $X_{1} \leq_{H R} X_{2: 2}$ ordered in the GENeral case?
- NO (proved before).
- Are $X_{1} \leq_{H R} X_{2: 2}$ ordered in the IND case?
- $X_{1} \leq_{H R} X_{2: 2}$ holds iff

$$
\frac{\bar{Q}_{2: 2}(u, v)}{\bar{Q}_{1}(u, v)}=\frac{u+v-\widehat{C}(u, v)}{u} \text { is decreasing in }(0,1)^{2} .
$$

- If X_{1} and X_{2} are IND, then it holds iff

$$
\frac{\bar{Q}_{2: 2}(u, v)}{\bar{Q}_{1}(u, v)}=\frac{u+v-u v}{u}=1+\frac{v}{u}-v \text { is decreasing in }(0,1)^{2} .
$$

- So the correct answer is $\mathrm{NO}(v(-1+1 / u)$ is increasing in $v)$.

Figure: Reliability and hazard rate functions of $X_{1: 2}$ (black line), X_{i} (red lines) and $X_{2: 2}$ (blue line) when X_{1} and X_{2} are IND and have exponential distributions with mean one and two.

Cases III \& IV: HR order, GEN case

Proposition (Navarro and Durante (2021))

Let X_{1} and X_{2} be the lifetimes of two components having a distribution functions F_{1} and F_{2} and survival copula \widehat{C}. Then the following properties are equivalent:
(i) $X_{1: 2} \leq H R X_{2: 2}$ for all F;
(ii) $\widehat{C}(u, v) /(u+v)$ is increasing in $(0,1)^{2}$.

Cases III \& IV: HR order, GEN case

- These properties hold if $\left(X_{1}, X_{2}\right)$ is Right Tail Decreasing in both variables, i.e., $R T D\left(X_{2} \mid X_{1}\right)$ and $R T D\left(X_{1} \mid X_{2}\right)$.

Cases III \& IV: HR order, GEN case

- These properties hold if $\left(X_{1}, X_{2}\right)$ is Right Tail Decreasing in both variables, i.e., $R T D\left(X_{2} \mid X_{1}\right)$ and $R T D\left(X_{1} \mid X_{2}\right)$.
- The set $\mathcal{C}_{H}=\{C$ copulas satisfying (ii) $\}$ is a closed set in the class of bivariate copulas \mathcal{C} equipped with the supremum distance d_{∞}.

Cases III \& IV: HR order, GEN case

- These properties hold if $\left(X_{1}, X_{2}\right)$ is Right Tail Decreasing in both variables, i.e., $R T D\left(X_{2} \mid X_{1}\right)$ and $R T D\left(X_{1} \mid X_{2}\right)$.
- The set $\mathcal{C}_{H}=\{C$ copulas satisfying (ii) $\}$ is a closed set in the class of bivariate copulas \mathcal{C} equipped with the supremum distance d_{∞}.
- The set \mathcal{C}_{H} is nowhere dense in $\left(\mathcal{C}, d_{\infty}\right)$ (i.e. it is a small set from a topological point of view).

Cases III \& IV: HR order, GEN case

- These properties hold if $\left(X_{1}, X_{2}\right)$ is Right Tail Decreasing in both variables, i.e., $R T D\left(X_{2} \mid X_{1}\right)$ and $R T D\left(X_{1} \mid X_{2}\right)$.
- The set $\mathcal{C}_{H}=\{C$ copulas satisfying (ii) $\}$ is a closed set in the class of bivariate copulas \mathcal{C} equipped with the supremum distance d_{∞}.
- The set \mathcal{C}_{H} is nowhere dense in $\left(\mathcal{C}, d_{\infty}\right)$ (i.e. it is a small set from a topological point of view).
- For any possible copula C connecting X_{1} and $X_{2}, X_{1} \leq_{H R} X_{2: 2}$ does not hold for all F_{1} and F_{2}.

Cases III \& IV: HR order, GEN case

- These properties hold if $\left(X_{1}, X_{2}\right)$ is Right Tail Decreasing in both variables, i.e., $R T D\left(X_{2} \mid X_{1}\right)$ and $R T D\left(X_{1} \mid X_{2}\right)$.
- The set $\mathcal{C}_{H}=\{C$ copulas satisfying (ii) $\}$ is a closed set in the class of bivariate copulas \mathcal{C} equipped with the supremum distance d_{∞}.
- The set \mathcal{C}_{H} is nowhere dense in $\left(\mathcal{C}, d_{\infty}\right)$ (i.e. it is a small set from a topological point of view).
- For any possible copula C connecting X_{1} and $X_{2}, X_{1} \leq_{H R} X_{2: 2}$ does not hold for all F_{1} and F_{2}.
- See Navarro and Durante (2021).

Figure: Reliability and hazard rate functions of $X_{1: 2}$ (black line), X_{1} (red line), X_{3} (green line) and $X_{2: 2}$ (blue line) when X_{1} and X_{2} are dependent with a survival Clayton copula and X_{1} has an exponential distribution with mean one and X_{2} has a Pareto distribution.

Cases III \& IV: HR order, IND case, ordered components

- Are $X_{1} \leq_{H R} X_{2: 2}$ ordered in the IND case when $X_{1} \geq_{H R} X_{2}$?

Cases III \& IV: HR order, IND case, ordered components

- Are $X_{1} \leq_{H R} X_{2: 2}$ ordered in the IND case when $X_{1} \geq{ }_{H R} X_{2}$?
- Under this condition, $X_{1} \leq H R X_{2: 2}$ holds iff

$$
H(u, v)=\frac{\bar{Q}_{2: 2}(u, u v)}{\bar{Q}_{1}(u, u v)}=\frac{u+u v-\widehat{C}(u, u v)}{u} \text { is decreasing in }(0,1)^{2} \text {. }
$$

Cases III \& IV: HR order, IND case, ordered components

- Are $X_{1} \leq_{H R} X_{2: 2}$ ordered in the IND case when $X_{1} \geq{ }_{H R} X_{2}$?
- Under this condition, $X_{1} \leq_{H R} X_{2: 2}$ holds iff

$$
H(u, v)=\frac{\bar{Q}_{2: 2}(u, u v)}{\bar{Q}_{1}(u, u v)}=\frac{u+u v-\widehat{C}(u, u v)}{u} \text { is decreasing in }(0,1)^{2} \text {. }
$$

- If X_{1} and X_{2} are IND, then it holds iff

$$
H(u, v)=\frac{u+u v-u^{2} v}{u}=1+v-u v \text { is decreasing in }(0,1)^{2} \text {. }
$$

Cases III \& IV: HR order, IND case, ordered components

- Are $X_{1} \leq_{H R} X_{2: 2}$ ordered in the IND case when $X_{1} \geq{ }_{H R} X_{2}$?
- Under this condition, $X_{1} \leq_{H R} X_{2: 2}$ holds iff

$$
H(u, v)=\frac{\bar{Q}_{2: 2}(u, u v)}{\bar{Q}_{1}(u, u v)}=\frac{u+u v-\widehat{C}(u, u v)}{u} \text { is decreasing in }(0,1)^{2} \text {. }
$$

- If X_{1} and X_{2} are IND, then it holds iff

$$
H(u, v)=\frac{u+u v-u^{2} v}{u}=1+v-u v \text { is decreasing in }(0,1)^{2} \text {. }
$$

- So the correct answer is NO.

Cases III \& IV: HR order, IND case, ordered components

- Are $X_{2} \leq_{H R} X_{2: 2}$ ordered in the IND case when $X_{1} \geq_{H R} X_{2}$?

Cases III \& IV: HR order, IND case, ordered components

- Are $X_{2} \leq_{H R} X_{2: 2}$ ordered in the IND case when $X_{1} \geq{ }_{H R} X_{2}$?
- Under this condition, $X_{2} \leq_{H R} X_{1: 2}$ holds iff

$$
H(u, v)=\frac{\bar{Q}_{2: 2}(u, u v)}{\bar{Q}_{2}(u, u v)}=\frac{u+u v-\widehat{C}(u, u v)}{u v} \text { is decreasing in }(0,1)^{2} \text {. }
$$

Cases III \& IV: HR order, IND case, ordered components

- Are $X_{2} \leq_{H R} X_{2: 2}$ ordered in the IND case when $X_{1} \geq{ }_{H R} X_{2}$?
- Under this condition, $X_{2} \leq_{H R} X_{1: 2}$ holds iff

$$
H(u, v)=\frac{\bar{Q}_{2: 2}(u, u v)}{\bar{Q}_{2}(u, u v)}=\frac{u+u v-\widehat{C}(u, u v)}{u v} \text { is decreasing in }(0,1)^{2} \text {. }
$$

- If X_{1} and X_{2} are IND, then it holds iff

$$
H(u, v)=\frac{u+u v-u^{2} v}{u v}=\frac{1}{v}+1-u \text { is decreasing in }(0,1)^{2} \text {. }
$$

Cases III \& IV: HR order, IND case, ordered components

- Are $X_{2} \leq_{H R} X_{2: 2}$ ordered in the IND case when $X_{1} \geq{ }_{H R} X_{2}$?
- Under this condition, $X_{2} \leq_{H R} X_{1: 2}$ holds iff

$$
H(u, v)=\frac{\bar{Q}_{2: 2}(u, u v)}{\bar{Q}_{2}(u, u v)}=\frac{u+u v-\widehat{C}(u, u v)}{u v} \text { is decreasing in }(0,1)^{2} \text {. }
$$

- If X_{1} and X_{2} are IND, then it holds iff

$$
H(u, v)=\frac{u+u v-u^{2} v}{u v}=\frac{1}{v}+1-u \text { is decreasing in }(0,1)^{2} \text {. }
$$

- So the correct answer is YES.

Figure: Reliability and hazard rate functions of $X_{1: 2}$ (black line), X_{i} (red lines) and $X_{2: 2}$ (blue line) when X_{1} and X_{2} are IND and have exponential distributions with mean one and two.

Main references

Arnold B.C., Balakrishnan N., Nagaraja, H.N. (2008). A First Course in Order Statistics. SIAM.

Navarro J. (2022). Introduction to System Reliability Theory. Springer.

Navarro J., Durante F., Fernández-Sánchez J. (2021). Connecting copula properties with reliability properties of coherent systems. Applied Stochastic Models in Business and Industry 37, 496-512.
Navarro J., Rychlik T. and Shaked M. (2007). Are the order statistics ordered? A Survey of Recent Results. Communications in Statistics Theory and Methods 36 (7), 1273-1290.
Navarro J., Torrado N., del Águila Y. (2018). Comparisons between largest order statistics from multiple-outlier models with dependence. Methodology and Computing in Applied Probability 20, 411-433.
Shaked M., Shanthikumar J.G. (2007). Stochastic Orders. Springer, New York.

Final slide

- More references in my web page
https://webs.um.es/jorgenav/miwiki/doku.php

Final slide

- More references in my web page
https://webs.um.es/jorgenav/miwiki/doku.php
- That's all. Thank you for your attention!!

Final slide

- More references in my web page
https://webs.um.es/jorgenav/miwiki/doku.php
- That's all. Thank you for your attention!!
- Questions?

[^0]: ${ }^{1}$ Partially supported by Ministerio de Ciencia e Innovación of Spain under grant PID2019-108079GB-C22/AEI/10.13039/501100011033.

