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Abstract We introduce a cardinal function that assigns to each topological space
Y a cardinal number `Σ(Y ) that measures how the space is determined by its
compact subsets via upper semicontinuous compact valued maps defined on me-
tric spaces. By doing so we extend and take to a different dimension the study
of the so-called countably K-determined spaces (or Lindelöf Σ-spaces) and their
associates Gul’ko compacta. We study the behaviour of `Σ(·) with respect to the
usual operations for topological spaces as well as some of the standard opera-
tions within the category of Banach spaces. We study the relationship of `Σ(·)
with regard to other cardinal functions like for instance the weight w(·) of spaces,
for which we observe that although for any compact space K we always have
`Σ(C(K), τp) ≤ w(C(K), τp) there is a space Y such that w(Y) < `Σ(Y): the ex-
ample Y is a subspace of βN of cardinality 22ω

whose compact subsets are finite.
We also study some weakening of Gδ-conditions for diagonal of compact spaces
that still imply metrizability of the underlying space and that have numerous ap-
plications in functional analysis. We close the paper establishing the relationship
between `Σ(·), the Σ-degree introduced by Hödel and the class of strong Σ-spaces
studied by Nagami and others.
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1 Introduction

In this paper we exploit once again the idea, quite useful in topology and its appli-
cations to analysis, of using cardinal functions defined in the category of Hausdorff
topological spaces Y ’s to study the impact of these invariants on properties of the
subjacent spaces, properties of its compact subsets, properties of the space of con-
tinuous functions C(Y ), etc. Good examples of these cardinal functions are: the
cardinality |Y |, the weight w(Y ), the tightness t(Y ), the Lindelöf number `(Y ), the
density d(Y ), the character χ(Y ) and the network number nw(Y ). For the defini-
tion of these cardinal functions, the relationship between them and related results
we refer the reader to the references [1,2,3] and [13]. Here is a good and very
useful example, that we will use later, of how these cardinal functions interact:

Theorem 1 (Arkhangel’ski-Pytkeev, [3,27]) Let Y be a topological space and m
a cardinal number. Then, t

(
Cp(Y )

)
≤ m if, and only if, `(Y n) ≤ m for every n ∈ N.

A good deal of research along these lines has been done in past decades as well
as in recent years: many papers could be referenced as source of inspiration for the
ideas presented here but those with the strongest influence are [6,29]. Beside the
latter, the interested reader could find the book by J. Ka̧kol, W. Kúbis and M.
López Pellicer [18] and the references therein as a good source of comprehensive
information in the area this paper deals with.

Throughout this paper all cardinal numbers we shall use are infinite. A cardinal
number m is identified with the set of all ordinals less than m; in particular m is
a set of cardinality m that is also considered as a topological space endowed with
the discrete topology; if n is another cardinal number we will consider the product
space mn endowed with the product topology (with respect to the discrete topology
on each factor); also, mn will denote the cardinality of the set mn. Finally, 2A stands
for the family of all subsets of A: when a cardinal number m is considered as a set,
2m is also a set of cardinality 2m. ω denotes the smallest infinite cardinal.

The next definitions, that were introduced in [24], establish the cardinal func-
tions announced in the abstract that we thoroughly study in this paper.

Definition 2 Let Y be a topological space.

(i) The number `Σ(Y ) of K-determination of Y is defined as the smallest cardinal

number m for which there are a metric space (M,d) of weight m and a usco map

φ : M → 2Y such that Y =
⋃
{φ(x) : x ∈M}.

(ii) The number Nag(Y ) of Nagami of Y is defined as the smallest cardinal number m
for which there are a topological space X of weight m and a usco map φ : X → 2Y

such that Y =
⋃
{φ(x) : x ∈ X}.

Recall that if X and Y are topological spaces, a multi-valued map φ : X → 2Y is
said to be usco if it is compact valued and upper semicontinuous, i.e., for every
x ∈ X the set φ(x) is compact, non-empty and for every open set V ⊂ Y with
φ(x) ⊂ V there is an open neighborhood U of x such that φ(U) =

⋃
y∈U φ(y) ⊂ V .

Let us note that the class of spaces Y’s with `Σ(Y ) = ω is the class that authors
in functional analysis refer to as countably K-determined spaces, [17, Sec. 5.1]; it
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is worth mentioning that in topology, this class of spaces is referred to as Lindelöf
Σ-spaces.

Here is a brief description of the contents of the paper. We start in Sec-
tion 2 by giving a characterization of the existence of usco maps φ : X → 2Y

whose range covers Y in terms of families of closed sets in βY that determine Y .
In section 3 we study the behaviour of `Σ(·) and Nag(·) on subspaces, unions,
products, usco images, when taking generated subspaces and closures in Banach
spaces, etc. In particular we prove that for a compact space K we always have
that `Σ(C(K), τp) ≤ w(C(K), τp) and we give an example of a space Y such that
w(Y) < `Σ(Y) that also exhibits that Nag(Y) < `Σ(Y). In section 4 we offer
some applications to spaces of continuous functions and we use `Σ(·) to extend
the results of the so-called Gul’ko compact spaces (or compact spaces of type E2),
see [29], to the general setting of compact spaces K homeomorphic to pointwise
compact sets of some C(Y ), where `Σ(Y ) = m is an arbitrary cardinal number.
In section 5 we study some weakening of Gδ-conditions for diagonal of compact
spaces that still imply metrizability of the underlying space and that have nu-
merous applications in functional analysis; these results strengthen and extend
classical ones as well as a result recently published in [9]. Finally, in Section 6 we
study the relationship between the Σ-degree Σ(Y ) introduced by Hödel and the
number of Nagami, obtaining that Nag(Y ) = max{Σ(Y ), `(Y )} for any completely
regular space Y .

Our notation and terminology are standard. We take the books by Engelking,
Kelley and Köthe, [13], [19] and [21], as our references for topology, Banach and
topological vector spaces. Our topological spaces are Hausdorff and usually referred
to by letters M , X, Y , Z, . . . ; compact spaces are denoted by K, L, . . . Given a
topological space Z we denote by C(Z) the space of real continuous functions
defined on Z; τp(Z) (or just τp if no misunderstanding arises) is the topology
in C(Z) of pointwise convergence on Z; when Z = K is compact ‖ · ‖∞ denotes
the supremum norm on C(K). Given a space Z we denote by K(Z) the family
of all compact subsets of Z. The diagonal of Z is the subset of Z × Z given by
∆ := {(x, x) : x ∈ Z}. Finally, when (Y, ‖ · ‖) is a Banach space, BY denotes its
closed unit ball, Y ∗ is the (topological) dual space and Y ∗∗ is the bidual; the weak

topology of Y is denoted by w and w∗ is the weak∗ topology in the dual. If Z is a
subset of Y we denote by span{Z} the vector subspace generated by Z.

2 A basic result

Our goal in this section is to characterize, see Theorem 5, when a topological space
is the usco image of a subspace Σ of some mn.

We use the notions of filter and filter base as introduced in [13, p. 52]. The
notions of net and subnet used here can be found in [13, p. 49] and [19, p. 65]. We
say that the filter F subconverges to a subset L in a topological space Y , if given any
open subset V ⊂ Y with L ⊂ V there exists F ∈ F such that F ⊂ V . We say that
a filter base B subconverges to L when the filter F generated by B subconverges
to L. A good deal of information about subconvergent filters and their relative
compactoid filters can be found in [5,12,22] and the references therein.

Nice examples of subconvergent filters are produced by usco maps. Indeed, a
multi-valued map φ : X → 2Y is a usco map when for every x ∈ X the set φ(x) is
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non empty and compact and the filter base B = {φ(N) : N ∈ Nx} subconverges to
φ(x), where Nx is any basis of open neighborhoods of x.

Lemma 3 Let T be a topological space, Y ⊂ T a subspace and B a filter base in Y . If

B subconverges to a compact subset L of Y , then⋂
B∈B

B
Y

=
⋂
B∈B

B
T ⊂ Y.

Proof The inclusion
⋂
B∈B B

Y ⊂
⋂
B∈B B

T
is obvious. To finish we prove that⋂

B∈B B
T ⊂ L. Note that B is also a filter base in T that subconverges to L ⊂ T . If

x 6∈ L we can take Ux and Vx open sets in T with x ∈ Ux, L ⊂ Vx and Ux ∩ Vx = ∅.
Using that B subconverges to L we can choose B ∈ B such that B ⊂ Vx ⊂ T \ Ux.

Since T \ Ux is closed in Y we conclude that B
Y ⊂ T \ Ux and therefore x 6∈ BY .

This finishes the proof.

The proof of the result that follows is included for the sake of completeness.

Lemma 4 For any topological space X with m = w(X) and n = χ(X), there are a

subspace Σ ⊂ mn and a continuous onto map f : Σ → X.

Proof Let O = {Oi : i ∈ m} be a base for the topology of X. We define Σ ⊂ mn as
follows

Σ := {(ij)j∈n ∈ mn : (Oij )j∈n is a base of open neighborhoods for some x ∈ X}.

The map f : Σ → X given by f((ij)j) :=
⋂
j∈nOij satisfies the conditions that

we are looking for. The map f is well-defined and onto by the definition of Σ. We
will prove that f is continuous. Let (ij)j∈n be an element of Σ and f((ij)j∈n) = x.
It means that (Oij )j∈n is a base of open neighborhoods of x. Let U be an open
neighborhood of x. Then there exists j0 ∈ n such that x ∈ Oij0 ⊂ U . We define the
open set in Σ given by

G := {(sj)j∈n ∈ Σ : sj0 = ij0}

Then (ij)j∈n ∈ G and every element (sj)j∈n ∈ G satisfies that

f(sj) =
⋂
j∈n

Osj ⊂ Osj0 = Oij0 ⊂ U.

Hence x ∈ f(G) ⊂ U and the continuity of f is concluded.

Now we have all the elements to prove the main result of this section.

Theorem 5 Let Y be a topological space and n ≤ m two cardinal numbers. The fol-

lowing statements are equivalent:

(i) There are a topological space X with w(X) ≤ m and χ(X) ≤ n and a usco map

φ : X → 2Y such that Y =
⋃
{φ(x) : x ∈ X};

(ii) There are a topological subspace Σ ⊂ mn and a usco map Φ : Σ → 2Y such that

Y =
⋃
{Φ(α) : α ∈ Σ};

Furthermore, if Y is completely regular the above two conditions are equivalent to the

following one.
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(iii) There is a family of closed subsets A = {Ai : i ∈ m} in βY , with the property that

for every y ∈ Y there is a subset L ⊂ m with |L| ≤ n such that

y ∈
⋂
l∈L

Al ⊂ Y.

Proof (i)⇒(ii) If we we assume (i), Lemma 4 provides us with a subspace Σ ⊂ mn

and a continuous onto map f : Σ → X; the composition Φ := φ ◦ f : Σ → 2Y

satisfies (ii). The implication (ii)⇒(i) is clear.
For the implication (iii)⇒(ii) we consider the family Σ ⊂ mn defined as follows

Σ := {(ij)j∈n ∈ mn : ∅ 6=
⋂
j∈n

Aij ⊂ Y }.

Now we prove that the map Φ : Σ → 2Y given by Φ((ij)j∈n) =
⋂
j∈nAij is usco. It

is clear that Φ((ij)j∈n) is compact and non-empty in Y . To prove that Φ is upper
semicontinuous, we consider (ij)j∈n ∈ Σ and an open set in O ⊂ Y such that
Φ((ij)j∈n) =

⋂
j∈nAij ⊂ O. Let OβY ⊂ βY be an open set such that OβY ∩Y = O.

Since βY is compact and the sets (Aij )j∈n are closed in βY , we have that there
exists a finite set J0 ⊂ n such that

⋂
j∈J0

Aij ⊂ OβY . We consider the set

V = {(sj)j∈n ∈ Σ : sj = ij , j ∈ J0},

which is clearly an open neighborhood of (ij)j∈n in Σ. We claim that Φ(V ) ⊂ O.
Indeed, for every (sj)j∈n ∈ V we have that

Φ((sj)j∈n) =
⋂
j∈n

Asj ⊂
⋂
j∈J0

Asj =
⋂
j∈J0

Aij ⊂ OβY .

On the other hand Φ((sj)j∈n) ⊂ Y , so Φ((sj)j∈n) ⊂ OβY ∩ Y = O and this proves
that Φ is usco.

To finish the proof we establish that Y =
⋃
{Φ((ij)j∈n) : (ij)j∈n ∈ Σ}. Given

y ∈ Y the assumptions in (iii) ensure us that there is L ⊂ m with |L| ≤ n and
y ∈

⋂
l∈LAl ⊂ Y . Fix l0 ∈ L and g : L→ n any injective map. If we define (ij)j∈n

by ij = l if j = g(l) and ij = l0 otherwise, then y ∈ Φ((ij)j∈n) =
⋂
l∈LAl and the

proof is over.
(i)⇒(iii). We assume that (i) holds and we fix O = {Oi ⊂ X : i ∈ m} a basis of

the topology of X. We prove now that the family A = {φ(Oi)
βY

: i ∈ m} satisfies
the conditions required in (iii). Fix y ∈ Y and take x ∈ X such that y ∈ φ(x). We
observe that the there is a family Nx with |Nx| ≤ n with

Nx ⊂ {Oi ∈ O : x ∈ Oi}

and such that Nx is a basis of neighborhoods of the point x in X. Therefore φ(Nx)
is a filter base in Y that subconverges to φ(x) and so Lemma 3 applies to allow us
to conclude

y ∈ φ(x) ⊂
⋂
{φ(Oi)

βY
: Oi ∈ Nx} ⊂ Y,

that finishes the proof.



6 B. Cascales et al.

3 The number of K-determination of a space

This section is devoted to studying the behaviour of `Σ(·) and Nag(·) on sub-
spaces, unions, products, usco images, linear operations, etc. We also study the
relationship of `Σ(·) and Nag(·) with other classical cardinal functions like the
weight w(·) or density character d(·) as well as some counterexamples providing
limitation to the established relationship.

We start by noting that given a topological space Y the number Nag(Y ) as
introduced in Definition 2 is well defined. On the other hand `Σ(Y ) is also well
defined since every topological space is the continuous image of itself with the
discrete topology, that is a metric space. It is worth noticing that after Lemma 4,
for the definition of `Σ(Y ) we can use the family of first-countable spaces instead
of the family of metric spaces.

As a first consequence of Theorem 5 we have,

Proposition 6 Let Y be a completely regular topological space and m a cardinal num-

ber. The following statements are equivalent:

(i) Nag(Y ) ≤ m (resp. `Σ(Y ) ≤ m);

(ii) There is a family of closed sets {Ai : i ∈ m} in βY , such that for every y ∈ Y

there is a set J ⊂ m (resp. with |J | ≤ ω) such that y ∈
⋂
i∈J Ai ⊂ Y .

The proposition that follows summarizes some properties of `Σ(·).

Proposition 7 For topological spaces Y , (Yj)j∈J and Z the following properties hold:

(i) Nag(Y ) ≤ w(Y ) and `(Y ) ≤ Nag(Y ) ≤ `Σ(Y ) ≤ |Y |; when Y is a metric space

then `(Y ) = Nag(Y ) = `Σ(Y );

(ii) if J is a finite or countable set then

`Σ(
∏
j∈J

Yj) ≤ sup
j∈J

`Σ(Yj);

(iii) let Z ⊂ Y be a closed subspace, then `Σ(Z) ≤ `Σ(Y );

(iv) if φ : Y → 2Z is a usco map such that Z =
⋃
{φ(y) : y ∈ Y }, then `Σ(Z) ≤ `Σ(Y );

this applies in particular to continuous single-valued onto maps φ : Y → Z;

(v) let (Y, τ) be a topological space and G a topology in Y coarser than τ ; then

d(Y, τ) ≤ max{`Σ(Y, τ), nw(Y,G)};

(vi) if (Yj)j∈J is a family of subspaces of Y and |J | ≤ m then

`Σ(
⋃
j∈J

Yj) ≤ sup{m, sup
j∈J

`Σ(Yj)};

(vii) if Y be a topological vector space and Z ⊂ Y then

`Σ(span(Z)) ≤ `Σ(Z).
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Proof (i) Most of the statements are easy and their proofs are left to the reader.
We will just establish `(Y ) ≤ Nag(Y ). Let φ : X → 2Y be a usco map from some
topological space X such that Y =

⋃
{φ(x) : x ∈ X}. Let O = {Oi : i ∈ I} be

an open cover of Y . Since φ(x) is compact for each x ∈ X, there exists a finite
set of indexes ix1 , i

x
2 , . . . , i

x
nx
∈ I such that φ(x) ⊂ Oix1 ∪Oix2 ∪ · · · ∪Oixnx

. We define

now the open set O(x) =
⋃nx

j=1Oixj . Since φ is a usco map, there exists an open

neighborhood U(x) of x such that φ(U(x)) ⊂ O(x). Since, `(X) ≤ w(X), see [13,
Theorem 3.8.12], and U = {U(x) : x ∈ X} is an open cover of X, there exists a
subset S ⊂ X with |S| ≤ w(X) such that X =

⋃
x∈S U(x). Hence, we have

Y =
⋃
x∈S

φ(U(x)) ⊂
⋃
x∈S

O(x) =
⋃
x∈S

nx⋃
j=1

Oixj .

Thus we have `(Y ) ≤ w(X) and consequently, `(Y ) ≤ Nag(Y ).
(ii) For each j ∈ J there exists a metric space Mj with w(Mj) = `Σ(Yj) and

a usco map φj : Mj → 2Yj such that Yj =
⋃
{φj(x) : x ∈ Mj}. The metric space

M =
∏
j∈J Xj with the product topology satisfies that w(M) ≤ supj∈J w(Mj) =

supj∈J `Σ(Yj) and the map φ : M → 2
∏

j∈J Yj defined by φ(x) :=
∏
j∈J φj(xj),

x = (xj)j∈J , is a usco map, see [13, Theorem 3.2.10], satisfying
∏
j∈J Yj =

⋃
{φ(x) :

x ∈M}. Hence `Σ(
∏
j∈J Yj) ≤ supj∈J `Σ(Yj).

(iii) and (iv) straightforwardly follow from the definitions.
(v) Let M be a metric space with w(M) = `Σ(Y, τ) and φ : M → 2Y a τ -

usco map such that Y =
⋃
{φ(x) : x ∈ M}. Let us define T := M × (Y,G). An

appeal to [13, Exercise 3.1.J] ensures us that nw(T ) ≤ max{nw(M), nw(Y,G)}.
Since nw(M) ≤ w(M) we have that

nw(T ) ≤ max{`Σ(Y, τ), nw(Y,G)}. (1)

Consider the subspace of T defined by W := {(x, y) ∈ T : y ∈ φ(x)}. The inequality
nw(W ) ≤ nw(T ) and (1) imply

nw(W ) ≤ max{`Σ(Y, τ), nw(Y,G)}. (2)

Let p : W → (Y,G) be the continuous projection map given by p(x, y) := y. We
claim that p : W → (Y, τ) is also continuous. Observe that if (xj , yj)j∈D is a
convergent net to (x, y) in W then (yj)j∈D G-converges to y; now we show that
(yj)j∈D actually τ -converges to y. Indeed, since the map φ is τ -usco, every subnet
of (yj)j∈D has a τ -cluster point in φ(x); all these cluster points are the same,
namely y, because (yj)j∈D G-converges to y. Therefore (yj)j∈D τ -converges to y

and our claim is proved. Now, since p : W → (Y, τ) is onto and continuous we have
d(Y, τ) ≤ d(W ) ≤ nw(W ). Finally, the latter and inequality (2) imply

d(Y, τ) ≤ max{`Σ(Y, τ), nw(Y,G)},

and (v) is proved.
Properties (vi) and (vii) are easy to check.

Remark 8 We note that properties (ii)-(vii) in Proposition 7 hold for Nag(·) with

similar proofs to those for `Σ(·). We stress that (ii) can be strengthen as follows:
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(ii)’

Nag
(∏
j∈J

Yj

)
≤ max{|J |, sup

j∈J
Nag(Yj)}.

Take notice that all inequalities in property (i) in Proposition 7 can be strict. It
is easy to provide an example of a space Y with Nag(Y ) < w(Y ): if X is a reflexive
Banach space of infinite dimension then the space Y = (X,w) satisfies Nag(Y ) =
`Σ(Y ) = ω < w(Y ). If Y is the Songerfrey line then ω = `(Y ) < Nag(Y ) because
otherwise ω = `(Y ) = Nag(Y ) and therefore, `(Y 2) ≤ Nag(Y 2) = Nag(Y ) = ω

that cannot be because Y 2 is not Lindelöf, see [13, Example 3.8.15]. To have the
inequality `Σ(Y ) < |Y | suffices to take Y = R.

To provide an example of space Y with Nag(Y ) < `Σ(Y ) is a bit more deli-
cate. Nonetheless, we shall indeed provide a sharp example Y for which we have
Nag(Y) ≤ w(Y) < `Σ(Y). The following properties of βN are used in the con-
structions that follow: w(βN) = 2ω and |βN| = 22ω

, [13, Corollary 3.6.12]. Every
infinite closed set F ⊂ βN contains a subspace homeomorphic to βN; in particular
w(F ) = 2ω and |F | = 22ω

, [13, Theorem 3.6.14]. If E and O are subsets of N such
that E ∩O = ∅, then E ∩O = ∅ being the closures taken in βN.

The wording of example 9 below is due to J. Pelant who sent us these details in
a private communication long ago. We refer the reader to the paper by V. Tkachuk,
[30], where a stronger result can be found.

Example 9 There is a subspace Y of βN for which |Y| = 22ω

and its compact subsets

are finite.

Proof (Construction) We prove first that βN contains 22ω

copies of itself. Let us
write

C := {K ⊂ βN : K is homeomorphic to βN},

and let us convince ourselves that |C| ≤ 22ω

and |C| ≥ 22ω

. To prove the first
inequality we simply observe that every K ∈ C is separable and consequently
K = D(K) for some countable subset D(K) ⊂ βN; hence C has at most the same

cardinality than the family of the countable subsets of βN, that is |C| ≤
(

22ω
)ω

=

22ω

. The other way around. We prove that C has at least 22ω

elements. Indeed, if
E ⊂ N stands for the set of even numbers and O ⊂ N for the set of odd numbers,
then their closures E and O in βN are disjoint copies of βN. Hence |O| = 22ω

and
thus the family

{E ∪ {o} : o ∈ O}

is made up of 22ω

different copies of βN.
The construction of Y mimics the construction of Bernstein’s sets in the real

line, see [11, Claim 8.8.1 in Ch. VI]. We start by writing down C = {Kα : 0 ≤ α <
22ω

}. Since |Kα| = 22ω

for every α < 22ω

, by transfinite induction we can choose
different points xα and yα in Kα \ ({xγ : 0 ≤ γ < α} ∪ {yγ : 0 ≤ γ < α}) . We claim
that both subspaces A := {xγ : 0 ≤ γ < 22ω

} and B := {yγ : 0 ≤ γ < 22ω

} are
suitable to be Y. Indeed, observe that |A| = |B| = 22ω

and that A ∩ B = ∅. Take
Y := A and let us prove that its compact subsets are finite. If we assume that
there is an infinite compact set K ⊂ Y, then K contains a copy of βN, meaning
that there is 0 ≤ α < 22ω

such that Kα ⊂ K ⊂ A = Y. This implies that xα, yα ∈ A
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and we reach a contradiction with the fact that yα ∈ B and A ∩B = ∅. The proof
is over.

Proposition 10 The space Y constructed in Example 9 satisfies

Nag(Y) ≤ w(Y) < `Σ(Y).

Proof We only have to prove that w(Y) < `Σ(Y). To do that, we begin by observing
that if (M,d) is a metric space of weight at most 2ω then |M | ≤ 2ω, see [16, Theorem
4.1]. On the other hand the inequality w(βN) = 2ω implies that w(Y) ≤ 2ω. We
prove now that the inequality `Σ(Y) ≤ w(Y) cannot hold. Indeed, if this were the
case there would be a metric space (M,d) with weight at most 2ω and a usco map
φ : M → 2Y such that Y =

⋃
{φ(x) : x ∈ M}. Bearing in mind that |M | ≤ 2ω

and that each φ(x) is finite we obtain that |Y| ≤ 2ω that contradicts the fact that
|Y| = 22ω

and the proof is finished.

Observe that in [4, Theorem 15] is produced and an example of the kind Y =
(C(K), τp) with Nag(Y ) < `Σ(Y ); according to inequality (4) in Proposition 12
below, this example satisfies Nag(Y ) < `Σ(Y ) ≤ w(Y ) as opposed to Nag(Y) ≤
w(Y) < `Σ(Y) as established in Proposition 10.

Next lemma is needed several times in the paper. The rest of the section is
devoted to some preliminary study of `Σ(·) in C(K) and Banach spaces that will
be useful in section 4.

Lemma 11 Let τ1 and τ2 be two comparable topologies on Y with the same compact

sets then

`Σ(Y, τ1) = `Σ(Y, τ2).

Proof Assume that τ2 is finer than τ1. On one hand `Σ(Y, τ1) ≤ `Σ(Y, τ2) after
property (iv) in Proposition 7. On the other hand, if M is a metric space with
w(M) = `Σ(Y, τ1) and φ : M → 2Y a τ1-usco map with Y =

⋃
{φ(x) : x ∈M}, then

by [5, Proposition 2.3] φ : M → 2Y is τ2-usco, and therefore `Σ(Y, τ2) ≤ `Σ(Y, τ1).
The proof is over.

Proposition 12 Let K be a compact space and Y ⊂ C(K) a linear subspace then

`Σ(Y, τp) = `Σ(Y,w); (3)

In particular

`Σ(C(K), τp) = `Σ(C(K),w) ≤ w(C(K), ‖ · ‖∞) =

= d(C(K),w) = d(C(K), τp) ≤ w(C(K), τp).
(4)

Proof To prove equality (3) we will prove that

`Σ(Y ∩BC(K), τp)
(a)
= `Σ(Y ∩BC(K),w)

and

`Σ(Y ∩BC(K), τp)
(b)
= `Σ(Y, τp), `Σ(Y ∩BC(K),w)

(c)
= `Σ(Y,w).

Equality (a) follows from Lemma 11 bearing in mind that (Y ∩ BC(K), τp) and
(Y ∩BC(K),w) have the same compact subsets [14, Theorem 4.2] and τp is coarser
than w. We prove now equality (b). Note that Y ∩BC(K) is closed in (Y, τp), that
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for any n ∈ N the spaces (Y ∩BC(K), τp) and (n(Y ∩BC(K)), τp) are homeomorphic
and that ⋃

n∈N
n(Y ∩BC(K)) =

⋃
n∈N

Y ∩ nBC(K) = Y.

All the above and properties (iii), (iv) and (vi) in Proposition 7 allow us to conclude
that

`Σ(Y ∩BC(K), τp) ≤ `Σ((Y, τp)) ≤ sup
n∈N

`Σ(n(Y ∩BC(K)), τp) = `Σ(Y ∩BC(K), τp),

and therefore equality (b) is proved. Likewise, equality (c) can be proved and
consequently (3) follows from (a) + (b) + (c).

To finish, note that `Σ(C(K), τp) = `Σ(C(K),w) in (4) follows from (3) with
Y = C(K). Since the identity map i : (C(K), ‖ · ‖∞)→ (C(K),w) is continuous we
have that `Σ(C(K),w) ≤ w(C(K), ‖ · ‖∞). The rest of statements in (4) are well
known. The proof is over.

Proposition 13 Let Y be a Banach space and let Z ⊂ Y be a dense subspace. Then

`Σ(Y,w) ≤ `Σ(Z,w).

Proof Here we consider Y canonically embedded in Y ∗∗. If this is so, note that the
weak topology w on Y is the topology induced by the weak∗ topology w∗ of Y ∗∗.

Let (M,d) be a metric space with w(M) = `Σ(Z,w) and let ϕ : M → 2Z be a
w-usco map such that Z =

⋃
{ϕ(x) : x ∈M}. For every n ∈ N we define the usco

map extension of ϕ with values in (Y ∗∗,w∗) by ϕn(x) := ϕ(x)+2−nBY ∗∗ for every
x ∈M . Now, for any given k ∈ N let us define the map

φk(x1, x2, · · · , xk) := ϕ1(x1) ∩ ϕ2(x2) ∩ · · · ∩ ϕk(xk)

for (x1, x2, · · · , xk) ∈ Mk, with values in (Y ∗∗,w∗) too. With domain the sub-
space Mk := {x ∈ Mk : φk(x) 6= ∅} the map φk is usco. Indeed, take a se-
quence (xn1 , x

n
2 , · · · , xnk ) ∈ Mk that converges to (x1, x2, · · · , xk) together with

yn ∈ φk(xn1 , x
n
2 , · · · , xnk ), for n = 1, 2, . . . Since each ϕi is w∗-upper semicontin-

uous there is a w∗-cluster point y of the sequence (yn)n with

y ∈ ϕ1(x1) ∩ · · · ∩ ϕk(xk) = φk(x1, x2, · · · , xk).

To finish the proof we consider

φ((xn)n) :=
∞⋂
n=1

ϕn(xn)

defined on M := {(xn)n ∈MN : φ((xn)) 6= ∅}. Observe that we have

φ((xn)n) ⊂
∞⋂
n=1

{
Z +

1

2n
BY ∗∗

}
= Z

‖·‖
= Y

and that φ is compact valued in (Y,w). Since Z is dense in Y and ϕ(M) = Z we
also have that φ(M) = Y . We claim that φ is w-upper semicontinuous. Indeed, let
us consider (xn)n ∈ M and a weak open set W in Y with φ((xn)n) ⊂ W . Take a
w∗-open subset V of Y ∗∗ such that W = V ∩ Y . Since

⋂∞
n=1 ϕn(xn) is non-empty
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and w-compact, there is an integer m such that we have φm(x1, · · · , xm) ⊂ V .
The upper semicontinuity of φm provides us with an open neighborhood U of
(x1, · · · , xm) ∈ Mm such that φm(U ∩ Mm) ⊂ V . Then we have the inclusion

φ
(

(U ×M × · · · ×M · · · ) ∩M
)
⊂ V ∩ Y = W , that proves that φ is w-usco.

Summing up, `Σ(Y,w) ≤ w(M) ≤ w(M) = `Σ(Z,w). The proof is over.

Proposition 14 Let K be a compact space and let Z be a subset of C(K). If Z sepa-

rates points of K, then

`Σ(C(K), τp) ≤ `Σ(Z, τp).

Proof Let A be the subalgebra in C(K) generated by Z and the constant functions
span{1}. We prove first that `Σ(A, τp) ≤ `Σ(Z, τp). Observe that if we define
Y := Z ∪ {span{1}} and for every n ∈ N

Zn := {f1 · f2 · . . . · fn : fi ∈ Y, i = 1, . . . , n}

then A = span
(⋃∞

n=1 Zn

)
. Being for every n ∈ N the multiplication

(Y, τp)
n −→ (Zn, τp)

(f1, f2, . . . , fn) −→ f1 · f2 · . . . · fn,

continuous and onto, we can apply properties (ii), (iv), (vi) and (vii) of Proposi-
tion 7 to conclude that

`Σ(A, τp) ≤ `Σ(
⋃
n∈N

Zn, τp) ≤ sup
n
`Σ(Zn, τp) ≤ sup

n
`Σ
(
(Y, τp)

n) =

= `Σ(Y, τp) ≤ `Σ(Z, τp).

Since Z separates the points of K, the Stone-Weierstrass’s theorem, see [19, p. 244],
implies that the subalgebra A is dense in (C(K), ‖·‖∞) and Proposition 13 ensures
us that `Σ(C(K),w) ≤ `Σ(A,w). On the other hand equality (3) in Proposition 12
allows us to conclude that `Σ(C(K), τp) = `Σ(C(K),w) and `Σ(A,w) = `Σ(A, τp).
Combining all the above, we finally conclude that `Σ(C(K), τp) ≤ `Σ(Z, τp) and
the proof is over.

4 Applications to C(Y ) spaces

In this section we take advantage of our previous study for `Σ(·) to obtain some
results in Cp-theory. Next result is an extension of [29, Theorem 3.4].

Proposition 15 For a compact space K and a cardinal number m, the following state-

ments are equivalent:

(i) there is a set Z ⊂ C(K) that separates the points of K and such that `Σ(Z, τp) ≤ m;

(ii) `Σ(C(K), τp) ≤ m;

(iii) there is a topological space Y with `Σ(Y ) ≤ m such that K is homeomorphic to a

pointwise compact subset of C(Y ).
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Proof The implication (i)⇒(ii) follows from Proposition 14. For the implication
(ii)⇒(iii) it suffices to take Y = (C(K), τp). Finally, to prove the implication
(iii)⇒(i) we proceed as follows: assuming that K ⊂ C(Y ) we define the contin-
uous map j : Y → (C(K), τp) given by j(y)(f) := f(y), for y ∈ Y and f ∈ K; note
that j(Y ) separates points of K and property (iv) of Proposition 7 tells us that
`Σ(j(Y ), τp) ≤ `Σ(Y ); hence (i) holds for Z := j(Y ) and the proof is over.

Proposition 16 For any topological space Y the following inequalities hold

t(C(Y ), τp) ≤ Nag(Y ) ≤ `Σ(Y ).

Proof Using properties (i) and (ii) of Proposition 7 we have that

sup
n∈N

`(Y n) ≤ sup
n∈N

Nag(Y n) = Nag(Y )

Arkhangel’skĭıs Theorem [3, Theorem II.1.1, p. 45] implies that t(C(Y ), τp) ≤
Nag(Y ) and the proof is over.

Given a cardinal number m, a topological space Y is called strongly m-monolithic

if for every set A ⊂ Y with |A| ≤ m we have w(A) ≤ m, see [3].

Proposition 17 If Y is any topological space, then every compact subset K of (C(Y ), τp)
is strongly `Σ(Y )-monolithic.

Proof Take A a subset of K with ω ≤ |A| ≤ `Σ(Y ). Define δ : Y → (C(A), τp(A))
by δ(y)(h) := h(y) for y ∈ Y and h ∈ A. The map δ is well-defined and continuous.
Since δ(Y ) separates the points of A, Proposition 14 implies that `Σ(C(A), τp(A)) ≤
`Σ(δ(Y ), τp(A)). On the other hand, since δ is continuous we can use property (iv)
of Proposition 7 to deduce that `Σ(δ(Y ), τp(A)) ≤ `Σ(Y ). Combining the two
inequalities established as of now we obtain that

`Σ(C(A), τp(A)) ≤ `Σ(Y ). (5)

Note also that by the very definitions involved we have the inequalities

nw(C(A), τp(A)) ≤ w(C(A), τp(A)) ≤ |A| ≤ `Σ(Y ). (6)

Combining the inequalities (5) and (6) and bearing in mind property (v) of Propo-
sition 7 we conclude that d(C(A), τp(A)) ≤ `Σ(Y ).Now since w(A) = d(C(A), τp(A)),
[3, Theorem I.1.5], we conclude that w(A) ≤ `Σ(Y ) and the proof is over.

A topological space Y is called angelic (Fremlin) if every relatively countably
compact subset A of Y is relatively compact and its closure A is made up of the
limits of sequences from A; if moreover the separable compact subsets of Y are
metrizable then Y is said to be superangelic. All Banach spaces with their weak
topologies are superangelic spaces. A good classical reference for angelic spaces
is [14]. A good deal of results about angelic spaces can be found in [6,7,26] and
the recent book [18].

If we specialize the previous results in this section for countable cardinals
we obtain another proof of the superangelic character of (C(Y ), τp) when Y is a
countably K-determined space, result that was originally established in [26] with
a very much different approach and techniques.
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Recall that a topological space Y is said to be a k-space if for any set A ⊂ Y ,
A is closed if, and only if, the intersection of A with any compact subspace K of
Z is closed in K. If (Y, τ) is a topological space then the family τk of subsets of Y
with open intersections with all compact subsets of (Y, τ), is a topology on Y with
properties:

(a) τ is coarser than τk;
(b) τ and τk have the same compact sets;
(c) (Y, τk) is a k-space;
(d) τ = τk if, and only if, (Y, τ) is a k-space.

Corollary 18 ([26]) If Y is countably K-determined then (C(Y ), τp) is superangelic.

Proof Being Y countably K-determined means that `Σ(Y ) = ω. Lemma 11 implies
that `Σ(Y, τk) = ω too. Note that (C(Y, τ), τp) is a subspace of (C(Y, τk), τp), and
then angelic lemma, [14, p. 28], ensures us that to prove that (C(Y, τ), τp) is angelic
(superangelic) it is enough to prove that (C(Y, τk), τp) is angelic (superangelic).
Therefore for the rest of the proof we can and do assume that (Y, τ) = (Y, τk) is a
k-space with `Σ(Y ) = ω. Since Y is a k-space we can use [14, Ex. 1.21 b)] to obtain
that every relatively countably compact set A ⊂ (C(Y ), τp) is relatively compact.
On the other hand separable compact subsets of (C(Y ), τp) are metrizable after
Proposition 17.

To finally establish that (C(Y ), τp) is superangelic we prove that if A is a
relatively compact subset of (C(Y ), τp) and f ∈ A then there is a sequence in A

that converges to f . Indeed, since f ∈ A and t(C(Y ), τp) ≤ ω after Proposition 16,
there exists a countable set D ⊂ A such that f ∈ D. Proposition 17 comes into
play again to imply that D is τp-metrizable. Hence, there exists a sequence (fn)n
in D ⊂ A which converges to f in the pointwise convergence topology and the
proof finishes.

5 Compact spaces with Gδ-diagonal and their relatives

Following the terminology of [9,31], given topological spaces M and Y , an M-
ordered compact cover of a space Y is a family F = {FK : K ∈ K(M)} ⊂ K(Y )
such that ⋃

F = Y and K ⊂ L implies FK ⊂ FL for any K,L ∈ K(M).

Y is said to be strongly dominated by the space M if there exists an M-ordered
compact cover F of the space Y such that the family F swallows all compact
subsets of Y in the sense that for any compact C ⊂ Y there is F ∈ F such that
C ⊂ F . Pioneer results about strongly dominated spaces by second countable
spaces are the following:

Theorem 19 (Christensen, [10], Th. 3.3 ) A second countable topological space is

strongly NN-dominated if and only if it is completely metrizable.

Theorem 20 (Cascales-Orihuela, [6], Th. 1) If K is a compact space such that

(K ×K) \∆ is strongly NN-dominated then K is metrizable.
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Theorem 20 has had a good number of applications over the years and the
techniques developed there inspired the work by others: a good account of appli-
cations of this result and its techniques can be found in [18]. Recently, in [9] it
have been proved that the hypothesis strongly NN-dominated in Theorem 20 can
be weakened to strongly dominated by some second countable space. Our aim here
is to extend these results about metrizability of compact sets as well as to offer a
newer more general and clarifying approach to them.

Theorem 21 Let K be a compact space and m a cardinal number. The following state-

ments are equivalent:

(i) w(K) ≤ m;

(ii) There exists a metric space M with w(M) ≤ m and a family O = {OL : L ∈ K(M)}
of open sets in K×K that is basis of the neighborhoods of ∆ such that OL1

⊂ OL2

whenever L2 ⊂ L1 in K(M);

(iii) (K ×K) \∆ is strongly dominated by a metric M with w(M) ≤ m.

Proof The implication (i)⇒(ii) goes as follows. Assuming that (i) holds, we have
that d(C(K), ‖ · ‖∞) = w(K) ≤ m, see [3, Theorem I.1.5]. Take a family {fi : i ∈
A} ⊂ C(K) with |A| ≤ m that is ‖ · ‖∞-dense. We define M:= A endowed with the
discrete topology and for every compact (hence finite) set L ⊂M we consider

OL :=
⋂
i∈L

{
(x, y) ∈ K ×K : |fi(x)− fi(y)| <

1

|L|

}
Each OL is open in K×K and it is easily proved that OL1

⊂ OL2
whenever L2 ⊂ L1

in K(M). On the other hand, since

OL ⊂
⋂
i∈L

{
(x, y) ∈ K ×K : |fi(x)− fi(y)| ≤

1

|L|

}
the density of {fi : i ∈ A} in (C(K), ‖ · ‖∞) imply that ∆ =

⋂
{OL : L ∈ K(M)};

this last equality and a standard compactness argument allow us to conclude that
{OL : L ∈ K(M)} is a basis for the open neighborhoods of ∆ in K × K, and
therefore (ii) is satisfied.

The equivalence (ii)⇔(iii) is easily established by taking complements and
defining FL := (K × K) \ OL when the OL’s are given and OL := (K × K) \ FL
when the FL’s are given.

To finish we prove that (ii)⇒(i). Let us assume that (ii) holds and given m ∈ N
and a sequence (L1, L2, . . . ) in K(M) we define

ϕ(m,L1, L2, . . . ) :=
⋂
n∈N
{f ∈ mBC(K) : |f(x)− f(y)| ≤ 1

n
, for all (x, y) ∈ OLn

}.

(7)
Note that each ϕ(m,L1, L2, . . . ) is ‖ · ‖∞-bounded, closed and equicontinuous as
a family of functions defined on K. Therefore, Ascoli’s theorem, see [19, p. 234],
implies that ϕ(m,L1, L2, . . . ) is compact in (C(K), ‖ · ‖∞). If (K(M), h) is the
lattice of compact subsets of M with the Hausdorff distance, then w(K(M), h) =
w(M), [28, Proposition 2.4.14]. Therefore the product M ′ := N×

∏∞
n=1(K(M), h)

of countably many copies of (K(M), h) and N is still a metric space with w(M ′) =
w(M). Note that the formula (7) defines a multi-map ϕ : M ′ → K(C(K), ‖ · ‖∞).
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Being O a basis of neighborhoods of ∆ implies that C(K) =
⋃
{ϕ(x) : x ∈M ′}. On

the other hand ϕ has the following property:

[P] If a sequence (xk)k converges in M ′, then
⋃
{ϕ(xk) : k ∈ N} is relatively

compact in (C(K), ‖ · ‖∞).

Indeed, if xk := (mk, L
k
1 , L

k
2 , . . . ) converges when k → ∞ to x = (m,L1, L2, . . . )

in M ′ then there is l ∈ N with mk ≤ l for every k ∈ N and Sn :=
⋃
k L

k
n ∪ Ln is

compact in M for every n ∈ N after, [23, Lemma 1.11.2]. The decreasing order in
O easily implies that ⋃

{ϕ(xk) : k ∈ N} ⊂ ϕ(l, S1, S2, . . . ),

and therefore property [P] is proved. An appeal to [5, Theorem 3.1] (see also [8,
Corollary 3.1]) provides us with an usco map ψ : M ′ → K(C(K), ‖ · ‖∞) such that
ϕ(x) ⊂ ψ(x) for every x ∈ M ′. Thus C(K) =

⋃
{ϕ(x) : x ∈ M ′} =

⋃
{φ(x) : x ∈

M ′}. Summarizing, we have proved that `Σ(C(K), ‖ · ‖∞) ≤ w(M ′) = m. Since
(C(K), ‖ · ‖∞) is metric we have that m ≥ `Σ(C(K), ‖ · ‖∞) = `(C(K), ‖ · ‖∞) =
d(C(K), ‖ · ‖∞) = w(K) and the proof is over.

Specializing the above result for m = ω we obtain:

Corollary 22 For a compact space K the following statements are equivalent:

(i) K is metrizable;

(ii) ∆ is Gδ in K ×K;

(iii) ∆ =
⋂∞
n=1Gn where {Gn : n ∈ N} is basis of open neighborhoods of ∆;

(iv) (K ×K) \∆ =
⋃∞
n=1 Fn, with {Fn : n ∈ N} increasing family of compact sets that

swallows all the compact subsets in (K ×K) \∆;

(v) (K × K) \ ∆ =
⋃
α∈NN Fα, with {Fα : α ∈ N} increasing family of compact sets

(i.e. Fα ⊂ Fβ whenever α ≤ β in the coordinatewise order of NN) that swallows all

the compact subsets in (K ×K) \∆;

(vi) (K ×K) \∆ is strongly dominated by a Polish space;

(vii) (K ×K) \∆ is strongly dominated by a separable metric space;

(viii) (K ×K) \∆ is Lindelöf.

Proof The equivalence (i)⇔(ii) is a classical result due to Šněıder that can be
found in [13, Exercise 4.2.B]. The implication (i)⇔(viii) is also classical: (i)⇒(viii)
is obvious and (viii)⇒(ii) is a nice exercise. The implication (ii)⇒(iii) is proved
by showing that if ∆ is a Gδ set then there is a decreasing sequence {Gn : n ∈ N}
of open neighborhoods of ∆ with the property ∆ =

⋂∞
n=1Gn: this last equality

implies that {Gn : n ∈ N} is basis of open neighborhoods of ∆. For the implication
(iii)⇒(iv) we define Fn := (K ×K) \Gn. For the proof of (iv)⇒(v) if {Fn : n ∈ N}
are given we simply take {Fα : α ∈ N} defined by Fα := Fπ1(α) where π1 : NN → N
is the projection in the first coordinate. Similar arguments work for (v)⇒(vi).
Assume that (v) holds. Given a compact set L ⊂ NN we define α(L) ∈ NN by the
formula

α(L) := (supπ1(L), supπ2(L), . . . , supπn(L), . . . )

and FL := Fα(L), where πn : NN → N is the nth-projection, for every n ∈ N. The

family {FL : L ∈ K(NN)} strongly dominates (K ×K) \∆ and therefore (vi) holds.
The implication (vi)⇒(vii) is obvious and the implication (vii)⇒(i) follows from
Theorem 21. The proof is over.
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Let us mention that Theorem 20 was originally stated with the hypothesis (v)
in the Corollary above instead of the hypothesis of NN-domination. We refer to
[9] for more information about spaces (strongly) dominated by Polish and second
countable spaces.

6 The number of Nagami and the Σ-degree of a topological space

In this last section we study the relationship between Nag(·) and the Σ-degree
of a topological space that was introduced by Hödel [15] influenced by Nagami’s
ideas, [25].

To define the Σ-degree of a topological space we have to fix some notation first.
If Y is a set, F is a cover of Y and p belongs to Y we write

C(p,F) :=
⋂
{F ∈ F : p ∈ F}.

Observe that when Y is a topological space and F is a locally finite cover, then
for every p ∈ Y the family {F ∈ F : p ∈ F} is finite.

Definition 23 Let Y be a regular topological space.

(i) A strong Σ-net for a topological space Y is a collection of locally finite covers

{Fα : α ∈ A} whose elements are closed subsets in Y verifying the following

conditions:

(a) C(p) =
⋂
{C(p,Fα) : α ∈ A} is compact, for every p ∈ Y ;

(b) {C(p,Fα) : α ∈ A} is a basis for C(p) in the sense that for each open set U

such that C(p) ⊂ U , there exists α ∈ A satisfying C(p,Fα) ⊂ U .

(ii) The Σ-degree of Y , Σ(Y ), is the smallest cardinal number m such that Y has a

strong Σ-net {Fα : α ∈ A} with |A| = m.

(iii) Y is said to be a strong Σ-space (see [25]) when Σ(Y ) = ω.

Next observation will be used in the theorem that follows. A short proof for
the sake of completeness is included.

Lemma 24 If Y is a topological space and F a locally finite cover of Y , then |F| ≤
`(Y ).

Proof For every y ∈ Y , let Uy be an open neighborhood of y which meets finitely
many elements of F . Then there exists Z ⊂ Y such that |Z| = `(Y ) verifying
Y =

⋃
{Uy : y ∈ Z}. Clearly, we have that

F =
⋃
y∈Z
{F ∈ F : F ∩ Uy 6= ∅},

and each {F ∈ F : F ∩ Uy 6= ∅} is finite. Thus, we conclude that |F| ≤ |Z| = `(Y ).

Theorem 25 Let Y be a completely regular topological space, then

Nag(Y ) = max{Σ(Y ), `(Y )}.
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Proof First, we will prove that Nag(Y ) ≥ Σ(Y ). Let F = {Aj : j ∈ J} be a family
of closed sets in βY with |J | = Nag(Y ) as described in Proposition 6. Let L be the
family of finite subsets of J with the property that for each F ∈ L we have that

AF :=
⋂
j∈F

Aj ∩ Y 6= ∅.

For every F ∈ L we define the locally finite cover FF := {AF , Y }. The family of
covers {FF : F ∈ L} is a strong Σ-net in Y . Indeed, for each p ∈ Y we have that

C(p) =
⋂
{AF : p ∈ AF , F ∈ L} =

⋂
{Aj : j ∈ J, p ∈ Aj} ⊂ Y.

Thus, C(p) is compact. On the other hand, if we take an open set O in Y such
that C(p) ⊂ O we can find an open set OβY of βY such that OβY ∩ Y ⊂ O. Now
because of the compactness of βY there exists F ∈ L such that⋂

{Aj : j ∈ F, p ∈ Aj} ⊂ OβY .

Thus, AF ⊂ OβY ∩ Y and the proof that {FF : F ∈ L} is a strong Σ-net in Y is
finished. Bearing Proposition 7 we have Nag(Y ) ≥ `(Y ), and therefore we conclude
that

Nag(Y ) ≥ max{Σ(Y ), `(Y )}.

We will prove now the converse inequality. Assume that {Fα : α ∈ A} is a strong
Σ-net in Y . After Lemma 24, we have that |Fα| ≤ `(Y ) for every α ∈ A. Consider
the family T :=

⋃
α∈A Fα and let F be the family of finite non empty intersections

of members of T . It is clear that |F| ≤ sup{|A|, `(Y )}. Now we prove that the

family {FβY : F ∈ F} satisfies property (ii) in Proposition 6. Fix p ∈ Y and
consider B(p) = {F ∈ F : p ∈ F}. Note that B(p) is a filter base in Y . On the other
hand B(p) subconverges to the non empty compact set

⋂
α∈A C(p,Fα) = C(p) ⊂ Y .

Indeed, by property (b) in the definition of strong Σ-net above, if U ⊂ Y is open
and C(p) ⊂ U then there is α ∈ A such that

C(p,Fα) =
⋂
{F ∈ Fα : p ∈ F} ⊂ U

Observe that C(p,Fα) ∈ B because being Fα is locally finite then C(p,Fα) is
a finite intersection of members of finite T containing p. This proves that B(p)
subconverges to the compact C(p) ⊂ Y . An appeal to Lemma 3 ensures us that

p ∈
⋂
{FβY : F ∈ B(p)} =

⋂
{F : F ∈ B(p)} = C(p) ⊂ Y.

Hence the family {FβY : F ∈ F} satisfies property (ii) in Proposition 6 and since
|F| ≤ sup{|A|, `(Y )}, where |A| is the cardinal of an arbitrary strong Σ-net of Y
we obtain Nag(Y ) ≤ max{Σ(Y ), `(Y )} and the proof is finished.

Proposition 26 (Proposition 4.1, [15]) Every regular topological space Y has a

strong Σ-net {Fα : α ∈ A} with |A| ≤ nw(Y ). In particular, Σ(Y ) ≤ nw(Y ).

Proof Let N = {Nα : α ∈ A} a network for Y with |A| = nw(Y ). For every α ∈ A
we take Fα = {Nα, Y }. Then {Fα : α ∈ A} is a strong Σ-net.



18 B. Cascales et al.

Corollary 27 Let Y be a completely regular topological space, then Nag(Y ) ≤ nw(Y ).

Proof After [13, Theorem 3.8.12], we have `(Y ) ≤ nw(Y ). On the other hand, the
previous proposition tell us that Σ(Y ) ≤ nw(Y ). Thus, the inequality Nag(Y ) ≤
nw(Y ) straightforwardly follows now from Theorem 25.

See [20] for a result related to the previous corollary.

Corollary 28 Let Y be a completely regular topological space. Then, Y is Lindelöf

(i.e. `(Y ) = ω) and Σ-space (i.e. Σ(Y ) = ω) if, and only if, Nag(Y ) = `Σ(Y ) = ω.
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No. 51)

11. Deville, R., Godefroy, G., Zizler, V.: Smoothness and renormings in Banach spaces, Pitman
Monographs and Surveys in Pure and Applied Mathematics, vol. 64. Longman Scientific
& Technical, Harlow (1993)

12. Drewnowski, L., Labuda, I.: On minimal upper semicontinuous compact-valued maps.
Rocky Mountain J. Math. 20(3), 737–752 (1990)

13. Engelking, R.: General topology. PWN—Polish Scientific Publishers, Warsaw (1977).
Translated from the Polish by the author, Monografie Matematyczne, Tom 60. [Mathe-
matical Monographs, Vol. 60]

14. Floret, K.: Weakly compact sets, Lecture Notes in Mathematics, vol. 801. Springer, Berlin
(1980). Lectures held at S.U.N.Y., Buffalo, in Spring 1978

15. Hödel, R.: On a theorem of Arhangel’skii concerning Lindelöf p-spaces. Can. J. Math. 27,
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