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Abstract A survey about “Topology as a tool in functional analysis” would
be such a giant enterprise that we have, naturally, chosen to give here “Our
biased views of topology as a tool in functional analysis”. The consequence of
this is that a big portion of this long paper deals with topics that we have been
actively working on during the past years. These topics range from metriz-
ability of compact spaces (and their consequences in functional analysis),
networks in topological spaces (and their consequences in renorming theory
of Banach spaces), distances to spaces of functions (and their applications
to the study of pointwise and weak compactness), James’ weak compactness
theorem (and their applications to variational problems and risk measures).
Some of the results collected here are a few years old while many others are
brand new. A few of them are first published here and most of them have
been often used in different areas since their publication. The survey is com-
pleted with a section devoted to references to some of what we consider the
last major achievements in the area in recent years.

1 Introduction

The interaction between functional analysis and topology goes back to their
origins and has deepened and widened over the years. Going back to history
we have to highlight Banach’s 1932 monograph [20] that made the theory of
Banach spaces (“espaces du type (B)” in the book) an indispensable tool of
modern analysis. The novel idea of Banach is to combine point-set topolog-
ical ideas with the linear theory in order to obtain such powerful theorems
as Banach-Steinhaus theorem, open-mapping theorem and closed graph the-
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orem. For almost a century already general topology and functional analysis
continue to benefit from each other.

The aim of this survey is to give “Our biased views of topology as a tool
in functional analysis”, with particular stress in “recent” results. It would
be, of course, too pretentious if we even tried to write about the general role
of topology as a tool for functional analysis. Without any doubt, there are
results much more important than those collected here and, of course, other
authors might have different views.

Let us describe very briefly without any further ado the contents of this
survey. Here are the different sections of the paper:

1.- Introduction.

2.- Metrizability of compact spaces with applications to functional anal-
ysis.

3.- Topological networks meet renorming theory in Banach spaces.

4.- Recent views about pointwise and weak compactness.

5.- Concluding references and remarks.

A subsection devoted to “Notation and terminology” follows this short
introduction. Then we have 4 more sections. Sections 2, 3 and 4 con-
tain a detailed account about metrizability results and their applications,
renorming theory in Banach spaces and pointwise and weak compactness
including James’ weak compactness and their relatives. In these three sec-
tions some of the results are proved while others are only referenced. Now
and then we include brand new results or brand new proofs. Section 5
has a different flavor than the previous ones: we, sometimes as mere re-
porters of words written by others, collect here a good number of com-
ments of what we think as big achievements in this area of topology as a
tool for functional analysis; sometimes we ourselves comment on these re-
sults but some other times, to do that more properly, we use the word-
ing of other specialists more authoritative than us, and then we literally
take some comments from reports, blogs, lectures that we attended and
so on. For instance, we take some literal comments from: (1) the final re-
ports, workshop files and videos at http://www.birs.ca/events/2012/5-day-
workshops/12w5019 (by R. Anisca, S. Dilworth, E. Odell and B. Sari); (2)
Gowers’ blog at http://gowers.wordpress.com (by T. Gowers) (3) some sur-
vey papers that are conveniently referenced and included in our list of bibli-
ography.

As a general rule each section ends with a subsection devoted to “Some
notes and open problems” and, since each of them starts with a short intro-
duction of what is presented, there is no need for us to make this general
introduction longer and we just start with the content of the paper.

We hope that this survey might serve as a good reference for interested
researchers in the area. As authors, this is the first time we attempt to write

http://www.birs.ca/events/2012/5-day-workshops/12w5019
http://www.birs.ca/events/2012/5-day-workshops/12w5019
http://gowers.wordpress.com/


Topology and Functional Analysis 3

this sort of survey. As editors we have been always pushing other colleagues to
reflect about the importance of the “interplay between topology and functional
analysis”, see [44] and [45]. We have to apologize to all our colleagues whose
results should have been included here but they are not because of the lack
of space, time constraints or because of our ignorance.

We express our gratitude to our young student Antonio Pérez, who has
read this manuscript and offered us his comments. We also thank the editors
Professors H. P. Hart and J. van Mill for their work and for offering us
the possibility of contributing to this publication. Especial thanks also to
Professor M. Husek who also put forward our names as potential authors of
a survey paper like this.

1.1 Notation and terminology

Most of our notation and terminology are standard, otherwise it is either
explained here or when needed: unexplained concepts and terminology can
be found in our standard references for Banach spaces [50, 53, 68, 115], locally
convex spaces [127] and topology [65, 119]. We also refer to the very recent
book [117] where a variety of topics can be found.

By letters E,K, T,X, etc. we denote sets and sometimes topological
spaces. Our topological spaces are assumed to be completely regular. All
vector spaces E that we consider in this paper are assumed to be real. Some-
times E is a normed space with the norm ‖·‖. Given a subset S of a vector
space, we write co(S), aco(S) and span(S) to denote, respectively, the con-
vex, absolutely convex and the linear hull of S. If (E, ‖·‖) is a normed space
then E∗ denotes its topological dual. If S is a subset of E∗, then σ(E,S) de-
notes the weakest topology for E that makes each member of S continuous,
or equivalently, the topology of pointwise convergence on S. Dually, if S is a
subset of E, then σ(E∗, S) is the topology for E∗ of pointwise convergence
on S. In particular σ(E,E∗) and σ(E∗, E) are the weak (w) and weak∗ (w∗)
topologies respectively. Of course, σ(E,S) is always a locally convex topology

and it is Hausdorff if, and only if, E∗ = spanS
w∗

and similarly for σ(E∗, S).
Given x∗ ∈ E∗ and x ∈ E, we write 〈x∗, x〉 and x∗(x) for the evaluation of x∗

at x. If x ∈ E and δ > 0 we denote by B(x, δ) (or B[x, δ]) the open (resp.
closed) ball centered at x of radius δ: for x = 0 and δ = 1 we will simplify
our notation and just write BE := B[0, 1]; the unit sphere {x ∈ E : ‖x‖ = 1}
will be denoted by SE . Recall that a subset B of BE∗ is said to be norming
(resp. 1-norming) if

‖x‖F = sup{|b∗(x)| : b∗ ∈ B}
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is a norm in E equivalent (resp. equal) to the original norm of E. A subspace
F ⊂ E∗ is norming (resp. 1-norming) if F ∩BE∗ is norming (resp. 1-norming)
according with the previous definition.

For a locally convex space E we will use most of the notation explained
before for normed spaces, but we will write, according to tradition, E′ for its
topological dual instead of E∗.

(Z, d) is a metric space (Z if d is tacitly assumed); as usual R is considered
as a metric space endowed with the metric associated to the absolute value
| · |. The space ZX is equipped with the product topology τp. We let C(X,Z)
denote the space of all Z-valued continuous functions on X, and let B1(X,Z)
denote the space of all Z-valued functions of the first Baire class (Baire one
functions), i.e. pointwise limits of Z-valued continuous functions. When Z =
R, we just write C(X) and B1(X) for C(X,R) and B1(X,R), respectively.

If ∅ 6= A ⊂ (Z, d) we write

diam(A) := sup{d(x, y) : x, y ∈ A}.

For A and B nonempty subsets of (Z, d), we consider the distance between
A and B given by

d(A,B) := inf{d(a, b) : a ∈ A, b ∈ B},

and the Hausdorff non-symmetrized distance from A to B defined by

d̂(A,B) = sup{d(a,B) : a ∈ A}. (1)

The metric in ZX is the standard supremum metric given for arbitrary func-
tions f, g ∈ ZX by

d(f, g) = sup
x∈X

d(f(x), g(x)) (2)

that is allowed to take the value +∞.
In particular, if f ∈ RX we write

SX(f) := sup
x∈X

f(x) ∈ (−∞,∞]. (3)

`∞(X) stands for the Banach space of bounded functions in RX endowed with
the supremum norm, SX(| · |); whenever X = K is compact, the norm (3)
will be denoted as ‖f‖∞ := SK(|f |).

As usual N denotes the set of natural numbers. As topological space N is
endowed with the discrete topology and NN has its product topology. Given
α = (an) and β = (bn) in NN we use the product order

α ≤ β if an ≤ bn for every n ∈ N. (4)

Given a set X we denote by 2X the family of all its subsets. If X is a
topological space K(X) stands for the family of all its compact subsets.
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2 Metrizability of compact spaces with applications to
functional analysis

A topological space (X, τ) is said to be metrizable if there is a metric
d on X with τ as associated topology. Metrizatbility results are al-
ways notorious results in topology. We mention here two classical ones:
Urysohn’s metrization theorem and Nagata-Smirnov metrization the-
orem. The goal of this section is to give a self-contained proof of the
metrizability result stated in Theorem 2 below, as well as to offer a
retrospective discussion of how often the structures presented there ap-
pear in functional analysis and therefore this topological result has had
a saying in analysis. As a tool for the proof of Theorem 2 we use upper
semicontinuous compact-valued maps, or more precisely a natural way
of producing K-analytic structures.

Recall that a topological space X is said to be Lindelöf Σ-space (resp. K-
analytic) if there is a subspace (resp. closed subspace) Σ ⊂ NN and an upper
semi-continuous set-valued map T : Σ → 2X such that T (α) is a non-empty
compact subset of X for each α ∈ Σ and T (Σ) :=

⋃
{T (α) : α ∈ Σ} = X.

Here the set-valued map T is called upper semi-continuous if for each α ∈ Σ
and for any open subset U of X such that T (α) ⊂ U there exists an open
neighborhood V of α in Σ with T (V ) ⊂ U. A good reference for Lindelöf
Σ-spaces is [16]. Oftentimes Lindelöf Σ-spaces are referred to as countably
K-determined spaces, as for instance in [183]. Note that Polish spaces (i.e.
separable and metrizable spaces that are complete for some compatible met-
ric) are continuous images of NN and that separable metrizable spaces are
continuous images of subspaces Σ of NN. Therefore in the definition of Lin-
delöf Σ-space (resp. K-analytic) we can use as domain for T any metric
separable space (resp. any Polish space or alternatively just NN).

The class of K-analytic spaces contains simultaneously the class of Polish
spaces and the class of compact spaces. Both classes, K-analytic and Lindelöf
Σ-spaces, are stable by closed subspaces, compact-valued upper semicontin-
uous images, countable products and countable sums. Lindelöf Σ-spaces are
Lindelöf (open covers of the space have a countable subcover). On the other
hand, if T : Σ → 2X is upper semicontinuous and compact-valued, for every
compact set K ⊂ Σ the image

T (K) :=
⋃
α∈K

T (α)

is a compact subset of X. Therefore if T : NN → 2X is a compact-valued map
giving structure of K-analytic space to X and we define
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Aα := T
(
{β ∈ NN : β ≤ α}

)
then we have that:

(A) Aα is compact for every α ∈ NN;
(B) Aα ⊂ Aβ if α ≤ β;
(C) X =

⋃
{Aα : α ∈ NN}. (5)

It is natural to ask if, conversely, any topological space X that has a
family {Aα : α ∈ NN} of compact subsets satisfying properties (A), (B) and
(C) above is K-analytic. The answer in general is no, as examples in [182,
189] and [117, p. 75] show. The first positive answer to this question for the
particular case of X = Cp(K) appears in [183, Proposition 6.13], that is,
for the space of continuous functions on a compact space K endowed with
the pointwise convergence topology. A more general positive result in this
direction is presented in Proposition 1 below.

In what follows we use the following notation: given a sequence (xn) in a
topological space X, the set of all cluster points of (xn) in X is the closed set

clustX(xn) :=
⋂
n∈N
{xm : m ≥ n}. (6)

Recall that a subset A of X is said to be relatively countably compact X
(resp. countably compact) if for every sequence (xn) in X the set clustX(xn)
is not empty (resp. clustX(xn) ∩A 6= ∅).

If α = (nk) and m ∈ N we write α|m := (n1, n2, . . . , nm).

Proposition 1 ([30, 41]). Let X be a topological space with a family of
subsets {Aα : α ∈ NN} satisfying conditions (A), (B) and (C) in (5). Given
α = (nk) ∈ NN and m ∈ N, define

Cn1,n2,...,nm :=
⋃
{Aβ : β ∈ NN, β|m = α|m}

and T : NN → 2X by the formula

T (α) :=

∞⋂
k=1

Cn1,n2,...,nk .

Then:

1. any sequence in T (α) has cluster points in X all of which remain in T (α);
in particular T (α) is countably compact for every α ∈ NN;

2. if we assume that T (α) is compact for every α ∈ NN, then the set-valued
map T gives a K-analytic structure to X; this happens in particular when
countably compact subsets of X are compact.
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Proof. Both statements in item 1 easily follow from the Claim below.

CLAIM.- Given α = (nk) in NN and xk ∈ Cn1,n2,...,nk , k ∈ N, we have that

∅ 6= clustX(xk) ⊂
∞⋂
k=1

Cn1,n2,...,nk

We prove the claim. Let βk ∈ NN be such that

xk ∈ Aβk and βk|k = (n1, n2, . . . , nk) for every k ∈ N.

Let πj : NN → N be the j-th projection onto N. For every j ∈ N let us define

mj := max{πj(βk) : k ∈ N} and β := (mj).

Note that π1(β) = n1 and that condition (B) ensures that Aβk ⊂ Aβ for every
k ∈ N. Therefore (xk) is contained in the compact set Aβ (condition (A)), and
consequently ∅ 6= clustX(xk) ⊂ Aβ ⊂ Cn1

. If we repeat the argument above
with (xk)k≥m, for every m ∈ N, and use that clustX(xk) = clustX(xk)k≥m
we obtain that clustX(xk) ⊂

⋂∞
m=1 Cn1,n2,...,nm as we want, and the proof of

the Claim is over.

To finish we prove the statement in item 2. Assume that each T (α) is
compact and let U be an open subset of X such that T (α) ⊂ U . If α = (nk),
then for some m ∈ N we have that

Cn1,n2,...,nm ⊂ U. (7)

If the above were not the case, for every k ∈ N there would exist

xk ∈ Cn1,n2,...,nk \ U. (8)

Note that the Claim says that ∅ 6= clustX(xk) ⊂ T (α) but (8) implies that
clustX(xk) ⊂ X \ U ⊂ X \ T (α), that is a contradiction that proves the
validity of (7). For the open neighbourhood of α defined by

V := {β ∈ N : β|m = (n1, n2, . . . , nm)}

we clearly have that T (V ) ⊂ Cn1,n2,...,nm ⊂ U and therefore T is upper
semicontinous. To finish the proof we observe that Aα ⊂ T (α) for every
α ∈ NN and consequently (C) applies to obtain that T (NN) = X. With all
the above, X is a K-analytic space.

Proposition 1 provides us with a nice tool to produce K-analytic struc-
tures as we will see several times in the remaining of this section. Note that
in particular Proposition 1, item 2, can be used for the so-called class of an-
gelic spaces where all notions of compactness do coincide. Let us recall the
definition.
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Definition 1 (Fremlin). A regular topological space T is angelic if every
relatively countably compact subset A of T is relatively compact and its
closure A is made up of the limits of sequences from A.

In angelic spaces the different concepts of compactness and relative com-
pactness coincide: the (relatively) countably compact, (relatively) compact
and (relatively) sequentially compact subsets are the same, as seen in [75].
Examples of angelic spaces include spaces Cp(K), when K is a countably
compact space, see [92, 120] and all Banach spaces in their weak topologies.
More generally if X is Lindelöf Σ-space then Cp(X) is angelic, [152] (see also
Corollary 5 in Subsection 4.1): as a consequence of this, w∗-duals of Banach
spaces that are weakly Lindelöf Σ-spaces are angelic. Note that in particular,
Proposition 1 says that if X is Lindelöf Σ-space then Cp(X) is K-analytic
if, and only if, there is a family {Aα : α ∈ NN} of τp-compact subsets of
C(X) satisfying conditions (A), (B) and (C) in (5). We should mention that
this result has been recently proved for any Cp(X) (no restriction on X,
just a completely regular space) in [186]. A good reference for many different
applications of Proposition 1 is [117].

In some recent literature, see [117], a family {Aα : α ∈ NN} as above is
called a compact resolution for X. We follow the terminology introduced in
[186]:

Definition 2 ([186, 43]). A topological space X with a family {Aα : α ∈
NN} satisfying (A), (B) and (C) in (5) is said to be dominated by irrationals.

It is noteworthy to know that a space X is dominated by irrationals if,
and only if, there is a Polish space P and a compact cover {XK : K ∈ K(P )}
of X satisfying XK ⊂ XL whenever K ⊂ L, for K,L ∈ K(P ), see cite [43,
Proposition 2.2].

Using again the terminology of [186, 43] we set the following definitions.

Definition 3 ([186, 43]). Given topological spaces M and Y , an M -ordered
compact cover of a space Y is a family F = {FK : K ∈ K(M)} ⊂ K(Y ) such
that ⋃

F = Y and K ⊂ L implies FK ⊂ FL for any K,L ∈ K(M).

Y is said to be dominated (resp. strongly dominated) by the space M if there
exists an M -ordered compact cover F (resp. that moreover swallows all com-
pact subsets of Y , in the sense that for any compact C ⊂ Y there is F ∈ F
such that C ⊂ F ) of the space Y .

Results about strongly dominated spaces by Polish spaces are collected in
the following two theorems.

Theorem 1 (Christensen, [49], Theorem 3.3 ). A second countable topo-
logical space is strongly NN-dominated if, and only if, it is completely metriz-
able.
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Theorem 2. Let K be a compact space and let ∆ be its diagonal. The fol-
lowing statements are equivalent:

1. K is metrizable;
2. (C(K), ‖ · ‖∞) is separable;
3. ∆ is a Gδ subset of K ×K;
4. ∆ =

⋂
nGn with each Gn open in K ×K and {Gn : n ∈ N} being a basis

of open neighbourhoods of ∆;
5. (K ×K) \∆ =

⋃
n Fn, with {Fn : n ∈ N} an increasing family of compact

subsets in (K ×K) \∆;
6. (K ×K) \∆ =

⋃
n Fn, with {Fn : n ∈ N} an increasing family of compact

sets that swallows all the compact subsets in (K ×K) \∆;
7. (K ×K) \∆ =

⋃
{Aα : α ∈ NN} with {Aα : α ∈ NN} a family of compact

sets that swallows all the compact subsets in (K×K)\∆ such that Aα ⊂ Aβ
whenever α ≤ β;

8. (K ×K) \∆ is Lindelöf.

Proof. Although the equivalences between 1, 2, 3, 4, 5, 6 and 8 are classical
and well known, and the equivalence of 1 and 7 can be found, with a different
formulation in [40, Theorem 1], we give full details for their proofs –the
equivalence 1⇔ 3 is a result due to Šněıder that can be found in [65, Exercise
4.2.B].

Let us start with 1⇒ 2 by assuming that the metric d metrizes the topol-
ogy of K. Let S be a countable and dense subset of K. For every s ∈ S let us
write fs(x) := d(x, s), for x ∈ K. Then {fs : s ∈ S} is a countable subset of
C(K) that separates the points of K. Hence, by Stone-Weierstrass’ theorem,
see [50, V.§8], the algebra A generated by {fs : s ∈ S} and the constant
functions is dense in (C(K), ‖ · ‖∞). Since A is separable with any vector
topology we conclude that (C(K), ‖ · ‖∞) is separable too.

Let us prove that 2 ⇒ 1. If {fn : n ∈ N} is an enumeration of a countable
and dense subset of (C(K), ‖ · ‖∞), then the formula

d(x, y) :=

∞∑
n=1

1

2n
|fn(x)− fn(y)|

1 + fn(x)− fn(y)
, for x, y ∈ K,

defines a metric on K that metrizes its topology.
The implications 6 ⇔ 4 ⇒ 3 ⇔ 5 are clear. On the other hand, 3 ⇒ 4 can

be proved with the following arguments. Assume that ∆ =
⋂
nGn with each

Gn ⊂ K ×K open. For every n ∈ N take an open subset An ⊂ K ×K with
∆ ⊂ An ⊂ An ⊂ Gn. Define recursively

O1 := A1, O2 := O1 ∩A2, . . . , On := On−1 ∩An, . . .

We have that ∆ ⊂
⋂
nOn ⊂

⋂
nOn ⊂

⋂
nGn = ∆ and consequently

∆ =
⋂
n

On =
⋂
n

On.
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If G ⊂ K ×K is open with ∆ ⊂ G, then there exists m ∈ N with Om ⊂ G.

Indeed, if this were not the case Cn := On∩
(

(K×K)\G
)
6= ∅ for every n ∈ N.

Since {Cn : n ∈ N} is a decreasing sequence of nonempty closed subsets in
a compact space we must have

⋂
n Cn 6= ∅. This implies that

⋂
nOn = ∆ is

not contained in G, and we reach a contradiction that finishes the proof for
the implication 3 ⇒ 4.

The implication 1 ⇒ 3 is rather easy: if d is a metric giving the topology
of K then ∆ =

⋂
nGn where each Gn is the open set given by

Gn :=
{

(x, y) ∈ K ×K : d(x, y) <
1

n

}
.

Being 6⇒ 7 obvious, we now give a proof for the implication 7⇒ 2. Assume
that 7 holds and let us define Oα := (K × K) \ Aα, α ∈ N. The family
O := {Oα : α ∈ NN} is a basis of open neighbourhoods of ∆ that satisfies the
decreasing condition

Oβ ⊂ Oα, if α ≤ β in NN. (9)

Given α = (nk) ∈ NN and any m ∈ N we write α|m := (nm, nm+1, nm+2, . . . )
and define

Bα :=
{
f ∈ n1BC(K) : (m ∈ N, and (x, y) ∈ Oα|m)⇒ |f(x)− f(y)| ≤ 1

m

}
.

Note that each Bα is ‖·‖∞-bounded, closed and equicontinuous as a family of
functions defined on K. Therefore, Ascoli’s theorem, see [119, p. 234], implies
that Bα is compact in (C(K), ‖·‖∞). The decreasing property (9) implies that
Bα ⊂ Bβ if α ≤ β in NN. We claim that C(K) =

⋃
{Bα : α ∈ N}. To see this,

given f ∈ C(K) take M > 0 such that ‖f‖∞ ≤M . On the other hand since

O is a basis of neighborhoods of ∆, there exists a sequence
(
αm = (nmk )

)
in

NN such that

|f(x)− f(y)| ≤ 1

m
for every (x, y) ∈ Oαm .

If we define now n1 := max{n11,M} and nk := max{n1k, n2k−1, . . . , nk1}, k =

2, 3, . . . , then for the sequence α = (nk) ∈ NN we have that f ∈ Bα. The
family {Bα : α ∈ N} of subsets of (C(K), ‖·‖∞) satisfies the hypothesis
of Proposition 1 and since countably compact subsets of (C(K), ‖·‖∞) are
compact, we conclude that (C(K), ‖·‖∞) is K-analytic, therefore Lindelöf
and thus separable. This finishes the proof of 7 ⇒ 2.

With all the above we have proved that statements from 1 to 7 are all
equivalent. Note that 5 ⇒ 8 straightforwardly follows from the fact that
Kσ-spaces are Lindelöf. To finish the proof of the theorem we prove the
implication 8 ⇒ 3. If x 6= y, x, y ∈ K, there exist two closed neighbourhoods
Cx and Cy of x and y, respectively, such that Cx × Cy ⊂ (K × K) \ ∆.
Since (K × K) \ ∆ is Lindelöf we can find a countable set D and xd 6= yd
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in K, d ∈ D, such that (K × K) \ ∆ =
⋃
d∈D Cxd × Cyd . Consequently,

∆ =
⋂
d∈D(K ×K) \ (Cxd × Cyd) is a Gδ subset, and the proof is over.

More generally one can prove the following result. Recall that the weight
w(X) of a topological space X is the smallest cardinal of a basis for its
topology.

Proposition 2 ([35]). Let K be a compact space and m a cardinal number.
The following statements are equivalent:

1. w(K) ≤ m;
2. There exists a metric space M with w(M) ≤ m and a family O = {OL :
L ∈ K(M)} of open subsets in K ×K that is basis of the neighborhoods of
∆ such that OL1

⊂ OL2
whenever L2 ⊂ L1 in K(M);

3. (K ×K) \∆ is strongly dominated by a metric space M with w(M) ≤ m.

As a consequence of Proposition 2 we can complete Theorem 2 with a
couple of new equivalent conditions.

Corollary 1 ([43, 35]). For a compact space K the following statements are
equivalent:

1. K is metrizable;
5. (K ×K) \∆ =

⋃
n Fn, with {Fn : n ∈ N} an increasing family of compact

subsets in (K ×K) \∆;
6. (K ×K) \∆ =

⋃
n Fn, with {Fn : n ∈ N} an increasing family of compact

sets that swallows all the compact subsets in (K ×K) \∆;
7. (K ×K) \∆ =

⋃
{Aα : α ∈ NN} with {Aα : α ∈ NN} a family of compact

sets that swallows all the compact subsets in (K×K)\∆ such that Aα ⊂ Aβ
whenever α ≤ β;

9. (K ×K) \∆ is strongly dominated by a Polish space;
10. (K ×K) \∆ is strongly dominated by a separable metric space;

Proof. Assume that 7 holds. Given a compact set L ⊂ NN we define α(L) ∈
NN by the formula

α(L) := (supπ1(L), supπ2(L), . . . , supπn(L), . . . )

and FL := Aα(L), where πn : NN → N is the nth-projection, for every n ∈ N.

The family {FL : L ∈ K(NN)} strongly dominates (K×K)\∆ and therefore 9
holds. The implication 9 ⇒ 10 is obvious and the implication 10 ⇒ 1 follows
from Proposition 2. The proof is over.

Let us stress that the power of Theorem 2 and Corollary 1 resides in the
fact that the existence of a special uncountable cover as in 7 is the same
than the existence of a special countable cover as in 6. In other words, if
we want, strongly domination by NN for (K × K) \ ∆ is the same than
domination by N for (K×K) \∆. Note that the equivalence 5⇔ 6 says that
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for countable covers {Fn : n ∈ N} of (K ×K) \∆ it does not matter if the
covers swallow all the compact subsets of (K×K)\∆ or not. For uncountable
covers {Aα : α ∈ NN} as in 7 it is unknown, to the best of our knowledge, if
we can drop the hypothesis that the cover swallows all the compact subsets
in (K ×K) \∆. With regard to this question Theorem 3 collects what can
be said assuming MA(ω1).

Recall that a topological space X is said to have countable tightness if for
every subsset A of X and every point x ∈ A there is a countable set D ⊂ A
such that x ∈ D.

Theorem 3 ([43]). Under MA(ω1), if K is a compact space such that (K ×
K) \∆ is dominated by a Polish space then K is metrizable.

Proof. The domination by a Polish space of (K×K)\∆ is used twice. First,
and under MA(ω1), to ensure that K has a small diagonal and from there
deduce that K ×K has countable tightness, [43, Theorem 2.12]. Second, to
write (K×K)\∆ =

⋃
{Aα : α ∈ NN} with that {Aα : α ∈ NN} also satisfying

conditions (A) and (B) in (5).
Now we can make use of Proposition (1) to produce the set-vauled map

T : NN → 2K×K . We claim that for every α ∈ N the set T (α) is compact.
To see this we simply prove that for the closure T (α) in K × K we have
T (α) ⊂ T (α). To this end, take x ∈ T (α), and use the countable tightness
of K ×K to produce a countable subset D of T (α) such that x ∈ D. Note
that for this x there are two possibilities: either x ∈ D ⊂ T (α) or x ∈ D \D.
If the latter is the case, and we enumerate D := {yn : n ∈ N}, then x is
cluster point of the sequence (yn). We use now item 1 in Proposition (1) to
conclude x ∈ T (α), and from item 2 in the same proposition we obtain that
(K ×K) \∆ is K-analytic. Consequently, (K ×K) \∆ is Lindelöf and the
implication 8 ⇒ 1 in Theorem 2 tells us that K is metrizable.

We go on in this section with a bunch of applications to functional analysis
of the results presented until now.

Theorem 4 (Talagrand, [184]). Every weakly compactly generated Banach
space E is weakly Lindelöf.

Proof. E = spanW with W a weakly compact subset of E. By Krein-Šmulian
theorem, [50, Theorem 3.14], we can assume that W is moreover absolutely
convex and therefore E =

⋃
n nW . Given α = (nk) ∈ NN, let us define

Aα :=
(
n1W +BE∗∗

)
∩
(
n2W +

1

2
BE∗∗

)
∩ · · · ∩

(
nkW +

1

k
BE∗∗

)
∩ . . . ,

It is easy to prove that every Aα ⊂ E is weakly compact, Aα ⊂ Aβ if
α ≤ β and E =

⋃
{Aα : α ∈ NN}. Since (E,w) is angelic, see for instance

Theorem 28, weakly countably compact subsets of E are weakly compact.
Thus (E,w) is K-analytic after Proposition 1, hence (E,w) is Lindelöf, and
the proof is over.
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Theorem 5 (Dieudonné, Theorem §.2.(5) [127]). Every Fréchet-Montel
space E is separable (in particular, for any open set Ω ⊂ C the space of holo-
morphic functions (H(Ω), τk) with its compact-open topology is separable).

Proof. Fix U1 ⊃ U2 ⊃ · · · ⊃ Un . . . a basis of absolutely convex closed
neighborhoods of 0. Given α = (nk) ∈ NN, let us define

Aα :=

∞⋂
k=1

nkUk.

The family {Aα : α ∈ NN} is made up of closed bounded sets, covers E and
satisfies Aα ⊂ Aβ if α ≤ β. Since E is Montel, each Aα is compact and since
E is Fréchet it is metrizable and therefore Proposition 1 enters our game
again to say that E is K-analytic. Note that therefore E is metrizable and
Lindelöf, hence separable.

Recall that a topological space is said to be analytic (or Souslin) if it is
the continuous image of a Polish space. Note that analytic spaces are always
continuous images of NN.

Theorem 6. The dual E′ of an inductive limit E = lim
→
Em of a sequence

(Em) of separable Fréchet (in particular Fréchet-Montel) spaces is analytic
when endowed with the topology τc of uniform convergence on compact sets
of E.

Proof. Fix Um1 ⊃ Um2 ⊃ · · · ⊃ Umn . . . a basis of absolutely convex closed
neighborhoods of 0 in Em. Given α ∈ NN let us define

Uα := aco

∞⋃
k=1

Uknk (10)

Note that Uβ ⊂ Uα if α ≤ β and that U := {Uα : α ∈ NN} is a basis of
neighbourhood of 0 in E, see [127, p. 215]. Therefore if we take polars in
〈E,E′〉 and define Aα := Uoα, then each Aα is compact in (E′, τc) see [127,
§21.6.(3)], E′ =

⋃
{Aα : α ∈ NN} and Aα ⊂ Aβ if α ≤ β. On the other hand,

since each Em is separable, E is separable, and therefore (E′, τc) has a coarser
Hausdorff topology that is metrizable. This implies that (E′, τc) is angelic, see
[75, Lemma 3.1]. Consequently, (E′, τc) is K-analytic after Proposition 1 and
since it has a coarser Hausdorff metrizable topology it is analytic according
to a result by Choquet, see [48].

If Ω ⊂ Rn is an open set we denote by D′(Ω) the space of distributions
endowed with its strong topology of uniform convergence on bounded (com-
pact) sets of the test-functions space D(Ω), see [50, Chapter IV. Section 5]
and [175].
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Corollary 2 (Schwartz, [174]). Any linear map T : D′(Ω)→ D′(Ω) whose
graph is a Borel subset of D′(Ω)×D′(Ω) is continuous.

Proof. On the one handD′(Ω) ultrabornological and on the other handD′(Ω)
is analytic according to Theorem 6. The Corollary follows from a famous
result by Schwartz, see [174], that establishes the validity of a Borel graph
theorem for linear maps between ultrabornological locally convex spaces and
analytic locally convex spaces.

It is worth mentioning that the results in [174] offered the first important
(partial) positive answer to a question raised by Grothendieck, see [93], whose
final aim was to obtain the validity of the Closed Graph theorem for linear
maps T : D′(Ω)→ D′(Ω).

To finish the section we introduce the class G of locally convex spaces,
whose properties and the consequences that can be derived from them were
the true motivation to establish the implication 7⇒ 1 collected in Theorem 2
as originally proved in [40, Theorem 1].

Definition 4 ([40]). A locally convex space E belongs to the class G if there
is a family {Aα : α ∈ NN} of subsets of E′ satisfying the properties:

(a) for any α ∈ NN the countable subsets of Aα are equicontinuous;
(b) Aα ⊂ Aβ if α ≤ β;
(c) X =

⋃
{Aα : α ∈ NN}.

The good news for class G is that it is a very wide stable class for the usual
operations in functional analysis of countable type (completions, closed sub-
spaces, quotients, direct sums, products, etc.) that contains metrizable locally
convex spaces and their duals and for which 7 ⇒ 1 collected in Theorem 2
implies:

Theorem 7 ([40]). If E is a locally convex space in class G, then its compact
(even its precompact) subsets are metrizable.

Proof. See [40, Theorem 2].

Let us mention that Theorem 7 implies, in particular, that precompact sub-
sets of countable inductive limits of Fréchet spaces are metrizable, that was
first proved in [39], answering a question posed by Floret in [74]. The question
raised by Floret was motivated by the fact that the good behaviour of com-
pact subsets of inductive limits should imply reasonable consequences about
localization and retractivity properties in inductive limits that were impor-
tant while studying certain abstract settings for partial differential equations.
We refer to the recent book [117] for more applications and consequences of
the ideas presented here in both topology and functional analysis.
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2.1 Some notes and open problems

The paper [43] contains a long list of questions related to this section. We
isolated the following one that has been presented above.

Question 1. if K is a compact space such that (K ×K) \∆ is dominated by
a Polish space, is K metrizable?

We note that the answer given in Theorem 3 under MA(ω1) to this question
is based in [43, Theorem 2.12] that makes use of the fact that in this situation
the compact space K must have a small diagonal: other arguments from here
allow then to conclude that K is metrizable. More in general we have the
following question:

Question 2 (Husek, 1977). Is every compact space with small diagonal metriz-
able?

This problem has been throughly explained by Gruenhage in [99]. Here is
another problem that to the best of our knowledge is open

Question 3 ([176]). Let E be a locally convex space and K ⊂ E a convex
compact set that is perfectly normal. Is K metrizable?

Let us stress that Helly compact (increasing functions from [0, 1] into [0, 1]
with the topology of pointwise convergence) is convex, compact, separable
and not metrizable. A natural question connected with the above problems
is the following one.

Question 4. Are there natural (and useful) conditions that we can impose to
a convex compact space K in order it to be homeomorphic to a compact set
of a space of the class G?

Good references for metrizability of compact convex sets are [51, 135, 143,
170].

3 Topological networks meet renorming theory in
Banach spaces

Banach spaces have offered historically one of the most fruitful frame-
works in mathematical analysis. Renorming theory tries to find isomor-
phisms for Banach spaces that improve their norms. That means to
make the geometrical and topological properties of the unit ball of a
given Banach space as close as possible to those of the unit ball of a
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Hilbert space. The existence of equivalent good norms on a particular
Banach space depends on its structure and has in turn a deep impact on
its geometrical properties. Questions concerning renormings in Banach
spaces have been of particular importance to provide smooth functions
and tools for optimization theory. An excellent monograph of renorm-
ing theory up to 1993 is [53]. In order to have an up-to-date account of
the theory we should add [104, 81, 190, 139, 178].

Surprisingly enough tools coming from pure set-theoretical topology,
like the concept of network, are of great importance to study successfully
renorming theory in Banach spaces. In this section we report on results
obtained in the last years as a complement to those that can be found
in the given references. We shall do it with new proofs of the main
theorems based on new analysis and new results

3.1 Locally uniformly rotund renormings

If (E, ‖ · ‖) is a normed space, the norm ‖ · ‖ is said to be locally uniformly
rotund (LUR for short) if[

lim
n

(2‖x‖2 + 2‖xn‖2 − ‖x+ xn‖2) = 0
]
⇒ lim

n
‖x− xn‖ = 0

for any sequence (xn) and any x in E. The construction of these kind of
norms in separable Banach spaces led Kadec to the proof of the existence
of homeomorphisms between any two separable Banach spaces, [23, Chapter
VI-9]. For a non separable Banach space is not always possible to have such
an equivalent norm: the space `∞ does not have it, see for instance [53, p. 74].
If such a norm exists, its construction is usually based on a good system of
coordinates that is known on the normed space E from the very beginning,
for instance a biorthogonal system

{(xi, fi) ∈ E × E∗ : i ∈ I},

with some additional properties such as being a strong Markushevich ba-
sis, [101, Chapter III]. When such a system does not exist the norm can be
constructed providing enough convex functions on the given space E and
adding all of them up with the powerful lemma of Deville, Godefroy and
Zizler, see [53, Lemma VII.1.1],[190]. It reads as follows:

Lemma 1 (Deville, Godefroy and Zizler decomposition method). Let
(E, ‖ · ‖) be a normed space, let I be a set and let (ϕi)i∈I and (ψi)i∈I be
families of non-negative convex functions on E which are uniformly bounded
on bounded subsets of E. For every x ∈ E, m ∈ N and i ∈ I define



Topology and Functional Analysis 17

ϕ(x) = sup {ϕi(x) : i ∈ I} , (11)

θi,m(x) = ϕi(x)2 + 2−mψi(x)2, (12)

θm(x) = sup {θi,m(x) : i ∈ I} , (13)

θ(x) = ‖x‖2 +

∞∑
m=1

2−m(θm(x) + θm(−x)). (14)

Then the Minkowski functional of B = {x ∈ E : θ(x) ≤ 1} is an equivalent
norm ‖ · ‖B on E such that if xn, x ∈ E satisfy the LUR condition:

lim
n

[2‖xn‖2B + 2‖x‖2B − ‖xn + x‖2B ] = 0,

then there is a sequence (in) in I with the properties:

1. limn ϕin(x) = limn ϕin(xn) = limn ϕin((x+ xn)/2) = sup {ϕi(x) : i ∈ I}
2. limn

[
1
2ψ

2
in

(xn) + 1
2ψ

2
in

(x)− ψ2
in

(
1
2 (xn + x)

)]
= 0.

The previous Lemma is the core of the decomposition method for renorm-
ings of nonseparable Banach spaces as described in [53, Chapter VII]. It has
been extensively used by R. Haydon in his seminal papers [104, 106] as well
as in [105]. Lemma 1 was first introduced by R. Deville and it is based on the
construction of an equivalent LUR norm on Banach spaces with strong M-
basis, [101, Theorem 3.48], where the convex functions are given by distances
to suitable finite dimensional subspaces as well as evaluations on coordinate
functionals in the dual space E∗. Let us note that if we add lower semicon-
tinuity properties on the involved functions (ϕi)i∈I and (ψi)i∈I we obtain
lower semicontinuity for the new norm ‖ · ‖B .

In order to deal with renorming results valid for the very different weak
topologies that appear in Banach spaces we fix, from now on, (E, ‖ · ‖) a
Banach space together with a norming subspace F ⊂ E∗ in the dual space.
Dealing with norming subspaces we will unify many results about dual norms
or pointwise lower semicontinuos norms for C(K) spaces. A topologist reader
might be comfortable looking at our Banach space E always contained in
some space `∞(Γ ) and then thinking that we want to find, if possible, point-
wise lower semicontinuous equivalent norms only.

A first topological connection between the existence of biorthogonal sys-
tems of functions and LUR renormings follows, see [157]:

Theorem 8 (Topological Coordinates System). Let E be a Banach
space and let F be a a norming subspace of E∗. E has an equivalent σ(E,F )-
lower semicontinuous and LUR norm if, and only if, there are countably
many families of convex and σ(E,F )-lower semicontinuous functions

{ϕni : E → R+; i ∈ In}∞n=1

together with norm open sets
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Gni ⊂ {ϕni > 0} ∩ {ϕnj = 0 : j 6= i, j ∈ In}

such that {Gni : i ∈ In, n ∈ N} a basis for the norm topology of E

The above topological approach to LUR renormings is mainly based on
Stone’s theorem about paracompactness of metric spaces and follows the pi-
oneer work by R. Hansell, see [103, 141]: the σ-discrete basis for the norm
topology of a normed space E can be refined and then modified to obtain the
basis described in Theorem 8. More recent contributions that show the inter-
play between this topological method and the one based on Deville’s lemma
are [106, 136]. A straightforward proof of the main renorming constructions
in [139, 165] can be found in [158].

These approaches for LUR renormings are strongly based on the topolog-
ical concept of network. A family of subsets N in a topological space (T, τ)
is a network for the topology τ if for every W ∈ τ and every x ∈ W , there
is some N ∈ N such that x ∈ N ⊂ W . A central result for the theory is the
following one, [165, 139]:

Theorem 9 (Slicely Network). Let E be a normed space, F a norming
subspace of E∗ and H the family of all σ(E,F )-open half spaces in E. Then
E admits a σ(E,F )-lower semicontinuous equivalent LUR norm if, and only
if, there is a sequence (An) of subsets of E such that the family of sets

{An ∩H : H ∈ H, n ∈ N}

is a network for the norm topology in E

The first proof of this result used martingale constructions, [139]. Without
martingales a delicate process of convexification of the sets An is needed to
construct a countable family of seminorms which controls the claim, [165].
Stone’s theorem is required if additional information on the structure of the
sets An is needed, see [139, Chapter 3]. After the Connection Lemma in [157]
or the Slice Localization Theorem of [158] the convexification process is not
necessary any more. The main construction is now done with the use of
Deville’s Master Lemma together with Corollary 3, which seems to be a main
tool for the matter. It says that given any family of slices of a bounded set
A of a normed space E, it is always possible to construct an equivalent norm
such that the LUR condition for a sequence (xn), and a fixed point x in A,
implies that the sequence eventually belongs to slices containing the point x.
When the slices involved have small diameter, then the sequence is eventually
close to x. If the diameter can be made small enough, then the sequence (xn)
converges to x and the new norm is going to be locally uniformly rotund at
the point x.

Our presentation here is done through Theorem 10, for which we give a
formulation that includes cases where Deville’s Lemma must be recursively
used and the Slice Localization theorem appears as Corollary 3. With this
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approach, complete proofs for the main theorems in [106] and [105] follow
from Theorem 11, see [136]. We shall present and easy proof for Theorem 11
that follows from Theorem 10: the original proof, formulated in [78], was much
more involved with arguments intended to use Theorem 9. More measures of
non-compactness has been successfully studied by M. Raja, [168]. Some open
problems around these questions can be found in [139, Section 6.3].

Theorem 10 (Slice Convex Localization). Let E be a normed space with
a norming subspace F in E∗. Let A be a bounded subset of E and H a family
of σ(E,F )-open half spaces with nonempty slices A∩H 6= ∅ for every H ∈ H.
Given a uniformly bounded on bounded sets family

{ψAH : E → [0,+∞) : H ∈ H}

of convex and σ(E,F )-lower semicontinuous functions there is an equivalent
σ(E,F )-lower semicontinuous norm ‖ · ‖H,A with the property:

If x ∈ A ∩H for some H ∈ H and (xn) is a sequence in E such that

lim
n

(
2‖xn‖2H,A + 2‖x‖2H,A − ‖x+ xn‖2H,A

)
= 0,

then there is a sequence of open half spaces {Hn ∈ H : n = 1, 2, ...} satisfying:

1. There is n0 ∈ N such that x, xn ∈ Hn for n ≥ n0 if xn ∈ A.
2. limn→∞

[
1
2ψ

A
Hn

(xn)2 + 1
2ψ

A
Hn

(x)2 − ψAHn(x+xn2 )2
]

= 0.

Proof. Let us consider the family of σ(E,F )-lower semicontinuous and convex
functions {ϕH : H ∈ H} defined by

ϕH(x) = inf
{
‖x− d‖F : d ∈ (E \H) ∩ co(A)

σ(E∗∗,E∗)
}
, x ∈ E,

see [157, Definition 2.2 ]. We can apply now Devilles’s Lemma 1 to obtain an
equivalent norm ‖ · ‖H,A on E such that if a sequence (xn) and x in E satisfy

lim
n

(
2 ‖xn‖2H,A + 2 ‖x‖2H,A − ‖xn + x‖2H,A

)
= 0,

then there exists a sequence (Hn) in H such that

(a) limn ϕHn(x) = limn ϕHn(xn) = limn ϕHn((x+xn)/2) = sup {ϕH(x) : H ∈ H}.

and

2. limn

[
(1/2)ψAHn(xn)2 + (1/2)ψAHn(x)2 − ψAHn((xn + x)/2)2

]
= 0.

Since the given point x belongs to one of the open half spaces H0 ∈ H, we
have that ϕH0

(x) > 0 and we conclude that

sup {ϕH(x) : H ∈ Hε} ≥ ϕH0
(x) > 0.

Now condition (a) provides us with an integer n0 such that
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ϕHn(x) > 0, ϕHn(xn) > 0, ϕHn((x+ xn)/2) > 0

whenever n ≥ n0, from where we conclude that 1 in the statement of the
theorem holds and the proof is over.

As a corollary we have the main result in [158]:

Corollary 3 (Slice Localization Theorem, [158]). Let E be a normed
space with a norming subspace F in E∗. Let A be a bounded subset in E and H
a family of σ(E,F )-open half spaces such that for every H ∈ H the set A∩H is
non-empty. Then there is an equivalent σ(E,F )-lower semicontinuous norm
‖ · ‖H,A such that for every sequence (xn) in E and x ∈ A ∩ H for some
H ∈ H, if

lim
n

(
2‖xn‖2H,A + 2‖x‖2H,A − ‖x+ xn‖2H,A

)
= 0,

then there is a sequence of open half spaces {Hn ∈ H : n = 1, 2, ...} such that

1. There is n0 ∈ N such that x ∈ Hn and xn ∈ Hn if xn ∈ A for n ≥ n0.
2. For every δ > 0 there is some nδ such that

x, xn ∈
(
co(A ∩Hn) +B(0, δ)

)σ(E,F )

for all n ≥ nδ.

Proof. Let us choose a point aH ∈ H ∩ A and set DH = co(H ∩ A) for
every H ∈ H, and Dδ

H := DH + δBE , where H ∈ H. We denote by pδH the

Minkowski functional of the convex body Dδ
H

σ(E,F )
− aH and we define the

σ(E,F )-lower semicontinuous norm pH by the formula

pH(x)2 =

∞∑
n=1

1

n22n
(
p
1/n
H (x)

)2
for every x ∈ E. Finally we define the non-negative, convex, and σ(E,F )-
lower semicontinuous function ψAH as ψAH(x) := pH(x− aH) for every x ∈ E.
Since A is bounded the family of functions {ψAH : H ∈ H} is uniformly
bounded on bounded sets and Theorem 10 gives us an equivalent σ(E,F )-
lower semicontinuous norm ‖ · ‖H,A such that if x ∈ A ∩H for some H ∈ H
and (xn) is a sequence in E with

lim
n

(
2‖xn‖2H,A + 2‖x‖2H,A − ‖x+ xn‖2H,A

)
= 0,

then there is a sequence of open half spaces {Hn ∈ H : n = 1, 2, ...} satisfying:

(a) There is n0 ∈ N such that x, xn ∈ Hn for n ≥ n0 if xn ∈ A.
(b) limn→∞

[
1
2ψ

A
Hn

(xn)2 + 1
2ψ

A
Hn

(x)2 − ψAHn(x+xn2 )2
]

= 0

Convexity arguments and the above definitions allow us to finish the proof,
see [158, Theorem 3].



Topology and Functional Analysis 21

Remark 1. Corollary 3 provide a straightforward proof of Theorem 9. Indeed,
for every m, p ∈ N we fix the family Hm,p of σ(E,F )-open half spaces H such
that diameter of Ap∩H is less than 1/m. If we apply now Corollary 3 we get
an equivalent norm ‖·‖m,p that verifies its conclusions. Thus for any sequence
(xn) and x such that

lim
n

(
2‖xn‖2m,p + 2‖x‖2m,p − ‖x+ xn‖2m,p

)
= 0,

we have
‖x− xn‖ ≤ 1/m+ δ for n ≥ nδ, (15)

whenever x ∈ Ap ∩ H for some H ∈ Hm,p. Let us take cm,p such that
‖ · ‖m,p ≤ cm,p‖ · ‖. If we set

‖x‖20 :=

∞∑
m,p=1

1

cm,p2m+p
‖x‖2n, x ∈ E,

we obtain the renorming that we are looking for. Indeed, given any sequence
(xn) and x in E such that

lim
n

(
2‖xn‖20 + 2‖x‖20 − ‖x+ xn‖20

)
= 0

by convexity arguments we have that

lim
n

(
2‖xn‖2m,p + 2‖x‖2m,p − ‖x+ xn‖2m,p

)
= 0,

for every m, p ∈ N. If we fix ε > 0 and we take m ∈ N with 1/m < ε/2, it
follows from our hypothesis that there exists p ∈ N such that x ∈ H ∩ Ap
and H ∩Ap has diameter less than 1/m, thus H ∈ Hm,p. Inequality (15) says
that ‖x− xn‖ ≤ 1/m+ ε/2 < ε for n ≥ nε/2, so the proof is over.

Let us present now our proof for the following theorem. It is a fundamental
result within the theory obtained in [78].

Theorem 11. Let E be a normed space with a norming subspace F in E∗.
If there is a sequence of sets (An) such that for every x ∈ E and every ε > 0
there is p ∈ N and a σ(E,F )-open half space H such that x ∈ H ∩Ap is not
empty and can be covered by finitely many sets of diameter less than ε, then
E admits an equivalent σ(E,F )-lower semicontinuous and LUR norm.

Our proof is based on the following Lemma together with Theorem 10.

Lemma 2. Let E be a normed space with a norming subspace F in E∗. Let
A be a subset of E, ε > 0 and H a family of σ(E,F )-open half spaces such
that for every H ∈ H the slice H ∩ A is not empty and covered by finitely
many sets of diameter less than ε. Then there is a family {ψH : H ∈ H} of
non-negative, convex and σ(E,F )-lower semicontinuous functions such that,
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given sequences (xn) ⊂ E and {Hn ∈ H : n = 1, 2, ...} with x ∈ A ∩Hn, for
every n ∈ N, it follows that

‖xn − x‖ < 3ε

for n big enough, whenever we have

lim
n

[
(
1

2
ψHn(xn)2 +

1

2
ψHn(x)2 − ψHn(

xn + x

2
)2
]

= 0.

Proof. Let us fix a basis B for the norm topology on E and choose a point
aB ∈ B for every B ∈ B. Since there is a finite set S ⊂ E such that

A ∩H ⊂ S +B(0, ε),

for fixed 0 < δ < ε, we find finite subfamilies Fδ ⊂ B of sets with diameter
less than δ so that

A ∩H ⊂ S +B(0, ε) ⊂
⋃
Fδ +B(0, ε).

For every F ∈ Fδ we set DF,ε = co(F ) + B(0, 2ε) and denote by pF δ the
Minkowski functional of the convex body

DF,ε
σ(E,F ) − aF .

Then, we define the non-negative, convex and σ(E,F )-lower semicontinuous
function ψH by the formula

ψH(x)2 =
∑
F∈Fδ

pF δ(x− aF )2, x ∈ E.

Let us observe that ψH is well defined since the sum has finite support. Let us
prove that {ψH : H ∈ H} is the family that we are looking for. Fix sequences
(xn) ⊂ E and {Hn ∈ H : n = 1, 2, ...} such that x ∈ A ∩Hn for every n ∈ N.
If we have that

lim
n

[
(
1

2
ψHn(xn)2 +

1

2
ψHn(x)2 − ψHn(

xn + x

2
)2
]

= 0,

we obtain that

lim
n

[
(2pF δn(xn − aF δn)2 + 2pF δn(x− aF δn)2 − pF δn((xn + x)− 2aF δn)2

]
= 0,

for every F δn ∈ Fδn that we might choose for n = 1, 2, . . . ; here Fδn denotes
the finite family fixed above and made up with sets of the basis B to ensure
that

A ∩Hn ⊂
⋃
Fδn +B(0, ε).
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In particular, since x ∈ A ∩Hn for every n ∈ N, we can take a set F δn ∈ Fδn
so that x ∈ F δn +B(0, ε). Then we have that

lim
n

[pF δn(xn − aF δn)− pF δn(x− aF δn)] = 0.

Since x ∈ F δn +B(0, ε) we conclude that

PF δn(x− aF δn) < 1− ε

and consequently there is n0 such that

PF δn(xn − aF δn) < 1− ε,

for n ≥ n0. We have proved then that

xn, x ∈ DF δn

for n ≥ n0, and since diam(DF δn
) ≤ 2ε+ δ we conclude that

‖xn − x‖ < 3ε

whenever n ≥ n0 and the proof is over.

We arrive now to our proof of Theorem 11:

Proof (Theorem 11). Let us consider the family Hm,p of all σ(E,F )-open
half spaces such that Ap ∩H is not empty and can be covered with finitely
many sets of diameter less than 1/m. If we apply the previous Lemma for
the family Hm,p and the set Ap, we obtain a family of non-negative, convex
and σ(E,F )-lower semicontinuous functions {ψm,pH : H ∈ Hm,p} such that if

lim
n

[1

2
ψm,pHn

(xn)2 +
1

2
ψm,pHn

(x)2 − ψm,pHn

(xn + x

2

)2]
= 0,

for sequences (xn) ⊂ E, {Hn ∈ Hm,p : n = 1, 2, ...} and x ∈ A∩Hn for every
n ∈ N, then ‖xn − x‖ ≤ 3/m for n big enough. Without loss of generality we
can and do assume that the sets Ap are bounded and therefore the families
{ψm,pH : H ∈ Hm,p} as defined in Lemma 2 are uniformly bounded on bounded
sets. Thus we can apply Theorem 10 to obtain an equivalent norm ‖ · ‖m,p
that verifies its claims 1 and 2 for any sequence (xn) and x such that

lim
n

(
2‖xn‖2m,p + 2‖x‖2m,p − ‖x+ xn‖2m,p

)
= 0.

Let us take cm,p with ‖ · ‖m,p ≤ cm,p‖ · ‖. If we set

‖x‖20 :=

∞∑
m,p=1

1

cm,p2m+p
‖x‖2n, x ∈ E,
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we obtain the renorming that we are looking for. Indeed, given any sequence
(xn) and x in E such that

lim
n

(
2‖xn‖20 + 2‖x‖20 − ‖x+ xn‖20

)
= 0,

by convexity arguments we have that

lim
n

(
2‖xn‖2m,p + 2‖x‖2m,p − ‖x+ xn‖2m,p

)
= 0, (16)

for every m, p ∈ N. If we fix ε > 0 and we take m ∈ N with 3/m < ε, and
it follows from our hypothesis that there exists p ∈ N such that x ∈ H ∩ Ap
and H ∩Ap can be covered by finitely many sets of diameter less than 1/m,
thus H ∈ Hm,p. Identity (16) and Theorem 10 imply that there is a sequence
{Hn ∈ Hm,p : n = 1, 2, ...} such that

1. There is n0 ∈ N such that x, xn ∈ Hn for n ≥ n0 if xn ∈ A.
2. limn→∞

[
1
2ψ

m,p
Hn

(xn)2 + 1
2ψ

m,p
Hn

(x)2 − ψm,pHn
(x+xn2 )2

]
= 0

Now we apply Lemma 2, used to obtain the functions ψm,pH , to deduce from
assertion 2 above that ‖x− xn‖ ≤ 3/m < ε for n big enough, so the proof is
over.

Theorem 11 has been used in [136] to prove renormings in spaces C(K)
based on the uniform structure of the compact space itself. If K ⊂ [0, 1]Γ ,
the uniform continuity of a given x ∈ C(K) can be described in terms of the
set Γ of coordinates functionals. When we have a descriptive process to do
so we will be able to produce a LUR renorming of C(K), [136]:

Theorem 12. Let K ⊂ [0, 1]Γ be a compact space such that there is a se-
quence of sets (An) in C(K) with the property, that for every x ∈ C(K) and
every ε > 0 there exist p ∈ N and a pointwise open half space H together
with a finite subset {γ1, γ2, . . . , γN} of coordinates in Γ such that x ∈ H∩Ap,
and for every y ∈ A ∩Hp there exists δy > 0 so that

|y(s)− y(t)| < ε,

whenever |s(γi)− t(γi)| < δy for i = 1, 2, . . . , N.
Then C(K) admits a pointwise lower semicontinuous equivalent LUR

norm.

The previous theorem provides a tool to prove the following result,
see [136].

Corollary 4. C(K) admits a pointwise lower semicontinuos LUR norm in
the following cases:

1. K is σ-discrete.
2. K is the w∗ dual unit ball of a dual Banach space with a dual LUR norm.
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3. K ⊂ [0, 1]P is separable, where P is a Polish space and every s ∈ K has
at most countably many discontinuities.

To establish the link between the theory of generalized metric spaces and
LUR renormings we recall the following definitions.

Definition 5. Let E be a normed space and F a norming subspace in the
dual E∗. A family B := {Bi : i ∈ I} of subsets on E is called σ(E,F )-slicely
isolated (or σ(E,F )-slicely relatively discrete) if it is a disjoint family of sets
such that for every

x ∈
⋃
{Bi : i ∈ I}

there exist a σ(E,F )-open half space H and i0 ∈ I such that

H ∩
⋃
{Bi : i ∈ I, i 6= i0} = ∅ and x ∈ Bi0 ∩H.

If H is such that it meets a finite number of elements in B we say that B
is σ(E,F )-slicely relatively locally finite.

The connection between generalized metric spaces, see [95, 97, 98], and
LUR renormings is described in the work of A. Moltó, S. Troyanski, M.
Valdivia and the second named author here, see [139, Chapter 3] and the
references therein; in this monograph the network point of view for LUR
renormings is the central one with an extensive use of Stone’s theorem. The
seminal papers by R. W. Hansell [102, 103] together with those by J. E.
Jayne, I. Namioka and C. A. Rogers [111, 110, 112] are an essential part of
this development. The connection between both theories was well established
in [140]. A main result in this area is the following one, see [139, Chapter III,
Theorem 3.1], which is equivalent to Theorem 9 when we have in mind Stone’s
theorem on the paracompactness of a metric space. Thanks to Theorem 11
we also have this locally finite version obtained in [78].

Theorem 13. Let E be a normed space and F a norming subspace in the
dual E∗. The following statements are equivalent:

1. The space E admits an equivalent σ(E,F )-lower semicontinuous and LUR
norm

2. The norm topology has a network N that can be written as N =
⋃∞
n=1Nn

where each of the families Nn is σ(E,F )- slicely relatively locally finite.
3. The norm topology has a network N that can be written as N =

⋃∞
n=1Nn

where each of the families Nn is σ(E,F )- slicely isolated of sets which are
difference of convex and σ(E,F )-closed sets.

Proof. Let us show first that 2 implies 1. If we have a network N =
⋃∞
n=1Nn

for the norm topology as described in 2, we set

Ap,q :=
⋃
{N : N ∈ Nq‖ · ‖ − diam(N) < 1/p},
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for p, q ∈ N. Given x ∈ E and ε ≥ 1/p > 0, if we take q and M ∈ Nq with
x ∈M ⊂ B(x, 1/(2p)), then by the slicely locally finite property of the family
Nq there is a σ(E,F )-open half space H with x ∈ H ∩ Ap,q and H ∩ Ap,q is
covered by finitely many members of Nq, all of them with diameter less than
or equal to 1/p ≤ ε. Theorem 11 gives us the equivalent LUR norm. The
construction to prove 1 implies 3 follows [158]: all points in the unit sphere
of a LUR norm are denting points, then for ε > 0 fixed we will have a family
of σ(E,F )-open half spaces Hε, covering the unit sphere SE of our σ(E,F )-
lower semicontinuous and LUR norm, and such that ‖·‖−diam(H∩BE) < ε
for every H ∈ Hε. Let us choose a well order relation for the elements in Hε
and let us write

Hε = {Hγ : γ < Γ}

where we denote Hγ = {x ∈ E : fγ(x) > λγ}, fγ ∈ BE∗ ∩ F .
We set

Mγ := Hγ ∩BE \
(⋃
{Hβ ∩BE : β < γ}

)
,

for every γ < Γ . Let us define the sets Mn
γ := {x ∈Mγ : fγ(x) ≥ λγ + 1/n}.

It follows that, when x ∈Mn
γ and y ∈Mn

β for γ 6= β then we have either

fγ(x)− fγ(y) ≥ 1/n ( when γ < β), (17)

or

fβ(y)− fβ(x) ≥ 1/n ( when β < γ). (18)

In in any case

‖x− y‖ ≥ 1/n (19)

because the linear functionals fγ and fβ are assumed to be in BE∗ ∩F . If we
fix x ∈ SE the LUR condition of the norm gives a slice

G = {y ∈ BE : g(y) > µ},

with g(x) > µ, g ∈ BE∗ ∩F and ‖ · ‖−diam(G) < 1/n, thus G meets at most
one member of the family of sets {Mn

γ : γ < Γ} by(19).
These families of closed and convex subsets of E cover the unit sphere

SE and they suffice to describe the network there. To describe the network
for the whole space E we need to make differences of closed convex sets.
To this end, take x ∈ E \ {0}, and y := x/‖x‖. If we take γ0 < Γ so that
y ∈Mγ0 and n big enough to have fγ0(y) > λγ0 +1/n, we will have a rational
number 0 < µx < 1, close enough to one, such that fγ0(µxy) > λγ0 + 1/n.
The LUR condition of the norm tells us that there is δx > 0 such that
‖(y + z)/2‖ > 1− δx implies that ‖y − z‖ < 1/n whenever ‖z‖ ≤ 1.

Let us take a rational number ρ such that
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ρ > ‖x‖ > ρ(1− δx) and ρµx < ‖x‖.

Then x ∈ ρMn
γ0 and ‖ · ‖ − diam(ρMn

γ0) < ρε. Moreover, if we choose gx ∈
BE∗ ∩F such that gx(x) > ρ(1− δx) then, for any z ∈

⋃
{ρMn

γ : γ < Γ} with
gx(z) > ρ(1− δx), we will have

gx(z/ρ) > 1− δx and gx(y) > ρ(1− δx)/‖x‖ > 1− δx.

Thus
∥∥∥y+z/ρ2

∥∥∥ > 1 − δx, and we have that ‖y − z/ρ‖ < 1/n, and therefore

γ = γ0. Consequently, if we consider sets Mn,p
γ := {x ∈Mn

γ ∩ SE : δx > 1/p}
and we take the family

{ρMn,p
γ \ ρ(1− 1/p)BE : γ < Γ},

for rational numbers ρ and integers p, n fixed, we form an slicely isolated
family of sets. All together, with the same construction done for every ε > 0
we obtain a family⋃{

{ρMn,p
γ (ε) \ ρ(1− 1/p)BE : γ < Γ} : ρ ∈ Q, n, p ∈ N, ε > 0

}
which is a network for the norm topology. Taking ε = 1/r, r = 1, 2, ... we
obtain the network for the norm that we are looking for. The fact that 3
implies 2 is just by definition and the proof is over.

Remark 2. The same construction can be adapted to provide a σ(E,F )-slicely
isolated network for the σ(E,F )-topology when the given norm ‖ · ‖ on E
only verifies that σ(E,F )− limn xn = x whenever we have

lim
n

(2‖x‖2 + 2‖xn‖2 − ‖x+ xn‖2) = 0,

i.e. when ‖·‖ is a σ(E,F )-LUR norm, see the Main Lemma 3.19 and Theorem
3.21 in Section 3.3 of [139]. The existence of such a network was first described
in [140]. Stone’s theorem plays again an important role for a deep knowledge
of the connection with LUR-renormings on Banach spaces with a w-LUR
norm, as well as, dual LUR-renorming on the dual of an Asplund space with
a w∗-LUR norm; note that the unit sphere in this class of spaces belongs to
the generalized metric space class of Moore spaces, see [95], for the w or the
w∗ topology, respectively, see [140, 139].

The following result that answered a long standing open problem shows
the way to construct a slicely isolated network for the norm topology from a
slicely isolated network in the weak topology.

Theorem 14 ([140]). A normed space E has a σ(E,E∗)-LUR norm if, and
only if, it has an equivalent LUR norm

The proof of this result has a key point in the following:
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Proposition 3. Let E be a normed space and d any metric on it generating
a topology finer than the weak topology. For every norm discrete family of
sets

{Dγ : γ ∈ Γ},

each Dγ can be decomposed as Dγ =
⋃∞
n=1D

n
γ in such a way that each family

{Dn
γ : γ ∈ Γ}, n ∈ N, is discrete for the d-topology.

Proof. By Corollary 2.36 and Theorem 2.28 in [139] the family {Dγ : γ ∈
Γ} can be decomposed as Dγ =

⋃∞
n Dn

γ where families {Dn
γ : γ ∈ Γ} are

relatively discrete in their union for the metric d and fixed n ∈ N. The families{
Dn,m
γ := {x ∈ Dn

γ : d(x, y) ≥ 1/m for every y /∈ Dn
γ } : γ ∈ Γ

}
are d-discrete for fixed n,m ∈ N. Since for every γ ∈ Γ we have Dγ =⋃∞
n,m=1D

n,m
γ the proof is over.

A sketch for the proof of Theorem 14 now follows. The network constructed
for the weak topology of E based on Remark 2 also provides us with a metric
d on E, generating a topology finer than the weak topology, and such that
there is a sequence {An : n ∈ N} of subsets of E satisfying that the family of
sets

{An ∩H : H a weak open half space , n ∈ N}

is a network for the topology generated by d, see [141, Theorem 3.21]. Let
us take a σ-discrete basis B =

⋃∞
n=1 Bn for the norm topology of E. Every

discrete family Bn can be decomposed by Proposition 3 in countably many
families Bn,m where each of them must be d-discrete. Thus we see that

Cn,m.p =
⋃
Bn,m ∩Ap

is a sequence of subsets of E such that

{Cn,m,p ∩H : H a weak open half space , n,m, p ∈ N}

is a network for the norm topology of E and Theorem 9 finishes the proof.

In dual Asplund spaces we have the following result of M. Raja, [166]:

Theorem 15. The dual Banach space E∗ of an Asplund space E has a
σ(E,E∗)-LUR norm if, and only if, it has an equivalent dual LUR norm

A proof of this result is given in [139, Corollary 3.24].

The previous constructions finally lead to characterizations through the
basis of the norm topology, [157].

Theorem 16 (LUR-Basis). Let E be a normed space with a norming sub-
space F ⊂ E∗. E admits an equivalent σ(E,F )-lower semicontinuous and
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LUR norm if, and only if, the norm topology admits a basis B =
⋃∞
n=1 Bn

such that every one of the families Bn is σ(E,F )-slicely isolated and norm
discrete.

The above Theorem is a great culmination after years of research on the
interplay between Topology and Renorming Theory. Indeed, relative discret-
ness with slices is the necessary and sufficient condition to be added to norm
discretness in the Bing metrization Theorem, [65, Theorem 4.4.8], in order
to have an equivalent LUR-norm. For a dual space E∗, the w∗-compactness
of the unit ball plays its role and the result is valid with w∗-relatively dis-
creteness instead of slicely isolatedness.

Theorem 17 (LUR*-Basis). Let E∗ be dual Banach space. E∗ admits an
equivalent dual and LUR norm if, and only if, the norm topology admits a
basis B =

⋃∞
n=1 Bn such that each family Bn is relatively weak∗-discrete in

its union and norm discrete on the whole space E∗.

Proof. Dual LUR-renorming on E∗ is equivalent to have a sequence (An)
of subsets of E∗ such that {An ∩W : W is w∗ − open} is a network of the
norm topology by Raja’s Theorem, [163]. If we have a basis B =

⋃∞
n=1 Bn

such that each family Bn is relatively weak∗-discrete in its union we set
An :=

⋃
{B : B ∈ Bn} and we have the network condition satisfied. The

converse implication follows from Theorem 16.

3.2 Strictly convex renorming

A norm ‖·‖ in a vector space E is said to be strictly convex if the unit sphere
doest not contain non trivial segments, i.e.∥∥∥∥x+ y

2

∥∥∥∥ < 1 whenever ‖x‖ = ‖y‖ = 1 and x 6= y.

A norm ‖ · ‖ is strictly convex if, and only if[
2‖x‖2 + 2‖y‖2 − ‖x+ y‖2 = 0

]
implies x = y.

The topological property strongly connected with strictly convex norms is
the following one, introduced in [159].

Definition 6. We say that a topological space (X, τ) is a T0(∗)-space, (resp.
is an T1(∗)-space) if there are families of open sets Wn , n = 1, 2, . . . , such
that for x 6= y there are some p ∈ N and either we have y /∈ Star(x,Wp) 6= ∅
or x /∈ Star(y,Wp) 6= ∅ (resp. x /∈ Star(y,Wp 6= ∅)).

For a family F of subsets of X our definition of Star is as follows:
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Star(x,F) :=
⋃
{F : x ∈ F ∈ F}.

When a norm in (E, ‖ · ‖) is strictly convex the weak topology is T0(∗).
Indeed, {E \ ρBE : ρ ∈ Q} is a countable family of weak open sets that
T0(∗)-separates any pair of points x, y with ‖x‖ 6= ‖y‖. Moreover, if two
different points x, y ∈ E are such that ‖x‖ = ‖y‖ = r, we can choose n ∈ N
such that for any g ∈ BE∗ we have either g(x) ≤ r − 1/n or g(y) ≤ r − 1/n.
Indeed, if not there is a sequence gn ∈ BE∗ such that

gn(x) > r − 1/n, gn(y) > r − 1/n, n = 1, 2, . . .

If g is a w∗ cluster point of the sequence (gn), then we have g(x) = g(y) = r
and therefore

g

(
x+ y

2

)
= r and

∥∥∥∥x+ y

2

∥∥∥∥ = r,

a contradiction with the strict convexity of the given norm. Thus the families
Hrn of all open half spaces of the form H = {x ∈ E : g(x) > r − 1/n}
for g ∈ BE∗ verifies the separation property T0(∗) for the weak topology on
E. More important is the fact that the converse is true and it provides an
answer to an old question of Lindenstrauss, see [133, Question 18] and [159,
Theorem 2.7]:

Theorem 18 (Strictly Convex Renorming). Let E be a normed space
with a norming subspace F ⊂ E∗. Then E admits an equivalent σ(E,F )-lower
semicontinuous and strictly convex norm if, and only if, there are families
Hn, n = 1, 2, . . . , of σ(E,F )-open half spaces that T0(∗) separates points of
E.

Proof. Let us fix n,m ∈ N and apply the Slice Localization Corollary 10 to
the family of slices given by {mBE ∩ H : H ∈ Hn} to get the equivalent
σ(E,F )-lower semicontinuous norm ‖ · ‖n,m ≤ cn,m‖ · ‖. If we set

‖| · ‖|2 :=

∞∑
n,m=1

1

cn,m2n+m
‖ · ‖2n,m,

we obtain the equivalent strictly convex norm we are looking for. Indeed, the
condition ∥∥∥∥∣∣∣∣x+ y

2

∥∥∥∥∣∣∣∣ = ‖|x‖| = ‖|y‖|,

implies that
2‖|x‖|2 + 2‖|y‖|2 − ‖|x+ y‖|2 = 0,

and thus
2‖x‖2m,n + 2‖y‖2m,n − ‖x+ y‖m,n = 0,
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for every m,n ∈ N. The Slice Localization Theorem allows us to find some
Hn ∈ Hn such that x, y ∈ Hn for every n ∈ N if both x and y belong to mBE ;
that is a contradiction with the T0(∗) separation assumed by hypothesis.

For a scattered compact space K the previous theorem provides a dual
strictly convex renorming characterization for C(K)∗ in terms of the topol-
ogy of the compact space itself only, leading then to a result in the vein of
Lindenstrauss question cited above.

Theorem 19 (Scattered case). Let K be a scattered compact space. Then
the dual space C(K)∗ admits a strictly convex dual (resp. LUR) norm if,
and only if, K is a T0(∗)-space, (resp. σ-discrete).

The result above corresponds with Theorem 3.1 in [159]. Raja’s Corollary
4.4 in [166], is the LUR case: in this case K must be σ-discrete and compact.
Another result in the same line says that a compact space K has a σ-isolated
network, i.e. is descriptive, if, and only if, the dual space C(K)∗ admits a
w∗-LUR dual equivalent norm, [167, Theorem 1.3].

When the T1(∗) separation property is stressed asking for a network con-
dition we arrive to the following result, see [100]:

Theorem 20. Let E be a normed space with a norming subspace F ⊂ E∗.
The following statements are equivalent:

1. E admits an equivalent σ(E,F )-lower semicontinuous and σ(E,F )-LUR
norm.

2. σ(E,F ) admits a network N =
⋃∞
n=1Nn where Nn is σ(E,F )-slicely iso-

lated for every n ∈ N.
3. There are families Hn of σ(E,F )-open half spaces and non void sets Ap ⊂
E such that

{Star(x,Hn) ∩Ap : n, p ∈ N}

is a network of the σ(E,F )-topology on E \ {0}.

Proof. 1⇒ 2 A σ(E,F )-lower semicontinuous and σ(E,F )-LUR norm gives
us a σ(E,F )-slicely isolated network N =

⋃∞
n=1Nn as observed in Remark 2,

[140, 139, 167].
2 ⇒ 3 If we take An =

⋃
Nn and Hn is the family of σ(E,F )-open half

spaces meeting at most one element of Nn, we have that

{Star(x,Hn) ∩An : x ∈ An}

is a refinement of Nn, from where the network condition follows.
3 ⇒ 1 Let us fix n, p ∈ N and apply the Slice Localization Theorem 3

to the family of slices given by {An ∩ H : H ∈ Hp} to get an equivalent
σ(E,F )-lower semicontinuous norm ‖ · ‖n,p ≤ cn,p‖ · ‖. If we set
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‖| · ‖|2 :=

∞∑
n,p=1

1

cn,p2n+p
‖ · ‖2n,p

we obtain the equivalent σ(E,F )-LUR norm we are looking for. Indeed, in
case we have

lim
n

(2‖|xn‖|2 + 2‖|x‖|2 − ‖|x+ xn‖|2) = 0

standard convex arguments imply that

lim
n

(2‖xn‖2m,p + 2‖x‖2m,p − ‖x+ xn‖2m,p) = 0,

for every m, p ∈ N. Let us fix fi ∈ F ∩BE∗ , ε/2 > δ > 0 and

W = {y ∈ E : |fi(y)− fi(x)| ≤ ε+ δ, i = 1, 2, . . . ,m}.

By definition of network there are m, p ∈ N and such that

x ∈ Star(x,Hm) ∩Ap ⊂ {y ∈ E : |fi(y)− fi(x)| < ε/2, i = 1, 2, . . . ,m}.

Since
lim
n

(2‖xn‖2m,p + 2‖x‖2m,p − ‖x+ xn‖2m,p) = 0,

the Slice Localization Corollary 10 tells us that there is a sequence of open
half spaces

{Hn ∈ H : n = 1, 2, ...} ⊂ Hm
such that:

1. There is n0 ∈ N such that x ∈ Hn for n ≥ n0.
2. There is some nδ such that

x, xn ∈ (co(Ap ∩Hn) +B(0, δ))
σ(E,F )

,

for every n ≥ nδ.

Since

Ap∩Hn ⊂ Star(x,Hm)∩Ap ⊂ {y ∈ E : |fi(y)−fi(x)| < ε/2, i = 1, 2, . . . ,m},

we have that
(
co(Ap ∩Hn) +B(0, δ)

)
⊂W for n big enough. Finally

xn ∈ (co(Ap ∩Hn) +B(0, δ))
σ(E,F )

⊂W

for n big enough and the proof is over.
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3.3 Some notes and open problems

Networks have become an essential tool in renorming theory of Banach spaces.
As a set theoretical tool networks have allowed to go farther than traditional
decomposition methods based on system of coordinates on the space. Net-
works have been a scalpel where previous machinery did not work at all: a
good example of this is the way in which R. Haydon proved that a Banach
space E admits an equivalent LUR norm if its dual E∗ has a dual LUR
norm, [106]. Haydon approach goes over the structure of compact spaces liv-
ing in the dual space (E∗, w∗) and makes use of networks together with the
fact that E is an Asplund space. From a topological point of view an As-
plund space E is nothing else than a Banach space such that its dual space
E∗ is a Lindelöf space for the topology γ(E∗, E) of uniform convergence on
separable bounded subsets of E, [153]: recall that w∗-compact spaces in such
dual spaces are called Radon-Nikodým compacta, [145, 146]. More references
for the topology γ can be found in Section 5.1.

A compact topological space K is called descriptive if it has a σ-isolated
(i.e. relatively discrete) network, Namioka-Phelps if it is homeomorphic to
a w∗-compact subset of a dual Banach space with a dual LUR-norm. M.
Raja showed in [166] that a compact space K is descriptive if, and only if,
C(K)∗ admits an equivalent dual w∗-LUR norm. Moreover, K is descriptive
and scattered if, and only if, C(K)∗ admits an equivalent dual LUR norm,
and if, and only if, K is σ-discrete, see [166]. Even more, a compact space
K is Namioka-Phelps if, and only if, it is descriptive and Radon-Nykodym,
see [166].

A compact spaceK is called Gruenhage compact, [96], if there is a sequence
(Un)∞n=1 of open sets such that for two different elements x, y ∈ K there is
p ∈ N and U ∈ Up such that

1. U ∩ {x, y} is a singleton;
2. either x lies in only finitely many V ∈ Up, or y lies in only finitely many
V ∈ Up.
Descriptive compact spaces are Gruenhage compacta. When K is descrip-

tive (resp. Gruenhage) the w∗ dual unit ball BC(K)∗ is descriptive too (resp.
Gruenhage). Gruenhage compact spaces are T0(∗) but they are different
classes of compact spaces, [159, 177]. If a Banach space E has a T0(∗) dual
unit ball with the w∗-topology, we conjecture that E∗ admits an equivalent
dual strictly convex norm, see[73]. A main question that remains open is the
following:

Question 5. If K is a compact space with T0(∗) separation property, is the
same true for BC(K)∗ with its w∗-topology?

A recent survey for C(K)-renormings can be found in the paper [178].

Network characterizations of classical classes of compact spaces coming
form Functional Analysis, such as Eberlein, Talagrand or Gul’ko compacta,
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have been obtained, see [94, 77, 67]. Some of these characterizations are given
in terms of covering properties of K2 \ ∆ related with σ-metacompactness.
The following question seems to be open:

Question 6. Is there a network characterization of Corson compact spaces?

Concerning renorming properties remaining open questions where new
topological methods could be needed are, for instance:

Question 7. If K is a descriptive compact space, is there an equivalent strictly
convex norm on C(K)?

Question 8. If K is a compact space such that C(K) admits an equivalent
Frechet differentiable norm, is there an equivalent LUR norm on it?

Chapter 6 in [141] contains around 30 open problems related with the
material collected in this paper for any interested reader.

4 Recent views about pointwise and weak compactness

It is commonly accepted that the study of compactness in Banach
spaces, or more generally in functional analysis, is of great importance
because of its applicability. Here are two well known examples that any
reader might come up with. First, when dealing with normal operators
on Hilbert spaces, the compactness of the operator ensures its diagonal-
ization than can be used to solve some concrete differential equations.
Second, for spaces C(K), their pointwise compact subsets are sequen-
tially compact, what with the help of Lebesgue Convergence and Riesz
theorems is used to prove that weakly compact subsets of C(K) are pre-
cisely those that are uniformly bounded and pointwise compact: note
that sequential behaviour is needed here to be able to use Lebesgue
Convergence theorem.

Our aim in this Section is double. On the one hand, Subsection 4.1
is devoted to present a recent quantitative approach to classical com-
pactness results. This approach gives an extra insight to the classical
results as well as triggers a number of open questions in different excit-
ing research branches. We will give, for instance, quantitative versions of
the angelicity of spaces Cp(X) for X Lindelöf Σ-space, Grothendieck’s
characterization of weak compactness in spaces C(K) and also of the
Eberlein-Šmulian and Krein-Šmulian theorems. The above results spe-
cialized in Banach spaces lead to several equivalent measures of non-
weak compactness. We also propose a method to measure the distance
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from a function f ∈ RX to B1(X), that allows us to obtain, when
X is Polish, a quantitative version of the well known Rosenthal’s re-
sult stating that in B1(X) the pointwise relatively countably compact
sets are pointwise compact. On the other hand, Subsection 4.2 contains
quite recent results about the celebrated James’ compactness theorem
motivated by their applications to financial mathematics.

The state of the art of the topics presented in this section can be
found, amongst others, in the references [2, 3, 4, 5, 32, 33, 42, 69, 90,
88, 91, 89]

4.1 A quantitative approach to compactness

In order to fix ideas, let us give an example of what we understand as a
quantitative approach to the study of compactness. For a compact Hausdorff
space K let us consider C(K) embedded in RK , and let d be the metric
of uniform convergence in RK . Let H be a uniformly bounded subset of

RK . Observe that by Tychonoff’s theorem H
RK

is τp-compact and there-

fore, for H to being τp-relatively compact in C(K) we just need that H
RK

-�

C(K)

RK

H

d̂

co(H)
τp

ρ̂
-�

Fig. 1 Quantities and compactness

remains inside C(K). If we write d̂ to

denote the worst distance of H
RK

to
C(K) as defined by (1), i.e.

d̂ := sup
{
d(f, C(K)) : f ∈ HRK}

,

then d̂ = 0 if, and only, if H
RK

is con-
tained in C(K). It is natural to ask

about formulas to compute d, d̂ and
useful estimates involving d̂ that are
equivalent to qualitative properties of
the sets H’s. As we will see these for-
mulas and estimates can be given and,
for instance, one can prove inequalities
of the kind

d̂ ≤ ρ̂ ≤ 5d̂, (20)

where ρ̂ is the worst distance from the closed convex hull co(H)
RK

to C(K)
– see Figure 1. A moment of thought will suffice the reader to understand
that inequalities (20) imply Krein-Šmulian theorem as we will explain later.

The quantitative approach to the study of compactness that we propose
can be done indeed in more general situations than those of spases C(K)
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as explained in the pages that follow. In general the distance to spaces of
continuous functions is given by the formula (21) below and illustrated by
Figure 2.

Theorem 21. Let X be a normal space. If f ∈ RX , then

d(f, C(X)) =
1

2
osc(f) (21)

where

osc(f) = sup
x∈X

osc(f, x) = sup
x∈X

inf{diam f(U) : U ⊂ X open, x ∈ U}.

A proof for the above result, when X is a paracompact space and the func-
tions involved are assumed to be bounded, can be found in [22, Proposition
1.18]. In this proof, paracompactness of X and boundedness of the func-
tions are used because Michael’s selection theorem, see [138], is applied to
prove, as an intermediate step, a particular case of the following result:

Theorem 22 ([109, Theorem 12.16]). Let X be a normal space and let
f1 ≤ f2 be two real functions on X such that f1 is upper semicontinuous
and f2 is lower semicontinuous. Then, there exists a continuous function
f ∈ C(X) such that f1(x) ≤ f(x) ≤ f2(x) for every x ∈ X.

x0

6

?

1
2 osc(f)

osc(f)

6

?

X = [0, 1]

f
[

]

[

)

g

h

Fig. 2 Distance to C(X)

It was indeed pointed out in
the remarks about Proposition 1.18
in [22] that Theorem 21 holds true
for normal spaces and the fact that
the boundedness of the functions
involved does not make a real dif-
ference can be read in [7]. It should
be noted also that the validity of
Formula (21) characterizes normal-
ity of the space X, as the reader
can easily check, see [7].

In the following definition we in-
troduce a quantity that measures
how far from C(X) can go the clus-

ter points of sequences in sets H ⊂ RX .

Definition 7. Let X be a topological space and (Z, d) a metric space. If H
is a subset ZX we define

ck(H) := sup
(fn)⊂H

d(clustRX (fn), C(X,Z)).

Our convention is that inf ∅ := +∞.
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The following result links the quantity ck(H) with the worst distance d̂
defined according to formula (1) by

d̂(H
ZX

, C(X,Z)) := sup{d(f, C(X,Z)) : f ∈ HZX}.

Theorem 23 ([3]). Let X be a Lindelöf Σ-space, (Z, d) a separable metric
space and H a relatively compact subset of the space (ZX , τp). Then

ck(H)≤d̂(H
ZX

, C(X,Z))≤3 ck(H) + 2d̂(H,C(X,Z))≤5 ck(H).

Note that this result says that the worst distance to C(X,Z) of cluster
points of sequences in H controls the worst distance to C(X,Z) of limits
of converging nets in H. Observe that if H ⊂ C(X,Z) is a τp-relatively
countably compact subset of C(X,Z) then ck(H) = 0 and therefore one has

d̂(H
ZX

, C(X,Z)) = 0. Consequently, the inequalities in Theorem 23 are a
quantitative counterpart of the result saying that in the above conditions any
subset H of C(X,Z) that is τp-relatively countably compact in C(X,Z) is
τp-relatively compact.

Theorem 23 is based in the following one that is, in spirit, the quantitative
counterpart of Theorem 1 in [152].

Theorem 24 (Quantitative angelicity [3]). Let X be a Lindelöf Σ-space,
(Z, d) a separable metric space and H a relatively compact subset of the space

(ZX , τp). Then, for any f ∈ HZX

there exists a sequence (fn) in H such that

sup
x∈X

d(g(x), f(x))
(a)

≤ 2 ck(H) + 2d̂(H,C(X,Z))
(b)

≤ 4 ck(H) (22)

for any cluster point g of (fn) in ZX .

The proof of Theorem 24 uses as an important tool γK(H) as defined
below. Whereas (b) in Equation 22 is obvious, inequality (a) is proved by
establishing a rather involved lemma stating that with the notation above

sup
x∈X

d(g(x), f(x)) ≤ sup
K⊂X, compact

γ|K(H),

and then proving that

sup
K⊂X, compact

γ|K(H) ≤ 2 ck(H) + 2d̂(H,C(X,Z)).

Definition 8. Let X be a topological space and (Z, d) a metric space. If H
is a subset ZX and K a subset of X we write

γK(H) := sup
{
d(lim

n
lim
m
fm(xn), lim

m
lim
n
fm(xn)) : (fm) ⊂ H, (xn) ⊂ K

}
,
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assuming the involved limits exist.

Note that γK(H) = 0 means in the language of [92] that H interchanges
limits with K.

Corollary 5 ([152]). Let X be a Lindelöf Σ-space. Then Cp(X) is an angelic
space.

As of now the readers should be able to deduce by themselves how Corol-
lary 5 follows from Theorem 23 and Theorem 24, whose combination is, there-
fore, a quantitative version of the angelicity of spaces Cp(X).

We should stress that the previous results can be proved in the more gen-
eral setting of spaces X being web-compact, quasi-Souslin, etc., see [3, 6, 152].
From the angelicity of these Cp(X) spaces non-trivial applications can be ob-
tained, as for instance, regarding the study of compactness for the weak topol-
ogy in locally convex spaces. Indeed, being aware of the fact that if (E,T) is
a locally convex space then (E,w) embeds as a subspace of Cp(E

′, σ(E′, E)),
if Cp(E

′, σ(E′, E)) is angelic, then its subspace (E,w) is also angelic. This
is what happens when (E,T) is a locally convex space in class G, see Defini-
tion 4 and [40, 152]. Consequently, from the above and Theorem 2 it follows,
as explained in [40], that “dealing with metrizable spaces or their strong du-
als, and carrying out any of the usual operations of countable type with them,
we ever obtain spaces with their precompact subsets metrizable, and they even
have a good behaviour for the weak topology: they are weakly angelic and their
weakly compact subsets are metrizable if, and only if, they are separable”. A
good idea of the impact that these techniques have had and still have in the
theory of locally convex spaces can be guessed from their many applications
over the years: see the the recent book [117] for a comprehensive collection
of these applications.

If we deal with a compact space X = K instead of a Lindelöf Σ-space in
the previous results, some of the constants involved in the inequalities can
be sharpened and other applications obtained.

Theorem 25 ([3, 33]). Let K be a compact space and let H be a uniformly
bounded subset of C(K). We have

ck(H)≤d̂(H
RK
, C(K))≤γK(H)≤2 ck(H).

and for any f ∈ HRK
, there is a sequence (fn) in H such that

sup
x∈K
|g(x)− f(x)| ≤ 2 ck(H)

for any cluster point g of (fn) in RK .

The following theorem is a quantitative version of the Krein-Šmulian the-
orem: see next section for its consequences in Banach spaces.
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Theorem 26 ([33]). Let K be a compact topological space and let H be a
uniformly bounded subset of RK . Then

γK(H) = γK(co(H)) (23)

and as a consequence we obtain that if H ⊂ C(K) we have that

d̂(co(H)
RK
, C(K)) ≤ 2d̂(H

RK
, C(K)). (24)

In general, for H ⊂ RK we have that

d̂(co(H)
RK
, C(K)) ≤ 5d̂(H

RK
, C(K)). (25)

The equality (23) is rather involved: the proof offered in [33] uses some ideas
from the proof of the Krein-Šmulian theorem in Kelley-Namioka’s book [120,
Ch 5. Sec. 17]. We note that a version for Banach spaces of the above result,
less general than the one here, was proved first in[69] using Ptak’s combina-
torial lemma, see [127, §24.4.6]. Inequality (24) easily follows from (23) and
Theorem 25:

d̂(co(H)
RK
, C(K)) ≤ γK(co(H)) = γK(H) ≤ 2 ck(H) ≤ 2d̂(H

RK
, C(K)).

When H ⊂ RK , we naturally approximate H by a set in C(K), then use
inequality (24) and, after playing some games with the sets, and 5 in (25)
appears as 5 = 2× 2 + 1: see [33] for details.

We refer to the literature referenced in this section for the details about
sharpeness of the constant involved in the presented inequalities.

4.1.1 Distance to Banach spaces

We can export the results obtained when using distances to spaces of con-
tinuous functions to the context of Banach spaces. The tool to do so is the
following result that has been established in [33].

Theorem 27 (Quantitative Grothendieck’s completeness theorem).
Let E be a Banach space and let BE∗ be the closed unit ball in the dual E∗

endowed with the w∗-topology. Let i : E → E∗∗ and j : E∗∗ → `∞(BE∗) be
the canonical embeddings. Then, for every x∗∗ ∈ E∗∗ we have

d(x∗∗, i(E)) = d(j(x∗∗), C(BE∗)) .

Observe that Grothendieck’s completeness theorem, [127, §21.9.4], when
specialized in Banach spaces, says that j(x∗∗) is w∗-continuous when re-
stricted to BE∗ (i.e. d(j(x∗∗), C(BE∗)) = 0) implies x∗∗ ∈ i(E) (i.e.
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d(x∗∗, i(E)) = 0). Therefore Theorem 27 can certainly be looked at as a
quantitative version of Grothendieck’s completeness theorem.

If E is Banach space and H is a bounded subset of E and we write H
w∗

for the w∗-closure of H in E∗∗, we can measure how far H is from being
w-relatively compact in E using

k(H) := d̂(H
w∗

, E) = sup
y∈Hw

∗
inf
x∈E
‖y − x‖. (26)

If we consider `∞(BE∗) as a subspace of (RBE∗ , τp), then the natural em-
bedding j : (E∗∗, w∗) → (`∞(BE∗), τp) is continuous. For a bounded set

H ⊂ E∗∗, the closure H
w∗

is w∗-compact and therefore the continuity of j

gives us that j(H)
τp

= j(H
w∗

). So according with Theorem 27 we have that

d̂(j(H)
τp
, C(BE∗ , w∗)) = d̂(j(H

w∗

), C(BE∗ , w∗))

= sup
z∈Hw

∗
d(j(z), C(BE∗ , w∗))

= sup
z∈Hw

∗
d(z, i(E)) = d̂(H

w∗

, i(E)). (27)

Similarly we have

d(j(H)
τp
, C(BE∗ , w∗)) = d(H

w∗

, i(E)). (28)

In what follows we will no make distinction between E and i(E). Please
note that according to the previous definitions a bounded subset H of E
is weakly relatively compact in E if, and only if, k(H) = 0. Therefore it
is natural to refer to this k(H) as a measure of weak noncompactness of
H, meaning by that, that the farther k(H) is from zero the farther is H
from being weakly relatively compact in E. We refer the interested reader to
[21, 128], where measures of weak noncompactness are axiomatically defined.
A measure of weak noncompactness is a non-negative function µ defined on
the family ME of bounded subsets of a Banach space E, with the following
properties:

(i) µ(A) = 0 if, and only if, A is weakly relatively compact in E,
(ii) if A ⊂ B then µ(A) ≤ µ(B),
(iii) µ(co(A)) = µ(A),
(iv) µ(A ∪B) = max{µ(A), µ(B)},
(v) µ(A+B) ≤ µ(A) + µ(B),

(vi) µ(λA) = |λ|µ(A), λ ∈ R.

Beyond the formalities we will refer in general to measures of weak non-
compactness to quantities as above fulfilling property (i), and sometimes
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a few of the others. These measures of noncompactness or weak noncom-
pactness have been successfully applied to the study of compactness, oper-
ator theory, differential equations and integral equations, see for instance
[2, 4, 18, 24, 32, 33, 69, 88, 90, 91, 129, 128, 130].

The following definition collects several measures of weak noncompactness
that appeared in the aforementioned literature.

Definition 9. Given a bounded subset H of a Banach space E we define:

ω(H) := inf {ε > 0 : H ⊂ Kε + εBE and Kε ⊂ E is w-compact} ,

γ(H) := sup
{
| lim
n

lim
m
x∗m(xn)− lim

m
lim
n
x∗m(xn)| : (x∗m) ⊂ BE∗ , (xn) ⊂ H

}
,

assuming the involved limits exist,

ckE(H) := sup
(xn)⊂H

d
(
clust(E∗∗,w∗)(xn), E

)
,

k(H) := d̂(H
w∗

, E) = sup
x∗∗∈Hw

∗
d(x∗∗, E),

JaE(H) = inf{ε > 0 : for every x∗ ∈ E∗, there exists x∗∗ ∈ Hw∗

such that x∗∗(x∗) = SH(x∗) and d(x∗∗, E) ≤ ε}.

and
σ(H) := sup

(x∗
n)⊂BE∗

d‖·‖H
(
clust(E∗,w∗)(x

∗
n), co{x∗n : n ∈ N}

)
.

where d‖·‖H (·, ·) stands for the distance between two sets associated to the
seminorm ‖x∗‖H := supx∈H |x∗(x)|, x∗ ∈ E∗.

Note that with the proper identifications γ(H) := γBE∗ (H) where the
latter has the meaning of Definition 8. The function ω was introduced by
de Blasi [24] as a measure of weak noncompactness that is somehow the
counterpart for the weak topology of the classical Kuratowski measure of
norm-noncompactness. Properties for γ can be found in [4, 18, 33, 69, 128]
and for ckE in [4] –note that ckE is denoted as ck in that paper. The quantity
k has been used in [4, 33, 69, 90]. A thorough study for JaE has been done
in [32] to prove, amongst other things, a quantitative version of James’ weak
compactness theorem, whose statement is presented as part of Theorem 28
bellow. Theorem 28 tells us that all classical approaches used so far to study
weak compactness in Banach spaces (Tychonoff’s theorem, Eberlein-Šmulian’s
theorem, Eberlein-Grothendieck double-limit criterion and James’ theorem)
are qualitatively and quantitatively equivalent. The quantity σ, inspired by
Simons’ inequality, has been very recently introduced in [42, Section 3].

Theorem 28 (Quantitative characterizations of weak compactness).
For any bounded subset H of a Banach space E the following inequalities hold
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true:
σ(H) ≤ 2ω(H)

≤ ≤

1
2γ(H) ≤ JaE(H) ≤ ckE(H) ≤ k(H) ≤ γ(H).

(29)

Moreover for any x∗∗ ∈ Hw∗

, there exists a sequence (xn) in H such that

‖x∗∗ − y∗∗‖ ≤ γ(H) (30)

for any w∗-cluster point y∗∗ of (xn) in E∗∗.
Furthermore, H is weakly relatively compact in E if, and only if, one

(equivalently, all) of the numbers γ(H), JaE(H), ckE(H), k(H), σ(H) and
ω(H) is zero.

A full proof with references to prior work for the inequalities

1

2
γ(H) ≤ ckE(H) ≤ k(H) ≤ γ(H) ≤ 2ω(H)

and (30) can be found in [4, Theorem 2.3], see also [69, 90]. The inequalities

1

2
γ(H) ≤ JaE(H) ≤ ckE(H)

are established in Theorem 3.1 and Proposition 2.2 of [32] -this is a quantita-
tive version of James’ compactness theorem. For a proof of ckE(H) ≤ σ(H)
and σ(H) ≤ 2ω(H) we refer to [42, Theorem 3.7]. The fact that ω(H) = 0
if, and only if, H is weakly relatively compact in E follows from a well-
known result of Grothendieck, see [54, Lemma 2, p. 227]. Clearly, k(H) = 0

if, and only if, H
w∗

⊂ E, that is equivalent to the fact that H is weakly
relatively compact by Tychonoff’s theorem. Keeping in mind the last con-
siderations and the chain of inequalities (29), one (equivalently, all) of the
numbers γ(H), JaE(H), ckE(H), k(H), σ(H) and ω(H) is zero if, and only if,
H is weakly relatively compact.

Let us note that the inequalities

ckE(H) ≤ k(H) ≤ 2 ckE(H),

that follow from (29), offer a quantitative version of the Eberlein’s theorem
saying that weakly relatively countably compact sets in Banach spaces are
weakly relatively compact, see [62]. Note also that (30) implies that points
in the weak closure of a weakly relatively compact set of a Banach space are
reachable by weakly convergent sequences from within the set. Summing up,
these inequalities are a quantitative version of the angelicity of Banach spaces
with their weak topologies, see Definition 1), and hence they imply a quanti-
tative version of Šmulian’s theorem, see [179], that says that weakly relatively
compact subsets of a Banach space are weakly relatively sequentially compact
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The aforementioned references contain examples showing when the in-
equalities in (29) are sharp, as well as sufficient conditions of when the in-
equalities become equalities.

With regard to convex hulls, the quantities in Theorem 28 behave quite
differently. For an arbitrary bounded set H of a Banach space E, the following
statements hold:

γ(co(H)) = γ(H), JaE(co(H)) ≤ JaE(H);

ckE(co(H)) ≤ 2 ckE(H), k(co(H)) ≤ 2 k(H);

σ(co(H)) = σ(H), ω(co(H)) = ω(H). (31)

Constant 2 for ckE and k is sharp, [32, 90, 88], and it is unknown
if JaE might really decrease when passing to convex hulls. The equality
γ(A) = γ(co(A)) is a bit delicate and has been established in [33, 69, 90].
Note that inequalities (31) immediately imply Krein-Šmulian theorem for
Banach spaces that states that the closed convex hull of a weakly compact
set is again weakly compact.

As the reader should have observed the inequalities (29) say that the mea-
sures of weak noncompactness γ, JaE, ck, k and γ are equivalent; on the other
hand no information about the equivalence with them of σ and ω has been
provided. As of now, we do not now if σ is equivalent to the other ones but
we do know that ω is not.

Corollary 6 ([4, 18]). The measures of weak noncompactness γ and ω are
not equivalent, meaning, there is no N > 0 such that for any Banach space
and any bounded set H ⊂ E we have ω(H) ≤ Nγ(H).

Corollary 6 can be obtained combining an example of a separable Banach
space E and a sequence (Tn)n of operators Tn : E → c0 such that

ω(T ∗n(B`1)) = 1 and ω(T ∗∗n (B∗∗E )) ≤ w(Tn(BE)) ≤ 1

n
,

see [18, Theorem 4] and the following quantitative version of Schauder’s the-
orem:

Theorem 29 (Quantitative Schauder’s theorem, [4]). Let E and F be
Banach spaces, T : E → F an operator and T ∗ : F ∗ → E∗ its adjoint. Then

γ(T (BE)) ≤ γ(T ∗(BF∗)) ≤ 2γ(T (BE)).

The following result is a quantitative strengthening of the classical Grothendieck’s
characterization of weakly compact sets in spaces C(K).

Theorem 30 (Quantitative Grothendieck’s theorem, [4]). Let K be a
compact space and let H be a uniformly bounded subset of C(K). Then we
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have
γK(H) ≤ γ(H) ≤ 2γK(H).

Note that this result implies that if H is a uniformly bounded subset of
C(K), then H is relatively weakly compact (i.e. γ(H) = 0) if, and only if,
H is relatively τp-compact (i.e. γ(H) = 0). It is worth mentioning that the
proof we provided in [4] does not use the Lebesgue Convergence theorem as
the classical proof of Grothendieck’s theorem does: our proof relies on purely
topological arguments.

4.1.2 Distances to spaces of Baire one functions

The game that we just played when using distances to spaces of continuous
functions to study compactness in Cp(X) and in Banach spaces can be played
with other spaces of functions as well. It is known that if X is a topological
space and E is a Banach space, then uniform limits of sequences of Baire one
functions from X with values in E are Baire one functions again. Hence, for a
function f ∈ EX we have that f ∈ B1(X,E) if, and only if, d(f,B1(X,E)) =

0. For any subset A ⊂ EX we have d̂(A,B1(X,E)) = 0 if, and only if,
A ⊂ B1(X,E). In this way, and similarly to the case of continuous functions,

when E = R and H ⊂ RX is pointwise bounded, the number d̂(H
RX
, B1(X))

gives us a measure of non τp-compactness of H relative to B1(X).

In order to succeed with the plan of quantitatively study pointwise com-
pactness relative to B1(X,E) we need a formula to compute distances to
spaces of Baire one functions. A formula of this sort is given using the con-
cept of fragmented and σ-fragmented maps as introduced in [113]. Recall that
for a given ε > 0, a metric space-valued function f : X → (Z, d) is said to
be ε-fragmented if for each non-empty subset F ⊂ X there exists an open
subset U ⊂ X such that U ∩ F 6= ∅ and diam(f(U ∩ F )) ≤ ε. Given ε > 0,
we say that f is ε-σ-fragmented by closed sets if there is a countable closed
covering (Xn)n of X such that f |Xn is ε-fragmented for each n ∈ N.

Definition 10 ([5, 91]). Let X be a topological space, (Z, d) a metric space
and f ∈ ZX a function. We define:

frag(f) := inf{ε > 0 : f is ε-fragmented},
σ-fragc(f) := inf{ε > 0 : f is ε-σ-fragmented by closed sets},

where by definition, inf ∅ = +∞.

The indexes frag and σ-fragc are related to each other as follows:

Theorem 31 ([5]). Let X be a topological space and (Z, d) a metric space.
If f ∈ ZX then the following inequality holds
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σ-fragc(f) ≤ frag(f).

If moreover X is complete, then

σ-fragc(f) = frag(f).

With frag and σ-fragc one can estimate distances to B1(X,E).

Theorem 32 ([5]). Let X be a metric space and E a Banach space. If f ∈
EX then

1

2
σ-fragc(f) ≤ d(f,B1(X,E)) ≤ σ-fragc(f).

In the case E = R we have the equality

d(f,B1(X)) =
1

2
σ-fragc(f).

Corollary 7 ([5]). If X is a complete metric space and f ∈ RX , then

d(f,B1(X)) =
1

2
frag(f).

Note that the corollary above extends [91, Proposition 6.4.], where this
result is only proved when X is Polish.

Bearing in mind the definitions involved one can prove:

Lemma 3 ([5]). Let X be a separable metric space, (Z, d) a metric space
and H a pointwise relatively compact subset of (ZX , τp). Then,

sup

f∈HZ
X

frag(f) = sup
(fn)⊂H

inf {frag(f) : f ∈ clust(fn)} . (32)

Proof. Let α be the right hand side of (32). Clearly

β := sup
f∈H

frag(f) ≥ α.

If β = 0 we are done. Otherwise, the equality (32) will be established if we
prove that each time β > ε > 0 we also have α ≥ ε. Assume β > ε > 0

and pick f ∈ H
ZX

such that frag(f) > ε. Then there exists a non-empty
subset F ⊂ X such that diam f(F ∩ U) > ε for each open set U ⊂ X with
U ∩ F 6= ∅. Let us fix {Un : n ∈ N} a basis for the topology in X and write
B := {n ∈ N : Un ∩ F 6= ∅}. For every n ∈ B we can choose xn, yn ∈ Un ∩ F
such that d(f(xn), f(yn)) > ε. Let us write C := {xn : n ∈ B}∪{yn : n ∈ B}.
Since C ⊂ X is countable and f ∈ HZX

there exists a sequence (fn) in H
such that limn fn(x) = f(x) for every x ∈ C. Therefore, if g is an arbitrary
τp-cluster point of (fn) then g|C = f |C and in particular we have that
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d(g(xn), g(yn)) > ε, for every n ∈ B. (33)

If U is an open set such that U ∩ C 6= ∅ then there exists n ∈ N such that
∅ 6= Un ∩ C ⊂ U ∩ F . Hence, n ∈ B and since xn, yn ∈ U ∩ C we conclude

diam g(U ∩ C) ≥ d(g(xn), g(yn))
(33)
> ε.

We have proved that

inf{frag(f) : f ∈ clust(fn)} ≥ ε

and therefore α ≥ ε so the proof is complete.

Observe that the quantity

ck(H) := sup
ϕ∈HN

d(clustZX (ϕ), B1(X,E)).

gives an estimate of how far a set H ⊂ EX from being τp-relatively countably
compact with respect to B1(X,E).

The following result is the quantitative version of a well known result
due to Rosenthal [171]: note that when H ⊂ B1(X) is τp-relatively compact
in B1(X), the inequalities below and Tychonoff’s theorem imply that H is
τp-relatively compact in B1(X).

Theorem 33 (Quantitative Rosenthal’s theorem, [5]). Let X be a Pol-
ish space, E a Banach space and H a τp-relatively compact subset of EX .
Then

ck(H) ≤ d̂(H
EX

, B1(X,E)) ≤ 2 ck(H).

In the particular case when E = R we have

d̂(H
RX
, B1(X)) = ck(H).

Let us finish this section by saying that the above results can be used
to give a quantitative version of a Srivatsa’s result, [180], that states that
whenever X is metric any weakly continuous function f ∈ EX belongs to
B1(X,E). The quantitative counterpart to Srivatsa’s result says that for an
arbitrary f ∈ EX we have

d(f,B1(X,E)) ≤ 2 sup
x∗∈BE∗

osc(x∗ ◦ f).

As a consequence, it can be proved that for functions in two variables
f : X ×K → R, X complete metric and K compact, there exists a Gδ-dense
set D ⊂ X such that the oscillation of f at each (x, k) ∈ D ×K is bounded
by the oscillations of the partial functions fx and fk. Using games, it is estab-
lished indeed that if X is a σ-β-unfavorable space and K is a compact space,
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then there exists a dense Gδ-subset D of X such that, for each (y, k) ∈ D×K,

osc(f, (y, k)) ≤ 6 sup
x∈X

osc(fx) + 8 sup
k∈K

osc(fk),

that is a quantitative Namioka’s type theorem. Indeed, when the right hand
side of the above inequality is zero we are dealing with separately continuous
functions f : X ×K → R and we obtain as particular cases some well-known
results obtained by I. Namioka in the mid of the 1970’s, see [144].

4.2 Last news on James’ compactness Theorem

From now on X will denote a non-empty set. Given a pointwise bounded
sequence (fn) in RX , we define

coσp{fn : n ∈ N} :=

{ ∞∑
n=1

λnfn : λn ≥ 0, for n ∈ N and

∞∑
n=1

λn = 1

}
,

where the functions
∑∞
n=1 λnfn ∈ RX above are pointwise defined on X, i.e.

for every x ∈ X the absolutely convergent series

∞∑
n=1

λnfn(x)

defines the function
∑∞
n=1 λnfn : X → R.

The following result contains an extended version of Simons’ inequality
together with the Inf-liminf statement proved in [155]. The corresponding
result for supremum instead of infimum has been recently proved in [42]
where we refer the interested reader. Our proof of Theorem 34 is based on E.
Oja’s approach for the classical inequality, see [68, Lemma 3.123]).

Theorem 34 (Simons’ Theorem in RX). Let X be a nonempty set, let
(fn) be a pointwise bounded sequence in RX and let Y be a subset of X such
that for every g ∈ coσp{fn : n ∈ N} there exists y ∈ Y with

g(y) = inf{g(x) : x ∈ X}.

Then the following statements hold true:

sup{ inf
x∈X

g(x) : g ∈ cop{fn : n ∈ N}} ≥ inf
y∈Y
{lim inf

n
fn(y)} (34)

and
inf{lim inf

n
fn(x) : x ∈ X} = inf{lim inf

n
fn(y) : y ∈ Y }. (35)
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Proof. We set

Ck :=
{ ∞∑
n=k

λnfn : λn ≥ 0,

∞∑
n=k

λn = 1
}
,

for k = 1, 2, . . . , and let us fix ε > 0. By induction it is possible to choose
gk ∈ Ck, k = 1, 2, . . . such that

inf
X

(2kvk + gk+1) ≥ sup
g∈Ck+1

inf
X

(2kvk + g)− ε

2k+1
,

where v0 = 0 and vk =
∑k
n=1

1
2n gn. Indeed, for every k ∈ N, µ ≥ 1 and

v ∈ 1

2
C1 +

1

22
C1 + · · ·+ 1

2k
C1 or v = 0,

we have that
sup{inf{(µv + g)(X) : g ∈ C1}} < +∞

because once x0 ∈ X is fixed we have that

sup{inf{(µv + g)(X) : g ∈ C1}} < sup{(µv + g)(x0) : g ∈ C1}}

≤
(
µ

2n − 1

2n
+ 1

)
sup{fn(x0) : n = 1, 2, . . . }.

Let us write now v =
∑∞
n=1

1
2n gn, and let us observe that v ∈ C1. Since

gk+1 = 2k+1vk+1 − 2k+1vk

it follows that
2k+1vk+1 − 2kvk = 2kvk + gk+1.

Then
inf
X

(2k+1vk+1 − 2kvk) ≥ inf
X

(2kvk + (2kv − 2kvk))− ε

2k+1

by the choice that we have done for gk+1. So

inf
X

(2k+1vk+1 − 2kvk) ≥ inf
X

(2kvk + (2kv − 2kvk))− ε

2k+1
= inf

X
(2kv)− ε

2k+1
.

Since v ∈ C1, our hypothesis says that there is t ∈ Y with v(t) = inf v(X).
Thus,

2mvm(t) =

m−1∑
k=0

(2k+1vk+1 − 2kvk)(t) ≥
m−1∑
k=0

inf
X

(2k+1vk+1 − 2kvk) ≥
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≥
m−1∑
k=0

2k inf
X
v − ε

2k+1
≥ (2m − 1) inf

X
v − ε = 2mv(t)− inf

X
v − ε.

So we have

inf
X
v ≥ 2mv(t)− 2mvm(t)− ε = 2m(v − vm)(t)− ε,

for every m ∈ N. Then we arrive to

sup
g∈C1

inf
x∈X

g(x) ≥ inf
X
v ≥ lim inf

m→∞
2m(v − vm)(t)− ε ≥ lim inf

m→∞
fm(t)− ε

where the last inequality follows from the fact that 2m(v − vm) ∈ Cm+1.
Since our argument is valid for every ε > 0 the proof of (34) is over. For the
equality (35), we observe that (34) says that

inf
y∈Y

lim inf
n→∞

fn(y) ≤ sup
g∈C1

inf
x∈X

g(x).

If we fix x ∈ X and we assume that

inf
y∈Y

lim inf
n→∞

fn(y) > lim inf
n→∞

fn(x),

then we can take a subsequence to have

inf
y∈Y

lim inf
n→∞

fn(y) > sup
n∈N

fn(x).

But then
inf
y∈Y

lim inf
n→∞

fn(y) > sup
g∈C1

g(x) ≥ sup
g∈C1

inf
x∈X

g(x),

which is a contradiction with the above inequality that finishes the proof.

Corollary 8. Let X be a nonempty set and (fn) a pointwise bounded se-
quence in RX . If Y is a subset of X such that for every function g in
coσp{fn : n ∈ N} there exists y ∈ Y with

g(y) = sup
x∈X

(g(x)).

Then we have that

inf
{

sup{g(x) : x ∈ X} : g ∈ cop{fn : n ∈ N}
}
≤ sup
y∈Y

(lim sup
n

fn(y)),

and
sup{lim sup

n
fn(x) : x ∈ X} = sup{lim sup

n
fn(y) : y ∈ Y }.

The following corollary generalizes Rainwater’s Theorem [68, Theorem
3.134], which asserts that a sequence (xn) in a Banach space E is weakly
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null if it is bounded and for each extreme point e∗ of BE∗ ,

lim
n
e∗(xn) = 0.

Given a bounded sequence (xn) in a Banach space E, we define

coσ{xn : n ∈ N} :=

{ ∞∑
n=1

λnxn : for all n ≥ 1, λn ≥ 0 and

∞∑
n=1

λn = 1

}

Note that series are clearly norm-convergent and that

coσ{xn : n ∈ N} = coσp{xn : n ∈ N}

when for the second set we look at the xn’s as functions defined on BE∗ .

Corollary 9 (Unbounded Rainwater-Simons’ theorem). If E is a Ba-
nach space, B ⊂ C are nonempty subsets of E∗ and (xn) is a bounded se-
quence in E such that for every x ∈ coσ{xn : n ∈ N} there exists b∗ ∈ B
with

〈x, b∗〉 = sup{〈x, c∗〉 : c∗ ∈ C},

then
sup
b∗∈B

(
lim sup

n
〈xn, b∗〉

)
= sup
c∗∈C

(
lim sup

n
〈xn, c∗〉

)
.

As a consequence

σ(E,B)− lim
n
xn = 0 ⇒ σ(E,C)− lim

n
xn = 0.

The unbounded Rainwater-Simons theorem (or the Simons’ inequality in
RX) not only gives as special cases those classical results that follow from
the Simons’ inequality (some of them are discussed here, besides the already
mentioned ones that can be found in [53, 79]), but it also provides new ap-
plications, see [155, 31]. Let us remark that W. Moors has recently obtained,
see [142, Corollary 1], a particular case of the unbounded Rainwater–Simons’
theorem that allowed him to give a proof of James’ theorem for Banach spaces
whose dual unit balls are w∗-sequentially compact. A more general class of
spaces is considered in the following definition.

Definition 11. Given a sequence (vn) in the vector space E, we say that
another sequence (un) is a convex block sequence of (vn) if there is a sequence
of finite subsets of integers (Fn) such that

maxF1 < minF2 ≤ maxF2 < minF3 · · · < maxFn < minFn+1 < · · ·

together with sets of positive numbers {λni : i ∈ Fn} ⊂ (0, 1] satisfying∑
i∈Fn

λni = 1 and un =
∑
i∈Fn

λni vi.
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When E is a Banach space and each sequence (x∗n) in BE∗ has a convex block
w∗–convergent sequence we say that BE∗ is w∗-convex block compact.

Let us observe that every subsequence of a given sequence (vn) is a convex
block sequence too, thus w∗-sequentially compact sets are w∗-convex block
compact. J. Bourgain proved in [29] that if the Banach space E does not
contain a copy of `1(N), then its dual unit ball is w∗–convex block compact.
This result was extended for spaces not containing a copy of `1(R) under
Martin’s axiom and the negation of the Continuum Hypothesis in [107].

The sequential lemma below is taken from [155], see also [42].

Lemma 4. Suppose that the dual unit ball of E is w∗-convex block compact
and that A is a nonempty, bounded subset of E. Then A is weakly relatively

compact if, and only if, each w∗-null sequence in E∗ is also σ(E∗, A
w∗

)-null.

Proof. If A is weakly relatively compact, then we have A = A
w∗

and the
conclusion follows. According to Theorem 28 above, to see the converse im-
plication we have to check the validity of the identity that

dist‖·‖A(L{x∗n}, co{x∗n : n ∈ N}) = 0, (36)

for every bounded sequence (x∗n) in E∗. Thus, let us fix (x∗n) a bounded
sequence in BE∗ . Since BE∗ is w∗-convex block compact, there exists a block
sequence (y∗n) of (x∗n) and an x∗0 ∈ BE∗ such that

w∗- lim
n
y∗n = x∗0.

Then, by assumption, (y∗n) also converges to x∗0 pointwise on A
w∗

⊂ E∗∗.
Mazur’s theorem applied to the sequence of continuous functions (y∗n) re-

stricted to the w∗-compact space A
w∗

tell us that

0 = dist‖·‖
Aw

∗ (x∗0, co{y∗n : n ∈ N}) = dist‖·‖A(x∗0, co{x∗n : n ∈ N}) ≥ 0,

It is not difficult to check that x∗0 ∈ L{x∗n} and (36) is proved. The proof is
over.

A nonlinear version of classical James’ compactness theorem is the follow-
ing one. It has been recently obtained and applied in different contexts by
[154, 155] and in full generality by Saint Raymond in [172].

Theorem 35. Let E be a Banach space and let f : E −→ R ∪ {+∞} be a
proper map such that

for every x∗ ∈ E∗, x∗ − f attains its supremum on E.

Then
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for every c ∈ R, the sublevel set f−1((−∞, c]) is weakly relatively compact.

Following [155, 42], we present a proof for the wide class of Banach spaces
with w∗-convex block compact dual unit balls:

Proof. Let us consider the epigraph of f , i.e.

epi(f) = {(x, t) ∈ E × R : f(x) ≤ t}

We first claim that for every (x∗, λ) ∈ E∗ × R with λ < 0, there exists
x0 ∈ E, f(x0) < +∞ such that

sup{(x∗, λ)(x, t) : (x, t) ∈ epi(f)} = x∗(x0) + λf(x0). (37)

In fact, the optimization problem

sup
x∈E
{〈x, x∗〉 − f(x)} (38)

may be rewritten as
sup

(x,t)∈epi(f)
{(x∗,−1), (x, t)} (39)

and the sup in (38) is attained if and only if the sup in (39) is attained.
Let us fix c ∈ R and assume that A := f−1((−∞, c]) is nonempty. The

uniform boundedness principle and the optimization assumption on f imply
that A is bounded. In order to obtain the relative weak compactness of A we
apply Lemma 4. Thus, let us consider a w∗-null sequence (x∗n) in E∗ and let

us prove that it also is σ(E∗, A
w∗

)-null.
It follows from the unbounded Rainwater-Simons’ theorem (Corollary 9),

taking the Banach space E∗ × R,

B := epi(f) ⊂ C := epi(f)
σ(E∗∗×R,E∗×R)

and the bounded sequence (
x∗n,−

1

n

)
,

that

σ(E∗ × R, B)− lim
n

(
x∗n,−

1

n

)
= σ(E∗ × R, C)− lim

n

(
x∗n,−

1

n

)
,

But w∗ − limn≥1 x
∗
n = 0, so we have that

σ(E∗ × R, C)− lim
n

(
x∗n,−

1

n

)
= 0.

As a consequence, since A× {c} ⊂ B, then A
w∗

× {c} ⊂ C, and so
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σ(E∗, A
w∗

)− lim
n
x∗n = 0,

as announced.

4.3 Some notes and open problems

To handle compactness in the setting of infinite dimensional function can be
difficult. As commented before, sometimes applications require of characteri-
zations via sequences instead of nets (think about using Lebesgue dominated
convergence theorem). Research about some kind of sequential behaviour
of compact sets has always attracted analysts. Two examples follow. First,
D. Fremlin’s dichotomy theorem saying that in a perfect probability space
a sequence of measurable functions either has some subsequence with no
measurable cluster point, or has a subsequence almost everywhere pointwise
convergent. Second, Komlós’ theorem saying that every L1-bounded sequence
of real functions contains a subsequence such that the arithmetic means of
all its subsequences converge pointwise almost everywhere. The angelic char-
acter of different function spaces has been always a very exciting topic of
research. As said previously, the recent book [117] is a good reference for the
topic. James’ compactness theorem is an optimization result with plenty of
different applications; the papers [154, 155, 42] contain applications to varia-
tional problems and the so called Lebesgue measures of risk in mathematical
finance are treated.

Let us finish the section with a couple of open questions:

Question 9. Is there any quantitative approach to describe convergent se-
quences to closure points of relatively compact subsets of Baire one functions
on a Polish space?

Question 10. Is there any characterization of Banach spaces with w∗-angelic
dual unit ball?

5 Concluding references and remarks

We have been dealing in the previous sections with different questions
where we, the authors, have done some work, always using topology
as a tool for functional analysis. Since the outstanding chapter by S.
Negrepontis in the first Handbook of Set-theoretic Topology [148], an
unbelievable amount of research has been done in this vast area. We,
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sometimes as mere reporters of words written by others, collect in this
final section notes, comments, references and open problems around
topics that might be of interest for the reader. We remark that a spe-
cial issue of RACSAM entitled “Open problems in infinite dimensional
Geometry and Topology” and edited by the authors of this survey pa-
per, [45], offers a wide selection of problems fitting very well within the
contents of this section.

5.1 Compactness, Lindelöfness and other covering
properties in Banach spaces

Fragmentability is a very useful topological concept in Banach space theory.
It was introduced by J. E. Jayne and C. A. Rogers to deal with Borel se-
lectors of certain set valued maps, see [114]. It is also the right concept to
understand Asplund spaces and differentiability properties of convex func-
tions defined on Banach spaces. The survey paper by I. Namioka, see [147], is
a recommendable place to read about fragmentability. If (X, τ) is a topolog-
ical space and ρ is a pseudo-metric on it, we say that (X, τ) is fragmented by
ρ (resp.σ-fragmented) if the identity map on X is ε fragmented (respectively
ε− σ-fragmented) for every ε > 0, see Subsection 4.1.2.

Here are some results related to fragmentability. If a Banach space E
has a Gateaux differentiable norm then the w∗-dual unit ball BE∗ is frag-
mented by some metric, and every proper continuous convex function on E
is Gateaux differentiable in a Gδ subset of the interior of its domain. The
monograph [66], by M. Fabian, explores in great detail all connections be-
tween topology and analysis in this topic. Asplund spaces are characterized as
those Banach spaces for which their w∗ dual unit balls are fragmented by the
dual norm. A compact space K is called a Radon-Nikodým compact (shortly,
RN compact) if it is homeomorphic to a norm-fragmented w∗ compact subset
of a dual Banach space. Eberlein compact spaces (shortly, EC compact), i.e.
compacta homeomorphic to weakly compact sets of a Banach space, and scat-
tered compact spaces are RN-compact. The class of RN-compact spaces has
properties very similar to the class of EC compact spaces, however it is not
stable by continuos images. This fact has been recently been established by
Avilés and Koszmider, see [19], solving a long standing open problem asked
by I. Namioka. If K is continuous image of a RN-compact and a Corson com-
pact, i.e. it embeds in a Σ product, then K must be an EC, see [17, 156].
On compact spaces fragmentability by a lower semicontinuous metric can be
characterized by the Lindelöf property. Indeed if K is a compact subset of
the cube [−1, 1]D, then K is fragmented by the norm of `∞(D) if, and only if,
(K, γ(D)) is Lindelöf, where γ(D) is the topology of uniform convergence on
countable subsets of D, see [37]. If we set a K-analytic subset X ⊂ [−1, 1]D

the previous result extends to say that (X, γ(D)) is Lindelöf if, and only if, X
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is σ-fragmented by the norm of `∞(D), [36]. The notion of σ-fragmentability
was introduced and strongly developed by J.E. Jayne, I. Namioka and C.A.
Rogers, see [110, 111, 112]. The paper [36] analyzes the relationship between
the Lindelöf property and σ-fragmentability. A very fruitful approach based
on games is due to Kenderov and Moors, [121], and yet another approach
based on the concept of network is due to Hansell, [102, 103]. When Cp(K)
is σ-fragmented by the supremum norm the compact K has the so called
Namioka’s property: every separately continuous function f : B ×K −→ R,
where B is a Baire space, has a dense Gδ subset T ⊂ B such that f is jointly
continuous at T ×K. If C(K) has an equivalent pointwise lower semicontin-
uous and LUR norm, then Cp(K) is σ-fragmented by the supremum norm
and the compact K verifies Namioka’s property, see section 7, Chapter VII
in [53]. For instance, every pointwise compact subset K ⊂ RX made of Baire
one functions defined on a Polish space X and such that every f ∈ K has
at most countably many discontinuities verifies that Cp(K) is σ-fragmented
by the norm. Nevertheless it is an open problem to know if the σ-algebras
of Borel sets for the pointwise and norm topologies coincide on C(K). More-
over C(K) has an equivalent pointwise LUR norm if K is separable too,
[105]. If there is a sequence of subsets (An) in C(K) such that the family
{An ∩W : W pointwise open, n ∈ N} is a network for the norm topology on
C(K) the we have:

1. Borel sets for the pointwise and norm topologies coincide on C(K).
2. There is an equivalent F -norm such that pointwise and norm topologies

coincide on the unit sphere.
3. The compact K has the Namioka’s property.

The above results obtained via networks were established in [164]. They
have been recently improved in [72]. It is a tantalizing conjecture that the
above network property could be characterized with item 2 but using a norm,
instead of only an F -norm. A positive result in this direction was obtained
by Raja in [164] when the sets (An) are convex. If we have two metrics ρ and
d defined on a set X, the fact that we have a sequence of subsets (An) such
that the family {An ∩W : W d-open, n ∈ N} is a network for the ρ-topology
is equivalent to have countable sets Sx for every x ∈ X such that

x ∈ ∪{Sxn : n = 1, 2, . . . }
ρ

whenever d− lim
n
xn = x, (40)

see [141, Theorem 2.32]. This is an essential property to understand how maps
from a normed space E to a metric space X provide an equivalent LUR norm
on E: this is the basis for the non-linear transfer studied in [141]. If the d-
limit of the sequence (xn) in (40) is taken in a non-necessarily metrizable
topology τ , then it is said that we have the linking separability property
(LSP) between the topology τ and the metric ρ. This property has been
deeply studied by L. Oncina, who showed that a compact space K is EC if,
and only if, it has the LSP with respect to a lower semicontinuous metric,
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and, also, that a RN-compact space is EC-compact if, and only, it has the
LSP, [151]. These ideas were subsequently applied by Dow, Junilla and Pelant
to clarify the relationship between Gul’ko and Corson compacta, [61]. In a
different setting we can describe a similar property to (40) that is fulfilled by
any Borel selector f : E −→ E∗ for the attaining set-valued map

F (x) = {x∗ ∈ E∗ : x∗(x) = sup{k∗(x) : k∗ ∈ K}},

where K is a convex and w∗-compact subset of E∗ fragmented by the norm.

In this case we have the identity co(f(E))
‖·‖

= K, that leads to a character-
ization of strong boundaries of Asplund spaces, [34, 31]. Similar topological
conditions lead to non-linear transfer properties either for strictly convex
norms or pointwise-LUR norms, [73, 100].

Let us finish this subsection recalling a well known open problem:

Question 11. Let K and L be compact spaces. If K is a Corson and C(K) is
isomorphic to C(L), must L be Corson compact too?

If the dual ball BC(K)∗ is Corson compact the answer is yes after a result
by Kalenda, who characterizes when this happens through the existence of
Projectional Resolutions of the Identity for every equivalent norm on C(K),
see [118].

5.2 Hereditarily indecomposable Banach spaces

Our first paragraph here is taken from our article for the Encyclopedia of
General Topology with I. Namioka and M. Raja [38]: “A sequence of vec-
tors (xn) is called a basis of a Banach space E if every x ∈ E has a
unique representation as x =

∑
aixi with scalars ai. If the convergence of

the series is unconditional the basis is called an unconditional basis. In that
case every infinite subset M of integers gives a continuous linear projection
PM (

∑
aixi) =

∑
i∈M aixi. Each infinite dimensional Banach space contains

an infinite dimensional subspace with a basis and Banach asked if each sepa-
rable Banach space has a basis. A famous counterexample of Enflo [63] solved
even a stronger version of the problem dealing with the approximation prop-
erty of Grothendieck. After Enflo’s counterexample, and for a long time, it
was conjectured that each infinite dimensional Banach space contains copies
of c0 or `p or, at least, an infinite dimensional subspace with an uncondi-
tional basis. This is the case for Banach spaces with a C∞-smooth bump
function, [52] and for the class of Orlicz spaces (Lindenstrauss and Tzafriri
[132]). Nevertheless Tsirelson [188] constructed a reflexive Banach space T
not containing `p for 1 < p < +∞”.

Tsirelson’s construction has been modified by Schlumprecht [173] opening
the door for the construction by Gowers and Maurey [87] of a separable re-
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flexive Banach space E that does not have any infinite-dimensional subspace
with an unconditional basis. Gowers-Maurey’s example GM has the prop-
erty that, for each infinite dimensional closed subspace Z admits only trivial
projections, i.e. any continuous linear projection P : Z −→ Z is trivial: ei-
ther dim Im P < ∞ or dim KerP < ∞. A Banach space with this property
is said to be hereditarily indecomposable, H.I. for short. This is equivalent
to the following remarkable geometric property: for any two infinite dimen-
sional subspaces the distance between their unit spheres is zero (the angle
zero property). GM space has the property that every operator in GM is of
the form λI + S , where λ is a scalar, I is the identity, and S is a strictly
singular operator. The formal definition of a strictly singular operator is that
you cannot restrict to an infinite-dimensional subspace on which it is an iso-
morphic embedding. Every compact operator is strictly singular. An obvious
question that this raised was whether GM admitted an operator that was
strictly singular but not compact. Androulakis and Schlumprecht showed in
[1], that GM space does have non-compact strictly singular operators. This
led to new concepts defining a class of Banach spaces with very remarkable
properties, for instance every H.I. Banach space is arbitrarily distortable,
[187], and it is not isomorphic to any proper subspace, answering in the
negative the long standing hyperplane problem. Fortunately for the math-
ematical community Spiros Argyros has made this area his own, and with
various collaborators proved a variety of remarkable results, both positive
and negative, about spaces of this kind. In particular they showed that the
class of H.I. spaces is extensive, [10, 8], and they have been able to develop
a method to construct non separable H.I. Banach spaces, see [15]. Argyros
and Tolias constructed a nonseparable H.I. Banach space which is the dual,
as well as the second dual, of a separable H.I. Banach space, with space of
bounded operators of the form λI+W where W is weakly compact and hence
with separable range. Then they obtain the complete dichotomy for quotients
of H.I. spaces. Namely, they prove that every separable Banach space E, not
containing isomorphically `1, is a quotient of a H.I. Banach space X with E∗

isometric to a complemented subspace of X∗. Argyros and Raikoftsalis have
shown that every separable reflexive Banach space is a quotient of a reflexive
H.I. space, which yields that every separable reflexive Banach is isomorphic
to a subspace of a reflexive indecomposable space, [14]. Finally, according
to [162] “Argyros and Motakis have just given another remarkable example of
an H.I. reflexive space E so that every T ∈ L(E) admits a nontrivial invari-
ant subspace. Moreover this holds for all T ∈ L(X), for any closed subspace
X ⊂ E. The strictly singular operators on every subspace of E form a non-
separable ideal but every T ∈ L(E) either commutes with a non-zero compact
operator or else T 3 = 0, [13]. This example solves another open problem on
spreading models. The construction uses Tsirelson ideas under constraints,
motivated by earlier constructions in [149, 150], see next subsection for more
complete details on the subject”.
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5.3 Bourgain-Delbaen constructions of Bananch spaces
with very few operators

The key ideas for the new examples we comment on here go back to the
remarkable construction in 1980 of J. Bourgain and F. Delbaen, [28]. As re-
ported in [162] “they constructed a Banach space E with E∗ isomorphic to `1,
yet c0 doest not embed into E. It seems that this example struck researchers
as quite special and too limited to be useful in solving other open problems”.
We ourselves witnessed that almost 25 years later R. Haydon suggested, at
the end of S. Argyros’s talk at the V Conference of Banach Spaces, Cáceres,
Spain, 2006, the idea of using Bourgain-Delbaen construction to help in some
way Argyros’s school of methods for the theory of Hereditarely Indecompos-
able Banach spaces, [15]. Despite the answer was that this might not help,
after Cáceres meeting they began to think otherwise. Two years later, S. Ar-
gyros and R. Haydon used the BD-construction to solve a famous problem
in Banach spaces. They presented their construction for the first time in the
Spring School at Paseky, 2008. Given a specific classical example of a Banach
space E, it is usually quite easy to construct many nontrivial bounded linear
operators T ∈ L(E). But just given that E is separable and infinite dimen-
sional, this is not at all clear. It can be read in [162] that “over 35 years ago
Lindenstrauss [133] asked if such an E existed so that

L(E) = {λI +K : λ ∈ C,K compact operator }.

In their remarkable example of a space E not containing an unconditional
basic sequence W.T. Gowers and B. Maurey [87] proved that for their space
all operators had the form λI + S where S is strictly singular, as previously
said. But the scalar plus compact problem remained open. Then Argyros and
Haydon [12] constructed a space AH with the scalar plus compact property.
AH space is formed using the Bourgain Delbaen technique and thus AH∗ is
isomorphic to `1. AH space can be constructed to be H.I. too. Shortly after
that D. Freeman, E. Odell and Th. Schlumprecht [76] proved that if E is a
separable Banach space then E embeds into an isomorphic predual of `1. The
proof, again, adopted the Bourgain Delbaen construction”.

Let us remark, following Gowers’s webblog, “that one of the biggest prob-
lems in functional analysis is the invariant subspace problem, which asks
whether for every operator T on a Hilbert space H there is a proper closed
subspace Z ⊂ H such that T (Z) ⊂ Z . Even the corresponding question for
Banach spaces is very hard, but operators without invariant subspaces have
been constructed for various Banach spaces in amazing work of P. Enflo, and
subsequently C. Read, [64, 169]. Nonetheless, the problem for Hilbert spaces
remains stubbornly open. Now one might speculate that the result is hard to
prove because it is in fact false. And one might even speculate that it is false
for every Banach space. However, the example of Argyros and Haydon shows
that the situation is more complicated. A famous result of Lomonosov shows
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that every operator that commutes with a non-zero compact operator must
have an invariant subspace, [134]. And obviously K commutes with λI + K
if K is non-zero, or trivially has an invariant subspace if K = 0 . From this
we conclude that every continuous linear operator on the space of AH has
a non-trivial invariant subspace. AH has been the first space for which such
a result is known. What this shows, as T. Gowers says, is that you cannot
hope to find a counterexample for a general Banach space, because in a sense
a general Banach space does not have to have enough operators for there to
be any chance at all of a counterexample. Argyros-Haydon space has very
definitely taken over as the new nastiest known Banach space”.

Thus, according to [162] “Banach spaces E satisfying the “scalar plus
compact” property are of interest to operator theorists since every operator
T ∈ L(E) must admit a nontrivial invariant subspace. Furthermore L(E) is
separable, and from the construction, is amenable as a Banach algebra. Ar-
gyros, Freeman, Haydon, Odell, Raikoftsalis, Schlumprecht and Zisimopoulou
finally joined efforts to show how to construct extensions L∞E,hi of a Bourgain-
Delbaen space E that contains E in such a way that, for instance we have
L∞E,hi/E is H.I. and has the “scalar plus compact” property whenever E has
a separable dual. Thus, any separable superreflexive space can be embedded
into an isomorphic predual E of `1 with the “scalar plus compact” property. E
shares the properties of [12]. Namely all T ∈ L(E) admits nontrivial invari-
ant subspaces, L(E) is separable and amenable. Furthermore E is somewhat
reflexive (every infinite dimensional subspace of E contains an infinite dimen-
sional reflexive subspace), [9]. Matthew Tarbard, motivated by the question as
to whether any H.I. isomorphic predual of `1, with the “scalar plus strictly
singular” property must have the “scalar plus compact” property, has recently
showed this to be false. Indeed one can obtain such spaces with the Calkin al-
gebra, L(E)/K(E) having any finite dimension. Here K(E) denotes the ideal
of compact operators on E, [185]. Therefore the lattice of closed ideals in the
algebra of bounded linear operators on these spaces can have any given finite
cardinality. An important open question is the following:

Question 12. Is it possible to construct a reflexive “scalar-plus-compact”
space?”

5.4 Ramsey methods in Banach spaces

Ramsey theory is a branch of combinatorics that has been successfully ap-
plied to Banach space theory in the last decades. Indeed, H.P. Rosenthal’s
characterization of Banach spaces containing `1: (every bounded sequence
in a Banach space E has a subsequence which is either weakly Cauchy or
equivalent to the unit vector basis of `1, [171]) can be seen as the first result
of this kind, [86]. Results in this direction are saying that if a Banach space
fails to contain a subspace with some good symmetry property, then it must
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have a subspace which lacks symmetry in a very extreme way. The prominent
example in this line is Gowers’ dichotomy theorem saying that every infinite
dimensional Banach space E has an infinite dimensional subspace X which
either has an unconditional basis or is hereditarely indecomposable, [85].
Chapter 24 in the Handbook of the geometry of Banach spaces, [86], is an
excellent point to read about the matter. As reported in [162], “based on
these results Gowers began a program of isomorphic classification of Banach
spaces. The aim of this program is to find a classification of Banach spaces
up to subspaces, by producing a list of classes of Banach spaces such that:

1. if a space belongs to a class, then every subspace belongs to the same class,
or maybe, in the case when the properties defining the class depend on a
basis of the space, every block subspace belongs to the same class,

2. the classes are inevitable, i.e. every Banach space contains a subspace in
one of the classes,

3. any two classes in the list are disjoint,
4. belonging to one class gives a lot of information about operators that may

be defined on the space or on its subspaces.

Such a list is referred as a list of inevitable classes of Gowers. One of the
motivations of of Gowers’ program is the classification of those spaces (such
as Tsirelson’s space T ) which do not contain a copy of c0 or `p, [71]. First
two examples of inevitable classes are H.I. spaces and spaces with uncondi-
tional basis. The second dichotomy result by Gowers says that any Banach
space contains a subspace with a basis such that either no two disjointly sup-
ported block subspaces are isomorphic, or such that any two subspaces have
further subspaces which are isomorphic. He called the second property quasi
minimality, and H. Rosenthal had defined a space to be minimal if it embeds
into any of its subspaces. A quasi minimal space which does not contain a
minimal subspace is called strictly quasi minimal, so Gowers again divided
the class of quasi minimal spaces into the class of strictly quasi minimal
spaces and the class of minimal spaces. Gowers therefore produced a list of
four classes of Banach spaces, corresponding to classical examples, or more
recent couterexamples to classical questions: HI spaces, such as GM; spaces
with bases such that no disjointly supported subspaces are isomorphic, such
as the counterexample of Gowers to the hyperplane’s problem of Banach;
strictly quasi minimal spaces with an unconditional basis, such as T; and,
minimal spaces, such as c0 or `p. By further dichotomies results 19 inevitable
classes have been described by now, [71].

A lot of interesting open problems fitting in this area can be found in [56].
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5.5 Banach spaces C(K) with few operators

If we want to talk about spaces C(K) with few operators the right author
to be referenced is be P. Koszmider. Following his very recent a interesting
survey paper [123] we say that Banach space C(K) has few operators if for
every linear bounded operator T on C(K) we have that T = gI + S or
T ∗ = g∗I+S where g is continuous on K, g∗ is Borel on K and S are weakly
compact on C(K) or C(K)∗ respectively. Let us remark that weakly compact
operators coincide with the strictly singular ones for C(K) spaces, [160].
C(K) spaces with few operators share some common properties with the
spaces of Gowers and Maurey, but their norm is simpler. For example, some
of them are indecomposable Banach spaces and are not isomorphic to their
hyperplanes, [122]. It follows that there are examples of C(K) spaces which
are not isomorphic to any C(L) for L totally disconnected, [122, 161]. Banach
spaces with few operators have been used as ingredients of other interesting
constructions during the last years:

• A Banach space E is called extremely non complex if, and only if every
linear bounded operator T ∈ L(E) satisfies the norm equality ‖T 2 +I‖2 =
1 + ‖T 2‖. A real Banach space has complex structure if, and only if, there
is on it an operator T satisfying T 2 = −I. C(K) spaces with few operators
are extremely non complex, and infinite sums of incomparable C(K) spaces
with few operators provide examples of extremely non-complex Banach
spaces with many operators, [126]. Examples of Banach spaces with a
trivial group of onto isometries now follow, [125].

• Even Banach spaces are those real Banach spaces which admits complex
structure but their hyperplanes do not. Several examples of even Banach
spaces of the form C(K) are constructed with spaces with few opera-
tors, [70].

• Another remarkable example, constructed with a compactification of infi-
nite unions of countably many copies of spaces K such that C(K) has few
operators, is a totally disconnected compact space K1 which has compact
subsets K2 ⊂ L1 ⊂ K1 such that C(K1) is isomorphic as Banach space
to C(K2), but not to C(L1). Thus we have two non-isomorphic Banach
spaces of the form C(K) which are isomorphic to complemented subspaces
of each other, providing a solution to Shroeder-Bernstein problem of the
form C(K), [124].

We isolate below the following problem that is due to S. Argyros.

Question 13. Is there any bound of the densities of indecomposable Banach
spaces
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5.6 Descriptive set theory in Banach spaces

We start by crediting the recent monograph by P. Dodos [58], together with
the paper of G. Godefroy [83] as the right places to understand the nature of
problems, last results and open questions on the subject on descriptive theory
in Banach spaces. These two references have been our reading to organize,
select and comment on the results about this topic that now follows.

One of the central sources connecting descriptive set-theoretic topology
and the geometry of Banach spaces are universality problems. The natural
question is: Let C be a class of separable Banach spaces such that every
space E in the class C has a certain property, say property (P ). When can
we find a separable Banach space X which has property (P ) and contains
an isomorphic copy of every member of C? Classical properties of Banach
spaces, such as “being reflexive”, “having separable dual”, “not containing
an isomorphic copy of c0” have a positive answer if, and essentially only if,
the class C is analytic in a natural “coding” of separable Banach spaces. It
was B. Bossard who made clear how to deal with Borel and analytic classes of
Banach spaces in [26], where he proved that the relation of linear isomorphism
between Banach spaces is analytic non-Borel without analytic selection. For
every separable Banach space E the set of all closed linear subspaces of E
endowed with the relative Effros-Borel σ-algebra is standard. Since C(2N) is
isometrically universal for all separable Banach spaces we can consider the
set SB of all closed linear subspaces of C(2N) as the standard Borel space
of all separable Banach spaces, [25]. With this identification, properties of
separable Banach spaces become sets in SB where the complexity can be
measured. For instance, given an infinite dimensional separable Banach space
the class CE of separable Banach spaces which contains an isomorphic copy
of E is analytic non-Borel. This work opened the way to several applications
of descriptive set theory to Banach spaces, for instance G. Godefroy showed
that there is not a separable Banach space E so that every separable and
strictly convex space X embeds isometrically into E, [82], solving a long
standing open problem of Lindenstrauss. The use of (transfinite) uniform
boundedness principles has been used in the last few years by S. Argyros,
P. Dodos and their coauthors who deepened the theory with the discovery
of “amalgamation” methods which tighten the links between set-theoretical
and linear operations. These new techniques provide the right approach to
universality problems. For instance, the class SD of all E ∈ SB with E∗

separable is coanalytic and the Szlenk index is a Π1
1 rank on it, [25]. It is also

possible to code basic sequences, [26], proving that shrinking basic sequences
S is coanalytic and the Szlenk index is again a Π1

1 rank on S. Szlenk index
were introduced in [181] to prove that there is not universal space for the
class SD. J. Bourgain considerably strengthened Szlenk’s result by showing
that if a separable Banach space X is universal for all separable reflexive
space, then X must contain C(2N), and so, it is universal for all separable
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Banach spaces, [27] Bossard refined Bourgain’s result showing that if A is an
analytic set in SB such that for every reflexive Banach space there is Z ∈ A
with Z isomorphic to X, then there exists X ∈ A which is universal, [26].
Argyros and Dodos say that a class C ⊂ SB is strongly bounded if for every
analytic subset A of C there exists Y ∈ C that contains an isomorphic copy
of every X ∈ A. Examples of strongly bounded classes of separable Banach
spaces are reflexive spaces, spaces with separable dual as well as the one of
non universal spaces, [58]. The last one is an old problem of S.A. Kechris.
These results follow from the constructions done in [11] for the same classes
adding to have shrinking basis. The general case is covered in [59, 57]. To
finish let us point out that Dodos and Lopez Abad have shown how the class
of Banach spaces not containing H.I. subspaces is strongly bounded, [60].
Hence if we decide once and for all to live in a universe from where H.I.
spaces are banned, then strong boundedness holds for ever, [83]. Let us finish
selecting the following open problem asked in [83]:

Question 14. Let E be an infinite dimensional separable Banach space which
is not isomorphic to `2. Does E contains infinite dimensional subspaces {Em :
m ∈ N} such that En is not isomorphic to Ek if n 6= k?

The recent paper [84] contains more interesting open problems on the matter.

5.7 Nonlinear geometry of Banach spaces

It seems very natural to finish this section presenting a short report on
achievements on nonlinear geometry of Banach spaces. Besides our own
knowledge and in order to properly present the most important results on
this topic we have used the survey paper by N. Kalton [118] from where some
literal comments are mixed below with our own words.

A Banach space is, by its nature, also a metric space. When we identify a
Banach space with its underlying metric space, we choose to forget its linear
structure. A fundamental question of nonlinear geometry of Banach spaces is
to determine to what extent the metric structure of a Banach space already
determines its linear structure. Another one is concerning nonlinear embed-
dings of one Banach space into another, and more generally of metric spaces
into Banach spaces. The book of Benyamini and Lindenstrauss, [22], gave
a definitive form to the subject driving a lot of research in the area during
the last years. Other areas of mathematics such as theoretical computer or
C∗-algebras have a strong interplay with the matter looking at the problem
to determine how well a metric space can be embedded in a particular Ba-
nach space. Since any two separable infinite-dimensional Fréchet spaces are
homeomorphic by the beautiful theorem of Anderson-Kadets, see Chapter
VI, Theorem 5.2 in [23], it seems that just topology say nothing on the linear
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structure of the spaces involved. But there is still something else to men-
tion, as Kalton said, leaving the realm of locally convex spaces. Indeed, there
are two remarkable results of Cauty: there is a separable F -space (complete
metric linear) which is not homeomorphic to a separable Banach space, [46],
and every compact convex subset of an F -space has the Schauder fixed point
property, [47] (it seems that some controversy remains on that result). This
problem had been open since 1930, when Schauder proved the original fixed
point theorem. It doest not seem to be known if an infinite-dimensional com-
pact convex set is necesarily homeomorphic to the Hilbert cube (for subsets of
Banach spaces this corresponds with Keller’s theorem, see Chapter III, The-
orem 3.1 in [23]. The homeomorphic theory of non-locally convex F -spaces
seems to be a very rich and interesting area for further research.

Parallel to the linear theory, the main focus is the nonlinear classification
of Banach spaces. The linear operators are replaced by Lipschitz or uni-
formly continuous maps. The problems of interest are Lipschitz, uniform or
coarser embedding of metric spaces in normed spaces, or such an embedding
of a Banach space into another. As an example, let us consider the following
question: If E and F are separable Banach spaces which are Lipschitz isomor-
phic, are E and F linearly isomorphic? Since every space C(K) is Lipschitz
homeomorphic to c0(Γ ) whenever the compact space K has ω0-derived set
K(ω0) = ∅, [53, Chapter VI, Theorem 8.9], the previous question reduces to
the separable case. Indeed, a Ciesielski-Pol compact space K, [53, Chapter
VI,Theorem 8.8.3], gives an example with K3 = ∅ and no linear continuous
injection of C(K) into any c0(Γ ). When E = Lp or E = lp, 1 < p < ∞ the
answer is yes by a result of Heinrich and Mankiewicz, [108]. If E = c0 the
answer is yes and it is due to Godefroy, Kalton and Lancien, [80]. Johnson,
Lindenstrauss and Scheteman achieved a major breakthrough in 1996 show-
ing that If 1 < p < ∞ and E is uniformly homeomorphic to lp, then E is
linearly isomorphic to lp, [116], notice that for p = 1 there is no answer even
for Lipschitz isomorphism. By using a metric notion of cotype, Mendel and
Naor showed that Lq uniformly embeds into Lp if, and only if, either we have
p ≤ q ≤ 2 or q ≤ p, [137] Recently, Lima and Randrianarivony,[131] proved
that the uniform quotients of lp, 1 < p < 2 are the same up to isomorphism as
the linear quotients of lp answering a problem that had been open for over a
decade. Their proof made essential use of Property (β) of Rolewicz, which is
an asymptotic property of Banach spaces whose definition involves the met-
ric but not the linear structure of the space, and which therefore lends itself
nicely to the nonlinear theory. S. J. Dilworth, D. Kutzarova, G. Lancien, and
N. L. Randrianarivony have shown that if T : E −→ F is a uniform quotient
then the modulus of asymptotic smoothness of F essentially dominates the
(β)-modulus of E. It follows that the separable spaces that are isomorphic to
spaces with Property (β) are precisely the reflexive spaces E such that both
E and E∗ have Szlenk index equal to ω, [55]. A main open problem here is:

Question 15. If E is a Banach space uniformly homeomorphic to c0, doest it
follow that E is linearly isomorphic to c0?
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pactness in Fréchet spaces and spaces C(X). Preprint, 2012.
7. Carlos Angosto and Bernardo Cascales. A new look at compactness via distances

to function spaces. In Advanced courses of mathematical analysis III, pages 49–66.

World Sci. Publ., Hackensack, NJ, 2008.
8. S. A. Argyros and V. Felouzis. Interpolating hereditarily indecomposable Banach

spaces. J. Amer. Math. Soc., 13(2):243–294 (electronic), 2000.
9. S. A. Argyros, D. Freeman, R. G. Haydon, E. Odell, Tf. Raikoftalis, Th.

Schlumprecht, and D.Z. Zisimopoulou. Hi extensions of L∞-spaces with very few

operators. Preprint, 2012.
10. Spiros A. Argyros. A universal property of reflexive hereditarily indecomposable

Banach spaces. Proc. Amer. Math. Soc., 129(11):3231–3239 (electronic), 2001.
11. Spiros A. Argyros and Pandelis Dodos. Genericity and amalgamation of classes of

Banach spaces. Adv. Math., 209(2):666–748, 2007.
12. Spiros A. Argyros and Richard G. Haydon. A hereditarily indecomposable L∞-space

that solves the scalar-plus-compact problem. Acta Math., 206(1):1–54, 2011.
13. Spiros A. Argyros and P. Motakis. The invariant subspace property of the strictly

singular operators in a reflexive spaces. Preprint, 2012.
14. Spiros A. Argyros and Theocharis Raikoftsalis. The cofinal property of the reflexive

indecomposable Banach spaces. Ann. Inst. Fourier, 62:1–45, 2012.
15. Spiros A. Argyros and Andreas Tolias. Methods in the theory of hereditarily inde-

composable Banach spaces. Mem. Amer. Math. Soc., 170(806):vi+114, 2004.
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compactness theorem. To appear Proc. Edinburgh Math. Soc., 2012.
33. B. Cascales, W. Marciszesky, and M. Raja. Distance to spaces of continuous functions.

Topology Appl., 153(13):2303–2319, 2006.
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77. F. Garćıa, L. Oncina, and J. Orihuela. Network characterization of Gul’ko compact

spaces and their relatives. J. Math. Anal. Appl., 297(2):791–811, 2004. Special issue
dedicated to John Horváth.
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136. J. F. Mart́ınez, A. Moltó, J. Orihuela, and S. Troyanski. On locally uniformly rotund

renormings in C(K) spaces. Canad. J. Math., 62(3):595–613, 2010.
137. Manor Mendel and Assaf Naor. Metric cotype. Ann. of Math. (2), 168(1):247–298,

2008.
138. Ernest Michael. Continuous selections. I. Ann. of Math. (2), 63:361–382, 1956.
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Topology and Functional Analysis 71

150. E. Odell and Th. Schlumprecht. A Banach space block finitely universal for monotone

bases. Trans. Amer. Math. Soc., 352(4):1859–1888, 2000.
151. Luis Oncina. A new characterization of Eberlein compacta. Studia Math., 146(1):69–

81, 2001.

152. J. Orihuela. Pointwise compactness in spaces of continuous functions. J. London
Math. Soc. (2), 36(1):143–152, 1987.
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(49):425–448, 1940.

180. V. V. Srivatsa. Baire class 1 selectors for upper semicontinuous set-valued maps.

Trans. Amer. Math. Soc., 337(2):609–624, 1993.
181. W. Szlenk. The non-existence of a separable reflexive Banach space universal for all

separable reflexive Banach spaces. Studia Math., 30:53–61, 1968.

182. M. Talagrand. Esembles K-analytiques et fonctions croisantes de compacts. Séminaire
Choquet. Initiation à l’analyse, 17:C1–C2, 1977.

183. M. Talagrand. Espaces de Banach faiblement K-analytiques. Ann. of Math. (2),

110(3):407–438, 1979.
184. Michel Talagrand. Sur une conjecture de H. H. Corson. Bull. Sci. Math. (2),

99(4):211–212, 1975.

185. M. Tarbard. Hereditarily indecomposable, separable L∞ Banach spaces with l1 dual
having few but not very few operators. To appear in J. London Math. Soc. (2012)

doi: 10.1112/jlms/jdr066, 2012.

186. V. V. Tkachuk. A space Cp(X) is dominated by irrationals if and only if it is K-
analytic. Acta Math. Hungar., 107(4):253–265, 2005.

187. N. Tomczak-Jaegermann. Banach spaces of type p have arbitrarily distortable sub-
spaces. Geom. Funct. Anal., 6(6):1074–1082, 1996.

188. B. Tsirelson. Not every banach space contains lp or c0. Func. Anal Appl., 8:138–141,

1974.
189. M. Valdivia. Topics in locally convex spaces, volume 67 of North-Holland Mathemat-

ics Studies. North-Holland Publishing Co., Amsterdam, 1982. Notas de Matemática
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Fréchet, 13
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