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1. Introduction and Terminology 

The purpose of this paper is to show that the behaviour of compact subsets in 
many of the locally convex spaces that usually appear in Functional Analysis 
is as good as the corresponding behaviour of compact subsets in Banach 
spaces. Our results can be intuitively formulated in the following terms: Deal- 
ing with metrizable spaces or their strong duals, and carrying out any of the 
usual operations of countable type with them, we ever obtain spaces with their 
precompact subsets metrizable, and they even give good performance for the weak 
topology, indeed they are weakly angelic, [-14], and their weakly compact subsets 
are metrizable if and only if they are separable. 

The first attempt to clarify the sequential behaviour of the weakly compact 
subsets in a Banach space was made by V.L. Smulian [26] and R.S. Phillips 
[23]. Their results are based on an argument of metrizability of weakly 
compact subsets (see Floret [14], pp. 29-30). Smulian showed in [26] that a 
relatively compact subset is relatively sequentially compact for the weak to- 
pology of a Banach space. He also proved that the concepts of relatively 
countably compact and relatively sequentially compact coincide if the weak-* 
dual is separable. The last result was extended by J. Dieudonn6 and L. 
Schwartz in [-9] to submetrizable locally convex spaces. The converse to 
Smulian's theorem was stated by W.F. Eberlein [10]. This result was extended 
by A. Grothendieck [-15], to spaces of continuous functions on compact spaces 
endowed with the pointwise convergence topology. A combination of results 
by A. Grothendieck, D.H. Fremlin, J.D. Pryce and M. DeWilde allow K. 
Floret [14], p. 36, to give a proof of a general version for the Eberlein-Smulian 
theorem. In spite of its powerful applications, the scope of the "Eberlein- 
Smulian theorem does not include some important classes of locally convex 
spaces and it gives no information about the metrizability of the compact 
subsets. 

Dealing with compactness in a locally convex space E two questions appear 
to arise: 

(1) Are the compact subsets of E metrizable? 
(2) Is the space E weakly angelic? 



366 B. Cascales and J. Orihuela 

Positive answers are known to (1), apart from the Smulian theorem, for 
(DF)-spaces, H. Pfister [-223, and dual metric spaces, M. Valdivia [28], p. 67 
and [29]. Both problems for (LF)-spaces, posed by K. Floret in [13], has been 
recently solved by the authors. In [6], we give a positive answer to (1) for any 
countable inductive limit of metrizable spaces. In [-213, the second author gives 
a positive answer to (2) in the same case as well as in dual metric spaces. The 
common structure that appears in the dual E' of a (LF)-space E suggests to us 
the introduction of a class 15 of locally convex spaces for which (1) and (2) 
have positive answers. 

The class 15 contains the metrizable and dual metric spaces and it is stable 
taking subspaces, separated quotients, completions, countable direct sums and 
countable products. Further a compact space K is Talagrand-compact, [27] 
and [2], if and only if it is homeomorphic to a weakly compact subset of a 
locally convex space of the class 15. Our results on metrizability are based 
upon a theorem of uniform spaces that we obtain in the second paragraph 
using K-analytic structures related with ordered families of compact subsets 
[5]. The results on weak angelicity are based upon a theorem about the 
angelic character of spaces of continuous functions with the pointwise con- 
vergence topology, given by the second author in [-213, and lead us to an 
extended version of the Eberlein-Smulian theorem. 

We also give some applications to spaces of vector-valued continuous 
functions, to the general problem of retractivity in inductive limits and to the 
study of locally convex spaces with analytic duals. 

All the topological spaces considered here will be Hausdorff. Whenever we 
work with spaces of continuous functions on a topological space it will be 
assumed to be completely regular. All the topological vector spaces (TVS) and 
all the locally convex spaces (LCS) will be defined over the field IK of real or 
complex numbers. 

We shall denote by N the set of positive integers endowed with the discrete 
topology and by N N the set of sequences of positive integers, ~ =(aN), endowed 
with the product topology. In N N we consider the following relation of order 
__<, for ~=(a,)  and fi=(b,) in N ~ we say that c~__</~ if and only if a,<b, for 
every positive integer n. Standard references for notations and concepts are 
[-11, 14] and [18]. 

2. A Result on Metrizability 

This paragraph is devoted to a study of the metrizability of precompact subsets 
in some uniform spaces. As is well known, for a compact subset K of a 
topological space X the metrizability of K is equivalent to the separability of 
C(K), the space of continuous functions on K endowed with the uniform 
convergence topology. This idea is the key to a proof of the following theorem, 
in which the separability of C(K) is obtained using K-analytic structures. For  
the concept of K-analytic space we refer to [25]. 

Theorem 1. Let (X, ~) be a uniform space and let us suppose that the uniformity 
has a basis N = {N~: c ~ N  N} verifying the following condition: 
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(a) For any c~ and fl i n n  ~ with c~<=fl we have that N~cN~. 

Then the precompact subsets of  (X, 0-#) are metrizabte in the induced uni- 
formity. 

Proof It will be enough to prove the result for the compact subsets of X 
because the corresponding result for precompact subsets is derived looking at 
the completion (/(, q2), [-18]. Let K be a compact subset of X and let us denote 
by [[ [[~ the supremum norm of C(K). We are going to prove that C(K) is K- 
analytic and therefore it is a LindelSf and Banach space and so separable. 
Given ~=(a,)  in N ~ we put aln=(a,,a~+l,  ...), n = 1 , 2 , . . . ,  and we define the 
subset 

A~ = {f~ C(K): [jf II co < al, If(x) - f (Y)I  < 1/n if (x, y)s(K x K) ~ N~I,, n = 1, 2,.. .} 

A~ is a uniformly bounded and uniformly equicontinuous subset of C(K). The 
Ascoli theorem assures us that A~ is a compact subset of C(K). On the other 
hand, the family {A~: e ~ N  ~s} has the following properties: 

(i) U {A~: ~c~y N} = C(K). 
(ii) For any e and fl in N N with a < fl we have that A= c Ae. 

Indeed, from the fact that every continuous function on K is bounded and 
uniformly continuous together with the order condition (a) on N, the validity 
of condition (i) is obtained: Given f e C ( K )  there exist M > 0  and a sequence (~k 
= (ak,)) in N N such that I1 f II oo =< m and If(x) -f(Y)l =~ 1/k for (x, y) ~ (K x K) m N~k, 
k = l , 2 , . . . .  If we take a l = m a x { a l , M  } and ak=max{a~,ak_1,2 ...,a~}, k 
= 2 , 3 , . . . ,  for the sequence a=(ak) we have that f~A~. Property (ii) is a 
straightforward consequence of the order condition (a) required for ~.  Using 
the family {A~: a ~ N  N} we are going to describe a K-analytic structure on 
C(K). 

For  the positive integers k, n,, n2,...  , F/k we write 

C,w,2 ..... = U{A~: c~=(a,)~N ~, aj=n~, j = l , 2 ,  ...,k} 

and for every ~ =(n~) in N N we put B~ = 5 C .. . . . . . . .  . We obtain in this way a 
k=~ 

mapping B from N ~ into the family of all the parts of C(K) that obviously 
satisfies U {B~: e ~ N  N} = C(K). The set-valued mapping B will be a K-analytic 
mapping in C(K) if we can show that it is an upper semi-continuous compact 
(usco) set-valued mapping. To see this, it is enough to show that if (%) is a 
sequence in N ~ converging to ~ and f ,  belongs to B~, for every positive integer 
n, then the sequence (f,) has an adherent point in C(K) belonging to B~. This 
property is easily derived from L e m m a A  below and the proof is 
concluded. Q.E.D. 

Lemma A. Let X be a topological space with a family {A~: ~ N  ~} of compact 
subsets such that A~cA~ whenever ~<_fl in N N. Given positive integers 
k, al, a 2 , ..., ak, we write 

C . . . . . . . .  k=U {Act: e = ( b , ) e N  N, bj=ai, j = l , 2  . . . .  ,k}. 



368 B. Cascales and J. Orihuela 

I f  ~=(nk) belongs to N ~ and Xk~C . . . . . . . . .  , k = l , 2 ,  ..., then the sequence (Xk) has 

an adherent point in X belonging to ~ C,ln2 .... . 
k - -1  

Proof. Given , and (Xk) as above there is a sequence ("k =(a,k)) in N ~ with ay 
= n;, j = 1, 2, ..., k; k = 1, 2, ..., such that xk~A~, k = 1, 2, . . . .  For  arbitrary posi- 
tive integers m and n we put b:'=max{ak,: k = m , m +  1,...}, which is clearly 
finite, and tim =(b~). We have that b~f =nj, j =  1, 2, ..., m and fim>,k, k=m,  m 
+ 1 , . . . .  It follows that Xk~A~,  k = m , m + l , . . . ,  and so (Xk) has an adherent 

point in X belonging to (~ Ao~ which is contained in (~ C .. . . . . . . .  and the 
r n = l  k = l  

proof is finished. Q.E.D. 

Note. The former lemma has been used by the first author in a previous paper, 
[5], to prove, among other, the following result: 

I f  X is an angelic topological space then X is K-analytic if and only if there 
is a family {A~: c ~ N  ~} of compact subsets of X covering it such that A cA~  
whenever c~ <__ fi in N ~. 

The usco mapping is defined by ~ = ( a , ) ~  (~ C,~,~ ..... . 
n = l  

At first glance the conditions required in Theorem 1 seem to be very 
technical, however they turn up in many of the uniformities of topological vector 
spaces as we shall see in the next paragraph. At the moment we give some 
applications for spaces of continuous functions. A good reference for strict 
topologies in spaces of bounded continuous functions is [31]. 

Corollary 1.1. Let X be a topological space having a K-analytic and dense 
subspace. Then the following conditions are verified: 

(i) The space of continuous functions on X endowed with the compact-open 
topology, C~(X), has its compact subsets metrizable. 

(ii) The space of bounded continuous functions on X, Cv(X), endowed with the 
compact-open topology has its compact subsets metrizable. 

(iii) The space Cb(X ) endowed with whatever strict topology tip, fl~, fl~, fi~ or 
flr has its compact subsets metrizable. 

Proof (i) Let Y be a K-analytic and dense subspace of X. As Talagrand has 
shown, [27], Y can be written as the union of a family {K~: c~eN ~} where 
every K~ is compact and K ~ c K ~  whenever c~=<fi in N N. Therefore X 

= ~ {Ks: e ~ N  N} and the topology 3;, on C(X), of uniform convergence on 
every K~ is a Hausdorff topology coarser than the compact-open topology on 
C(X). The uniformity that describes the topology 3; verifies the conditions of 
Theorem 1, and so its precompact subsets are metrizable and "a  fortiori" the 
compact subsets of Cr are metrizable. 

(ii) is a consequence of (i). 
(iii) For  the strict topologies on Cb(X ) we have the following relations 

flt<fi~<fis<fi~ and fit<fi, 

/~ being finer than the compact open-topology, [31]. It is now clear that (iii) 
follows from (ii). Q.E.D. 
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3. Metrizability of Precompaet Subsets in Locally Convex Spaces 

We shall now use Theorem 1 from the previous section to provide large classes 
of spaces with metrizable precompact subsets in the framework of LCS. 

The uniform structure of a LCS E is related to the filter basis of neigh- 
bourhoods of the origin in E. The neighbourhoods of the origin in E are 
related by polarity to the equicontinuous subsets of E'. So in order to get a 
LCS E[3;] that fulfills the hypothesis of Theorem 1 it seems to be reasonable 
to ask for the following structure in the dual E': 

There is a family {A~: ~ e N  N} of equicontinuous subsets of E' such that the 
following conditions are satisfied: 

(a) U {A~: e e N  ~} =E'.  
(b) For any ~ and fl in N ~ with c~ <= fl we have that A~ c Ate. 

For such a space E[2;] its precompact subsets are metrizable. 

Indeed, if we denote by 3;' the topology on E of uniform convergence on 
every A~ we have that a(E,E')<3;'<3; and E[3;'] fulfills the conditions of 
Theorem 1. So the 3;'-precompact subsets of E are metrizable and "a fo r t i o r i "  
the 3;-precompact subsets are also metrizable because 3; and 3;' agree on the 
3;-precompact subsets of E, [18] w 28.5.(2). 

There is a large class of LCS E[3;] which have the former structure, 
nevertheless in order to obtain a general result that includes many of the 
previous results on metrizability of compact subsets [6, 22, 29,.. .]/,  we are 
going to enlarge this structure looking at the countable equicontinuous only: 

Theorem2. Let E[3;] be a LCS  with a family {A~: ~ e N  ~} of subsets of E' 
verifying the following conditions: 

(a) U{A~: c~eN~}=E '. 

(b) For any ~ and fl in N ~ with c~ < fl we have that A~ ~ A~. 

(c) For any ~ in N ~ the countable subsets of A: are equicontinuous. 

Then the precompact subsets of E[3;] are metrizable. 

Proof Let 3;' be the topology on E of uniform convergence on every A~ and 37 
the topology of uniform convergence on all the sequences contained in some 
A~, ~ e N  N. We have that a(E,E')<_3;s<3; and a(E,E')<3;~<3; ', being the 
precompact subsets of E[~;'] metrizable after Theorem 1. The proof will be 
finished if we can show that a precompact subset A in E[3;] is also precom- 
pact in E[3; '] because in this case the topologies 3;, 3;' and 2; 5 coincide on A, 
[181 w We have that A is precompact in E[3;s]. To see that A is 
precompact in E[3;'] it will be enough to show that every sequence contained 
in A has a Cauchy subnet in E[3;'], [18] w Because of the precompact- 
ness of A in E[37],  given a sequence {x,: heN} in A there is a subnet of it, 
{xe: #eL,  >}, which is a 3;~-Cauchy net. It is not difficult to prove that 3;s and 
3;' coincide on the countable subsets of E. Particularly, 3;s and 3;' coincide on 
M = { x e - x e , :  E,#'eL} and therefore {x~: #eL,  >} is a 3;'-Cauchy net and the 
proof is concluded. Q.E.D. 

We can give a picture of the possible applications of Theorem 2 with some 
examples: 
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Examples 1.2. The following LCS E[3;] fulfill the conditions of Theorem 2, and 
so they have their precompact subsets metrizable: 

A) The inductive limits, E[3;] =libra En[3;n] , of increasing sequences of metriz- 
able LCS. 

If U~ ~ U~ ~ . . .  D U~" = . . .  is a fundamental system of neighbourhoods of the 

origin in E,[3;n] and for every c~=(an)eN ~ we put A~= (~ U o ( a , )  , then the family 
n = l  

{A,: c~eN ~} satisfies the conditions of Theorem 2. This structure has been used 
by the authors in a previous paper, [63. 

B) The generalized inductive limits, E[3;] =lim(En[3;,] ,An) , of sequences of 

pairs {(E n [3;,], An): n = 1, 2,...} where every A n is 3;,-metrizable. 

It is not difficult to extend the former construction to this more general 
setting dealing with the system of neighbourhoods of the origin for generalized 
inductive limit topologies, [28] Chap. 1, 9. The first author has made use of 
this structure in a previous paper [4], to describe some properties of general- 
ized inductive limit topologies. 

C) The (DF)-spaces E [3;] 

If B l c B 2 c . . . c B , ~ . . .  is a fundamental system of bounded subsets in 

El3;] and for every c~=(an)eN ~ we put A~= (~ a ,B ~ then the family {A~: ae 
n = l  

N ~} satisfies the conditions of Theorem 2. The metrizability of precompact 
subsets in (DF)-spaces has been proved by H. Pfister in [223 with different 
techniques. 

D) The dual metric spaces E [3;] 

Let us recall that a dual metric space is a quasi-fo<barrelled LCS, [173, 
with a fundamental sequence of bounded sets. The same construction of (DF)- 
spaces works for dual metric spaces. M. Valdivia proved in [293 that the 
precompact subsets of dual metric spaces are metrizable. 

Note. The proof that Valdivia does to obtain that the precompact subsets of a 
dual metric space are metrizable is based on the following result ([28], p. 67): 

Let E[3;] be a LCS such that its dual E' endowed with the topology of 
uniform convergence on the 3;-compact subsets of E, p(E',E), is quasi-Suslin. 
Then the compact subsets of E[3;] are metrizable. 

We can give a proof of this result of Valdivia using Theorem 1. 
A topological space X is said to be quasi-Suslin, [283, if there is a mapping 

T from N ~ into the family of all the parts of X, ~(X), such that: 

(a) U(T~: a eN~}=X.  
(b) If ~n is a sequence in N ~ that converges to ~ and x n belongs to T~, for 

every positive integer n, then the sequence (xn) has an adherent point in X 
belonging to T~. 

If T: N ~ ( E  ') is a quasi-Suslin mapping in E'[p(E', E)], for every ~eN ~ 
the set A~= ~ {T~: f ieN N, fi<c~} is p(E',E)-countably compact in E', [5] and 
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[21]. The family {A~: c~N ~} covers E' and A~cAis whenever c~</~ in N ~. Let 
3;' be the topology on E of uniform convergence on every A~ and 3; s the 
topology of uniform convergence on all the sequences contained in some A~, c~+ 
N ~. We have that a(E,E')<_3;s<3; ' and that for a compact subset A of E[3;] 
the topology induced by 3;s on A is coarser than the induced by 3;. - Let us 
observe that every sequence contained in some A~ is 3;-equicontinuous on A 
after Ascoli's theorem. Now, we can conclude that A is metrizable as we have 
done in Theorem 2: 3;, 3;' and 3; s coincide on A and A is 3;'-metrizable (3;- 
metrizable) after Theorem 1. 

Other consequences can be derived from Theorems 1 and 2. M. Valdivia 
has described in [30] the class of quasi-LB spaces. A LCS E [35] is said to be a 
quasi-LB space if there is a family {A~: ~+N ~} of Banach discs in E[3;] such 
that (a) {A,: e c N  ~} = E  and (b) for any e and fl in N N with c~</~ we have that 
A~ c A~. 

Corollary 2.2. The following LCS have their precompact subsets metrizable: 

(i) The quasi-barrelled LCS, E[3;], with strong dual E'[fi(E',E)] quasi-LB 
space. 

(ii) The quasi-foo-barrelled LCS, E[3;], with strong dual E'[fl(E',E)] quasi- 
LB space. 

(iii) The strong duals E'[fl(E', E)] of quasi-LB spaces E[3;]. 

Proof. (i) and (ii) are straightforward consequences of Theorem 2. 
(iii) Let us consider a quasi-LB structure {A~: a c N  ~} of El3;] and let 3;' be 

the topology on E' of uniform convergence on every A~. Using Theorem 1, the 
precompact subsets of E'[3;'] are metrizable. On the other hand, fi(E',E) is 
finer than 3;' and they agree on the fl(E',E)-precompact subsets of E', [18] 
w It is clear now that the precompact subsets of E'[fl(E',E)] are 
metrizable. Q.E.D. 

Note. In [30], Valdivia has shown that a locally complete webbed LCS, see 
[8], is a quasi-LB space and that in a webbed LCS E[3;] there is a family of 
bounded subsets {As: c~N N} such that ~){A~: e+Nn~}=E and A~cAp when- 
ever e </~ in N ~. It clearly follows that the former corollary is also valid i f  we 
put webbed spaces instead of quasi-LB spaces. 

The class of quasi-LB spaces is stable by closed subspaces, separated 
quotients, countable topological direct sums and countable topological pro- 
ducts, [30]. If we denote the family of LCS verifying the conditions required in 
(i) (resp. (ii)) of Corollary 2.2 by ~ (resp. ~.~'), the stability properties of ~ and 
Y '  are good enough to enlarge some of the results gathered in the former 
examples and corollary: Y c J ' ,  the metrizable spaces belong to ~,, the dual 
metric spaces belong to ~ ' ,  and both of the classes, ~ and Y', are stable by 
closed subspaces of finite codimension, separated quotients, countable to- 
pological direct sums, countable topological products and completions. These 
stability properties are based upon the stability properties of quasi-barrelled, 
quasi f~o-barrelled, [17], and quasi-LB spaces, [30]. 

We give no proof of these properties because we are going to study a better 
class containing the former ones: 
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Definition3. Let (5 be the class of LCS E that .fulfill the conditions of 
Theorem 2. A family {A/ c~N ~} in E' verifying the conditions (a), (b) and (c) of 
Theorem 2 shall be called a (5-representation of E in E'. 

t5 is a large class that is made up of LCS where the precompaet subsets are 
metrizable. Further, looking at the proof of Theorem 2 again it can be asserted 
that for an space E [3;] ~ (5, /f 3;s is the topology on E of uniform convergence on 
all the equicontinuous sequences of E', then the precompact subsets of E [3;'] are 
metrizable. - Let us observe that 3;' is strictly coarser than 3; in general. 

We are now going to deal with the stability properties of the class (5 to 
reinforce the former results on metrizability of precompact subsets. Our proofs 
are inspired by the stability properties of quasi-LB spaces of M. Valdivia [30]. 

Proposition 4. Let {E,[3;,]: n=  1, 2, ...} be a sequence of spaces of the class (5 
and El3;] = @ {E,[3;J : n = 1, 2,...} its locally convex direct sum. Then E[3;] 
belongs to (5. 

Proof. For every positive integer n let {A~: e~N N} be a (5-representation of 
E,[3;,] in E',. Let ~o be a one to one mapping from N onto N x N .  If c~ s 
=(ay,,)~N ~, j = l , 2 , . . . ,  we write bn=ao(~) , n = l , 2 , . . ,  and 0{(c~s: j - - i ,  2,...)} 
=(b,). Then 0 is a one to one mapping from (N~) N onto N ~. If c~N N and {c~s: 

j = l , 2 , . . . } = 0 - i ( e )  we set A~=I~I,{A~: j = l , 2 , . . . } .  The family {A/ eEN N} is a 
(5-representation of E in E~-f f {E ' , :  n= l ,2 , . . . } ,  [18] w and 
w Q.E.D. 

Proposition 5. Let {E~[3;,]: n=  1, 2, ...} be a sequence of spaces of the class (5 
and E[3;] = ~I {E,[3;,]: n =.1, 2,...} its topological product, Then E[3;] belongs 
to the class (5. 

Proof. For every positive integer n let {AM: ~mN ~} be a (5-representation of 
E,[3;,] in E',. Given e=(a,)mN ~ we put A~= 1 2 A~OA~O. . . |  ~ and we ob ta in  
a family {A/ c~N ~<} in E'~-@{E',: n = l , 2 ,  ...}, [18] w which is a (5- 
representation of E in E', [18] w Q.E.D. 

Proposition 6. Let E be a space of the class (5 and F a closed subspace of E. 
Then ElF belongs to the class (5. 

Proof. The dual space (ELF)' is isomorphic to F • the orthogonal subspace to 
F in E', and the equicontinuous subsets of (E/F)' are identified with the 
equicontinuous subsets of E' which are contained in F • [18] w If {A~: 
c~mlN ~} is a (5-representation of E in E', then {A~c~F• c~EN ~} is a (5- 
representation of (E/F) in (E/F)'. Q.E.D. 

Proposition 7. Let E be a space of the class (5 and F any subspace of E. Then F 
belongs to the class (5. 

Proof. If {A/ c~EN ~} is a (5-representation of E in E', then the restrictions to F 
{A~IF: ~ N  N} is a (5-representation of F in F'. Q.E.D. 

Proposition 8. Let El3;] be a space of the class (5. Then the completion /~[~;] 
belongs to the class (5. 
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Proof E[3;] and its completion E[~;] have the same dual E' and the same 
equicontinuous subsets, [18] w 21.4.(5). Therefore, a N-representation of E in E' 
is also a N-representation of/~ in E'. Q.E.D. 

Usual corollaries for countable projective or inductive limits follow directly 
from the former propositions. As a application we give the following: 

Proposition9. Let E[3 ; ]= l imE, [~ , ]  be the inductive limit of a sequence of 

spaces {En[3;n]: n = l , 2 , . . . }  such that E',[fi(E',,E,)]~N, n = l , 2 , . . . .  Then 

E'[fl(E', E)] has its precompact subsets metrizable. 

Proof E' can be identified with a subspace of the product I~{E',: n = l , 2 ,  ...}. 
The topological product ~IE',[fl(E',, E,)] induces on E' a topology 3;' such that 
E'[3; ']~N. It follows that Z'<fi(E' ,E) and that fi(E',E) has a system of neigh- 
bourhoods of the origin which are 3;'-closed subsets. The result follows from 
Theorem 2 and [18] w Q.E.D. 

Examples 10. There are LCS E such that E'= U {As: c~N~} with A s equicon- 
tinuous and having compact subsets which are not metrizable. 

Let us consider the Banach space :~  and the dense subspace :~  generated 
by the characteristic functions of subsets of N. :~  = U {As: c~N~} with A s 
bounded and finite dimensional because the cardinal number of N ~ coincides 
with the cardinal number of the set of all finite subsets of the set of subsets of 
N. However, there are a ( :~ ' , :~ ) -compac t  subsets which are not a ( : ~ ' , : ~ )  - 
metrizable: the unit closed ball of :~o provides us with a set in such a situation, 
[14] p. 8. 

Another example can be constructed using Hilbert spaces: if we take 
:2(N~) it is not difficult to show that the dense subspace F generated by a 
complete orthonormal system, {e~: cENt},  is of the form F - - U  {As: eeNN} 
with A s bounded and finite dimensional. As before, there are o-(:2(NN),F) - 
compact subsets in :2(N~) which are not o-(:2(N~),F)-metrizable because 
:2(N~) is a non-separable Hilbert space. 

4. On Angelic Spaces 

A Hausdorff topological space S is angelic [14], if the closure of every 
relatively countably compact subset A of S is compact and consists precisely of 
the limits of sequences from A. If the closure of every relatively countably 
compact subset of a space S is metrizable, then S is an angelic space. There- 
fore, all the uniform and locally convex spaces studied in the previous sections 
are angelic spaces. Particularly, our class N is a wide and very stable class of 
angelic LCS. 

The strongest results about the angelic character of a given space S are 
those that give the angelicity for coarser topologies than the original one. 
Working with a common structure in the dual E' of a LCS E, more general 
than the 15-representations, we shall simultaneously derive the metrizability of 
the compact subsets of E and the angelic character of E[a(E, E')]: 
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Theorem 11. Let E[,Z] be a LCS and {A/ c~N ~} a family of subsets of E' 
verifying the following conditions: 

(a) U {A/ a~N ~} is total in E'[,a(E', E)]. 
(b) For ~ and fl in N ~ such that ~ <= fl we have that A~ ~ A s. 
(c) For any ~ in N N the countable subsets of A s are equicontinuous. 

Then we have that: 

(i) The closure of every relatively countabIy compact subset of E[3;] is 
metrizable. 

(ii) E[a(E, E')] is an angelic space. 

Proof. (i) Proceeding as we have done in Theorem 2 we obtain that the 
precompact subsets of E[-37] are metrizable where we are denoting by 3;s the 
topology on E of uniform convergence on all the sequences contained in some 
As, e~N ~. The Hausdorff topology 3;s is clearly coarser than 3;. Let A be a 
relatively countably compact subset of E[3;] and q~: E [,3;]-~E[3;~] the identity 

mapping. ~(A) is a precompact subset of El,3; ~] and thus its closure ~(A) is 
metrizable, q~ is continuous and injective, so we can apply "the angelic lem- 
ma", [14] p. 28, and we conclude that ~(A) is closed and ~[a is a homeomor- 
phism. The conclusion follows from this fact. 

(ii) We consider X =  ~ {A/ c~N ~} endowed with the topology induced by 
a(E', E). Every A s is relatively countably compact in X. Let Cp(X) be the space 
of continuous functions on X endowed with the pointwise convergence to- 
pology. The second author has shown in [21] that for such a space X the 
space Cp(X) is angelic. Now, the restriction mapping E[a(E ,E ' ) ]~Cp(X)  is 
continuous and injective, and an application of "the angelic lemma" gives us 
the conclusion. Q.E.D. 

As a consequence of Theorem 11, every space of the class (5 is weakly 
angelic. The good stability properties of the class (5 reinforce the recent 
answers given by the second author in [21] to the problems of weak angelic 
character of (LF)-spaces, dual metric spaces,... 

Note. The angelic character of spaces Cp(X) is proved in [21] for a class of 
topological spaces X that we call web-compact spaces. A space X is web- 
compact if and only if there is a metrizable and separable space P together 
with a mapping T from P into the set of all the parts of X such that: U {Tx: 
x~P} is dense in X and ~){Txn: n =  1, 2, ...} is relatively countably compact in 
X whenever (x,) is a convergent sequence in X. Particularly, K-analytic, 
countable determined [27], quasi-Suslin and every space X with a dense and 
ordered family {A/ c~N ~} of relatively countably compact subsets are web- 
compact spaces. The proof is based upon an argument of accessibility by 
sequences that extends previous results by J.D. Pryce [24], M. De Wilde [-7] 
and K. Floret [,14] which only work for spaces X with a dense a-relatively 
countably compact subset. 

We continue dealing with spaces of continuous functions, but now, we are 
going to study vector-valued continuous functions. Given a topological space 
X and a LCS E we denote by C(X,E) (resp. Cb(X,E)) all continuous (resp. 
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bounded continuous) functions from X into E. We shall use the strict topo- 
logies in the vectorial case, rio, ill, fl'l, fl, fi' and fi~ as Khurana does in [19]. It 
should be noted that if E is the field IK then we have that rio--fit, fi=fl '=fl~, 
fi~ =fioo and fll =fi'l =fi~ with the notations of Wheeler [-31] that we have used 
in Corollary 1.1. 

Corollary 1.11. Let X be a topological space with a dense K-analytic subspace 
and E a LCS of the class (5. Then the following statements are verified: 

(i) C(X, E) endowed with the compact-open topology has metrizabIe compact 
subsets and with the weak topology is an angelic space. 

(ii) Cb(X, E) endowed with the compact-open topology has metrizable compact 
subsets and with the weak topology is an angelic space. 

(iii) Cb(X,E) endowed with any strict topology rio, fi, fi', fi~, fll or fl'l has 
metrizable compact subsets and endowed with their corresponding weak topology 
is an angelic space. 

Proof (i) Let {K~: c~eN N} be a family of compact subsets of X such that K s 

c K ~  whenever c~<fi in N ~ and X =  U {Ka: c~eN~} �9 We abridge G=  C(X,E) 
endowed with the compact-open topology, R, and we put G' for its dual space. 
For every s e x  and x'eE' the mapping 6s,x': C(X ,E)~ IK  given by 6s, x'(g) 
=x'g(s), geG, belongs to G'. For every c~eN ~ we define Ca={6s,,,: seKa, 
x'eAa}. It is clear that Cac  C~ for every c~<fi in N ~. It is not difficult to show 
that the countable subsets of every C a are R-equicontinuous. On the other 
hand, for g belonging to G such that ~s,~,(g)=0 for every c~,~,e~{Ca: ~eN ~} 
we have that g=0,  and so U {Ca: c e n t }  is total in G'[a(G', G)]. Now, the 
conclusion follows from Theorem 11. 

(ii) is a consequence of (i) because the metrizability of compact subsets and 
the angelic character is inherated by subspaces. 

(iii) For the strict topologies on Q ( X , E )  we have that fl>fi'>flo, 
fil>fl'l>flo, fl'l>fi'~>fi ', rio being finer than the compact-open topology on 
Cb(X, E), [,-19]. Now, (iii) follows from (ii) if we take into account that the 
metrizability of compact subsets and the angelic character are preserved by 
refining the topologies. Q.E.D. 

5. Talagrand-Compact spaces and the Class (5 

As we have seen in the previous sections the spaces of the class (5 are good 
spaces from the viewpoint of compactness: they have metrizable precompact 
subsets and they are weakly angelic. In this paragraph we are going to connect 
the weakly compact subsets of spaces of the class (5 with the class of Talagrand- 
compact spaces. A compact space K is said to be a Talagrand-compact (or a 
compact of type •1) if the space C(K) is a weakly K-analytic Banach space 
[27]. Every compact space such that C(K) is weakly compactly generated 
(WCG) is Talagrand-compact [-27]. The fact that for a compact space K the 
space C(K) is WCG if and only if K is Eberlein compact, that is, if and only if 
K is homeomorphic to a weakly compact subset of a Banach space, was shown 
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by Amir and Lindestrauss [lJ. We can characterize the Talagrand-compact 
spaces as the weakly compact subsets of LCS of the class (5: 

Theorem 12. For a compact space K they are equivalent." 
(i) K is Talagrand-compact. 

(ii) K is homeomorphic to a weakly compact subset of a LCS E[3;] of the 
class (5. 

Proof (ii)~(i) Let E[3;] be a LCS belonging to (5 and K a compact subset of 
E[a(E, E')]. To see that K is Talagrand-compact we proceed in the following 
way: Let {A~: ~eN ~} be a (5-representation of E in E' and we put B~={x'JK: 
x'eA~} for every a e N  N. It is clear enough that B~ is contained in C(K) and B~ 
cB~ for every c~<fl in N ~. On the other hand every B~ is a relatively 
countably compact subset of Cp(K) and so a relatively compact subset because 
of Grothendieck's theorem [15]. If we consider the closure B~ of B~ in Cp(K), 
then the union of the ordered family of compact subsets {B~: a e N  v} separates 
the points of K and we obtain that K is Talagrand-compact applying Proposi- 
tion 6.13 of [27]. 

(i)~(ii) If K is a Talagrand-compact, then C(K) is weakly K-analytic. 
Particularly, according to [27] there is a family {A~: c~eN ~} of weakly com- 
pact subsets of C(K) such that C(K)=U{A J c~eN N} and A~cA~ whenever 
~<f i  in N N. Using Krein's theorem, [18] w we can assume that every 
A, is absolutely convex and weakly compact in C(K). If M(K) is the space of 
Radon measures on K, the dual space of C(K), and 3; is the topology on M(K) 
of uniform convergence on every As, then M(K)[3;1 belongs to (5 and for its 
dual space we have that M[K)[3;]'= C(K). It now follows that K is a weakly 
compact subset of M(K) [3;1 and the proof is finished. Q.E.D. 

The weakly compact subsets of LCS of the class (5 have the good proper- 
ties of the Talagrand-compact spaces. 

Corollary 1.12. Let E[3;] be a LCS of the class (5. For every weakly compact 
subset K of E the weight of K is equal to the density character of K. Particular- 
ly, K is metrizable if and only if K is separable. 

Proof It is a consequence of Theorem 12 and Th6or6me 6.2 of [271. Q.E.D. 

Talagrand's proof of Th6or6me 6.2, [27], is based upon his Th6or6me 6.1, 
[27], that assures for a weakly countably determined Banach space E the 
equality of its density character with that of its weak-* dual E'[a(E',E)]. 
Dealing with the class (5 we have the following: 

Theorem 13. Let E[3;] be a LCS of the class (5 which is weakly eountabIy 
determined. Then the density character of E[3;] is equal to the density character 
of E'[a(E', E)]. 

Proof For a set B we denote by IBI its cardinal number. 

Let B be a dense subset in E[a(E, E')]. The second author has proved that 
the space E'[cr(E', E)] is angelic (Theorem 6 [21]). If we bear in mind the note 
that follows Lemma A we obtain that E'[a(E', E)] is a K-analytic space using 
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the N-representation of E in E'. Let a(E',B) the topology on E' of pointwise 
convergence on B. Applying the Th6or6me 2.4 of [27] we can be sure that 
E'[a(E', E)] has a dense subset with cardinality less than or equal to IBI. 

Conversely, if B is a dense subset of E'[cr(E', E)], using the topology ~r(E, B) 
on E of pointwise convergence on B and the fact that E [a(E, E')] is countably 
determined another application of Th6or6me 2.4 of [27] gives us a dense 
subset of E[a(E, E')] with cardinality less than or equal to IBI and so the proof 
is finished. Q.E.D. 

In the separable case the former ideas lead us to the following: 

Theorem 14. Let El3;] be a LCS of the class (5. I f  E[3;] is separable, then 
E'[a(E', E)] is separable. 

Proof Let N be a countable and dense subset of E[3;]. The topology a(E', N) 
on E' is metrizable and coarser than o-(E', E) and so E'[G(E', E)] is angelic. The 
note that follows Lemma A assures us that E'[a(E',E)] is a K-analytic space. 
The Th6or6me 2.4 of [27] assures us that E'[a(E', E)] is separable. Q.E.D. 

A LCS E with E'[a(E',E)] separable is realcompact for its weak topology 
[28] p. 137, and so every separable LCS E of the class (5 is weakly realcompact. 

Corollary 1.14. Let E[3;] be a LCS of the class (5 and K a weakly compact 
subset of E. I f  K is contained in a separable subspace of E then K is metrizable. 

Proof Let F be a separable subspace of E containing K. F belongs to (5 after 
Proposition 7 and so F'[a(F',F)] is separable by Theorem 14. Smulian's theo- 
rem gives us the result. Q.E.D. 

We can go further and say that for a separable space E[3; 1 of the class (5 
its weak-* dual E'[a(E', E)] is analytic. We need the following previous: 

Theorem 15. Let X be a submetrizable topological space. The following state- 
ments are equivalent: 

(i) X is analytic. 
(ii) There is a family {Ks: c~6N ~} of compact subsets of X covering it and 

such that K s c K~ whenever ~ < fi in N N. 

Proof (i)~(ii) Every analytic space is a continuous image of N ~. Given e ~ N  N 
the subset {fi~NN: fl__<a} is compact in N ~ and its image is the compact K~ 
required in (i). 

(ii)~(i) Let d be a metric on X such that its associated topology is coarser 
than the original one on X. Taking into account the note that follows 
Lemma A, the space X is K-analytic and so (i) is satisfied after Theorem 5.5.1 
of [25]. Q.E.D. 

Let us remark that an analytic space is submetrizable whenever it is regular 
and so the condition of submetrizability on X can not be omitted in Theo- 
rem 15, [25] 5.5.1. For  a LCS E [ Z ]  we denote by Zpc(E',E) the topology of 
uniform convergence on all the precompact subsets of E[~;]. 
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Corollary 1.15. Let El3;] be a separable LCS of the class (5. Then E'[3;p~(E', E)] 
is analytic and in particular E'[o-(E', E)] is analytic. 

Proof The separability of E implies that E'[3;pc(E',E)] is submetrizable. The 
(5-representation of E in E' gives us a family {A/ e~N N} of countable 
equicontinuous subsets of E' such that A~ ~ A~ whenever ~ < fl in N ~s. Every A~ 
is relatively countably compact in E'113;pc(E',E)]. The angelic character of 
E'[3;pc(E',E)] provides us with the situation of Theorem 15, hence the 
result. Q.E.D. 

The former corollary contains as particular cases some of the results proved 
by M. DeWilde in [8], VII.2, and of course new cases of applications because 
of the good stability properties of the class (5. 

6. Regularity Conditions in Inductive Limits 

The regularity and retractivity conditions have been studied by different au- 
thors: K. Floret introduces the notion of sequentially retractive inductive limit 
in [12], Bierstedt and Meise introduce the compact-regular inductive limits in 
[3] and H. Neus gives the definition of sequentially compact-regular inductive 
limit in [20] as well as deep results on the equivalence between the different 
notions of regularity and retractivity for inductive limits of sequences of nor- 
med spaces. In 1128], M. Valdivia has studied the former properties and other 
related ones for the weak topology of inductive limits of normed spaces. 
Recently, the authors have proved in [-6] that for an inductive limit of an 
increasing sequence of metrizable LCS the conditions of sequentially retractive, 
sequentially compact-regular, compact-regular and precompactly retractive [6], 
are equivalent. Other results in this context for generalized inductive limits 
have been obtained by the first author in [-4]. 

The purpose of this short paragraph is to obtain the former equivalences in 
the general case of inductive limits of spaces of the class (5, and thus - in some 
way - give a certain answer to K. Floret, who expounds in [13] that it is 
desirable to study this kind of results in general cases. 

Theorem 16. I f  E [3;] = l imE, J3;,] is an inductive limit of an increasing sequence 

of subspaces E,[-3;J belonging to the class (5, then the following statements are 
equivalent: 

(i) E[3;] is sequentially retractive. 
(ii) E [3;] is sequentially compact-regular. 

(iii) E[3;] is compact-regular. 
(iv) E113;] is precompaetly retractive. 

I f  every E,[-3;,] is complete, the former conditions are also equivalent to the 
following: 

(v) For every precompact subset A of E[-3;] there is a positive integer n such 
that A is contained in E,113;,3 and it is precompact in this space. 
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(vi) E'[Zpc(E', E)] is a closed subspace of the topological product 

I~I E; [~;pc(e',, e,)]. 
n = l  

Proof The stability properties of the class (5 give us that the space E[Z]  
belongs to t5, and therefore its precompact subsets are metrizable. Based upon 
the metrizability of precompact subsets, the same proof that we have given in 
Theorem 3 and Corollary 1.3 of [6] works in this case, and so we obtain that 
the conditions (i), (ii), (iii), (iv) and (v) are equivalent. 

(v)~(vi) The space E' is identified with a closed subspace of 
oo 

[ I  E'~[~pc(E'~,E,)] through the restriction mapping U~(UlEI, UIE2, ...,UIE~, ...). 
n ~  1 

[-[ ' E' E' The topology induced by __ E,[7s ( , ,E,)] on is the topology of uniform 
n = l  

convergence on the located precompact and so (vi) follows from (% 
(vi) ~(v)  If we assume that (vi) is satisfied, then for every precompact subset 

A of E[3;] there is a precompact subset B in some E, [Z , ]  such that B ~  ~ 
where the polars have been taken in (E, E'). Using the bipolar theorem, A is 
contained in the closed absolutely convex hull of B which is again a precom- 
pact subset of E , [Z , ]  because this space is complete, hence the result. Q.E.D. 

Note. Using the filters lemma of Grothendieck, [16] p. 107 Lemmc 7, the 
following can be shown: 

Let E[3;] be a LCS  of the class 15 and let {E,[3;,]" n = l ,  2,...} be an 
increasing sequence of subspaces of E covering it such that the topologies 
induced by 5Z and ~2,+ 1 on E n are coarser than Xn, n = l , 2 , . . . .  Then they are 
equivalent: 

(i) For every sequence (xm) in E[7s which is convergent to the origin, there 
is a positive integer n such that (Xm) is contained in E, and converges to the 
origin in E, [~;n]. 

(ii) For every precompact subset A of El3;] there is a positive integer n such 
that A is contained in En[2;,] and the topologies �9 and 7s coincide on A. 

This viewpoint unifies regularity and retractivity properties for inductive 
limits (as Theorem 16) with the Mackey convergence properties. For instance, 
for a dual metric space E[~] ,  that belongs to 15, the equivalence between (i) 
and (ii) tells us that the Mackey convergence property in E[Z]  and the strict 
Mackey convergence property for precompacts are equivalent (for the de- 
finitions see [16]). These properties and other have been studied by the first 
author [43, in the more general case of generalized inductive systems. 

For the weak topologies, the same proof that we have given in [6] for an 
inductive limit of metrizable subspaces is also valid to obtain the following: 

Theorem 17. Let E[~;]=iimE,,[3;n] be an inductive limit of an increasing se- 

quence of subspaces E,[3;,] belonging to the class 15. The following two con- 
ditions are equivalent: 

(i) For every sequence (Xm) in E[3;] which is convergent to the origin, there 
is a positive integer n such that (x,,) is contained in E, and converges to the 
origin in a(E,, E',). 



380 B. Cascales and J. Orihuela 

(ii) For every precompact subset A of E[3;] there is a positive integer n such 
that A is contained in E,  and a(E, E') coincides with cr(E,, E',) on A. 
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Note Added in Proof 

After the preparation of this paper we have shown the following: If X is a 
web-compact topological space where the relatively countably compact subsets 
are also relatively compact, then X contains a dense and countably determined 
subspace. As a consequence, if X is a web compact space, E is a LCS of the 
class 15, then the compact subsets of Cv(X,E ) are always Gul'ko compact 
spaces and that space is also weakly angelic. These results will be appear 
elsewhere. 


