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Abstract

We discuss a perturbed version of James’s sup theorem for weak compactness that not only
properly generalizes that classical statement, but also some recent extensions of this central
result: the sublevel sets of an extended real–valued and coercive function whose subdifferential
is surjective are relatively weakly compact. Furthermore, we apply it to generalize and unify
some facts in mathematical finance and to prove that the unique possible framework in the
development of an existence theory for a wide class of nonlinear variational problems is the
reflexive one.
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1 Introduction

The two most important results about weak compactness in a Banach space are Eberlein–
Smuliam’s and James’s sup theorems. This latter asserts that a weakly closed subset A of a
real Banach space E is weakly compact provided that each continuous and linear functional on
E attains its supremum on A. In the last years, a few generalizations of James’s sup theorem
have appeared, some motivated by its use in mathematical finance, in which the linear optimiza-
tion condition is replaced by another one of a perturbed nature; that is, for a fixed and adequate
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extended real–valued function f , x∗ − f attains its supremum, where x∗ is any continuous and
linear functional on E.

The first of these results deals with a specific subset of the space, its closed unit ball.
Inspired by the fact that the set of norm attaining functionals in a real Banach space is not
more than the range of the duality mapping, which in turn is the range of the subdifferential
of a certain coercive, convex and lower semicontinuous function, B. Calvert and S. Fitzpatrick
announced in [6, 10] that a real Banach space is reflexive whenever its dual space coincides with
the range of an extended real–valued coercive, convex and lower semicontinuous function whose
effective domain has nonempty norm–interior. However, the erratum [6] makes [10] more difficult
to follow, since the main addendum requires correcting non–written proofs of some statements
in [10] which are adapted from [15].

Subsequently, and for arbitrary subsets, in [24] it was proven that a closed and convex
subset A of a real Banach space E is weakly compact each time there exists a bounded function
f : A −→ R such that for all continuous and linear functional x∗ on E, the function x∗|A − f

attains its supremum on A. Finally, [18] contains another James’s type result, but for a concrete
class of Banach spaces and also under a certain boundedness assumption: if E is a separable real
Banach space and f : E −→ R ∪ {+∞} is a convex and lower semicontinuous function whose
effective domain is bounded, and such that for all continuous and linear functional x∗ on E, the
function x∗ − f attains its supremum, then its sublevel sets are weakly compact. This same
statement has been shown by F. Delbaen in [9] for a concrete nonseparable space of integrable
functions.

In this paper we introduce a new version of James’s theorem that generalizes all these
results: if E is a real Banach space and f : E −→ R ∪ {+∞} is a coercive function with
subdifferential onto, then its sublevel sets are relatively weakly compact. As a consequence, we
extend some well–known results in mathematical finance and prove that if for a real Banach
space a suitable abstract optimization problem –which includes lots of nonlinear or nonsmooth
variational ones that arise in connection with numerous applied problems, in the theory of partial
differential equations and many other areas of pure and applied mathematics– admits a solution,
then it is reflexive.

The organization of the paper is as follows. Section 2 is concerned with introducing some
basic notions in extended real–valued functions –in particular that of coercivity, which appears
with diverse meanings in the literature–, establishing the mentioned version of James’s theorem
for coercive functions whose subdifferential is surjective, showing a topological property of the
epigraph of such functions, and deducing the known results. Section 3 deals with applying our
results to mathematical finance. Finally, in Section 4 we prove that reflexivity is the natural
context where a variety of nonlinear variational results can be developed.
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2 James’s theorem for coercive functions

First of all, we give a brief review of elementary notions related to extended real–valued functions.
Let E be a real Banach space. We denote its topological dual space by E∗ and its closed unit
ball by BE . If f : E −→ R ∪ {+∞} is a function, let us write dom(f) for its effective domain,
that is,

dom(f) := {x ∈ E : f(x) < +∞}.
Given x0 ∈ E, ∂f(x0) stands for the subdifferential of f at x0, i.e., the subset of E∗

{x∗ ∈ E∗ : for all x ∈ E, x∗(x)− f(x) ≤ x∗(x0)− f(x0)}

if x0 ∈ dom(f), while for x0 /∈ dom(f) it is simply ∅. Under additional assumptions of convexity
and lower semicontinuity, some results as the Brønsted–Rockafellar theorem ([20, Theorem 3.17])
or [4, Theorem 4.2.8] guarantee that for a certain x ∈ dom(f), ∂f(x) 6= ∅. The range of the
subdifferential of f ,

{x∗ ∈ E∗ : there exists x ∈ E with x∗ ∈ ∂f(x)},

is denoted by ∂f(E), and for a subset B of E∗ we write

(∂f)−1(B) := {x ∈ E : there exists x∗ ∈ B such that x∗ ∈ ∂f(x)}.

Finally, the function f is said to be proper when its effective domain is nonempty, and coercive
provided that

lim
‖x‖→+∞

f(x)
‖x‖ = +∞.

Obviously, such is the case when dom(f) is a bounded subset of E. It follows from the Brønsted–
Rockafellar theorem that if f is coercive, then its subdifferential is large: ∂f(E) is norm–dense in
E∗ (see [22, Theorem 2.3]). In our statements a stronger condition is assumed, that ∂f(E) = E∗,
which is a perturbed optimization condition, since it is equivalent to the assertion

for all x∗ ∈ E∗, x∗ − f attains its supremum on E.

Theorem 1 below focuses the main efforts that we must make in order to prove Theorem
2, which is our most important result. Before stating it, we present this easy result:

Lemma 1. If E is a real Banach space, f : E −→ R ∪ {+∞} is a function such that

for all x∗ ∈ E∗, x∗ − f is bounded above

and A is a nonempty subset of E with f(A) bounded above, then A is bounded.
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Proof. To prove that A is bounded it suffices to check, in view of the uniform boundedness
principle, that for all x∗ ∈ E∗ the set {x∗(a) : a ∈ A} is bounded above. Hence, let us consider
a functional x∗0 ∈ E∗ for which, by hypothesis, there exists α ∈ R such that

for all x ∈ E, x∗0(x)− f(x) ≤ α.

In particular,
for all a ∈ A, x∗0(a) ≤ f(a) + α,

and since f(A) is bounded above, then the set {x∗0(a) : a ∈ A} is also bounded above.

The following notation will be used in the proof of Theorem 1: given a bounded sequence
{xn}n≥1 in a real Banach space E, we write coσ{xn : n ≥ 1} for the bounded subset of E

{
+∞∑

n=1

λnxn : for all n ≥ 1, λn ≥ 0 and
+∞∑

n=1

λn = 1

}
.

Theorem 1. Let E be a real Banach space, let f : E −→ R ∪ {+∞} be a function and suppose
that

∂f(E) = E∗

and that
for all ρ > 0, (∂f)−1(ρBE∗) is bounded.

Then
for all c ∈ R, f−1((−∞, c]) is relatively weakly compact.

Proof. Firstly, since f is a bounded below function, equivalently 0 ∈ ∂f(E), we assume without
loss of generality that f > 0 on E. We proceed by reductio ad absurdum, so let us suppose
that for some c > 0 the sublevel set f−1((−∞, c]) is not relatively weakly compact. Taking
into account that f−1((−∞, c]) is bounded, in view of Lemma 1, then Eberlein–Smulian’s and

Alaoglu’s theorems guarantee the existence of x∗∗0 in f−1((−∞, c])
w(E∗∗,E∗)\E and a sequence

{xn}n≥1 in f−1((−∞, c]) in such a way that x∗∗0 is a w(E∗∗, E∗)−cluster point of {xn}n≥1. Let

α := dist(x∗∗0 , E) > 0

and λ > 0 such that
λc <

α

4
. (1)

Let us define
ρ :=

2
λ

(2)

and, making use of the hypothesis, let M > 0 with

(∂f)−1(ρBE∗) ⊂ MBE . (3)
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We have that ∂f(E) 6= ∅, which in particular says that f is proper. So, let x0 ∈ dom(f), let

c0 := max{c, f(x0) + ρ(M + ‖x0‖)} (4)

and let X be the set
X := f−1((−∞, c0]),

which is bounded thanks to Lemma 1. Moreover, we know by the Hahn–Banach theorem that
there exists x∗∗∗ ∈ BE∗∗∗ such that

x∗∗∗(x∗∗0 ) = α

and
for all x ∈ E, x∗∗∗(x) = 0.

Now we derive from Goldstine’s theorem the existence of a sequence {x∗n}n≥1 in BE∗ satisfying

for all p ≥ 1, lim
n

x∗n(xp) = x∗∗∗(xp) = 0 (5)

and
lim
n

x∗∗0 (x∗n) = α.

We can clearly assume that
for all n ≥ 1, x∗∗0 (x∗n) >

α

2
. (6)

Note that, given a w(E∗, E)–cluster point x∗0 of the sequence {x∗n}n≥1, we have that

x∗∗0 (x∗0) = 0, (7)

because x∗∗0 is a w(E∗∗, E∗)–cluster point of the sequence {xn}n≥1 and for all p ≥ 1 (5) holds.
Let us apply [24, Lemma 9(c)], obtaining a subsequence

{
x∗nk

}
k≥1

of {x∗n}n≥1 such that

for all h0 ∈ coσ{x∗nk
: k ≥ 1},

sup
X

(
h0 − lim sup

k
x∗nk

− λf

)
= sup

X

(
h0 − lim inf

k
x∗nk

− λf

)
. (8)

Let us now observe that for x∗∗0 we have by (6) that

for all h0 ∈ coσ

{
x∗nk

: k ≥ 1
}

, x∗∗0 (h0) >
α

2
. (9)

In addition, for every w(E∗, E)–cluster point y∗0 of
{
x∗nk

: k ≥ 1
}
, condition (7) above implies

x∗∗0 (y∗0) = 0. Let us fix such a cluster point y∗0. It follows that for all x ∈ X

h0(x)− lim inf
k

x∗nk
(x)− λf(x) ≥ (h0 − y∗0 − λf)(x)

≥ h0(x)− lim sup
k

x∗nk
(x)− λf(x).

Therefore, we derive from (8) that

for all h0 ∈ coσ

{
x∗nk

: k ≥ 1
}

,
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sup
X

(
h0 − lim sup

k
x∗nk

− λf

)
= sup

X

(
h0 − lim inf

k
x∗nk

− λf

)

= sup
X

(h0 − y∗0 − λf) .

But given h0 ∈ coσ

{
x∗nk

: k ≥ 1
}
, since f−1((−∞, c]) ⊂ X, (1) and (9) are valid and x∗∗0 (y∗0) = 0,

we find
sup
X

(h0 − y∗0 − λf) ≥ sup
f−1((−∞,c])

(h0 − y∗0 − λf)

≥ sup
f−1((−∞,c])

(h0 − y∗0)− λc

= sup
f−1((−∞,c])

w(E∗∗,E∗)
(h0 − y∗0)− λc

≥ x∗∗0 (h0)− x∗∗0 (y∗0)− λc

>
α

4
.

Now [24, Corollary 8] applies to obtain g0 ∈ BE∗ and a sequence {gk}k≥1 in BE∗ satisfying that
for all bounded function g̃ : X −→ R with

lim inf
k

gk ≤ g̃ ≤ lim sup
k

gk on X

we have that
g0 − g̃ − λf does not attain its supremum on X.

Let x∗ ∈ BE∗ be a w(E∗, E)–cluster point of the sequence {gk}k≥1. Then, writing z∗ := g0− x∗,

z∗ − λf does not attain its supremum on X. (10)

But, in view of (2) ∥∥∥∥
z∗

λ

∥∥∥∥ ≤ ρ,

hence, by (3) there exists z ∈ MBE such that z∗/λ ∈ ∂f(z). In particular,

z∗

λ
(x0)− f(x0) ≤ z∗

λ
(z)− f(z)

and so, by (4)

f(z) ≤ f(x0) +
z∗

λ
(z − x0)

≤ f(x0) + ρ(M + ‖x0‖)
≤ c0.

Thus, z ∈ X, which contradicts the fact that z∗/λ ∈ ∂f(z) and (10).

The condition that the subdifferential maps bounded sets to bounded sets coincides with
a familiar notion:
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Lemma 2. Assume that E is a real Banach space and that f : E −→ R ∪ {+∞} is a function
with

∂f(E) = E∗.

Then
f is coercive

if, and only if,
for all ρ > 0, (∂f)−1(ρBE∗) is bounded.

Proof. We start with the necessity. This statement so far has only been stated for proper,
coercive, convex and lower semicontinuous functions in [22, Proposition 2.4]. The proof given
now is completely analogous to that one, but we include it here for the sake of completeness.

Let ρ > 0 and let x0 ∈ dom(f). Since f is coercive, chose δ > 1 such that

for all x ∈ E with ‖x‖ > δ, ρ + ρ‖x0‖+ |f(x0)| < f(x)
‖x‖ . (11)

Let us finish by showing that (∂f)−1(ρBE∗) ⊂ δBE . Indeed, given x ∈ E with ‖x‖ > δ and
x∗ ∈ ρBE∗ , it follows from (11) that

x∗(x)− f(x)
‖x‖ ≤ ρ− f(x)

‖x‖
< −ρ‖x0‖ − |f(x0)|

and so,
x∗(x)− f(x) < ‖x‖(−ρ‖x0‖ − |f(x0)|)

≤ δ(−ρ‖x0‖ − |f(x0)|)
≤ −ρ‖x0‖ − |f(x0)|
≤ x∗(x0)− f(x0).

Altogether then, for all x ∈ E such that ‖x‖ > δ and for all x∗ ∈ ρBE∗ we have that

x∗(x)− f(x) < x∗(x0)− f(x0),

which clearly yields
(∂f)−1(ρBE∗) ⊂ δBE .

To see the sufficiency, we first show that if f∗ is the Fenchel–Legendre conjugate of f , that
is, for each x∗ ∈ E∗

f∗(x∗) = sup
E

(x∗ − f),

then
for all ρ > 0, f∗(ρBE∗) is bounded above.

Let ρ > 0 and chose γ > 0 with
(∂f)−1(ρBE∗) ⊂ γBE .
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Then f∗(ρBE∗) is bounded above by ργ− infE f (infE f is finite because 0 ∈ ∂f(E)), since given
x∗ ∈ ρBE∗ , taking x ∈ γBE with x∗ ∈ ∂f(x) yields

f∗(x∗) ≤ f∗(x∗) + f(x)− inf
E

f

= x∗(x)− infE f

≤ ργ − inf
E

f.

Now we conclude that f is coercive. Let ρ > 0 and let ω ∈ R such that f∗(ρBE∗) ⊂ [−∞, ω].
Then, following the ideas in [2, Lemma 3.2],

for all x∗ ∈ ρBE∗ , f∗(x∗) ≤ ω,

equivalently
for all x∗ ∈ ρBE∗ and for all y ∈ E, x∗(y)− f(y) ≤ ω,

that is,
for all y ∈ E, f(y) ≥ ρ‖y‖ − ω

and so
lim inf
‖x‖→+∞

f(y)
‖y‖ ≥ ρ.

The arbitrariness of ρ > 0 gives the coercivity of f .

As an immediate consequence of Theorem 1 and Lemma 2 we arrive at our main statement:

Theorem 2. If E is a real Banach space and f : E −→ R ∪ {+∞} is a coercive function such
that

for all x∗ ∈ E∗ the function x∗ − f attains its supremum on E,

then
for all c ∈ R the sublevel set f−1((−∞, c]) is relatively weakly compact.

As mentioned in the Introduction, the main result in [6, 10] is a particular case of Theorem
2 (this will be shown in Theorem 7 below) and its suggested proof is very intricate, since it
involves the correction of non–written lemmas in [6], which are modified versions of others in
[15]. Instead, our approach is based on an adequate use of results in [24]. Indeed, we have arrived
to our proof after a careful analysis of the bounded and separable case presented as Theorem
A.1 in [18] together with the perturbed version of James’s Theorem studied in [24].

In view of the hypotheses of Theorem 1, one could conjecture that it suffices to assume in
Theorem 2 that ∂f(E) has nonempty norm–interior, instead of ∂f(E) = E∗. However, this is
not the case. Indeed, given a nontrivial real Banach space E there exists a norm ‖ · ‖ on E ,
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which is equivalent to the original one, in such a way that the range of the corresponding duality
mapping, that is, the subdifferential of the continuous function

f(x) =
1
2
‖x‖2, (x ∈ E),

has nonempty norm–interior (see [1, Corollary 2]). But its sublevel sets are not weakly compact,
unless E is reflexive.

A sort of converse of Theorem 2 can be derived even when no coercivity is assumed:

Theorem 3. Suppose that E is a real Banach space and that f : E −→ R ∪ {+∞} is a weakly
lower semicontinuous function such that

for all c ∈ R, f−1((−∞, c]) is weakly compact

and
for all x∗ ∈ E∗ the function x∗ − f is bounded above.

Then
∂f(E) = E∗.

Proof. Let x∗0 ∈ E∗ and let us prove that x∗0 ∈ ∂f(E). Since f − x∗0 is bounded from below,
then it is proper, so let c ∈ R such that (f − x∗0)

−1((−∞, c]) 6= ∅. It follows from Lemma
1 that this subset is bounded, so let α ∈ R with (f − x∗0)

−1((−∞, c]) ⊂ αBE . Then, for all
x ∈ (f − x∗0)

−1((−∞, c]),
f(x) ≤ x∗0(x) + c ≤ α‖x∗0‖+ c,

that is,
(f − x∗0)

−1((−∞, c]) ⊂ f−1((−∞, α‖x∗0‖+ c]),

which implies, f−1((−∞, α‖x∗0‖ + c]) being weakly compact, that (f − x∗0)
−1((−∞, c]) is also

weakly compact. Finally, we deduce from the weak lower semicontinuity of f − x∗0 and the weak
compactness of (f − x∗0)

−1((−∞, c]) that f − x∗0 attains its infimum on E, or in other words,
x∗0 ∈ ∂f(E).

Topological results along the lines of Theorems 2 and 3 appeared in Theorems 2.4 and 2.1
in [3], respectively.

There is a close connection between Theorem 3 and an open problem posed in [6]. More
specifically, given a real Banach space and a convex and lower semicontinuous function f : E −→
R∪{+∞} whose effective domain dom(f) has nonempty norm–interior, the question is whether
or not the following facts are equivalent:

(i) ∂f(E) = E∗.
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(ii) E is reflexive and for all x∗ ∈ E∗, x∗ − f is bounded above.

Let us notice that Theorem 3 and Lemma 1 assert, as a particular case, that the implication
(ii) ⇒ (i) holds. Regarding the reversed one, (i) ⇒ (ii), we will see in Theorem 7 that it is true
if f is assumed to be coercive. Moreover, we have been looking for a general statement with the
use of the epigraph of the function f , instead of the approach followed here, but it requires an
additional hypothesis on the dual unit ball to work, as seen in [19]. Anyway, the implication
(i) ⇒ (ii) is valid (and not only it but also the converse of Theorem 3) for a wide class of Banach
spaces. To be more precise, let us recall that given a real Banach space E, a sequence {yn}n≥1 in
E is a convex block sequence of another sequence {xn}n≥1 if there are a sequence of finite subsets
of integers {Fn}n≥1 such that

maxF1 < minF2 ≤ maxF2 < minF3 · · · < maxFn < minFn+1 < · · ·

together with sets of positive numbers {tni : i ∈ Fn} ⊂ (0, 1] satisfying
∑

i∈Fn

tni = 1 and yn =
∑

i∈Fn

tni xi.

It is not difficult to check that if E is separable then BE∗ is w∗–convex block compact, that is, each
sequence {x∗n}n≥1 in BE∗ has a convex block w∗–convergent sequence. Indeed, a subsequence of
a given sequence is a convex block sequence of it, thus every sequentially compact set is convex
block compact. In particular, the dual unit ball of E is metrizable and w∗–compact, thus it
also is w∗–sequentially compact. Moreover, J. Bourgain proved in [5] that if the Banach space
E doest not contain a copy of l1(N) then its dual ball is w∗–convex block compact. This result
was extended for spaces not containing a copy of l1(R) under Martin’s axiom and the negation
of the Continuum Hipothesis in [14].

The mentioned result, [19, Theorem 4], is stated as follows:

Theorem 4. Let E be a real Banach space whose dual unit ball is w∗–convex block compact and
let f : E −→ R ∪ {∞} be a proper map such that

∂f(E) = E∗.

Then for all c ∈ R the corresponding sublevel set f−1((−∞, c]) is relatively weakly compact.

The fact that we conclude (i) ⇒ (ii) from Theorem 4, for those Banach spaces whose dual
unit ball is w∗–convex block compact, is shown in Theorem 8.

Thus, it is natural to ask whether the converse of Theorem 3 is valid in general, and
equivalently, if is it possible to avoid the coercivity assumption in Theorem 2 or the w∗–convex
block compactness for the dual unit ball in Theorem 4:
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Problem 1. Let E be a real Banach space and let f : E −→ R ∪ {+∞} be a function such that
∂f(E) = E∗. Does it imply that

for all c ∈ R the sublevel set f−1((−∞, c]) is relatively weakly compact?

If one tries to deal with this question, in view of Theorem 2 a first possibility is to know
if the coercivity of f follows from the surjectivity of its subdifferential. But this is not the case:

Proposition 1. For each real infinite–dimensional reflexive Banach space E there exists a
proper, convex and lower semicontinuous function f : E −→ R ∪ {+∞} such that

∂f(E) = E∗

but f is not coercive.

Proof. Thanks to [2, Theorem 3.6], if E is a real infinite–dimensional reflexive Banach space,
then there exists a proper, convex and lower semicontinuous function f : E −→ R ∪ {+∞} such
that

for all x∗ ∈ E∗, x∗ − f is bounded above,

but f is not coercive. Now apply Theorem 3, Lemma 1 and the reflexivity of E to conclude that

∂f(E) = E∗.

As a consequence of Theorem 3, and under the additional hypothesis that f is weakly
lower semicontinuous, the reverse of Theorem 2 is also true, which leads to this characterization
of the weak compactness for the sublevel sets:

Theorem 5. Let E be a real Banach space and let f : E −→ R ∪ {+∞} be a proper, coercive
and weakly lower semicontinuous function. Then

∂f(E) = E∗

if, and only if,

for all c ∈ R the sublevel set f−1((−∞, c]) is weakly compact.

Proof. The “only if” part is Theorem 2 and the weak lower semicontinuity of f . For the proof of
the “if” part we make use of Theorem 3. We first show that f is bounded from below, because
otherwise there exists a sequence {xn}n≥1 in E such that

lim
n

f(xn) = −∞, (12)
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so for a certain ν ≥ 1 we have

{xn : n ≥ ν} ⊂ f−1((−∞, 0]),

which together with the weak compactness of f−1((−∞, 0]) and the weak lower semicontinuity of
f contradicts (12). Therefore, according to Theorem 3, we just need to prove that any function
of the form x∗ − f , with x∗ ∈ E∗, is bounded above. Thus let x∗0 ∈ E∗. As

lim
‖x‖→+∞

f(x)− x∗0(x)
‖x‖ = +∞,

then there exists δ > 0 such that

‖x‖ ≥ δ ⇒ f(x)− x∗0(x)
‖x‖ ≥ 1,

so for all x ∈ E with ‖x‖ ≥ δ we find

x∗0(x)− f(x) ≤ −δ,

while x∗0−f is also bounded above in δBE , because f is bounded from below, and so we conclude
the proof.

Let us note that in Theorem 5 the coercivity of f is essential: it suffices to consider any
real reflexive Banach space E and the proper, noncoercive and weakly lower semicontinuous
function f = ‖ · ‖. Then, for all c ∈ R the sublevel set f−1((−∞, c]) is weakly compact, though
∂f(E) = BE∗ .

Theorem 2 includes, as a particular case, the classical James’s theorem [17, Theorem 5].
Furthermore, all the generalizations of this result previously established also follow from Theorem
2. In fact, we improve some of such results, as [24, Theorem 16] in the context of Banach spaces.
In the original statement, the subset A below is in addition assumed to be convex.

Corollary 1. Let A be a weakly closed subset of a real Banach space and let ψ : A −→ R be a
bounded function such that

for all x∗ ∈ E∗ the function x∗ − ψ, when restricted to A, attains its supremum.

Then A is weakly compact.

Proof. Apply Theorem 2 to the coercive function f : E −→ R ∪ {+∞} defined for x ∈ E as

f(x) =

{
ψ(x), if x ∈ A

+∞, otherwise

and take into account that A = f−1((−∞, supA ψ]).
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Another consequence of Theorem 2, in the framework of mathematical finance, is described
in Section 3. A further one is the main result in [6, 10], which we shall comment on Section 4.

Now we derive a topological consequence related to the epigraph of a proper function
f : E −→ R ∪ {+∞}, i.e.,

epi(f) := {(x, t) ∈ E × R : f(x) ≤ t}.

First we show a Krein–Smulian’s type result, useful for our purposes. Given c ∈ R, epi(f, c)
denotes the truncated epigraph

epi(f, c) := {(x, t) ∈ E × R : f(x) ≤ t ≤ c}.

Lemma 3. Let E be a real Banach space and let f : E −→ R ∪ {+∞} be a weakly lower
semicontinuous function with ∂f(E) = E∗. Then

for all c ∈ R, epi(f, c) is w(E × R, E∗ × R)–compact

if, and only if,
epi(f) = epi(f)

w(E∗∗×R,E∗×R)
.

Proof. Let us first assume that epi(f) is a w(E∗∗ × R, E∗ × R)−closed subset of E∗∗ × R. Let
c ∈ R such that epi(f, c) 6= ∅ and let us show that epi(f, c) is w(E × R, E∗ × R)−compact. The
fact that f is weakly lower semicontinuous implies that epi(f, c) is w(E × R, E∗ × R)−closed,
and the fact that ∂f(E) = E∗ and Lemma 1 that it is bounded. Therefore, in order to prove
that epi(f, c) is w(E × R, E∗ × R)−compact, it suffices to check that

epi(f, c) = epi(f, c)
w(E∗∗×R,E∗×R)

.

Thus, let us fix (x∗∗0 , t0) ∈ epi(f, c)
w(E∗∗×R,E∗×R)

and let us show that (x∗∗0 , t0) ∈ epi(f, c). Let
{(xλ, tλ)}λ∈Λ be a net in epi(f, c) such that

(x∗∗0 , t0) = w(E∗∗ × R, E∗ × R)− lim
λ
{(xλ, tλ)}.

But epi(f, c)
w(E∗∗×R,E∗×R) ⊂ epi(f)

w(E∗∗×R,E∗×R)
= epi(f), so, on the one hand, x0 := x∗∗0 ∈ E

and, on the other hand, the limit above is nothing more than

(x0, t0) = w(E × R, E∗ × R)− lim
λ
{(xλ, tλ)},

and (x∗∗0 , t0) = (x0, t0) ∈ epi(f, c), since epi(f, c) is w(E × R, E∗ × R)−closed.

And conversely, let us choose (x∗∗0 , t0) ∈ epi(f)
w(E∗∗×R,E∗×R)

and we shall prove that
(x∗∗0 , t0) ∈ epi(f). For any net {(xλ, tλ)}λ∈Λ in epi(f) with

(x∗∗0 , t0) = w(E∗∗ × R, E∗ × R)− lim
λ
{(xλ, tλ)}

13



we can assume without loss of generality that the scalar net {tλ}λ∈Λ is bounded, so there exists
c ∈ R in such a way that for all λ ∈ Λ, (xλ, tλ) ∈ epi(f, c). Finally, the fact that (x∗∗0 , t0) ∈
epi(f, c) ⊂ epi(f) follows from the weak compactness of epi(f, c).

The announced topological result is the next one, and it is derived from Theorem 2 and
the immediate fact that the weak compactness of the sublevel set f−1((−∞, c]) is equivalent to
that of the truncated epigraph epi(f, c):

Proposition 2. Suppose that f is an extended real–valued, coercive and weakly lower semicon-
tinuous function defined on a real Banach space E such that

for all x∗ ∈ E∗, x∗ − f attains its supremum on E.

Then epi(f) is w(E∗∗ × R, E∗ × R)–closed in E∗∗ × R.

Obviously, in view of Theorem 4 we can replace the coercivity of f in the proposition above
with the weak–star convex block compactness of BE∗ .

We conclude this section by emphasizing that the completeness assumption cannot be
dropped in any of the preceding results, since in [16] R.C. James gave an example of a noncom-
plete normed space for which each continuous and linear functional attains its norm.

3 Consequences for mathematical finance

Let us fix a probability space (Ω,F ,P) together with X , a linear space of functions in RΩ that
contains the constant functions. We assume here that (Ω,F ,P) is atomless, although in practice
this is not a restriction, since the property of being atomless is equivalent to the fact that we can
define a random variable on (Ω,F ,P) that has a continuous distribution function. The space X
is going to describe all possible financial positions X : Ω −→ R, where X(ω) is the discounted
net worth of the position at the end of the trading period if the scenario ω ∈ Ω is realized.
The problem of quantifying the risk of a financial position X ∈ X is modeled with functions
ρ : X −→ R that satisfy:

• Monotonicity : if X ≤ Y , then ρ(X) ≥ ρ(Y ).

• Cash invariance: if m ∈ R then ρ(X + m) = ρ(X)−m.

Such a function ρ is called a monetary measure of risk (see Chapter 4 in [11]). When it is
also a convex function, then ρ is called a convex measure of risk. In many occasions we have
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X = L∞(Ω,F ,P), and it is important to have results for representing the risk measure as

ρ(X) = sup
Y ∈L1(Ω,F ,P)

{−E[Y ·X]− ρ∗(Y )}. (13)

Here ρ∗ is the Fenchel–Legendre conjugate of ρ, that is, for all Y ∈ (L∞(Ω,F ,P))∗,

ρ∗(Y ) = sup
X∈L∞(Ω,F ,P)

{〈Y,X〉 − ρ(X)}.

Having this representation is equivalent to the so–called Fatou property, i.e., for any bounded
sequence {Xn}n≥1 that converges pointwise a.s. to some X,

ρ(X) ≤ lim inf
n

ρ(Xn)

(see [11, Theorem 4.31]). A natural question is whether the supremum above is attained. In
general the answer is no, as shown by the essential supremum map on L∞(Ω,F ,P), as seen in
[11, Example 4.36]. The representation formula (13) with a maximum instead of a supremum
has been studied by F. Delbaen; see Theorems 8 and 9 in [9], or [11, Corollary 4.35] in the case
of coherent risk measures, i.e., the convex ones that also satisfy ρ(λX) = λρ(X) for λ ≥ 0. The
fact that the order continuity of ρ is equivalent to turning the supremum into a maximum, that
is, for all X ∈ L∞(Ω,F ,P),

ρ(X) = max
Y ∈L1(Ω,F ,P)

{−E[Y ·X]− ρ∗(Y )}

for an arbitrary convex risk measure, is the statement of the so–called Jouini–Schachermayer–
Touzi theorem in [9]. We refer to [18, Theorem 5.2] and [9, Theorem 2]. Let us remark that the
order sequential continuity for a map ρ in L∞(Ω,F ,P) is equivalent to having

lim
n

ρ(Xn) = ρ(X),

whenever {Xn}n≥1 is a bounded sequence in L∞ pointwise almost surely convergent to X. For
this reason it is said that a map ρ : L∞(Ω,F ,P) −→ R ∪ {+∞} verifies the Lebesgue property
provided that it is sequentially order continuous. The precise statement is the following:

Theorem 6 (Jouini, Schachermayer and Touzi). Let ρ : L∞(Ω,F ,P) −→ R be a convex risk
measure with the Fatou property and let ρ∗ : L∞(Ω,F ,P)∗ −→ [0, +∞] be its Fenchel–Legendre
conjugate The following are equivalent:

(i) For all c ∈ R, {Y ∈ L1(Ω,F ,P) : ρ∗(Y ) ≤ c} is a weakly compact subset of L1(Ω,F ,P).

(ii) For every X ∈ L∞(Ω,F ,P), the supremum in the equality

ρ(X) = sup
Y ∈L1(Ω,F ,P)

{−E[XY ]− ρ∗(Y )}

is attained.
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(iii) For each bounded sequence {Xn}n≥1 in L∞(Ω,F ,P) tending a.s. to X ∈ L∞(Ω,F ,P), we
have

lim
n

ρ(Xn) = ρ(X).

As the first author observed in the Appendix of [18], the proof requires compactness argu-
ments of the perturbed James’s type. Indeed, in [9] this result is presented as a generalization of
James’s theorem. In that case the map ρ∗ has a bounded domain, so it is going to be coercive;
thus we can apply Theorem 2 for f = ρ∗ and we obtain the proof for the main implication
(ii) ⇒ (i) above.

The proof for (ii) ⇒ (i) presented in [18] is based on a particular case of Corollary 2 given
below. It was done for a convex map f and a separable real Banach space E, as seen in [18,
Theorem A.1].

Corollary 2. Let E be a real Banach space and let f : E −→ R∪ {+∞} be a proper and weakly
lower semicontinuous function such that dom(f) is a bounded subset of E. Suppose that there
exists c ∈ R such that the sublevel set f−1((−∞, c]) fails to be weakly compact. Then there exists
an x∗ ∈ E∗ for which the function x∗ − f does not attain its supremum on E.

F. Delbaen gave a different approach for Theorem 6. His proof is valid for non–separable
L1(Ω,F ,P) spaces, but it is based in a homogeneization trick to reduce the matter to a direct
application of the classical James’s theorem, as well as the Dunford–Pettis theorem characterizing
weakly compact sets in L1(Ω,F ,P). In any case, the arguments that F. Delbaen uses are only
valid in L1(Ω,F ,P).

Our contribution here, summarized in Corollary 2, provides the proof for the implication
(ii) ⇒ (i) in Theorem 6 for arbitrary L∞(Ω,F ,P) spaces, thus including Delbaen’s non–separable
case as well.

4 Application to nonlinear variational problems

The particular version of the Weierstrass theorem asserting that if a proper and weakly lower
semicontinuous extended real–valued function h defined on a real reflexive Banach space and
such that h(x) → +∞ as ‖x‖ → +∞, then it attains its infimum, represents a powerful tool that
has been intensively used in different fields. For instance, it proves the existence of a solution to
nonlinear variational equations, derived from the weak formulation of a wide range of boundary
value problems. See [8, Examples 4.2.2] for some illustrative applications. Indeed, a usual way
in which this result is applied is as follows: for a real reflexive Banach space E and a proper,
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coercive, convex and lower semicontinuous function f : E −→ R ∪ {+∞}, given any x∗ ∈ E∗,
the optimization problem

find x0 ∈ E such that f(x0)− x∗(x0) = inf
x∈E

(f(x)− x∗(x))

has a solution. Next we prove that, if in a real Banach space one of these nonlinear optimization
problems admits a solution, then the space is reflexive. Moreover we assume no convexity or
weak lower semicontinuity on f . The specific case corresponding to convex and weakly lower
semicontinuous functions was announced in [6, 10], although as we commented above, the proof
outlined in that work is not entirely clear.

Since applied nonlinear variational problems are usually stated in terms of infima instead
of suprema, we adopt this terminology in this section.

Now we derive the following result from Theorem 2:

Theorem 7. Let E be a real Banach space and let f : E −→ R ∪ {+∞} be a coercive function
such that dom(f) has nonempty norm–interior and for all x∗ ∈ E∗ there exists x0 ∈ E with

f(x0)− x∗(x0) = inf
x∈E

(f(x)− x∗(x)) .

Then E is reflexive.

Proof. Let B be a nonempty open ball contained in dom(f). Then we have that

B =
+∞⋃

p=1

B ∩ f−1((−∞, p])
w(E,E∗)

.

We can apply the Baire Category theorem to the open set B to get an integer p ≥ 1 such that
B ∩ f−1((−∞, p])

w(E,E∗)
has an interior point relative to B, so that there is an open set G in E

such that ∅ 6= B ∩ G ⊂ B ∩ f−1((−∞, p])
w(E,E∗)

and thus ∅ 6= G ∩ B ⊂ f−1((−∞, p])
w(E,E∗)

.

But f−1((−∞, p])
w(E,E∗)

is weakly compact by Theorem 2, therefore, we have a closed ball of
positive radius which is weakly compact and the space must be reflexive.

It is clear that we can also arrive to the next result, but applying Theorem 4 instead of
Theorem 2:

Theorem 8. A real Banach space E whose dual unit ball is w∗–convex block compact is reflexive
provided that there exists a function f : E −→ R ∪ {+∞} such that dom(f) has nonempty
norm–interior and

∂f(E) = E∗.
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We emphasize that for Theorems 7 and 8 to be valid, f is not required to fulfil any kind
of (semi)continuity.

With the aim to apply these results to nonlinear variational problems in mind, let us first
recall that the weak formulation of lots of differential problems leads us to consider a variational
equation which, in the presence of symmetry, turns into a variational problem for which the key
is to establish the existence of a minimum. Next we prove that these results, always stated in
the reflexive context, only make sense for this kind of Banach space. In order to motivate it, let
us consider the variational formulation of a coercive, linear and elliptic boundary value problem,
or in a more general way, the variational equation

find x0 ∈ E such that for all x ∈ E, a(x0, x) = x∗0(x),

where E is a real reflexive Banach space, x∗0 ∈ E∗ and a : E ×E −→ R is a coercive, continuous
and bilinear form. The classical Lax–Milgram theorem [13, Theorem 12] guarantees the existence
of one and only one solution to this equation. In particular, when a is symmetric, the functional

x ∈ E 7→ 1
2
a(x, x)− x∗0(x) ∈ R

attains its infimum at x0. Another type of variational equation, now a nonlinear one, arises if we
consider certain nonlinear boundary value problems, for which the existence of a solution follows
from well–known results as the next one, more general than the Lax–Milgram theorem. Before
evoking it, we introduce some common notations. Given a real Banach space E, an operator
Φ : E −→ E∗ is said to be monotone provided that

inf
x,y∈E

(Φ(x)− Φ(y))(x− y) ≥ 0,

strongly monotone as soon as

inf
x,y∈E
x6=y

(Φ(x)− Φ(y))(x− y)
‖x− y‖2

> 0,

hemicontinuous if for all x, y, z ∈ E, the function

t ∈ [0, 1] 7→ (Φ(x + ty))(z) ∈ R

is continuous, bounded when the image under Φ of a bounded set is also bounded, and coercive
whenever the function

x ∈ E 7→ (Φ(x))(x) ∈ R
is coercive. The mentioned result appears in [7, Corollary 2.101]:

Proposition 3. If E is a real reflexive Banach space and Φ : E −→ E∗ is a monotone, hemi-
continuous, bounded and coercive operator, then Φ is surjective.
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It is a fruitful result with applications to nonlinear variational analysis, including one of its
most popular particular cases: in a real reflexive Banach space E, given x∗0 ∈ E∗, the equation

find x0 ∈ E such that Φ(x0) = x∗0

admits a unique solution, whenever Φ : E −→ E∗ is a Lipschitz continuous and strongly mono-
tone operator. We refer to [12, Example 3.51] for a standard application.

In the following result we prove that the equation Φ(x0) = x∗0 leads to a nonlinear opti-
mization problem (in general nonsmooth, not even continuous) when Φ is symmetric, i.e.,

for all x, y ∈ E, (Φ(x))(y) = (Φ(y))(x),

and, as a consequence of Theorem 7, the adequate and the only framework where Proposition 3
can be developed is the reflexive one:

Corollary 3. A real Banach space E is reflexive, provided there exists a monotone, coercive,
symmetric and surjective operator Φ : E −→ E∗.

Proof. It suffices to define the function f : E −→ R as

f(x) :=
1
2
(Φ(x))(x), (x ∈ E)

and to show that it fulfills the hypotheses in Theorem 7. It is obvious that f is coercive with
the effective domain all E. In order to conclude the proof, let us check that the subdifferential
of f is surjective. Thus, let x∗0 ∈ E∗. As Φ is surjective, let x0 ∈ E with Φ(x0) = x∗0. Let us
show that x∗0 ∈ ∂f(x0). Indeed, for each x ∈ E we have, because of the monotonicity of Φ, that

(Φ(x)− Φ(x0))(x− x0) ≥ 0,

which is equivalent, since Φ is symmetric, to

1
2
(Φ(x))(x) +

1
2
(Φ(x0))(x0)− (Φ(x0))(x) ≥ 0,

and thus, taking into account that Φ(x0) = x∗0,

f(x0)− x∗0(x0) = −1
2
(Φ(x0))(x0)

≤ 1
2
(Φ(x))(x)− (Φ(x0))(x)

= f(x)− x∗0(x).

The arbitrariness of x ∈ E implies x∗0 ∈ ∂f(x0) and E is reflexive.

Note that it suffices to suppose that Φ is defined on a subset of E with nonempty norm–
interior, and in addition we do not need to assume any hypothesis of (semi)continuity on Φ.
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A result along these lines, in the linear case, can be found in [23, Corollary 1.4].

In a similar way, Theorem 8 also provides us with a sufficient condition for the reflexivity
of a space:

Corollary 4. If E is a real Banach space such that BE∗ is w∗–convex block compact and there
exists a monotone, symmetric and surjective operator Φ : E −→ E∗, then E is reflexive.

Moreover, now we show how Theorem 8 allows us to deal with multivalued operators defined
on a real Banach space with a w∗–convex block compact dual unit ball . This assumption on
the space is not a restriction in applications, since most of spaces used in concrete examples are
separable, and so their dual unit balls are w∗–convex block compact.

Let us recall that given a real Banach space E and a multivalued operator Φ : E −→ 2E∗ ,
the domain of Φ is the subset of E

D(Φ) := {x ∈ E : Φ(x) is nonempty},

and its range is the subset of E∗

Φ(E) := {x∗ ∈ E∗ : there exists x ∈ E with x∗ ∈ Φ(x)}.

In addition, Φ is said to be monotone if

inf
x,y∈D(Φ)

x∗∈Φ(x), y∗∈Φ(y)

(x∗ − y∗)(x− y) ≥ 0

and cyclically monotone when the inequality

n∑

j=1

x∗j (xj − xj−1) ≥ 0

holds, whenever n ≥ 2, x0, x1, . . . , xn ∈ D(Φ) with x0 = xn and for j = 1, . . . , n, x∗j ∈ Φ(xj).

We derive another sufficient condition for reflexivity in terms of cyclically monotone oper-
ators:

Corollary 5. Let E be a real Banach space whose dual unit ball is w∗–convex block compact, and
let Φ : E −→ 2E∗ be a cyclically monotone operator such that D(Φ) has nonempty norm–interior
and

Φ(E) = E∗.

Then E is reflexive.
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Proof. Since Φ is cyclically monotone, [21, Theorem 1] guarantees that there exists a proper and
convex function f : E −→ R ∪ {+∞} such that for all x ∈ E,

Φ(x) ⊂ ∂f(x).

As D(Φ) ⊂ dom(f), Theorem 8 applies.

However, the following question, posed in [10, §3], seems to remain open, including the
case of E having a w∗–convex block compact dual unit ball: let E be a real Banach space and
let Φ : E −→ 2E∗ be a monotone operator whose domain has nonempty norm–interior and
Φ(E) = E∗. Is E reflexive?
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Pierre et Marie Curie, 36 (1979).

[6] B. Calvert and S. Fitzpatrick, Erratum: “In a nonreflexive space the subdifferential is not

onto”, Math. Z. 235 (2000), 627.

[7] S. Carl, V.K. Le and D. Motreanu, Nonsmooth variational problems and their inequalities.

Comparison principles and applications, Springer Monographs in Mathematics, Springer,
New York, 2007.

21



[8] K.C. Chang, Methods in nonlinear analysis, Springer Monographs in Mathematics,
Springer–Verlag, Berlin, 2005.

[9] F. Delbaen, Differentiability properties of utility functions, F. Delbaen et al. (eds.), Opti-
mality and risk–Modern trends in mathematical finance, Springer, 2009, 39–48.

[10] S. Fitzpatrick and B. Calvert, In a nonreflexive space the subdifferential is not onto, Math.
Z. 189 (1985), 555–560.
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