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ABSTRACT. In this paper we characterize the classes of Gul’ko and Ta-
lagrand compact spaces through a network condition leading us to an-
swer two questions posed by G. Gruenhage, [23], on covering properties.

Dedicated to Professor John Horvath on the occasion of his 80th birthday

1. INTRODUCTION

A compact space K is called Eberlein compact if it is homeomorphic
to a weakly compact subset of a Banach space and it has a strong influ-
ence on both the geometry and topology of the Banach space it gener-
ates. Since the seminal paper by Amir and Lindenstrauss [1], where they
showed the interplay between topological and geometrical properties of the
so-called weakly compactly generated Banach spaces, a lot of research has
been done on this class of Banach spaces and their relatives such as weakly
K-analytic, weakly countably determined and weakly Lindelöf determined
Banach spaces [42, 45, 26, 3, 38, 44, 39, 8, 16, 34, 35].

For a compact spaceK we have thatK is Eberlein compact if, and only if,
C(K) is weakly compactly generated [1]; K is said to be Talagrand com-
pact when (C(K), τp) is K-analytic [42], i.e. there exists an onto usco map
ϕ : NN → 2(C(K),τp); and K is said to be Gul’ko compact if (C(K), τp)
is K-countably determined [42, 45], i.e. there exists an onto usco map
ϕ : Σ ⊂ NN → 2(C(K),τp). Main results are the fact that K embeds in a
Σ-product of real lines whenever K is Gul’ko compact [26] and that K em-
beds in (c0(Γ), τp) whenever K is an Eberlein compact space [1]. Compact
spaces lying in Σ-products of real lines are called Corson compact spaces
[10, 25, 5, 20]. We denote by τp the pointwise convergence topology on
spaces of functions.

For an up-to-date account of these classes of compact spaces, as well as
their interplay in Functional Analysis, we recommend the books [6, 15, 17]
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together with the survey papers [33, 30, 19], as well as some very recent
papers [13, 2, 16, 4]. We have the following implications:

Eberlein compact ⇒ Talagrand compact ⇒ Gul’ko compact

⇒ Corson compact
and no arrow can be reversed, [15, 42, 5, 43].

Given a setAwe shall denote by #A its cardinality and for a given family
of subsets A of a set X , given x ∈ X we shall denote by ord(x,A) =
#{A ∈ A : x ∈ A}. We say that the family A is point finite (resp. point
countable) if for every x ∈ X we have ord(x,A) < ω (resp. ord(x,A) =
ω), where ω is the cardinality of the set of the positive integers, N. A is said
σ-point finite if A =

⋃
{An : n ∈ N} such that each family An is point

finite.
Let us recall that a topological space (X, τ) is metalindelöf (resp. σ-

metacompact) if every open cover ofX has a point countable (resp. σ-point
finite) open refinement. A cover U of X is a weak θ-cover if U =

⋃
{Un :

n ∈ ω} such that if x ∈ X , then 0 < ord(x,Un) < ω for some n ∈ ω. X is
weakly submetacompact if every open cover of X has an open refinement
which is a weak θ-cover (also called weakly θ-refinable spaces [7] and σ-
relatively metacompact [12]).

Gruenhage [20] characterized Corson (resp. Eberlein) compacta as those
compact spaces K such that K2 is hereditarily metalindelöf (resp. σ-meta-
compact), or equivalently, such that K2 \∆ is metalindelöf (resp. σ-meta-
compact), where ∆ = {(x, x) ∈ K2 : x ∈ K} is the diagonal. There
are Corson compact spaces which are not hereditarily weakly submetacom-
pact [22]. Nevertheless every Gul’ko compact space is hereditarily weakly
submetacompact, even more they are weakly σ-metacompact according to
[23], where the following definition is introduced. In order to stress the
difference between these concepts we refer to [7, 23]

Definition 1. A topological space (X, τ) is weakly σ-metacompact if for
every open cover U in X we have an open refinement V such that V =⋃
{Vn : n ∈ ω} and for every x ∈ X we have

V =
⋃
{Vn : ord(x,Vn) < ω}.

The paper of Gruenhage [23] had a strong influence in Functional Anal-
ysis since it was the inspiration for proving fragmentability properties of
Gul’ko compact spaces and consequently that weakly countably determined
Banach spaces are weak Asplund spaces [15].

In view of the results mentioned above it is natural the conjecture posed
by Gruenhage that the conditionK is compact andK2 is hereditarily weakly
σ-metacompact would characterize Gul’ko compact spaces (see [23, remark
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2]). Our main results in this paper provide a positive answer for this conjec-
ture (see Theorema 9). In the course of the proof we shall present a charac-
terization of Gul’ko compact spaces in terms of networks, providing more
information on the relationship between Gul’ko compact spaces and com-
pact spaces with the linking separability property, as it is presented by Dow,
Junnila and Pelant [13]. In particular, the network obtained in any Gul’ko
compact space, yields its hereditarily weakly σ-metacompactness. Let us
recall that fragmentability together with hereditarily weakly submetacom-
pactness imply to be descriptive in the sense of Hansell, [27], a property
satisfied by all Gul’ko compact spaces, [36], which has become very im-
portant in the study of LUR renorming, [31].

Recall that a familyN of sets in a topological space (X, τ) is said to be a
network for the topology if for every open set U ⊂ X and any point x ∈ U
there is N ∈ N such that x ∈ N ⊂ U .

Gruenhage also asked (see [23, Remark 2]) if the weaker condition that
K Corson compact and K2 hereditarily weakly submetacompact charac-
terizes Gul’ko compact spaces. In this case the answer is negative due to a
previous example of Argyros and Mercourakis [3] which we have discussed
in [36], (see Remark 5). An example of a compact space K such that K2 is
hereditarily weakly submetacompact and not Corson compact, and so K2 is
not hereditarily metalindelöf, was already given in [23, Remark 2].

All our topological spaces are assumed to be Hausdorff and we refer the
reader to [14, 15] for general background and for definitions of terms and
concepts used below without any explanation.

2. ON WEAKLY σ-POINT FINITE FAMILIES

The combinatorial decomposition for weakly σ-metacompactness can be
presented with the following definition, which has been used by Sokolov
in [41] in order to give characterizations of Gul’ko compact spaces in the
spirit of Rosenthal’s theorem for Eberlein compact spaces [40]:

Definition 2. A collection U of subsets of a given set X is said to be weakly
σ-point finite if U = ∪{Un : n = 1, 2, . . .} so that, for each x ∈ X we have

U =
⋃
{Us : ord(x,Us) < ω}.

In our approach to prove Gruenhage’s conjecture we shall need to find
handy conditions characterizing weakly σ-point finite families in a given set
X . It is our intention to present in this section some characterizations based
on the lattice structure of the set K(M) := {K ⊂ M : K is compact},
where M is a separable metric space. Let us begin with the following no-
tion:



4 F. GARCÍA, L. ONCINA AND J. ORIHUELA

Definition 3. Given a separable metric space M and a familyW of subsets
of a given setX , we say thatW isM -point finite if for every compact subset
K ∈ K(M) we have a subfamilyWK ofW such that

(i) W =
⋃
{WK : K ∈ K(M)};

(ii) WK1 ⊂ WK2 whenever K1 ⊂ K2 in K(M);
(iii) WK is a point finite family in X for every K ∈ K(M).

Remark 1. It is enough to ask (i), (ii) and (iii) in Definition 3 for compact
sets K in a fundamental system of compact subsets of M only. Indeed, let
S ⊂ K(M) such that each compact set in M is included into an element of
S. LetWS be defined for every S ∈ S and let (i)-(iii) above hold if K(M)
is replaced by S. For K ∈ K(M) put WK :=

⋂
{WS : S ⊃ K,S ∈ S}.

Then (i)-(iii) are satisfied.

Another way of describing weakly σ-point finite families in a given set
X is with the concept of web [37], which allows us to see the combinatorial
structure of weakly σ-point finite families in a way similar to a Souslin
scheme [28].

For Σ ⊂ NN andW a family of subsets of X we assume it is possible to
assign to each α ∈ Σ a subfamilyWα ⊂ W such thatW =

⋃
{Wα : α ∈

Σ}. For β = (bs) ∈ NN and n ∈ N we denote by β|n the finite sequence
(b1, b2, . . . , bn). If (a1, a2, . . . , an) is a finite sequence of positive integers,
then we write

Wa1,a2,...,an :=
⋃
{Wβ : β ∈ Σ, β|n ≡ (a1, a2, . . . , an)}

(it could be empty when there is no β in Σ with β|n = (a1, a2, . . . , an)) and
we have a ‘web of subfamilies’: i.e.

W =
∞⋃
n=1

Wn; . . . ;Wn1,n2,...,nk
=

∞⋃
m=1

Wn1,n2,...,nk,m

for every n1, n2, . . . , nk ∈ N and k ∈ N.

Definition 4. We say that a familyW of subsets of X is web-point finite if
there is Σ ⊂ NN and a web of subfamilies as above, so that for every α ∈ Σ
and for every x ∈ X there is an integer n0 := n(α, x) such that

ord(x,Wα|n0) < ω

The following results collects the characterizations we are looking for:

Theorem 1. For a nonempty set X and a family W of subsets on it, the
following are equivalent:

(i) W is weakly σ-point finite,
(ii) W is M -point finite for a suitable separable metric space (M,d),

(iii) W is Σ-point finite for a suitable Σ ⊂ {0, 1}N,
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(iv) W is Σ-point finite for a suitable Σ ⊂ NN.
(v) W is web-point finite.

Proof. (ii)⇒ (i) Let us consider dH the Hausdorff distance on K(M), i.e.

dH(A,B) := sup{d(a,B), d(A, b) : a ∈ A, b ∈ B}
and we have (K(M), dH) is a separable metric space too. Then, we claim
that for every K ∈ K(M) and every x ∈ X there exists a neighbourhood V
of K in (K(M), dH) such that

ord(x,
⋃
{WS : S ∈ V }) < ω.

Indeed, if this is not the case for some x ∈ X and K ∈ K(M), we could
find W1 such that

x ∈ W1 ∈
⋃
{WS : S ∈ BdH (K, 1)}.

Now, assume the sets W1, . . . ,Wn are already defined for some n ∈ N. We
can find Wn+1 such that

x ∈ Wn+1 ∈
⋃
{WS : S ∈ BdH (K, 1

n+1
)} \ {W1,W2, . . . ,Wn}.

Now, for n ∈ N find Kn ∈ BdH (K, 1
n
) so that Wn ∈ WKn and put K∞ :=

K ∪ K1 ∪ K2 ∪ . . . This is an element of K(M) and so ord(x,WK∞) is
finite, which is a contradiction, since x ∈ Wn ∈ WK∞ for every n ∈ N.

Let us now fix a countable basis B for the space (K(M), dH) and define

W(B) :=
⋃
{WK : K ∈ B}

for every B ∈ B. We will have W =
⋃
{W(B) : B ∈ B} and for every

x ∈ X ,W =
⋃
{W(B) : ord(x,W(B)) < ω,B ∈ B}. Indeed, for every

K ∈ K(M) our claim above provides us with an element V ∈ B such that
K ∈ V and ord(x,W(V )) < ω.

(i) ⇒ (iii) Since W is weakly σ-point finite there are countably many
subfamilies ofW such thatW =

⋃
{Wn : n = 1, 2, . . .} with the property

that for every x ∈ X the following holds

W =
⋃
{Ws : ord(x,Ws) < ω} (∗)

For every V ∈ W let us consider the element P (V ) ∈ {0, 1}N defined by

P (V )(n) =
{

0 if V /∈Wn

1 if V ∈Wn

and let us call Σ := {P ∈ {0, 1}N : P = P (V ) for some V ∈ W}. Let
us note that for every P ∈ Σ the family WP := {V ∈ W : P (V ) = P}
is a point finite family in X . Indeed, given P ∈ Σ and x ∈ X suppose
#{V ∈ WP : x ∈ V } = ω. Enumerate these sets as {Vn}∞n=1 and let
{sm}∞m=1 be a sequence of positive integers such that ord(x,Wq) < ω if
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and only if q ∈ {sm}. Hence, for every fixed i ∈ N we have Vn /∈ Wsi

for all large n ∈ N, and so P (si) = P (Vn)(si) = 0. Thus P (si) = 0 for
all i ∈ N, and therefore P (Vn)(si) = 0, i.e., Vn /∈ Wsi for all n, i ∈ N.
However, asW =

⋃
{Wsi : i ∈ N} by (∗), we have a contradiction.

In fact, this argument can be extended to show that for every compact
K ⊂ Σ ⊂ {0, 1}N the familyWK := {V ∈ W : P (V ) ∈ K} is point finite
in X . Indeed, given x ∈ X and K ⊂ Σ compact, let {s1, s2, . . . , sn, . . .} =
{s ∈ N : ord(x,Ws) < ω}. If #{V ∈ WK : x ∈ V } were infinite, put
them into a sequence {Vn}. Since K is compact we may assume P (Vn)
converges to some P (V ) ∈ K, with V ∈ W . Now for every j ∈ N,
only finitely many members of {Vn : n = 1, 2, . . .} can be in Wsj , so
P (Vn)(sj) = 0 for n large enough. Thus P (V )(sj) = 0 for all j ∈ N, and
this means V /∈ W =

⋃
{Wsj : j = 1, 2, . . .} which is a contradiction.

(iii)⇒ (iv)⇒ (ii) are obvious.
(ii)⇒ (v) Since (K(M), dH) is a separable metric space, there is a subset

Σ ⊂ NN and a continuous onto map ϕ : Σ → (K(M), dH). If we simply
define

Wα :=Wϕ(α)

we obtain the web-point finite decomposition of Definition 4 because of our
claim in the proof (ii)⇒ (i) above, together with the continuity of ϕ.

(v) ⇒ (i) The web {Wn1,n2,...,nk
: n1, n2, . . . , nk ∈ N} is a countable

family of subfamilies of W which satisfies Definition 2, since for every
x ∈ X and α ∈ Σ there is n0 such that ord(x,Wα|n0) < ω. �

For the corresponding covering property of Gruenhage we have

Corollary 2. A topological space (X, τ) is weakly σ-metacompact if, and
only if, every open cover has an M -point finite open refinement for some
separable metric space M .

It is a simple consequence of Definition 2 that every weakly σ-point fi-
nite family of subsets of a given set X is point countable. For this reason,
the theorem by Mercourakis [29, Theorem 3.3] giving a Rosenthal’s type
characterization for Gul’ko compact spaces reads now as follows:

Theorem 3. For a compact space K the following are equivalent:
(i) K is a Gul’ko compact space,

(ii) there is a separable metric space M together with an M -point finite
family F of open Fσ-sets in K which is T0-separating, i.e. such
that for every x and y in K, x 6= y, there is A ∈ F such that
#A ∩ {x, y} = 1.

Proof. After Theorem 1 it is reduced to Mercourakis’ Theorem 3.3 in [29].
�
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Remark 2. Sokolov’s characterization [41] says that K is a Gul’ko com-
pact space if, and only if, K has a weakly σ-point finite T0-separating fam-
ily of open Fσ-sets. Our Theorem 1 shows that both Sokolov’s and Mer-
courakis’ Theorems are, in fact, the same result. (See footnote 1 in Gru-
enhage’s paper [23]). The notion of Σ-point finite family appears for the
first time in Mercourakis’ Theorem 3.3 in [29]. The study of K-analytic and
K-countably determined spaces using the lattice structure of K(M) began
with M. Talagrand [42], see also [9].

Remark 3 (Index-Σ-point finite families). Given an indexed family of sub-
sets of a given set X , A = {Ai : i ∈ I}, and x ∈ X we may consider the
“index-order” of the point in the family, i.e. #{i ∈ I : x ∈ Ai} instead of
#{A ∈ A : x ∈ A}.

For instance, we shall say that the indexed family A = {Ai : i ∈ I} is
index-weakly σ-point finite if I =

⋃
{In : n = 1, 2, . . .} in such a way that

for each x ∈ X we have

I =
⋃
{Is : #{i ∈ Is : x ∈ Ai} < ω}

For two families A = {Ai : i ∈ I} and B = {Bj : j ∈ J} we say that A is
an indexed subfamily of B if there is a one-to-one map ξ : I → J such that
Ai = Bξ(i) for all i ∈ I .

Given a separable metric space M and an indexed family A = {Ai : i ∈
I} of a given set X , we shall say that A is index-M-point finite if for every
compact subset K ∈ K(M) we have a subset IK ⊂ I such that if we denote
by AK := {Ai : i ∈ IK}

(i) I =
⋃
{IK : K ∈ K(M)},

(ii) AK1 is an indexed subfamily of AK2 whenever K1 ⊂ K2 in K(M),
(iii) For every x ∈ X and K ∈ K(M) #{i ∈ IK : x ∈ Ai} < ω.

Of course, Theorem 1 remains true for these notions. In particular, a
family A = {Ai : i ∈ I} is index-weakly σ-point finite if, and only if, A
is index-M-point finite for a suitable separable metric space M . We shall
use later these facts. A proof follows the same arguments used in Theorem
1 with a bit of extra care. For instance, we need the following:

Lemma 1. Let A = {Ai : i ∈ I} be an index-M-point finite family of
subsets of a given set X . Then for every x ∈ X and K ∈ K(M) there is a
neighbourhood V of K in (K(M), dH) such that

#{i ∈
⋃
{IS : S ∈ V } : x ∈ Ai} < ω

Proof. If this is not the case, we choose, for every positive integer n,

{in1 , . . . , inn} ⊂
⋃
{IS : dH(S,K) <

1

2n
},
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with x ∈ Ainj for j = 1, 2, . . . , n and inj 6= ink if j 6= k. If inj ∈ Snj with
dH(Snj , K) < 1

2n
, j = 1, 2, . . . , n we shall consider the sequence

{S1
1 , S

2
1 , S

2
2 , . . . , S

n
1 , S

n
2 , . . . , S

n
n , . . .} in K(M)

which converges to K, so

K∞ := S1
1 ∪ S2

1 ∪ S2
2 ∪ . . . ∪ Sn1 ∪ . . . ∪ Snn ∪ . . . ∪K

is a compact subset of M with K∞ ⊃ Snj for n = 1, 2, . . ., j = 1, 2, . . . , n,
and Asnj is an indexed subfamily of AK∞ for n = 1, 2, . . ., j = 1, . . . , n.

Thus {in1 , in2 , . . . , inn} ⊂ ISn
j

corresponds with a set of n different points
{i∞,n1 , i∞,n2 , . . . , i∞,nn } in the index set IK∞ with x ∈ Ai∞,n

j
, j = 1, 2, . . . , n,

for every n ∈ N, which is a contradiction with the fact that

#{i ∈ IK∞ : x ∈ Ai} < ω

�

Once we have this Lemma, the proof of Theorem 1 for indexed families
follows the same pattern. Let us show, for example, that an index-weakly
σ-point finite family A = {Ai : i ∈ I} must be index-Σ-point finite for a
suitable Σ ⊂ {0, 1}N. By assumption we have I =

⋃
{In : n ∈ N} so that,

for each x ∈ X , we have I =
⋃
{Is : #{i ∈ Is : x ∈ Ai} < ω}. For every

i ∈ I we consider P (i) ∈ {0, 1}N defined by

P (i)(n) =

{
0 if i /∈ In
1 if i ∈ In

and Σ := {P ∈ {0, 1}N : P = P (i) for some i ∈ I}. Then for K compact
subset of Σ, we set IK := {i ∈ I : P (i) ∈ K} and we have:

(i) I =
⋃
{IK : K ∈ K(Σ)} since, for every i ∈ I , P (i) ∈ Σ.

(ii) IK1 ⊂ IK2 whenever K1 ⊂ K2 are compact subsets of Σ.
(iii) For every K ∈ K(Σ) and x ∈ X we have #{i ∈ IK : x ∈ Ai} < ω.

If not, we would have a sequence {in} with P (in) ∈ K and x ∈ Ain for
n = 1, 2, . . . Since K is compact we may and do assume that {P (in) :
n = 1, 2, . . .} converges to P (i) ∈ K for some i ∈ I . Since x ∈ Ain ,
n = 1, 2, . . . we have i /∈ Is for any s such that #{i ∈ Is : x ∈ Ai} < ω.
But this contradicts I =

⋃
{Is : #{i ∈ Is : x ∈ Ai} < ω} and the proof is

over.

3. NETWORKS FOR c1(X)

Following Mercourakis [29] we shall work with the space

c1(X) := {f ∈ `∞(X) : ∀ε > 0 the set {t ∈ X : |f(t)| ≥ ε} is closed

and discrete in X},
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for a given topological space X , and we shall consider it as a Banach space
endowed with the supremum norm, i.e. a closed subspace of `∞(X). For
every f ∈ c1(X) and every compact subset K of X we have f|K ∈ c0(K)
because a closed and discrete subset of a compact space must be finite.
So when X is a compact space, we have c1(X) ≡ c0(X). The important
case for us is when X is K-countably determined. Indeed, a main result of
Mercourakis [29] is the fact that a compact space X is a Gul’ko compact
if, and only if, X embeds in a space c1(Y ), with the pointwise convergence
topology, for some K-countably determined space Y . Our main objective
here is to show the existence of suitable networks in spaces (c1(Y ), τp), for
K-countably determined spaces Y , which will characterize Gul’ko compact
spaces in section 4.

Networks were introduced by Arkangel’skii in 1958 and they have been
very useful since then. They have become a prominent tool in renorming
theory after the seminal paper of Hansell, [27], who showed that different
kind of networks in Banach spaces are related to fragmentability proper-
ties, [31]. The linking separability property (LSP, for short), is another tool
we have used to connect networks for different metric spaces [34, 35, 32].
Dow, Junnila and Pelant have characterized quite recently, [13] the LSP in
terms of a network condition too. For compact spaces, this condition lies
strictly between being Gul’ko compact and Corson compact, [13]. It is a
natural question in this context to look for a suitable network characteriza-
tion of Eberlein, Talagrand, Gul’ko and Corson compact spaces. Eberlein
compacta are characterized in [13] too. We will present here characteriza-
tions for Talagrand and Gul’ko compacta. In order to deal with the LSP and
the Eberlein compact case, the following notion becomes essential, as it is
shown in [13].

Definition 5. A family L of subsets of a topological space (X, τ) is said to
be point-finitely (resp. point-countably) expandable if there exists a family
of open sets {GL : L ∈ L} such that L ⊂ GL for every L ∈ L and, for
every x ∈ X , the family {L ∈ L : x ∈ GL} is finite (resp. countable).
The family L is said to be σ-point-finitely expandable if we can write L =⋃
{Ln : n ∈ N} so that each family Ln is point-finitely expandable.

Dow, Junnila and Pelant characterize the LSP in a topological space by
the existence of a σ-disjoint and point-countably expandable network. They
show that a compact space is an Eberlein compact if, and only if, it has a
σ-point-finitely expandable network. This fact, together with Gruenhage’s
characterization of Eberlein compact spaces as those compacta whose com-
plement of the diagonal is a σ-metacompact space, [20], gives the proof.
Indeed, if one has a σ-point-finitely expandable network in a topological
space X , it follows that X is hereditarily σ-metacompact, [13]. Our aim is
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to follow the same ideas for Gul’ko compact spaces. We construct the ap-
propiate expandable network in (c1(Y ), τp) which will give us the hereditar-
ily weakly σ-metacompactness property thanks to our results from section
2.

After our study of Σ-point finite families in section 2 we introduce now
the following definition (see Remark 3).

Definition 6. Let A be a family of sets in a topological space (X, τ). A is
said to be Σ-point-finitely expandable if A can be indexed as A = {Ai :
i ∈ I} and for every i ∈ I there exists an open set Gi ⊃ Ai in X such that
the indexed family {Gi : i ∈ I} is index-Σ-point finite; i.e. for a suitable
separable metric space M we have, for every K ∈ K(M), subsets IK ⊂ I
such that:

(i) I =
⋃
{IK : K ∈ K(M)},

(ii) {Gi : i ∈ IK1} is an indexed subfamily of {Gi : i ∈ IK2} whenever
K1 ⊂ K2 in K(M),

(iii) For every x ∈ X and K ∈ K(M) we have

#{i ∈ IK : x ∈ Gi} < ω

Now we can formulate our main result in this section:

Theorem 4. Let (X, τ) be a K-countably determined topological space.
Then (c1(X), τp) has a Σ-point-finitely expandable network.

Proof. Let us begin with the particular case of (X, τ) being a compact
space. Then c1(X) ≡ c0(X) and we follow Hansell’s construction in [27,
Theorem 7.5]. Let us be precise with all the details since we shall need all
of them for the proof of the non-compact case. A close construction is the
one presented in [13].

Let us fix I = {In;n = 1, 2, . . . } a countable basis for the topology of
R \ {0} made of bounded open intervals such that for each n there is an
ε > 0 such that either In ⊂ (−∞,−ε) or In ⊂ (ε,+∞). Let us fix an
integer n ∈ N and the first n elements from I; i. e. In := {I1, I2, . . . , In}.
We shall consider maps ϕ : Λ −→ In where Λ ⊂ X , i. e. we choose
”doors” from In for every point x ∈ Λ, and we need only finite sets, i. e.
#Λ < +∞, to describe the topology τp. So let us consider, for fixed n ∈ N,

Mn := {(Λ, ϕ); Λ ⊂ X,#Λ ≤ n and ϕ : Λ −→ In}

and define for (Λ, ϕ) ∈Mn the τp−open set

R(Λ, ϕ) := c0(X) ∩
∏
x∈X

Rx where Rx =

{
ϕ(x) if x ∈ Λ,

R otherwise.
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Moreover, for m ∈ N let us define

Rm(Λ, ϕ) := c0(X) ∩
∏
x∈X

Rx where Rx =

{
ϕ(x) if x ∈ Λ,

(−1/m, 1/m) otherwise

and we have
Rm(Λ, ϕ) ⊂ R(Λ, ϕ)

and the family
Rn := {R(Λ, ϕ); (Λ, ϕ) ∈Mn}

consists of τp−open subsets of c0(X) and it is a point finite family in c0(X)
for every fixed n ∈ N. Indeed, given f ∈ c0(X) such that, f ∈ R(Λm, ϕm)
with {(Λm, ϕm) : m ∈ N} an infinite set in Mn, then

⋃
{Λm : m ∈

N} must be infinite too, since each ϕm takes values in the finite set I =
{I1, . . . , In} and n is fixed. Hence, for some infinite set Y ⊂ X and for
some Ij , 1 ≤ j ≤ n, we have f(y) ∈ Ij for all y ∈ Y , but this contradicts
the fact that f ∈ c0(X) since Ij is bounded away from zero.

We set for m,n ∈ N

Rm,n := {Rm(Λ, ϕ); (Λ, ϕ) ∈Mn}

and we have that ∪∞m,n=1Rm,n is an open basis of the ‖ · ‖∞-topology
in c0(X) and each family Rm,n is expandable to the family Rn which is
formed by τp−open sets and it is a point finite family in c0(X). Indeed, if
f ∈ c0(X) and m is a positive integer, if ‖f‖∞ < 1

m
, let Λ = ∅, otherwise

let

Λ = {x1, x2, . . . , xk} = {x ∈ X : |f(x)| ≥ 1

m
}

and choose Ini
∈ I for i = 1, 2, . . . , k, such that

f(xi) ∈ Ini
⊂ (f(xi)−

1

m
, f(xi) +

1

m
).

Let n = max{k, n1, n2, . . . , nk} and define ϕ : Λ → {I1, I2, . . . , In} so
that ϕ(xi) = Ini

for i = 1, 2, . . . , k. Then (Λ, ϕ) ∈Mn and

f ∈ Rm(Λ, ϕ) ⊂ B‖·‖∞(f,
1

m
).

So we have a σ-point-finitely expandable network in (c1(X) ≡ c0(X), τp)
when X is a compact space.

Let us show the case when (X, τ) is K-countably determined. So we
will have a separable metric space M such that X = ∪{XK ;K ∈ K(M)}
where XK are compact subsets of X and XK1 ⊂ XK2 whenever K1 ⊂ K2

in K(M), [9]. If we make the construction we have done in the compact
case for every K ∈ K(M); i. e. on every c0(XK), then we shall arrive to a
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Σ-point-finitely expandable network in (c1(X), τp). Let us be more precise
and for every fixed integer n and every fixed K ∈ K(M) we shall consider:

M(n,K) := {(Λ, ϕ); Λ ⊂ XK ; #Λ ≤ n and ϕ : Λ −→ In}
and we write, as before,

R(Λ, ϕ) := c1(X) ∩
∏
x∈X

Rx where Rx =

{
ϕ(x) if x ∈ Λ,

R otherwise.

and

Rm(Λ, ϕ,K) := c1(X) ∩
∏
x∈X

Rx where Rx =


ϕ(x) if x ∈ Λ,

(− 1
m ,

1
m) if x ∈ XK \ Λ,

R if x 6∈ XK .

and we have
Rm(Λ, ϕ,K) ⊂ R(Λ, ϕ)

and the family

R(n,K) := {R(Λ, ϕ); (Λ, ϕ) ∈M(n,K)}
is made of τp−open subsets of c1(X) and it is a point finite family in c1(X)
for every fixed n ∈ N and K fixed. Indeed, every h ∈ c1(X) verifies
h|XK

∈ c0(XK) and therefore

#{(Λ, ϕ) ∈M(n,K);h ∈ R(Λ, ϕ)} < +∞
as we have already seen in the compact case.

To describe the network we are looking for we take

N := {Rm(Λ, ϕ,K) : (Λ, ϕ) ∈M(n,K),m, n ∈ N and K ∈ K(M)}
N is a network for the pointwise topology in c1(X) since {Rm(Λ, ϕ,K) :
n,m ∈ N} provides a basis for the topology of uniform convergence on
the set XK , as in the compact case. Thus N is a basis for the topology of
uniform convergence on the sets {XK : K ∈ K(M)}, a topology finer that
τp since every finite set F of X is contained in some XK with K ∈ K(M).
It remains to show thatN is Σ-point-finitely expandable. Our set of indexes
to describe N is:

I := {(m,n,K,Λ, ϕ) : (Λ, ϕ) ∈M(n,K),m, n ∈ N , K ∈ K(M)}
and we set for i = (m,n,K,Λ, ϕ) ∈ I the τp-open set

Gi := R(Λ, ϕ) ⊃ Rm(Λ, ϕ,K) =: Ni

Let us consider the metric space N × M where N is endowed with the
discrete topology. Let us denote by π1 : N×M → N and π2 : N×M →M
the canonical projections. For a compact subset S of N×M we set

IS := {(m,n,K,Λ, ϕ) : (Λ, ϕ) ∈M(n,K),m, n ∈ {1, 2, . . . , q}}
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where q = maxπ1(S) and K = π2(S).
We can write
(i) I = ∪{IS : S ∈ K(N ×M)}. Of course we have {Gi : i ∈ IS1}

is an indexed subfamily of {Gi : i ∈ IS2} whenever S1 ⊂ S2 because
M(n, π2(S1)) ⊂M(n, π2(S2)) for every n = 1, 2, . . ..

(iii) If q = maxπ1(S) and K = π2(S) for the compact subset S of
N×M , we have

#{(m,n,K,Λ, ϕ) = i ∈ IS : f ∈ Gi = R(Λ, ϕ)}

≤
q∑

n=1

q · (#{(Λ, ϕ) ∈M(n,K) : f ∈ R(Λ, ϕ)}) < ω

because R(n,K) was a point finite family in c1(X) and the proof is over.
�

For the corresponding covering property we have:

Proposition 5. Let (X, τ) be a topological space with a Σ-point finitely
expandable network. Then X is hereditarily weakly σ-metacompact.

Proof. The hereditarily weakly σ-metacompactness will follow if we can
find, for every arbitrary family V of open subsets of X , a weakly σ-point
finite open refinement of V . So, let us fix V and Ω := ∪V . Let N = {Ni :
i ∈ I} be the Σ-point-finitely expandable network for (X, τ); i.e. for a
suitable separable metric space M we have IK ⊂ I for every K ∈ K(M)
and open sets Gi ⊃ Ni for every i ∈ I such that {Gi : i ∈ I} satisfies
conditions (i) to (iii) in Definition 6. Given x ∈ Ω we can find i ∈ I with

x ∈ Ni ⊂ V ∈ V
by definition of network.

Set J := {i ∈ I : Ni ⊂ V for some V ∈ V} and choose, for every
j ∈ J , an open set V (j) ∈ V with Nj ⊂ V (j). Now we can define the open
refinement of V by

W := {Gj ∩ V (j) : j ∈ J}
with ∪W = Ω. Moreover, since {Gi : i ∈ I} is an index-Σ-point finite
family we know that I = ∪In and for every x ∈ X we also have

I = ∪{Is : #{i ∈ Is : x ∈ Gi} < ω},
(see Remark 3). Of course, if we denote by Jn := J ∩ In, we have J =
∪{Jn : n = 1, 2, . . .} and for every x ∈ X

J = ∪{Js : #{j ∈ Js : x ∈ Gj ∩ V (j)} < ω}
since #{j ∈ Js : x ∈ Gj ∩ V (j)} < ω whenever #{i ∈ Is : x ∈ Gi} < ω.
SoW is a weakly σ-point finite open refinement of V . �
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Corollary 6. For every K-countably determined topological space X , then
the space (c1(X), τp) is hereditarily weakly σ-metacompact and, in partic-
ular, hereditarily submetacompact.

As a consequence we obtain now Theorem 2 in [23]:

Corollary 7. Every Gul’ko compact space has a Σ-point-finitely expand-
able network and it is hereditarily weakly σ-metacompact too.

Proof. It is a consequence of Mercourakis’ theorem ([29, Theorem 3.1])
saying that every Gul’ko compact space is homeomorphically embedded in
(c1(Y ), τp) for some K-countably determined space Y together with theo-
rem 4 and proposition 5. �

Remark 4. For Σ ⊂ NN and Γ any set, it is defined [15, 11]

c1(Σ×Γ) := {f ∈ `∞(Σ×Γ) : f|K×Γ ∈ c0(K ×Γ) for every K ⊂ K(Σ)}
It follows adding one point ∞ that Σ × Γ ∪ {∞} will be K-countably
determined, see [29, Definition 1.3], then c1(Σ × Γ) can be seen as the
subspace of c1(Σ×Γ∪{∞}) formed by the functions vanishing at∞. Thus,
for Σ ⊂ NN and Γ any set the space (c1(Σ × Γ), τp) has a Σ-point-finitely
expandable network and it is hereditarily weakly σ-metacompact too.

4. COVERING PROPERTIES ON X2 \∆

Following Gruenhage and Michael [24] we say that an open cover G of
a topological space (X, τ) can be shrunk if there exists an indexed closed
cover

{AG;G ∈ G}
such that AG ⊂ G for every G ∈ G.

We shall need the following result in the course of the proof of our the-
orem 9. The cases of metalindelöf or σ-metacompact has been considered
in [24], now we need the proof for the weakly σ-metacompact case. Fortu-
nately the same arguments as in [24] also work this time:

Proposition 8. Let (X, τ) be a weakly σ-metacompact, locally compact
space, and let B a basis for (X, τ). Then X has a subcover B′ ⊂ B such
that the indexed family {B;B ∈ B′} is an index-Σ-point finite family in X .

Proof. Let G be an open cover ofX by open sets with compact closures and
let V be an M -point finite open refinement of G (corollary 2), for a suitable
separable metric space M . By [24, Theorem 1.1] the cover V can be shrunk
to a closed cover {AV ;V ∈ V}. If V ∈ V , then AV is compact, so there is a
finite familyBV ⊂ B such thatBV coversAV and such thatB ⊂ V for every
B ∈ BV . The collection B′ =

⋃
{BV ;V ∈ V} is such that {B;B ∈ B′}

is Σ-point finite. Indeed, since V es M -point finite, we know that for every
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K ∈ K(M), VK is a point finite subfamily of V , V =
⋃
{VK ;K ∈ K(M)}

and VK1 ⊂ VK2 whenever K1 ⊂ K2. Let us define for K ∈ K(M)

B′K :=
⋃
{BV ;V ∈ VK}

then we have
B′ = ∪{B′K ;K ∈ K(M)}

and B′K1
⊂ B′K2

whenever K1 ⊂ K2 in K(M). Moreover, for every K ∈
K(M) we have {B;B ∈ B′K} is point finite because VK is a point finite
family and for every V ∈ VK only a finite number of elements of {B;B ∈
B′K} has been considered, exactly the ones in the family BV . �

Finally we are ready for the proof of our main result:

Theorem 9. The following are equivalent for a compact space X .
(i) X is Gul’ko compact;

(ii) X2 \∆ is weakly σ-metacompact;
(iii) X2 is hereditarily weakly σ−metacompact;
(iv) X admits a Σ-point-finitely expandable network.

Proof. (i)⇒(iv) It follows from Corollary 7.
(iv)⇒(iii) Because the property of having a Σ-point-finitely expandable

network is stable by finite products together with our Proposition 5.
(iii)⇒(ii) It is trivial.
(ii)⇒(i) We shall follow the proof of [20, Theorem 2.2] adding the details

for our case here. Indeed if X2 \∆ is weakly σ-metacompact, then by the
proof of Proposition 8 there is a cover

P = {Uγ × Vγ; γ ∈ A}
of X2 \∆ such that:

(a) Uγ and Vγ are open Fσ in X , (take the original cover in Proposition
8 with sets U × V with U and V being Fσ-sets).

(b) Uγ ∩ Vγ = ∅, ∀γ ∈ A.
(c) {Uγ × Vγ; γ ∈ A} is an index-Σ-point finite family in X2 \∆.
(d) U × V ∈ P implies V × U ∈ P .

Now if densX = µ and X = {pα;α < µ}, we set for each α < µ

Xα := {pβ; β < α}
and

Uα := {∩γ∈FUγ;F ⊂ A and {Vγ; γ ∈ F} is a finite minimal cover of Xα}.
Note that Uα coversX\Xα. Then the family

⋃
{Uβ; β < µ} is T0-separating

as in [21, Theorem 2.2, Claim 2]. And moreover
⋃
{Uβ; β < µ} is a Σ-point

finite family in X . Indeed, by (c) we know that there is a separable metric
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space M such that A = ∪{AK ;K ∈ K(M)}, with {Uα × V α;α ∈ AK}
point finite for every K ∈ K(M) and AK1 ⊂ AK2 whenever K1 ⊂ K2 in
K(M) (that is the case in the proof of Proposition 8).

For K ∈ K(M) and n ∈ N fixed, let UKα,n be all members of Uα whose
corresponding index set F has cardinality ≤ n, and it is contained in AK .
Then

⋃
{UKα,n : α < µ} is a point finite family in X . Indeed, if there is

x ∈ X that belongs to infinitely many members of
⋃
α<µ UKα,n, then for

q ∈ N we find ordinals βq < µ and sets Fq ⊂ AK such that #Fq ≤ n,
x ∈ ∩{Uγ : γ ∈ Fq}, Xβq ⊂ ∪{V α : γ ∈ Fq} and Fq 6= Fr if q 6= r. By
avoiding some q′s and relabelling, we may and do assume that β1 ≤ β2 ≤
. . . ≤ βq ≤ . . ..

Since #Fq ≤ n, q = 1, 2, . . . and all of them are different, it is possible
to assume that {Fq; q = 1, 2, . . . } forms a ∆−system with root R maybe
empty. In any case R 6= F1 and there is y ∈ Xβ1 \ ∪{V γ; γ ∈ R}. Then for
each q there exists δ(q) ∈ Fq \R with y ∈ V δ(q). But then we have

(x, y) ∈ ∩∞q=1Uδ(q) × Vδ(q)

and {δ(q); q = 1, 2, . . . } ⊂ AK which contradicts the fact that {Uγ ×
Vγ; γ ∈ AK} is point finite since all {δ(q); q = 1, 2, . . . } are different
elements in AK . Thus we see that

⋃
{Uα;α < µ} can be written as⋃

{{UKα,n;α < µ};K ∈ K(M), n ∈ N}

and we see that it is a Σ-point finite family of open Fσ sets in X which is
also T0-separating. To finish the proof it is enough to apply Theorem 3 (see
Remarks 2 and 4) to conclude that X is a Gul’ko compact indeed. �

Remark 5. As we mentioned in the introduction, Gruenhage [23, Remark
2] asks if for a Corson compact K, the condition of K2 being heredi-
tarily weakly submetacompact characterizes Gul’ko compacta. The an-
swer in no. An example constructed in [3, Theorem 3.3] gives us a Cor-
son compact space Ω which is not Gul’ko compact but it is a Gruenhage
space. Moreover, we have proved in [36] that this compact space Ω ad-
mits a σ-relatively discrete network, i.e. a network N which can be written
N = ∪{Nn : n ∈ N} such that for each n ∈ N the family Nn is discrete in
∪Nn. Since a space that admits such a network must be hereditarily weakly
submetacompact [27], the example Ω provides the answer to Gruenhage’s
question. The space Ω is also studied in [15, Theorem 7.3.2].

5. TALAGRAND COMPACT SPACES

There is an analogue of Theorem 9 for Talagrand compact spaces. Of
course our previous statements can be adapted to give the proof for that
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case. The essential change is that the separable metric space M will be now
complete too; so a continuous image of the Baire space NN where we have
the fundamental system of compact subsets given by:

{Aα := {β ∈ NN : β(n) ≤ α(n), n = 1, 2, . . .} for α ∈ NN}

So we shall work with the Baire space NN and with the order relation

α ≤ β if, and only if α(n) ≤ β(n), n = 1, 2, . . . for α, β ∈ NN

instead of the lattice of compact subsets K(NN).
We shall begin with NN-point finite families (see Definition 3), then we

have the following result.

Proposition 10. A collection W of subsets of a given set X is NN-point
finite if, and only if, we have subfamiliesWα ofW for every α ∈ NN such
that

(i) W = ∪{Wα : α ∈ NN};
(ii) Wα ⊂ Wβ whenever α ≤ β in NN;

(iii) Wα is a point finite family in X for every α ∈ NN.

For an indexed family A = {Ai : i ∈ I}, A is index-NN-point finite if,
and only if, I =

⋃
{Iα : α ∈ NN} with Aα := {Ai : i ∈ Iα} an indexed

subfamily of Aβ := {Ai : i ∈ Iβ} whenever α ≤ β in NN, and for every
α ∈ NN and x ∈ X we have #{i ∈ Iα : x ∈ Ai} < ω.

Let us remark that every σ-point finite family is NN-point finite too be-
cause the union of a finite collection of point finite families is point finite
too. The following is the analogue to Theorem 1 and describes the combi-
natorial structure here:

Theorem 11. For a family W of subsets of a given set X the following
conditions are equivalent:

(i) W is NN-point finite;
(ii) W is M -point finite for some Polish space M ;

(iii) W =
⋃∞
n=1Wn and for n1, n2, . . . , nk, k ∈ N,

Wn1,...,nk
=

∞⋃
m=1

Wn1,n2,...,nk,m

such that for every α = (an) ∈ NN and for every x ∈ X there is an
integer n0 := n(α, x) such that ord(x,Wα|n0) < ω.

Proof. (ii)⇒ (iii) There is a continuous onto map ϕ : NN → (K(M), dH),
because (K(M), dH) is complete too. If we set, for n1, n2, . . . , nk, k ∈ N

Wn1,...,nk
:= {W ∈ W : W ∈ Wϕ(α) with α ∈ NN, α|k = (n1, . . . , nk)}
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then we have a web of subfamilies

W =
∞⋃
n=1

Wn and Wn1,...,nk
=

∞⋃
m=1

Wn1,...,nk,m

which verifies (iii) after our claim in Theorem 1 for the proof of (ii)⇒ (i).
(iii)⇒ (i) Given α = (an) ∈ NN we set

Dα := {W ∈ W : W ∈ Wa1,a2,...,an , n = 1, 2, . . .},

and we have, by the web conditions in (iii) thatW =
⋃
{Dα : α ∈ NN}.

Let us take Wα :=
⋃
{Dβ : β ≤ α} and we obviously have (i) and (ii)

in Proposition 10. Moreover, for every x ∈ X we have ord(x,Wα) < ω.
If this is not true, we will have a sequence of elements {Wn} in Wα with
Wn 6= Wm for n 6= m and x ∈ ∩∞n=1Wn. For every integer n there is βn ≤ α
such that Wn ∈ Dβn and we may and do assume that (βn) converges to
some β ≤ α in NN. Then, for every p ∈ N, we have βn|p = β|p for n large
enough, and so Wn ∈ Wβ|p for n large enough, and ord(x,Wβ|p) = ω too.
This is a contradiction with (iii) which finishes the proof. �

Remark 6 (Index-NN-point finite families). Of course we also have the
version of Theorem 11 for index-NN-point finite families A = {Ai : i ∈ I}.
In this case, (iii) reads as follows:

There is a web {In1,...,nk
: (n1, . . . , nk) ∈ Nk, k = 1, 2, . . .} of subsets of

I; i.e. I = ∪∞n=1In and for n1, n2, . . . , nk, k ∈ N we have

In1,...,nk
= ∪∞m=1In1,n2,...,nk,m

such that for every α = (an) ∈ NN and for every x ∈ X there is an integer
n0 := n(α, x) such that

#{i ∈ Ia1,a2,...,an0
: x ∈ Ai} < ω.

For the proof we use the same arguments as above, using Lemma 1 instead
of the claim in (ii)⇒ (i), Theorem 1.

The covering property in that case is the following:

Definition 7. A topological space (X, τ) is NN-metacompact if for every
open cover U in X we have an open refinement V which is NN-point finite
in X .

Of course we have:

σ-metacompact ⇒ NN-metacompact ⇒ weakly σ-metacompact

⇒ metalindelöf (*).
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and the arrows can not be reversed at all. Indeed, after the characteriza-
tions in [20] and our theorems 9 and 16, the examples of compact subsets
distinguishing in the relations

Eberlein compact ⇒ Talagrand compact ⇒ Gul’ko compact

⇒ Corson compact
provide us with examples to distinguish between the covering properties in
(*).

For expandability we now need the following:

Definition 8. Let A be a family of subsets of a topological space (X, τ).
We shall say thatA is NN-point-finitely expandable whenA can be indexed
as A = {Ai : i ∈ I} and for every i ∈ I there exists an open set Gi ⊃ Ai
in X such that the indexed family {Gi : i ∈ I} in index-NN-point finite.

Now we have

Theorem 12. Let (X, τ) be aK-analytic topological space. Then the space
(c1(X), τp) has a NN-point-finitely expandable network.

Proof. As in the proof of Theorem 4, but now we have X = ∪{Xα : α ∈
NN} where Xα is a compact subset of X and Xα ⊂ Xβ whenever α ≤ β ∈
NN, . �

Of course we also have the result corresponding to proposition 5;

Proposition 13. Let (X, τ) be a topological space with a NN-point-finitely
expandable network. Then X is hereditarily NN-metacompact.

Proof. It follows the arguments of Proposition 5. Now we use the web
characterization (iii) in Theorem 11 and the Remark 6, instead of the weakly
σ-point finite characterization for the open expansion {Gi : i ∈ I} of the
network N . �

Consequently we have:

Corollary 14. For every K-analytic topological space X , (c1(X), τp) is
hereditarily NN-metacompact and, in particular, hereditarily submetacom-
pact.

Corollary 15. Every Talagrand compact space has a NN-point-finitely ex-
pandable network and it is hereditarily NN-metacompact too.

The proof of Proposition 8 can be also adapted to NN-metacompact spa-
ces. Then we have all the ingredients for the proof of:

Theorem 16. The following are equivalent for a compact space X .
(i) X is Talagrand compact;
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(ii) X2 \∆ is NN-metacompact;
(iii) X2 is hereditarily NN-metacompact;
(iv) X admits a NN-point-finitely expandable network.

Proof. It follows the scheme of the proof of Theorem 9 and it is used here
the following “Rosenthal-type” theorem for Talagrand compact spaces, that
follows from Farmaki [18]: �

Theorem 17. A compact space X is Talagrand compact if, and only if,
there exists a NN-point finite family A of open Fσ-subsets of X , which T0-
separates the points of X .

Proof. It follows from Farmaki’s Theorem because the extra assumption in
[18] ofA being point countable is not necessary, since every NN-point finite
family is point countable by Theorem 1. �

Problem 1. Find a network characterization for the class of Corson com-
pact spaces. See [13].

Acknowledgments. The authors wish to thank the referee for his sugges-
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(Peñı́scola, 1990), vol. 170, North-Holland, Amsterdam, 1992, pp. 279–291.

[39] J. Orihuela, W. Schachermayer, and M. Valdivia, Every Radon-Nikodym Corson com-
pact space is Eberlein compact, Studia Math. 98 (2) (1991), 157–174.

[40] H. P. Rosenthal, The heredity problem for weakly compactly generated Banach
spaces, Comp. Math. 28 (1974), 83–111.

[41] G. A. Sokolov, On some classes of compact spaces lying in σ-products, Comm. Math.
Univ. Carolin. 25 (1984), 219–231.

[42] M. Talagrand, Espaces de Banach faiblement K-analytiques, Ann. of Math. 110
(1979), 407–438.

[43] , A new countably determined Banach space, Israel J. Math. 47 (1984), 75–
80.

[44] M. Valdivia, Projective resolution of identity in C(K) spaces, Arch. der Math. 54
(1990), 493–498.
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