KURATOWSKI'S INDEX OF NON-COMPACTNESS AND RENORMING IN BANACH SPACES

F. GARCÍA, L. ONCINA, J. ORIHUELA AND S. TROYANSKI

ABSTRACT. A point $x \in A \subset (X, \|\cdot\|)$ is quasi-denting if for every $\varepsilon > 0$ there exists a slice of A containing x with Kuratowski index less than ε . The aim of this paper is to generalize the following theorem with a geometric approach, see [19]: A Banach space such that every point of the unit sphere is quasi-denting (for the unit ball) admits an equivalent LUR norm.

1. INTRODUCTION

For a bounded set B in a metric space X, the **Kuratowski index of non-compactness** of B is defined by

 $\alpha(B) := \inf \{ \varepsilon > 0 : B \text{ is covered by a finite family of sets of diameter less than } \varepsilon \}$

Obviously $\alpha(B) \leq \text{diam}(B)$ and $\alpha(B) = 0$ if, and only if, B is totally bounded in X; i.e. relatively compact when X is a complete metric space.

If B is a closed convex and bounded subset of X, a point $x \in B$ is said to be **quasidenting** for B if for every $\varepsilon > 0$ there exists an open half space H with $x \in H$ and such that the 'slice' $H \cap B$ has $\alpha(H \cap B) < \varepsilon$. When in the former definition we require the diameter of $H \cap B$ to be less than ε instead of $\alpha(H \cap B) < \varepsilon$, the point x is said to be **denting** for B. The notion of quasi-denting point was introduced in [4], under the name of α -denting point, in connection with the investigation of differentiability properties of convex functions in Banach spaces; the notion of denting point goes back to the early studies of sets with the Radon-Nikodým property [1] and it was used in [18] to show that a Banach space X admits an equivalent locally uniformly rotund norm if all the points in its unit sphere S_X are denting points for the unit ball B_X . For an elegant proof of this result see [17]. Let us recall that the norm $\|\cdot\|$ in X is said to be locally uniformly rotund (**LUR** for short) if

 $\lim_{n \to \infty} \|x_n - x\| = 0 \text{ whenever } \lim_{n \to \infty} \left(2\|x_n\|^2 + 2\|x\|^2 - \|x_n + x\|^2 \right) = 0.$

For an up-to-date account of **LUR** renormings we refer to [2, 5, 7, 20]. It is not known whether X admits an equivalent **LUR** norm if every bounded set in X has a slice of arbitrarily small diameter (i.e. the Radon-Nikodým property). G. Lancien proved that

Date: 23rd April 2005.

²⁰⁰⁰ Mathematics Subject Classification. 46B03, 46B20.

Key words and phrases. Quasi-denting points, Kuratowski's index, LUR renorming.

Research partially supported Fundación Séneca (CARM, Spain); by DGES, Project PBFM2002-01719 (Spain) and by Grant MM 808/2002 of NSFR of Bulgaria.

X admits an equivalent **LUR** norm whenever, for every $\varepsilon > 0$, B_X is a union of complements of a decreasing transfinite but countable family C_{α}^{ε} of closed convex sets such that $C_{\alpha}^{\varepsilon} \setminus C_{\alpha+1}^{\varepsilon}$ is a union of slices of C_{α}^{ε} of diameter less than ε , [9, 10], see also [5].

Throughout this paper we shall denote by X a normed space and $F \subset X^*$ will be a norming subspace for it; i.e. if we define

$$|||x||| := \sup\{|f(x)| : f \in B_{X^*} \cap F\}$$
 for every $x \in X$,

then $\||\cdot\||$ provides an equivalent norm for X. When the original norm coincides with $\||\cdot\||$ we say that F is **1-norming**. As usual we denote by $\sigma(X, F)$ the topology in X of convergence on the elements from F. We shall denote by $\mathbb{H}(F)$ the family of all $\sigma(X, F)$ -open half spaces in X. So for a point x in a $\sigma(X, F)$ -closed, convex and bounded subset B of X, we shall say that x in $\sigma(X, F)$ -denting ($\sigma(X, F)$ -quasi-denting) for B whenever the open half space in the definition of denting (quasi-denting) can be chosen from $\mathbb{H}(F)$.

The following modification of the 'Cantor derivation' is a main tool used by Lancien to obtain his result:

We fix a normed space X, a norming subspace $F \subset X^*$ and $B \subset X$ a $\sigma(X, F)$ closed, convex and bounded subset of X. Pick any $\varepsilon > 0$ and define

$$D_{\varepsilon,F}\left(B\right) := \left\{ x \in B : \| \cdot \| - \text{diam} \ \left(H \cap B\right) > \varepsilon \text{ for all } H \in \mathbb{H}(F), x \in H \right\}$$

Again $D_{\varepsilon,F}(B)$ is a $\sigma(X,F)$ -closed, convex and bounded subset of X and we can iterate the construction and define

$$D_{\varepsilon,F}^{\alpha+1}\left(B\right) := D_{\varepsilon,F}\left(D_{\varepsilon,F}^{\alpha}\left(B\right)\right), \text{ where } D_{\varepsilon,F}^{0}\left(B\right) := B$$

and

$$D_{\varepsilon,F}^{\alpha}\left(B\right) := \bigcap_{\beta < \alpha} D_{\varepsilon,F}^{\beta}\left(B\right) \text{ if } \alpha \text{ is a limit ordinal.}$$

Then we set

$$\delta_F(B,\varepsilon) := \begin{cases} \inf\{\alpha : D^{\alpha}_{\varepsilon,F}(B) = \emptyset\} & \text{if it exists} \\ \infty & \text{otherwise} \end{cases}$$

and $\delta_F(B) := \sup\{\delta_F(B,\varepsilon) : \varepsilon > 0\}.$

Indeed, Lancien showed that $\delta_{X^*}(B_X) < \omega_1$ (resp. $\delta_X(B_{X^*}) < \omega_1$) implies X (resp. X^*) admits an equivalent **LUR** norm (resp. dual **LUR** norm). For quasi-denting points, refining probabilistic methods, it was shown in [19] that a Banach space X also admits an equivalent **LUR** norm provided all points in the unit sphere S_X are quasi-denting points for B_X . A modification of the derivation approach has been subsequently used by M. Raja [17] who provided a transparent proof, and significative improvements, of the result of the fourth author for denting points, [18]. Nevertheless, for quasi-denting points the approach is still fully probabilistic. A first contribution in this paper will be to provide Raja's approach for quasi-denting points; i.e. to show with a geometric construction, free from probabilistic arguments, the theorem for quasi-denting points. Indeed, for a given subset S of a $\sigma(X, F)$ -closed, convex and bounded subset B of a

normed space X we define its dentability index (with respect to the norming subspace $F \subset X^*$) in B as follows:

$$\delta_F(S, B, \varepsilon) := \begin{cases} \inf\{\alpha : D^{\alpha}_{\varepsilon, F}(B) \cap S = \emptyset\} & \text{if it exists} \\ \infty & \text{otherwise} \end{cases}$$

and $\delta_F(S, B) := \sup\{\delta_F(S, B, \varepsilon) : \varepsilon > 0\}.$

In other words we want to measure how many steps of Lancien's derivation process for B are necessary to "eat out" the subset S. When all the points of the unit sphere are denting points for the unit ball of X we obviously have $\delta_{X^*}(S_X, B_X) = 1$ and Raja's approach immediately gives the following:

Theorem 1. ([17]) If $\delta_F(S_X, B_X) < \omega_1$ the normed space X admits an equivalent $\sigma(X, F)$ -lower semi-continuous LUR norm.

Indeed, the following is a tool for LUR renormings, [15].

Theorem 2. ([12, 17]) Let X be a normed space and let F be a norming subspace of its dual. Then X admits an equivalent $\sigma(X, F)$ -lower semi-continuous LUR norm if, and only if, for every $\varepsilon > 0$ we can write

$$X = \bigcup_{n=1}^{\infty} X_{n,\varepsilon}$$

in such a way that for every $x \in X_{n,\varepsilon}$, there exists a $\sigma(X, F)$ -open half space H containing x with diam $(H \cap X_{n,\varepsilon}) < \varepsilon$.

When in the above theorem we replace open slices with weak ($\sigma(X, F)$) open sets we arrive to the concept introduced in [8]. Namely: a normed space X is said to have a countable cover by sets of small local diameter if for every $\varepsilon > 0$,

$$X = \bigcup_{n=1}^{\infty} X_{n,\varepsilon}$$

in such a way that for every $x \in X_{n,\varepsilon}$ there exists a weak $(\sigma(X, F))$ open set W containing x with diam $(W \cap X_{n,\varepsilon}) < \varepsilon$. One could replace the diameter in the definition above by Kuratowski index of non-compactness to measure the size of the set $W \cap X_{n,\varepsilon}$. In this case, since closed balls are weak $(\sigma(X, F))$ -closed, one can easily show that both notions coincide.

Let us recall that a normed space has the Kadec property if the norm and weak topologies coincide on the unit sphere. Using that an extreme point of continuity is denting ([11]) we reformulate the theorem mentioned before: a rotund Banach space with the Kadec property is **LUR** renormable. It is well known that ℓ_{∞} has a rotund norm but fails to have a norm with the Kadec property. R. Haydon [7] proved that $C(\Upsilon)$, Υ diadic tree, admits a norm with the Kadec property but fails to have a rotund norm if the height of the tree is bigger or equal to ω_1 . However, both Kadec property and rotundity in different combinations can be replaced by something weaker. In [12] is shown that if X has a countable cover by sets of small local diameter and all points of S_X are extreme for $B_{X^{**}}$ then X admits a LUR norm. In [14] is shown that if X has the Kadec property and all faces of its unit sphere have Krein-Milman property the it admits a LUR renorming.

4

Our main results in this paper will provide extensions of the former results when we use the Kuratowski index of non-compactness instead of the diameter both in the derivation process of Lancien and in the statement of the former theorem. Indeed, we shall prove the following:

Theorem 3. Let X be a normed space and let F be a norming subspace of its dual. Then X admits an equivalent $\sigma(X, F)$ -lower semi-continuous LUR norm if, and only if, for every $\varepsilon > 0$ we can write

$$X = \bigcup_{n=1}^{\infty} X_{n,\varepsilon}$$

in such a way that for every $x \in X_{n,\varepsilon}$, there exists a $\sigma(X, F)$ -open half space H containing x with $\alpha(H \cap X_{n,\varepsilon}) < \varepsilon$.

Taking advantage of homogeneity one can replace the space X in the former theorem by its unit sphere, see theorem 11.

In the course of the proof we shall show that a $\sigma(X, F)$ -closed, convex and bounded subset B of the normed space X has $\sigma(X, F)$ -open slices of arbitrarily small diameter if, and only if, it has $\sigma(X, F)$ -open slices of arbitrarily small Kuratowski index (corollary 5), and therefore the index of non-compactness also gives characterizations of sets with the Radon-Nikodým property; moreover, we shall show that

 $\delta_F(\sigma(X,F) -$ quasi-denting points of $B, B) < \omega_1$

from where the theorem of the fourth named author [19] follows immediately (corollary 10).

From the topological point of view we shall see that a normed space X admits an equivalent $\sigma(X, F)$ -lower semi-continuous **LUR** norm if, and only if, the norm topology has a network $\mathcal{N} = \bigcup_{n=1}^{\infty} \mathcal{N}_n$ such that for every $n \in \mathbb{N}$ and for every $x \in \bigcup \mathcal{N}_n$ there is a $\sigma(X, F)$ -open half space H with $x \in H$ such that H meets only a finite number of elements from \mathcal{N}_n (corollary 13), therefore turning the 'discrete' condition appearing in [13] into a 'locally finite' one.

Throughout the paper when dealing with a normed space X and $F \subset X^*$ a norming subspace for it, in order to simplify the notation, all closures taken in X will be with respect to the $\sigma(X, F)$ -topology unless otherwise stated.

2. KURATOWSKI'S INDEX OF NON-COMPACTNESS AND DENTABILITY

In order to work with the index of non-compactness we need to introduce the following definition for a bounded subset B of a normed space X and a positive integer p:

 $\alpha(B, p) := \inf \{ \varepsilon > 0 : B \text{ is covered by } p \text{ sets of diameter less than } \varepsilon \}$

and we have $\alpha(B) = \inf \{ \alpha(B, p) : p = 1, 2, ... \}.$

The first result we need is the following:

Lemma 1. Let X be a normed space and $F \subset X^*$ be a 1-norming subspace. Let C, C_0 and C_1 be $\sigma(X, F)$ -closed, convex and bounded subsets of X. Let p be a positive integer, $\varepsilon > 0$ and $M = diam(C_0 \cup C_1)$. If we assume that

- (1) $C_0 \subset C$ and $\alpha(C_0, p) < \varepsilon' < \varepsilon$;
- (2) *C* is not a subset of C_1 ;
- (3) *C* is a subset of $\overline{co}(C_0, C_1)$.

Then if r is a positive number such that $2rM + \varepsilon' < \varepsilon$ and we set

$$D_r := \{ (1 - \lambda)x_0 + \lambda x_1; r \le \lambda \le 1, x_0 \in C_0, x_1 \in C_1 \},\$$

then

$$C \setminus \overline{D}_r \neq \emptyset$$
 and $\alpha \left(C \setminus \overline{D}_r, p \right) < \varepsilon$

Remark 1. For p = 1, the lemma above is just the Bourgain-Namioka superlemma, see [1, 3]. Following the proof of that case it is not difficult to see that it remains true for every $p \in \mathbb{N}$. Since we shall make use of some of details from the proof we shall give it in full detail.

Proof. For $0 \le r \le 1$ we define

$$D_r := \{ (1 - \lambda)x_0 + \lambda x_1 : r \le \lambda \le 1, x_0 \in C_0, x_1 \in C_1 \}.$$

Note that D_r is convex, $\overline{D}_0 \supset C$ (by condition 3), $D_1 = C_1$ and for 0 < r < 1 we have $\overline{D}_r \not\supseteq C$. Let us show the last claim.

Since $C \not\subset C_1$ we can find $x^* \in F$ such that $\sup x^*(C_1) < \sup x^*(C)$. Now if C were contained in \overline{D}_r for some r > 0, then we would have

$$\sup x^*(C) \le \sup x^*(\overline{D}_r) = \sup x^*(D_r) \le$$

$$\leq (1-r) \sup x^*(C_0) + r \sup x^*(C_1) \leq (1-r) \sup x^*(C) + r \sup x^*(C_1)$$

thus $r \sup x^*(C) \leq r \sup x^*(C_1)$, and since r > 0 we would have $\sup x^*(C) \leq \sup x^*(C_1)$, a contradiction.

Since $\alpha(C_0, p) < \varepsilon' < \varepsilon$ we should have $C_0 \subset \bigcup_{i=1}^p B_i$ with diam $(B_i) < \varepsilon'$. Finally fix r > 0 such that $2rM + \varepsilon' < \varepsilon$.

Notice that $C \setminus \overline{D}_r \subset \overline{D}_0 \setminus \overline{D}_r$. Also

$$D_0 \setminus \overline{D}_r \subset C_0 + B(0; rM) \subset \bigcup_{i=1}^p [B_i + B(0; rM)].$$

Indeed, if $x \in D_0 \setminus \overline{D}_r$, $x = (1 - \lambda)x_0 + \lambda x_1$ with $x_0 \in C_0$, $x_1 \in C_1$ and $0 \le \lambda < r$. Then

$$||x - x_0|| = \lambda ||x_0 - x_1|| < rM$$

Now

$$\overline{D}_0 \setminus \overline{D}_r \subset \bigcup_{i=1}^p \overline{B_i + B(0; rM)}$$

and the sets $\overline{B_i + B(0; rM)}$ have diameter less than $2rM + \varepsilon' < \varepsilon$.

An easy consequence of lemma 1 for p = 1 is the following.

Proposition 4. Let X be a normed space and $F \subset X^*$ be 1-norming subspace. If B is a $\sigma(X, F)$ -closed, convex and bounded subset of X and H is a $\sigma(X, F)$ -open half space with $H \cap B \neq \emptyset$ and $\alpha(H \cap B) < \varepsilon$, then there exists another $\sigma(X, F)$ -open half space G with $\emptyset \neq G \cap B \subset H \cap B$ and $diam(G \cap B) < \varepsilon$.

Proof. By induction on the integer p such that $\alpha(H \cap B, p) < \varepsilon$. For p = 1 there is nothing to prove. Let us assume the assertion is true for $p \le n - 1$ and write

$$H \cap B \subset B_1^H \cup B_2^H \cup \ldots \cup B_n^H$$

where every B_i^H is a $\sigma(X, F)$ -closed an convex set with diam $(B_i^H) < \varepsilon$. If we define

$$L_1 := \overline{\operatorname{co}}(B \setminus H, B_1^H \cap B)$$

we have two possibilities:

(i) $B = L_1$ and we can apply lemma 1 for p = 1 to the sets $C_0 = B_1^H \cap B$ and $C_1 = B \setminus H$ to obtain a $\sigma(X, F)$ -open half space G with $G \cap B_1^H \neq \emptyset$, $G \cap B \subset H \cap B$ and diam $(G \cap B) < \varepsilon$.

(ii) $L_1 \subsetneq B$, then for any $y \in B \setminus L_1$ we have, by Hahn-Banach's Theorem, a $\sigma(X, F)$ -open half space \tilde{H} with $y \in \tilde{H}$ and $\tilde{H} \cap B \subset H \cap B$ but

$$\tilde{H} \cap B \subset B_2^H \cup B_3^H \cup \ldots \cup B_n^H$$

and if we apply the induction hypothesis to this slice the proof is done.

As a corollary we obtain a better statement than the one given by Gilles and Moors in [4], see Theorems 4.2 and 4.3.

Corollary 5. For a normed space X, a norming subspace $F \subset X^*$ and a $\sigma(X, F)$ closed, convex and bounded subset B of X, the following are equivalent:

- (1) *B* is $\sigma(X, F)$ -dentable; i.e. *B* has $\sigma(X, F)$ -open slices of arbitrarily small diameter;
- (2) B has $\sigma(X, F)$ -open slices whose Kuratowski index of non-compactness is arbitrarily small.

Proof. We can work with the equivalent norm $\||\cdot\||$ given by the norming subspace F and apply proposition 4 for every $\varepsilon > 0$.

3. DENTABILITY INDEX OF QUASI-DENTING POINTS

We are going to iterate now Bourgain-Namioka superlemma together with the former construction in proposition 4 to describe when quasi-denting points are eaten out in Lancien's derivation process. For a normed space X and a norming subset $F \subset X^*$, we shall denote by $\mathbb{H}(F)$ the family of all $\sigma(X, F)$ -open half spaces in X. Indeed, we shall prove the following:

Theorem 6. For every $\varepsilon > 0$ there is a countable ordinal η_{ε} such that if X is a normed space and $F \subset X^*$ is a 1-norming subspace, then for every $\sigma(X, F)$ -closed, convex and bounded subset B of X, if

$$Q_{\varepsilon} := \{ x \in B; \exists H \in \mathbb{H}(F), x \in H \text{ with } \alpha(H \cap B) < \varepsilon \},\$$

then we have

$$\delta_F(Q_\varepsilon, B, \varepsilon) < \eta_\varepsilon < w_1$$

The proof of the theorem is based on a series of previous results. We begin with:

Lemma 2. Let B be $\sigma(X, F)$ -closed, convex and bounded subset of X, where F is a 1-norming subspace for X and $\varepsilon > 0$ be fixed. Let $B := L_0 \supset L_1 \supset L_2 \supset \ldots \supset L_n$ be $\sigma(X, F)$ -closed and convex. Let S be a subset of L_n , then

$$\delta_F(S, B, \varepsilon) \le \delta_F(L_0 \setminus L_1, B, \varepsilon) + \delta_F(L_1 \setminus L_2, L_1, \varepsilon) + \dots + \delta_F(L_{n-1} \setminus L_n, L_{n-1}, \varepsilon) + \delta_F(S, L_n, \varepsilon)$$

Proof. We shall prove it by induction on n. For n = 1 let $B = L_0 \supset L_1 \supset S$ be as in the statement and let: $\delta_F(L_0 \setminus L_1, B, \varepsilon) = \alpha, \, \delta_F(S, L_1, \varepsilon) = \beta.$

Since $D^{\alpha}_{\varepsilon,F}(B) \cap (B \setminus L_1) = \emptyset$ we have $D^{\alpha}_{\varepsilon,F}(B) \subset L_1$. Given $x \in D^{\alpha+1}_{\varepsilon,F}(B)$, we have $\operatorname{diam}(H \cap D^{\alpha}_{\varepsilon,F}(B)) > \varepsilon$ for every $H \in \mathbb{H}(F)$, so $\operatorname{diam}(H \cap L_1) > \varepsilon$ for every $H \in \mathbb{H}(F)$, thus $x \in D_{\varepsilon,F}(L_1)$. So

$$D^{\alpha+1}_{\varepsilon,F}(B) \cap S \subset D_{\varepsilon,F}(L_1) \cap S$$

Since β is the first ordinal such that $D^{\beta}_{\varepsilon,F}(L_1) \cap S = \emptyset$ one must have $D^{\alpha+\beta}_{\varepsilon,F}(B) \cap S = \emptyset$, therefore $\delta_F(S, B, \varepsilon) \leq \alpha + \beta$.

Now suppose we have $B := L_0 \supset L_1 \supset L_2 \supset \ldots \supset L_n \supset S$ as in the statement and suppose the formula holds for n-1 sets. Considering $L_0 \supset L_1 \supset S$, as we did before,

$$\delta_F(S, B, \varepsilon) \le \delta_F(L_0 \setminus L_1, B, \varepsilon) + \delta_F(S, L_1, \varepsilon) \qquad (*$$

If we consider now the sets $L_1 \supset L_2 \supset \ldots \supset L_n \supset S$, by the induction hypothesis

$$\delta_F(S, L_1, \varepsilon) \le \delta_F(L_1 \setminus L_2, L_1, \varepsilon) + \ldots + \delta_F(L_{n-1} \setminus L_n, L_{n-1}, \varepsilon) + \delta_F(S, L_n, \varepsilon)$$

To finish the proof we just need to use the later inequality in (*).

To finish the proof we just need to use the later inequality in (*).

Lemma 3. Let B be $\sigma(X, F)$ -closed, convex and bounded subset of a normed space X, where F is a 1-norming subspace for X and $\varepsilon > 0$ be fixed. Let H be a $\sigma(X, F)$ -open half space with

$$\alpha(H \cap B, n) < \varepsilon$$
 for some $n > 1$ fixed.

Then there exists a sequence of $\sigma(X, F)$ -closed, convex subsets

$$B =: B_0 \supset B_1 \supset B_2 \supset \ldots \supset B_s \supset B_{s+1} \supset \ldots$$

such that

$$H \cap B \subset (B_0 \setminus B_1) \cup (B_1 \setminus B_2) \cup \ldots \cup (B_s \setminus B_{s+1}) \cup \ldots$$

and for every s = 0, 1, 2, ... and every $y \in B_s \setminus B_{s+1}$ there is a $\sigma(X, F)$ -open half space G with $y \in G, G \cap B \subset H \cap B$, and

$$\alpha(G \cap B_s, p) < \varepsilon$$
 for some $p \le n-1$

Proof. Since $\alpha(H \cap B, n) < \varepsilon$ we can fix $\sigma(X, F)$ -closed, convex non-void sets

$$\{B_1^H, B_2^H, \dots, B_n^H\}$$
 with diam $(B_i^H) < \varepsilon$, for $i = 1, 2, \dots, n$

and $H \cap B \subset B_1^H \cup \ldots \cup B_n^H$.

Let us define

$$L_1 := \overline{\operatorname{co}}(B \setminus H, B_1^H \cap B)$$

If $y \in B \setminus L_1$, Hahn-Banach's Theorem provides us with a $\sigma(X, F)$ -open half space G, with $y \in G$ and $G \cap L_1 = \emptyset$, thus

$$G \cap B \subset H \cap B$$
 and $G \cap B \subset B_2^H \cup \cdots \cup B_n^H$

and therefore $\alpha(G \cap B, p) < \varepsilon$ for some $p \le n - 1$.

Let us consider the sets $C_0^1 := B_1^H \cap B$ and $C_1 = B \setminus H$ and apply lemma 1 with p = 1, to find 0 < r < 1, indeed it is enough if $2r \operatorname{diam}(B) + \operatorname{diam}(B_1^H) < \varepsilon$, such that if

$$D_{r,1} := \{ (1-\lambda)x_0 + \lambda x_1; r \le \lambda \le 1, x_0 \in C_0^1, x_1 \in C_1 \}$$

we have $L_1 \setminus \overline{D}_{r,1} \neq \emptyset$ and diam $(L_1 \setminus \overline{D}_{r,1}) < \varepsilon$. So for every $y \in L_1 \setminus \overline{D}_{r,1}$ we should have a $\sigma(X, F)$ -open half space G with $y \in G$, $G \cap \overline{D}_{r,1} = \emptyset$, thus $G \cap B \subset H \cap B$ and $G \cap L_1 \subset L_1 \setminus \overline{D}_{r,1}$, so diam $(G \cap L_1) < \varepsilon$ and $\alpha(G \cap L_1, 1) < \varepsilon$.

We set $B_1 := L_1$ and $B_2 := \overline{D}_{r,1}$. We shall iterate now the former construction to " eat out" the whole B_1^H and to reach all the points of $B \cap H$ in a countable number of steps. Let us define

$$L_2 := \overline{\operatorname{co}} \left(B \setminus H, B_1^H \cap \overline{D}_r \right)$$

If $y \in \overline{D}_{r,1} \setminus L_2$, there is a $\sigma(X, F)$ -open half space G with $y \in G$ and $G \cap L_2 = \emptyset$, thus $G \cap B \subset H \cap B \subset B_1^H \cup B_2^H \cup \ldots \cup B_n^H$. Moreover

$$G \cap \overline{D}_{r,1} \subset B_2^H \cup \ldots \cup B_n^H$$

since $\overline{D}_{r,1} \cap B_1^H \subset L_2$, and then $\alpha \left(G \cap \overline{D}_{r,1}, p \right) < \varepsilon$ for some $p \le n-1$

We shall now apply again the Bourgain-Namioka superlemma with the sets

$$C_0^2 := B_1^H \cap \overline{D}_{r,1}$$
 and $C_1 := B \setminus H$

and with the same r as above we should have diam $(L_2 \setminus \overline{D}_{r,2}) < \varepsilon$ where

$$D_{r,2} := \{ (1-\lambda)x_0 + \lambda x_1; r \le \lambda \le 1, x_0 \in C_0^2, x_1 \in C_1 \}.$$

As before, for every $y \in L_2 \setminus \overline{D}_{r,2}$ there exists a $\sigma(X, F)$ -open half space G with $y \in G$, $G \cap B \subset H \cap B$ and $\alpha(G \cap L_2, 1) < \varepsilon$.

We set $B_3 := L_2$ and $B_4 := \overline{D}_{r,2}$. The process will continue by induction defining a sequence of sets

$$B = B_0 \supset L_1 \supsetneq \overline{D}_{r,1} \supset L_2 \supsetneq \overline{D}_{r,2} \supset \ldots \supset L_s \supsetneq \overline{D}_{r,s} \supset L_{s+1} \supsetneq \ldots$$

such that for every $y \in L_s \setminus \overline{D}_{r,s}$ there is a $\sigma(X, F)$ -open half space G with $y \in G$, $G \cap B \subset H \cap B$ and $\alpha(G \cap L_s, 1) < \varepsilon$; and for every $y \in \overline{D}_{r,s} \setminus L_{s+1}$ there is a $\sigma(X, F)$ -open half space G with $y \in G, G \cap B \subset H \cap B$ and $\alpha(G \cap \overline{D}_{r,s}, p) < \varepsilon$ for some $p \leq n-1$.

If $\overline{D}_{r,s_0} \cap B_1^H = \emptyset$ for some $s_0 \ge 1$, then the process stops and the sequence should be finite in that case. Note that when it happens we have

$$H \cap \overline{D}_{r,s_0} \subset B_2^H \cup \ldots \cup B_n^H$$

and $\alpha \left(H \cap \overline{D}_{r,s_0}, p \right) < \varepsilon$ for some $p \le n-1$ too.

If the process does not stop, we shall see now that for each $y \in H \cap B$ there is an integer $s \ge 2$ such that either $y \in L_s \setminus \overline{D}_{r,s}$ or $y \in \overline{D}_{r,s-1} \setminus L_s$ whenever $y \notin (B \setminus L_1) \cup (L_1 \setminus \overline{D}_{r,1})$. Indeed, if $H = \{x \in X : f(x) > \mu\}, f \in F$, then we have

$$\sup f|_{\overline{D}_{r,1}} \le (1-r) \sup f(B_1^H \cap B) + r\mu$$

for the first step

$$\sup f|_{\overline{D}_{r,2}} \leq (1-r) \sup f(B_1^H \cap \overline{D}_{r,1}) + r\mu \leq$$

 $(1-r)[(1-r)\sup f(B_1^H\cap B)+r\mu]+r\mu=(1-r)^2\sup f(B_1^H\cap B)+(1-r)r\mu+r\mu$ for the second step and by recurrence

$$\sup f|_{\overline{D}_{r,s}} \le (1-r)^s \sup f(B_1^H \cap B) + r\mu[1 + (1-r) + \dots + (1-r)^{s-1}]$$

for s = 1, 2, ... Consequently for every y with $f(y) > \mu$, y cannot be in all the sets $\overline{D}_{r,s}$ for s = 1, 2, ... because the former inequality should imply $f(y) \le \mu$. Then if s is the first integer with $y \notin \overline{D}_{r,s}$ we will have either $y \in L_s \setminus \overline{D}_{r,s}$ or $y \in \overline{D}_{r,s-1} \setminus L_s$, when $s \ge 2$ and $y \in B \setminus L_1$ or $y \in L_1 \setminus \overline{D}_{r,1}$ when s = 1.

The lemma is finished by defining $B_{2n+1} := L_{n+1}$ and $B_{2n} := \overline{D}_{r,n}$, n = 1, 2, ...when the process does not stop and $B_{s_0} = \overline{D}_{r,s_0}$, $B_{s_0+1} = ... = \emptyset$ when the process stops at the s_0 -step. We have seen before that $\alpha \left(H \cap \overline{D}_{r,s_0}, p\right) < \varepsilon$ for some $p \le n-1$ in that case too.

Proposition 7. For every $\varepsilon > 0$, there exists a sequence of ordinal numbers

$$1 =: \xi_1 < \xi_2 < \ldots < \xi_p < \ldots < \omega_1$$

such that if X is a normed space and $F \subset X^*$ is a 1-norming subspace for it, we have

$$\delta_F \left(H \cap B, B, \varepsilon \right) \le \xi_p \qquad (*)$$

whenever B is a $\sigma(X, F)$ -closed, convex and bounded subset of X and H is a $\sigma(X, F)$ open half space with $\alpha(H \cap B, p) < \varepsilon$.

Proof. We shall define by induction on p the sequence of countable ordinals $(\xi_n)_n$. For p = 1 the Kuratowski index $\alpha(\cdot, 1)$ coincides with the diameter and $H \cap B$ should be *eaten* at the first step of the derivation process, i.e., $\xi_1 := 1$ verifies (*).

Let us assume that we have already defined

$$\xi_1 < \xi_2 < \ldots < \xi_{n-1} < \omega_1$$

such that (*) is satisfied for $p \le n-1$. Let us fix a $\sigma(X, F)$ -closed, convex and bounded subset of X and H a $\sigma(X, F)$ -open half space with

$$\alpha \left(H \cap B, n \right) < \varepsilon$$

10

By lemma 3 we have a sequence of $\sigma(X, F)$ -closed, convex subsets

$$B = B_0 \supset B_1 \supset \ldots \supset B_s \supset B_{s+1} \supset \ldots \qquad (**)$$

such that

$$H \cap B \subset (B_0 \setminus B_1) \cup (B_1 \setminus B_2) \cup \ldots \cup (B_s \setminus B_{s+1}) \cup \ldots$$

and for every s and every $y \in B_s \setminus B_{s+1}$ there exists a $\sigma(X, F)$ -open half space G, with $y \in G, G \cap B \subset H \cap B$, and $\alpha (G \cap B_s, p) < \varepsilon$ for some $p \le n-1$. By our induction assumption we should have

$$\delta_F \left(G \cap B_s, B_s, \varepsilon \right) \le \xi_{n-1}$$

and consequently $\delta_F(B_s \setminus B_{s+1}, B_s, \varepsilon) \leq \xi_{n-1}$, $s = 0, 1, 2, \ldots$ when (**) is infinite and $\delta_F(H \cap B_{s_0}, B_{s_0}, \varepsilon) \leq \xi_{n-1}$ too, when the sequence stops at the s_0 -step. In any case we can apply lemma 2 to obtain

$$\delta_F(B_s \setminus B_{s+1}, B, \varepsilon) \le (s+1)\xi_{n-1}$$
 for $s = 0, 1, 2, ...$

Therefore we have

$$\delta_F \left(H \cap B, B, \varepsilon \right) \le \sup\{ (s+1)\xi_{n-1} : s = 0, 1, 2, \ldots \} =: \xi_n$$

which finishes the induction process.

Corollary 8. For every $\sigma(X, F)$ -closed, convex and bounded subset B of X, if

$$Q_{\varepsilon,p} := \{ x \in B : \exists H \in \mathbb{H}(F), x \in H \text{ with } \alpha(H \cap B, p) < \varepsilon \}$$

then we have

$$\delta_F \left(Q_{\varepsilon,p}, B, \varepsilon \right) \le \xi_p < \omega_1, \quad p = 1, 2, \dots$$
Proof. $Q_{\varepsilon,p} = \bigcup \{ H \cap B : H \in \mathbb{H}(F) \text{ and } \alpha \left(H \cap B, p \right) < \varepsilon \}$ and
$$\delta_F \left(Q_{\varepsilon,p}, B, \varepsilon \right) \le \sup \{ \delta_F \left(H \cap B \right) : H \in \mathbb{H}(F) \text{ and } \alpha \left(H \cap B, p \right) < \varepsilon \} \le \xi_p$$

Now we arrive to the **proof of theorem 6**.

We have $Q_{\varepsilon} = \bigcup \{Q_{\varepsilon,p} : p = 1, 2, \ldots\}$, by the former corollary we see that $\delta_F(Q_{\varepsilon,p}, B, \varepsilon) \leq \xi_p$ for $p = 1, 2, \ldots$ from where it follows

$$\delta_F(Q_{\varepsilon}, B, \varepsilon) \le \sup\{\xi_p : p = 1, 2, \ldots\} =: \eta_{\varepsilon} < \omega_1$$

because ω_1 is not the limit of a sequence of countable ordinals.

Corollary 9. There is a countable ordinal η such that if X is a normed space and $F \subset X^*$ is a norming subspace, then for every $B \subset X$ a $\sigma(X, F)$ -closed convex and bounded subset of X, if Q is the sets of quasi-denting points of B, we have

$$\delta_F(Q,B) < \eta < \omega_1$$

Proof. It is not a restriction to assume that the given norm is $||| \cdot |||$, making F a 1-norming subspace, then we have

$$\delta_F(Q, B) \le \sup\{\eta_{\varepsilon_n}; n = 1, 2, \ldots\} =: \eta < w_1$$

where ε_n tends to 0.

From theorem 1 in the introduction we get the theorem of the fourth named author with a geometric proof in full generality:

Corollary 10. If the normed space X has a norming subspace $F \subset X^*$ such that S_X is formed by quasi-denting points of B_X , in $\sigma(X, F)$, then $\delta_F(S_X, B_X) < \omega_1$ and consequently X admits an equivalent $\sigma(X, F)$ -lower semi-continuous **LUR** norm.

4. LUR RENORMING THEOREM

The aim of this section is to prove the following result, from where theorem 3 in the introduction is a particular case. Let us recall that a subset $A \subset X$ of the normed space X is said to be a **radial set** if for every $x \in X$ there is $\rho > 0$ such that $\rho x \in A$.

Theorem 11. Let X be a normed space and $F \subset X^*$ be a norming subspace for it. The following conditions are equivalent:

- (1) X admits an equivalent $\sigma(X, F)$ -lower semi-continuous LUR norm;
- (2) For every $\varepsilon > 0$, $X = \bigcup \{X_{n,\varepsilon} : n \in \mathbb{N}\}$ such that for every $n \in \mathbb{N}$ and $x \in X_{n,\varepsilon}$ there exists H, $\sigma(X, F)$ -open half space with $x \in H$ and $\alpha(H \cap X_{n,\varepsilon}) < \varepsilon$;
- (3) There exists a radial set A ⊂ X such that for every ε > 0, A = ∪{A_{n,ε} : n ∈ N} such that for every n ∈ N and x ∈ A_{n,ε} there exists H, σ(X, F)-open half space with x ∈ H and α(H ∩ A_{n,ε}) < ε</p>

Let us observe that no convex assumption is required for the sets $\{X_{n,\varepsilon}\}$ or $\{A_{n,\varepsilon}\}$ in the decompositions above. As for the proof of theorem 2 in the introduction, see [17], we need firstly a convexification argument that will reduce theorem 11 to theorem 2 because of the study we have done in the previous section.

We begin with a revision of lemma 1 for an arbitrary set A and $x \in A$ with a half space $H \in \mathbb{H}(F)$ with $x \in H$ and $\alpha(H \cap A) < \varepsilon$ (in this case we shall say that x is an ε - $\sigma(X, F)$ -quasi-denting point for A).

Lemma 4. Let A be a bounded subset of the normed space X, $F \subset X^*$ be 1-norming for it. Set M := diam(A) and let $\varepsilon > 0$ be fixed. If $x \in A$ is such that there is $H = \{y \in X : g(y) > \eta\}$, with $g \in F$, $\eta \in \mathbb{R}$, $x \in H$ and $\alpha(H \cap A) < \varepsilon$, then there exists $r \in]0,1]$ which only depends upon ε and M such that we can fix a $\sigma(X, F)$ -closed and convex subset $D_r(x) \subset \overline{co}(A)$ with the following properties:

- i) $\overline{co}(A) \setminus D_r(x) \neq \emptyset$;
- ii) $\alpha(\overline{co}(A) \setminus D_r(x)) < 3\varepsilon;$
- iii) $\sup g(D_r(x)) \le (1-r) \sup g(\overline{co}(A)) + r\eta$

Proof. Let us choose sets B_1, B_2, \ldots, B_n with diam $(B_i) < \varepsilon$ and $u_i \in B_i \cap A$, $i = 1, \ldots, n$, such that $H \cap A \subset \bigcup \{B_i : i = 1, \ldots, n\}$. Now let $K_{\varepsilon} := \operatorname{co}(u_1, \ldots, u_n)$ and set

$$C_0 := \{ y \in \overline{\operatorname{co}}(A) : \operatorname{dist}(y, K_{\varepsilon}) \le \varepsilon \}$$

and

$$C_1 := \{ y \in \overline{\operatorname{co}}(A) : g(y) \le \eta \} = \overline{\operatorname{co}}(A) \setminus H.$$

As we did in lemma 1, for $0 \le r \le 1$, let

$$D_r := \{ (1 - \lambda)x_0 + \lambda x_1 : r \le \lambda \le 1, x_0 \in C_0, x_1 \in C_1 \}.$$

To obtain the conclusion one must check that the sets $C = \overline{co}(A)$, C_0 and C_1 satisfy the conditions in lemma 1 to apply it.

C and C_1 are clearly bounded, $\sigma(X, F)$ -closed and convex. K_{ε} is $\|\cdot\|$ -compact, hence C_0 is $\sigma(X, F)$ -closed. Since K_{ε} is convex it is easy to see that C_0 is also convex.

1.- $C_0 \subset \overline{\operatorname{co}}(A)$; since K_{ε} can be covered by finitely many balls of arbitrary small radius, it is not difficult to check that $\alpha(C_0) \leq 2\varepsilon$.

2.- $\overline{\operatorname{co}}(A)$ is not a subset of C_1 , (since $x \notin C_1$).

3.- $\overline{\operatorname{co}}(A) = \overline{\operatorname{co}}(C_1 \cup C_0)$. To check it we show that co $(A) \subset$ co $(C_1 \cup C_0)$. To do so, set $B_1 = \operatorname{co}(A \cap H)$ and $B_2 = \operatorname{co}(A \setminus H)$. It is clear that co $(A) \subset$ co $(B_1 \cup B_2)$. Now since $A \cap H \subset C_0$ one must have $C_0 \supset B_1$ and clearly $B_2 \subset C_1$.

Since $\alpha(C_0) \leq 2\varepsilon$, we have $\alpha(C_0) < 3\varepsilon$ and we can take $\varepsilon' = \frac{5\varepsilon}{2}$ in lemma 1 and then it will be enough to take $r < \frac{\varepsilon}{4M}$. Now the lemma applies to give the conclusion for i) and ii). Property iii) easily follows from the definition of the set $D_r =: D_r(x)$ and the fact that $g(y) \leq \eta$ for $y \in C_1$.

We shall iterate now the former lemma to be able to ensure that ε -quasi-denting points for an arbitrary subset B should be 3ε -quasi-denting points in some convex set of a sequence $\{B_n\}$ associated to B.

Lemma 5. (Iteration lemma) Let B be a bounded subset of the normed space X, $F \subset X^*$ 1-norming such that for some $\varepsilon > 0$ fixed, every $x \in B$ is an ε - $\sigma(X, F)$ -quasidenting point for B. Then there is a sequence

$$B_0 = \overline{co}(B) \supseteq B_1 \supseteq B_2 \supseteq \ldots \supseteq B_n \supseteq \ldots$$

of convex, $\sigma(X, F)$ -closed subsets of $\overline{co}(B)$ such that for every $x \in B$ there exists $p \ge 0$ satisfying $x \in B_p$ and x is a $3\varepsilon \cdot \sigma(X, F)$ -quasi-denting point for B_p .

Proof. We shall construct by recurrence sequences of sets

$$B_0 = \overline{\operatorname{co}}(B) \supseteq B_1 \supseteq B_2 \supseteq \ldots \supseteq B_n \supseteq \ldots$$

and $B =: \tilde{B}_0, \tilde{B}_1, \ldots, \tilde{B}_n, \ldots$ such that

$$B_n := \overline{\operatorname{co}} \left(B \cap \tilde{B}_1 \cap \tilde{B}_2 \cap \ldots \cap \tilde{B}_n \right) \text{ if } B \cap \tilde{B}_1 \cap \tilde{B}_2 \cap \ldots \cap \tilde{B}_n \neq \emptyset$$

and given $x \in B$, if $x \in (B \cap \tilde{B}_1 \cap \tilde{B}_2 \cap \ldots \cap \tilde{B}_{n-1}) \setminus \tilde{B}_n$ then x is a $3\varepsilon \cdot \sigma(X, F)$ quasi-denting point for

$$B_{n-1} = \overline{\operatorname{co}} \left(B \cap \tilde{B}_1 \cap \tilde{B}_2 \cap \ldots \cap \tilde{B}_{n-1} \right).$$

Indeed, set $B_0 := \overline{\operatorname{co}}(B)$ and $\tilde{B}_0 := B$. Now fix $x \in B$, by hypothesis we fix $g_x \in F$, $\eta_x \in \mathbb{R}$ such that the half space $H_x = \{y \in X : g_x(y) > \eta_x\}$ satisfies

$$x \in H_x \cap B$$
 and $\alpha (H_x \cap B) < \varepsilon$

Let $M = \text{diam}(B_0)$. At each point x from B together with the corresponding $H_x \in \mathbb{H}(F)$, we may apply the former lemma to obtain $D_r^1(x)$, $\sigma(X, F)$ -closed and convex and $r \in [0, 1]$ with the properties described in lemma 4. Now define

$$\tilde{B}_1 := \bigcap_{x \in \tilde{B}_0} D_r^1(x)$$

Note that if $x \in B \setminus \tilde{B}_1$ then, there exists $y \in B$ such that $x \in \overline{\operatorname{co}}(B) \setminus D_r^1(y)$ and x is a $3\varepsilon \cdot \sigma(X, F)$ -quasi-denting point for $B_0 = \overline{\operatorname{co}}(B)$.

Notice that if $B \cap \tilde{B}_1 = \emptyset$ we would have finished the proof since every $x \in B$ would be a $3\varepsilon \cdot \sigma(X, F)$ -quasi-denting point for B_0 . So assume $B \cap \tilde{B}_1 \neq \emptyset$, we shall define a set B_1 as

$$B_1 := \overline{\operatorname{co}}(B \cap \tilde{B}_1).$$

Consider the set $B \cap \tilde{B}_1$ and H_x at every point $x \in B \cap \tilde{B}_1$. Since

diam
$$(\overline{\operatorname{co}}(B \cap B_1)) \leq M$$
 and $\alpha(H_x \cap B \cap B_1) < \varepsilon$

we apply lemma 4 to the set $B \cap \tilde{B}_1$ and this time we will obtain sets $D_r^2(x)$ with the properties given by the lemma and r being the same r as above. Now define

$$\tilde{B}_2 := \bigcap_{x \in B \cap \tilde{B}_1} D_r^2(x)$$

As we did before, if $x \in (B \cap \tilde{B}_1) \setminus \tilde{B}_2$ there must be $y \in B \cap \tilde{B}_1$ such that

$$x \in B_1 = \overline{\operatorname{co}}(B \cap \tilde{B}_1) \setminus D_r^2(y)$$

and x is a $3\varepsilon - \sigma(X, F)$ -quasi-denting point for B_1 . It follows now by recurrence that such sequences can be built and it will be finite if

$$B \cap \tilde{B}_1 \cap \tilde{B}_2 \cap \ldots \cap \tilde{B}_n = \emptyset$$

To finish the proof we need to show that for every $x \in B$ there exists $p \ge 0$ such that $x \in (B \cap \ldots \cap \tilde{B}_{p-1}) \setminus \tilde{B}_p$. So suppose this is not the case, i.e., there exists $x \in B$ (which will be fixed from now on), such that $x \in B \cap \tilde{B}_1 \cap \ldots \cap \tilde{B}_p$ for every $p = 1, 2, \ldots$ Let us consider the sets $D_r^p(x)$ defined for the point x, g_x and η_x at each step $p = 1, 2, \ldots$ Recall from lemma 4 that

$$\sup g_x\left(D_r^1(x)\right) \le (1-r)\sup g_x(B_0) + r\eta_x.$$

So for p = 2, and bearing in mind that $B_1 \subset D_r^1(x)$ we have

$$\sup g_x \left(D^2(x) \right) \le (1-r) \sup g_x(B_1) + r\eta_x$$
$$\le (1-r) \sup g_x \left(D_r^1(x) \right) + r\eta_x \le (1-r) \left[(1-r) \sup g_x(B_0) + r\eta_x \right] + r\eta_x$$
$$= (1-r)^2 \sup g_x(B_0) + r\eta_x (1+(1-r))$$

Now by induction we should have

$$\sup g_x \left(D_r^n(x) \right) \le (1-r)^n \sup g_x(B_0) + r\eta_x \left[1 + (1-r) + \ldots + (1-r)^{n-1} \right]$$

$$= (1-r)^n \sup g_x(B_0) + \eta_x(1-(1-r)^n) = \eta_x + (1-r)^n (\sup g_x(B_0) - \eta_x)$$

for every integer n such that $x \in B \cap \tilde{B}_1 \cap \ldots \cap \tilde{B}_{n-1}$.

Now since $(1-r)^n$ tends to 0 as n goes to infinity and $\eta_x < g_x(x)$ one can choose n large enough so that $\sup g_x(D_r^n(x)) < g_x(x)$ which is a contradiction with assuming $x \in D_r^n(x)$.

Thus, there exists $n \in \mathbb{N}$ such that $x \in B \cap \tilde{B}_1 \cap \ldots \cap \tilde{B}_{n-1}$ and $x \notin D_r^n(x)$ hence $x \in (B \cap \tilde{B}_1 \cap \ldots \cap \tilde{B}_{n-1}) \setminus \tilde{B}_n$ as we wanted.

The step connecting Kuratowski's index with dentability follows now from theorem 6:

Corollary 12. Let B be a bounded subset of the normed space X, $F \subset X^*$ 1-norming subspace for it such that for some $\varepsilon > 0$ fixed, every $x \in B$ is an ε - $\sigma(X, F)$ -quasidenting point for B. Then there is a countable family $\{T_n : n = 1, 2, ...\}$ of $\sigma(X, F)$ closed and convex subsets of $\overline{co}(B)$ such that for every $x \in B$ there exists p > 0 such that $x \in T_p$ and there is $H \in \mathbb{H}(F)$ with $x \in H$ and diam $(H \cap T_p) < 3\varepsilon$.

Proof. If we set $B_0 \supset B_1 \supset \ldots \supset B_n \supset \ldots$ as in lemma 5, we know that

$$\delta_F (3\varepsilon - \sigma(X, F) - \text{quasi-denting points of } B_p, B_p, 3\varepsilon) < \eta_{3\varepsilon} < \omega_1$$

and therefore the family of derived sets $\{D_{3\varepsilon,F}^{\beta}(B_p): \beta < \eta_{3\varepsilon}, p = 1, 2, ...\}$, provides us a countable family $\{T_n: n = 1, 2, ...\}$ with the required properties.

Now we arrive to the proof of Theorem 11

 $(1)\Rightarrow(2)$ Follows from theorem 2 in the introduction.

 $(2) \Rightarrow (1)$ It is clear that condition (2) must be true for any equivalent norm and it is not a restriction to assume that the given norm is $\|| \cdot \||$ making F a 1-norming subspace for it. Then we have the conditions of corollary 12 for every set

$$X_{n,\varepsilon} \cap B(0,m)$$
 $n = 1, 2, \dots, m = 1, 2, \dots$

and we will have countable families $\{T_p^{n,m,\varepsilon}: p = 1, 2, ...\}, n = 1, 2, ..., m = 1, 2, ...$ such that for every $x \in X_{n,\varepsilon} \cap B(0,m)$ there is $p \ge 0$ such that

$$x \in T_p^{n,m,\varepsilon}$$
 and there is $H \in \mathbb{H}(F)$ with $x \in H$ and diam $\left(H \cap T_p^{n,m,\varepsilon}\right) < 3\varepsilon$

If we set

$$Y_p^{n,m,\varepsilon}:=\{x\in T_p^{n,m,\varepsilon}: \text{ there is } H\in \mathbb{H}(F), x\in H \text{ and } \text{diam } (H\cap T_p^{n,m,\varepsilon})<3\varepsilon\}$$

we have $X = \bigcup \{Y_p^{n,m,\varepsilon} : n,m,p = 1,2,...\}$ and we have the decomposition fixed in theorem 2 which is equivalent to have a $\sigma(X,F)$ -lower semi-continuous **LUR** norm on X.

 $(2) \Rightarrow (3)$ Is obvious.

 $(3)\Rightarrow(2)$ Given $x \in X \setminus \{0\}$ let r(x) > 0 such that $r(x)x \in A$. By hypothesis, for every $k \in \mathbb{N}$, $A = \bigcup_n A_{n,k}$ with the property that for every $x \in A_{n,k}$ there exists $H \in \mathbb{H}(F)$, $x \in H$ such that $\alpha (A_{n,k} \cap H) < \frac{1}{k}$. For $q \in \mathbb{Q}$, $n, m, k \in \mathbb{N}$ define

$$A_{n,k}^{q,m} := \{ y \in X \setminus \{0\} : r(y)y \in A_{n,k}, 0 < \frac{1}{q} - \frac{1}{m} < \frac{1}{r(y)} < \frac{1}{q} \}$$

We shall show that $X \setminus \{0\} = \bigcup \{A_{n,k}^{q,m} : n, m, k \in \mathbb{N}, q \in \mathbb{Q}\}$ and for every $\varepsilon > 0$, and $x \in X \setminus \{0\}$ there exist $n, m, k \in \mathbb{N}, q \in \mathbb{Q}, H \in \mathbb{H}(F)$ with $x \in H$ such that $\alpha \left(A_{n,k}^{q,m} \cap H\right) < \varepsilon$.

So, given $\varepsilon > 0$ and $x_0 \in X \setminus \{0\}$, consider $r(x_0) > 0$ and let $k \in \mathbb{N}$ such that $\frac{1}{k} < \frac{r(x_0)\varepsilon}{2}$. For this k (fixed), let $n \in \mathbb{N}$ such that $r(x_0)x_0 \in A_{n,k}$. By the property of A, there exist $f \in F$ and $\mu \in \mathbb{R}$ such that

$$r(x_0)x_0 \in H = \{x \in X : f(x) > \mu\} \text{ and } \alpha (A_{n,k} \cap H) < \frac{1}{k}.$$

Therefore, there are sets B_i , i = 1, ..., j with diam $(B_i) < \frac{1}{k}$ such that

$$A_{n,k} \cap H \subset \bigcup_{i=1}^{j} B_i.$$

For every $i \in \{1, ..., j\}$ fix $x_i \in B_i$. Take $m \in \mathbb{N}$ such that $m > \frac{2M}{\varepsilon} + r(x_0)$ and let $M = \max_i \{ \|x_i\| \}$. Finally let $q \in \mathbb{Q}$ such that

$$\frac{1}{q} - \frac{1}{m} < \frac{1}{r(x_0)} < \frac{1}{q} \text{ and } f(x_0) > \frac{\mu}{q} > \frac{\mu}{r(x_0)}$$

Take now the $\sigma(X, F)$ -open half space $H' := \{x \in X : f(x) > \frac{\mu}{q}\}$. It is clear that $x_0 \in A_{n,k}^{q,m} \cap H'$. Let, for every $i \in \{1, \ldots, j\}$, $u_i = \frac{1}{r(x_0)}x_i$. Let us prove that $\alpha\left(A_{n,k}^{q,m} \cap H'\right) < 2\varepsilon$ by checking $A_{n,k}^{q,m} \cap H' \subset \bigcup_{i=1}^{j} B(u_i;\varepsilon)$. To do so take any $y \in A_{n,k}^{q,m} \cap H'$. In particular $f(y) > \frac{\mu}{q}$, hence

$$f(r(y)y) = r(y)f(y) > r(y)\frac{\mu}{q} > \mu.$$

Therefore, $r(y)y \in A_{n,k} \cap H$. So, there must be x_i , for some $i \in \{1, \ldots, j\}$ such that $||r(y)y - x_i|| < \frac{1}{k}$ thus, $||y - \frac{1}{r(y)}x_i|| < \frac{1}{kr(y)}$. So,

$$||y - u_i|| = ||y - \frac{1}{r(x_0)}x_i|| \le ||y - \frac{1}{r(y)}x_i|| + ||\frac{1}{r(y)}x_i - \frac{1}{x_0}x_i|| < \frac{1}{k}\frac{1}{r(y)} + ||x_i|| \left| \left(\frac{1}{r(y)} - \frac{1}{r(x_0)}\right) \right| < \frac{1}{k}\left(\frac{1}{r(x_0)} + \frac{1}{m}\right) + M\frac{1}{m} < \varepsilon$$

In order to give our last result we should introduce some terminology. Recall that in a topological space X a family of subsets of X, A, is said to be **relatively locally finite** (resp. **isolated**) if for every $x \in \bigcup \{A : A \in A\}$ there exists an open set $V \ni x$ such that the set $\{A : A \in A, A \cap V \neq \emptyset\}$ is finite (resp. contains exactly one element). If P is any of the properties above, as usual, the family A is said to be σ -P if $A = \bigcup \{A_n : n \in \mathbb{N}\}$ in such a way that for each $n \in \mathbb{N}$ the family A_n has property P.

When dealing with a normed space X and $F \subset X^*$ norming, we shall talk of **slicely P** whenever the open set V can be chosen to be an open half space from $\mathbb{H}(F)$.

Finally a **network** for a topological space X is a collection \mathcal{N} of subsets of X such that whenever $x \in U$ with U open, there exists $N \in \mathcal{N}$ with $x \in N \subset U$.

Recall that from [13] it follows that given a Banach space X and a norming subspace for it F, X admits a $\sigma(X, F)$ -lower semi-continuous **LUR** equivalent norm if, and only if, the norm topology has a σ -slicely isolated network, see also [6, 15, 16].

Corollary 13. Let $(X, \|\cdot\|)$ be a normed space and $F \subset X^*$ norming. The following conditions are equivalent:

- (1) The norm topology admits a σ -slicely relatively locally finite network;
- (2) X admits an equivalent $\sigma(X, F)$ -lower semi-continuous LUR norm.

Proof. By the result in [13] mentioned above we only have to show that $(1) \Rightarrow (2)$ and this will be done through the equivalent conditions in theorem 11. To do so, one may assume that the network $\mathcal{N} = \bigcup \{\mathcal{N}_n : n \in \mathbb{N}\}$ satisfying (1) is such that for each $n \in \mathbb{N}$ the family \mathcal{N}_n consists of pairwise disjoint sets. Indeed, if this is not the case then for each $n, m \in \mathbb{N}$ we define the family

$$\mathcal{N}_n^m := \{N_1 \cap \ldots \cap N_m : N_i \in \mathcal{N}_n, i = 1, 2, \ldots, m\}$$

and the sets $S_n^m := \{x \in X : x \in A \in \mathcal{N}_n^m \text{ and } \operatorname{ord}(x, \mathcal{N}_n) = m\}$. Now we set

$$\{\mathcal{N}_n^m \cap S_n^m\} := \{A \cap S_n^m : A \in \mathcal{N}_n^m\}$$

It is easy to show that for each $n, m \in \mathbb{N}$ the sets in this family are pairwise disjoint, $\cup \{\mathcal{N}_n^m \cap S_n^m : m \in \mathbb{N}\}\$ is a refinement for \mathcal{N}_n and $\{\mathcal{N}_n^m \cap S_n^m : n, m \in \mathbb{N}\}\$ is network for the norm topology which is σ -slicely relatively locally finite.

Now fix $\varepsilon > 0$. For every positive integer n define

$$X_{n,\varepsilon} := \{x \in \bigcup \{N : N \in \mathcal{N}_n\} \text{ such that } x \in N \subset B(x;\varepsilon)\} \equiv$$

 $\{x \in X : \text{there exists } N \in \mathcal{N}_n \text{ with } x \in N \subset B(x;\varepsilon)\}$

Since \mathcal{N} is a network for the norm topology we have $X = \bigcup \{X_{n,\varepsilon} : n \in \mathbb{N}\}$. Fix $x \in X_{n,\varepsilon}$. Since the network is σ -slicely relatively locally finite, there must be $H \in \mathbb{H}(F)$ such that $x \in H$ and $H \cap \bigcup \{N : N \in \mathcal{N}_n\} = H \cap N_1 \cup \ldots \cup H \cap N_p$ for a finite number of sets $N_i \in \mathcal{N}_n$.

If we consider $y \in H \cap X_{n,\varepsilon}$ we have $y \in H \cap N_j$ for some $j \in \{1, 2, ..., p\}$, and by the very definition of $X_{n,\varepsilon}$ and the disjointness of the family $\mathcal{N}_n, y \in N_j \subset B(y;\varepsilon)$. So for N_j we have diam $(N_j) < 2\varepsilon$.

Therefore we have $\{p_1, p_2, \ldots, p_q\} \subset \{1, 2, \ldots, p\}$ so that $H \cap X_{n,\varepsilon} \subset N_{p_1} \cup \ldots \cup N_{p_q}$ and diam $(N_{p_i}) < 2\varepsilon$. So $\alpha(H \cap X_{n,\varepsilon}) < 2\varepsilon$ and the proof is done.

REFERENCES

- R. D. Bourgin, Geometric aspects of convex sets with the Radon-Nikodym property, LNM. Springer-Verlag 993 (1983).
- [2] R. Deville, G. Godefroy, and V. Zizler, Smoothness and renormings in Banach spaces, vol. 64, Pitman Monographs and Surveys in Pure and Applied Mathematics, 1993.
- [3] J. Diestel, Sequences and series in Banach spaces, Springer-Verlag, 1984.
- [4] J. R. Giles and W. B. Moors, A continuity porperty related to Kuratowski's index of non-compactness, its relevance to the drop property, and its implications for differentiability theory, J. Math. Anal. Appl. 178 (1993), 247–268.
- [5] G. Godefroy, *Renormings of Banach spaces*, Handbook of the geometry of Banach spaces, Vol. I, North-Holland, Amsterdam, 2001, pp. 781–835.
- [6] R. W. Hansell, Descriptive sets and the topology of nonseparable Banach spaces, Serdica Math. J. 27 (2001), no. 1, 1–66.
- [7] R. Haydon, Trees in renorming theory, Proc. London Math. Soc. 78 (1999), 541-584.
- [8] J. E. Jayne, I. Namioka, and C. A. Rogers, *σ-fragmentable Banach spaces*, Mathematika **39** (1992), 161–188, 197–215.
- [9] G. Lancien, Théorie de l'indice et problèmes de renormage en géométrie des espaces de banach, Ph.D. thesis, Thèse, Paris., 1992.
- [10] _____, Dentability indices and locally uniformly convex renormings, Rocky Mountain J. Math. 23 (1993), no. 2, 635–647.
- [11] Bor-Luh Lin, Pei-Kee Lin, and S. L. Troyanski, *Characterizations of denting points*, Proc. Amer. Math. Soc. 102 (1988), no. 3, 526–528.
- [12] A. Moltó, J. Orihuela, and S. Troyanski, *Locally uniformly rotund renorming and fragmentability*, Proc. London Math. Soc. **75** (1997), no. 3, 614–640.
- [13] A. Moltó, J. Orihuela, S. Troyanski, and M. Valdivia, On weakly locally uniformly rotund Banach spaces, J. Funct. Anal. 163 (1999), no. 2, 252–271.
- [14] _____, Kadec and Krein-Milman properties, C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), no. 6, 459–464.
- [15] _____, A nonlinear transfer technique, preprint, 2002.
- [16] L. Oncina, *The JNR property and the Borel structure of a Banach space*, Serdica Math. J. **26** (1) (2000), 13–32.
- [17] M. Raja, Locally uniformly rotund norms, Mathematika 46 (1999), no. 2, 343-358.
- [18] S. L. Troyanski, On a property of the norm which is close to local uniform rotundity, Math. Ann. 271 (1985), no. 2, 305–313.
- [19] _____, On some generalizations of denting points, Israel J. Math. 88 (1994), 175–188.
- [20] V. Zizler, Non-separable Banach spaces, Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2001. To appear.

DEPARTAMENTO DE MATEMÁTICAS, FACULTAD DE MATEMÁTICAS, UNIVERSIDAD DE MURCIA, 30.100 ESPINARDO, MURCIA, SPAIN.

INSTITUTE OF MATHEMATICS AND INFORMATICS, BULGARIAN ACADEMY OF SCIENCES, ACAD. G. BONCHEV STR. BLOCK 8 1113 SOFIA, BULGARIA.

E-mail address: fergar@um.es, luis@um.es, joseori@um.es, stroya@um.es