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1. Introduction

In this paper we characterize those Banach spaces that admit a locally uniformly
rotund renorming by means of a linear topological condition. Let us recall the
following definition.

DermNiTION 1. A Banach space E (or the norm in F) is said to be locally
uniformly rotund (LUR for short) if

lim |lx, —x|| =0 whenever Lim ||3(x, +x)] = lim [x¢ ] = [Ix]| -
k k k

The spaces with this property are at the core of renorming theory in Banach
spaces and consequently have been extensively studied (see, for example, [3]). It
is well known that the spaces with a LUR norm have the Kadec property.

DeriniTioN 2. A Banach space E (or the norm in E) is said to have Kadec
property (K for short) if the relative norm and the weak topologies coincide on
the unit sphere of E.

The third named author showed that every rotund Banach space with the
Kadec property admits a LUR equivalent norm (see, for example, [3, Chapter
IV]). The proof of this result was based on some martingale arguments whose
origin can be found in a paper by G. Pisier [21].

On the other hand, J. E. Jayne, I. Namioka and C. A. Rogers introduced and
studied the class of o-fragmentable topological spaces and its applications in
Banach spaces [10, 11, 12, 13], arriving at the concept of spaces having a
countable cover by sets of small local diameter. We consider this property in a
particular case and call it the JNR property.

DEerNiTION 3. Let (E, 9) be a Hausdorff topological space and p a metric on E.
The topological space E is said to have a countable cover by sets of small local
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p-diameter (p-SLD for short) if for each £ >0, it is possible to write £ =, E,, .,
in such a way that for every n e N and x € E, . there exists a neighbourhood V of
x such that p-diam(V N E, ) <e. Let E be a normed space, w its weak topology,
and p(x, y):=|lx —y|, for x, y € E, the norm metric. If (E, w) is p-SLD then we
shall say that E has the property JNR.

In this paper we introduce a concept which is a particular case of JNR, and
allows us to characterize the spaces that have a LUR renorming.

If E is a normed space, B will stand for the unit ball of E. For Lc E, f € E*
and A € R, we denote by S(L, f, A) ={u € L: f(u)> A} the open slice of L. If L is
the unit ball of E, we write S(f, A) for S(L, f, A).

DerINITION 4. Let L be a subset of a normed space E and ¢ >0. We will say
that L has a countable cover by sets which are a union of slices of diameter less
than € (¢-sINR for short) if L =_J, L, in such a way that for everyx e L,,, n € N,
there exists a slice S(L,, f, A) containing x and diam S(L,, f, A)<e. If L has
e-sJNR for every € >0, then we say that L has sINR.

Our main result is the following.

MaIN THEOREM. Let E be a Banach space. The following conditions are
equivalent:

(a) the unit sphere Si of E has sINR;
(b) E has sINR; and
(¢) E has an equivalent LUR norm.

As we mentioned, K and rotundity imply the existence of a LUR renorming.
Since every point in the unit sphere S of such spaces has a base of
neighbourhoods in the norm topology made up of slices [19], this result follows
immediately from the Main Theorem.

In [17] Lancien proves that a Banach space E with countable dentability index
is LUR renormable. That means there is a countable ordinal 7 such that for every
€>0 there is a decreasing family (C,.)o<; Of convex subsets of Bp, with
Co. =Bp, ({C,: a <T}=(, and such that for every a <7 the set C, \C,yq .
is a union of slices of diameter less than €. So we have B =Uy<r (Cae \Cyi1.e)
and his result follows from our main theorem. In the case when T is a finite
ordinal, he obtains a characterization of uniformly rotund renormability and a
new proof of the well-known James—Enflo—Pisier renorming theorem [18].

If T is a one-to-one bounded linear operator from a Banach space E into a
Banach space F and F has a rotund norm, it is well known that E also has a
rotund norm. For LUR renorming a similar result does not hold, and it seems
natural to ask what conditions it is necessary to impose on the operator 7 to get a
LUR renorming on E. According to the Main Theorem we know that it is enough
to pull back the sJINR property. From this point of view it is quite natural to
require that (E, |- ||7) is ||-||-SLD where || x||+:=||Tx]| (that is, if we consider
the metrics d(x, y):= ||Tx — Ty| , p(x, y):= |lx — y||, with x, y € E, and J the top-
ology associated to d, then (E, J) is p-SLD). In this way we arrive at the following
result which improves the transfer technique of G. Godefroy [5; 3, Chapter
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VIIL.2], at least in obtaining LUR renorming without additional properties for
dual norms.

THeEOREM 5 (Transfer Technique). Let T be a one-to-one bounded linear
operator from a Banach space (E, | -||) into a LUR normed space F and define
x|l =|Tx| for every x e E. If (E, ||-|I7) is || -||-SLD, then E has an equivalent
LUR norm.

As an application of the transfer technique (Theorem 5) we will deduce, for
instance, that every Banach space with separable projectional resolution of the
identity has a LUR renorming [26]. Now let us state the existence of such a
renorming in some new cases.

COROLLARY 6. Let T be a one-to-one bounded linear operator from the Banach
space E into the LUR normed space F such that for every bounded sequence (x,,)
in E with ||x,, — x||r — 0 we have

x e span(x,,) e
, or w-limx,=x). Then E is LUR

. . "l
(in particular, whenever x e conv(x,)

renormable.

The conditions imposed in this corollary are very natural when we are dealing
with C(K) spaces, with K compact, since Grothendieck’s theorem [4, p.156]
asserts that a bounded set L of C(K) is weakly compact if and only if L is
compact in the topology of pointwise convergence on K. So from the previous
corollary we obtain the following.

CoROLLARY 7. Let T be a one-to-one bounded linear operator from C(K) into
the LUR normed space F such that for every bounded sequence (x,) in C(K) with
|lx, — x|l — 0 the sequence (x,) pointwise converges to x. Then C(K) is LUR
renormable.

CoroOLLARY 8. Let (K,,) be a sequence of closed subsets of a compact space K
such that K =K, and C(K,) has an equivalent LUR norm for every n € N.
Then C(K) has an equivalent LUR norm.

This corollary partially answers a question posed by R. Haydon in [8]; see also
[7, Proposition 2.5].

As an application of Corollary 6 we will deduce the following result which is an
extension of the classical transfer technique [3, Theorem VII.2.8].

COROLLARY 9. Let T be a one-to-one bounded linear operator from the Banach
space E into the LUR normed space F such that T*F* is norm dense in E*. Then
E is LUR renormable.

A natural application will be the following (see [3, Theorem VII.4.10]).

CoroLLARY 10. Let E be a Banach space. Assume there exists a weak*-compact
subset K c E* such that the norm-closed linear hull of K is equal to E*. If C(K) is
LUR renormable then so is E.

Moreover, we develop a Decomposition Method which will enable us to
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deduce from the Main Theorem the three-space property for LUR renormings [3]
and that C(K) has sINR and so such a renorming, provided K» =& [9].

From now on the letters i, j, k, [, m, n, will be positive integers, ¢, o, &, 1, A, u,
v, 0, reals, and E, F Banach (or normed) spaces.

The authors would like to thank J. E. Jayne for some fruitful discussions on the
content of the paper.

This paper was prepared mainly during the visit of the third named author to
the University of Valencia in the Academic Year 1994-95. He acknowledges his
gratitude for the hospitality and facilities provided by the University of Valencia.

2. A transfer technique
We start by proving Theorem 5.

Proof of Theorem 5. Fix € >0. We can find subsets E, ,, with k, n € N, such
that E=J,, E., and |x —y| <& whenever x,y € E;,, and |x —y| <k "
Since ||‘||7 is a LUR norm on E and |-||z<|T] |||, applying the Main
Theorem we can find EY, with j, k € N, such that E = |_; E, and for every x € E},
there exists a slice S(E}, f,A) containing x with | -||,-diam S(E}, f, \) <k ',
where f e (E, ||| 7)* Set E},= E,,NE} Evidently E =+, El, and every
x € E}.,, belongs to a slice with | -|-diameter less than & Now the statement
follows from the Main Theorem.

Nevertheless the SLD property required in the transfer technique may be not
so easy to check, so it will be useful to have easier conditions implying it. There is
a recent study of such a property due to L. Oncina [20] in the spirit of Spahn [23].

Let T be a one-to-one linear map from a normed space (E, || g) into a
normed space (F, || - || »). Let us mention that when F is separable, then (E, || - | +)
is || - ||g-SLD if and only if E is also separable. Therefore, in the non-separable
case, if (E, ||+ ||7) is || - || e-SLD and W is a separable subspace of (TE, | - ||r), then
T~ 'W must be separable in || - |z On the other hand, if this property of pulling
back separable subspaces occurs in a ‘continuous way’ we can also prove the
converse implication.

Lemma 11. Let E and F be normed spaces and T: E — F a one-to-one linear
map (not necessarily bounded). If, for every x € E, there exists a separable

subspace Z, of E with x espan{Z, : n e N} " henever (x,) is a bounded

sequence in E with (Tx,) converging to Tx in |- ||p, then (E, |||/ 1) is || - || z-SLD.

This lemma has as hypothesis the necessary modification of a sequential
property of maps from metric spaces to normed spaces with the weak topologies
of [24, p. 615, § 1.4], which allows us to use the idea of the proof of Srivatsa’s

Theorem 2.1 [24] to show our conclusion, namely (E, || - |7) is || - ||z-SLD, which
is weaker than his conclusion of being of Baire class 1. Indeed, if
T ' (TE, |- |r)— (E, || - |¢) is only a cluster point of a sequence of continuous

functions, it clearly follows that (E, |- ||7) is || - || g-SLD. Although the converse
implication in Lemma 11 also holds, it is not included since it is not within the
scope of this paper.

As an application of Lemma 11 and the transfer technique (Theorem 5) it
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follows easily that every Banach space with separable projectional resolution of
the identity has a LUR renorming [26].

The simplest application of Lemma 11 is when we deal with the family of
one-dimensional subspaces {span (x): x € E}; this, together with the transfer
technique, gives us the proof of Corollary 6 stated in the Introduction.

Proof of Corollary 8. For every positive integer let | - ||, be an equivalent LUR
norm on C(K,) such that |-, <|"|.. Let F be the €*sum of the family of
Banach spaces {(C(K,), || -|l.): n € N}. Now the operator T: C(K)— F defined
by Tx = (n 'x|K,);i-; has the property that, given any bounded sequence (x,,) in
C(K) for which Tx, converges to Tx, we have x,|K,—x|K, in C(K,,), and hence
x, — x pointwise in K. Applying Corollary 7 we obtain the result.

Proof of Corollary 9. Since T*F* is norm dense in E*, it is well known that on
bounded sets of E the weak topology coincides with the topology of pointwise
convergence on the elements of T*F* Thus T ': TB;— E is continuous from
| - Il ~ to the weak topology and by Corollary 6 we have the required result.

It is interesting to discuss a concrete example now.

ExampLE. Let H ={u: [0, 1] —>{0, 1}: u(s) <u(z) if s <t} endowed with the
pointwise convergence topology. Then H is a compact, separable, non-metrizable
space such that every point is a Gs-set. Therefore H is not Corson compact, since
separable Corson compact spaces are metrizable. Nor is H Valdivia compact,
since a Valdivia compact space in which all the points are Gs-sets must be Corson
compact. Nevertheless, we will deduce from Corollary 7 that C(H) admits a LUR
renorming. Let D[0, 1] be the space of real functions on [0,1] which are left
continuous and have a right limit at each point, endowed with the supremum
norm. If x € C(H), let us define £ (s) =x(1,1)), for all s € [0, 1]. Observe that

litm<t)?(s) = li{mﬂx(ﬂ [5’1]) = X(ﬂ [t,l]) = )/C\(t),
and
llm )?(s) = hm x(ﬂ[&]])zx(ﬂ(t,]]),
s—t, s>t s—t, s>t
so we have £ € D[0, 1]. The operator T: C(H)— D|[0, 1], defined by Tx =%, is
SLD. Indeed for every bounded sequence (x,) in C(H) such that £, converges to
% uniformly on [0,1], we have lim,x,(1 ) =lim, £,(t) = £(¢) = x(1, 1) and,
because of the uniform convergence,
limx,(1,.)=1lim lim x,(7,,)=1im lim %,(s)

s—t, s>t n s—t, s>t

= lim lim£%,(s)= lim %(s)=x(1u1),

s—t, s>t n s—t, s>t

so (x,) converges pointwise to x on H. Finally, the space D[0,1] is LUR
renormable [3, VIL.3; 10, Example 4.1], and by our Corollary 7 so is C(H).

In order to prove Lemma 11 we shall begin with a topological result for metric
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spaces, and then we will deduce it, taking advantage of the linear structure. A
consequence of Stone’s proof of the paracompactness of a metric space gives, in
any metric space, a o-discrete base for its topology [15, Theorems 4.18 and 4.21].
Essentially we need even less, namely that in any metric space there exists a
o-disjoint base for its topology. This is our main tool for the following lemma.

LemmA 12. Let Y be a non-void set with two metrics d and p defined on it. If for

every x € Y there is a p-separable subset Z, of Y such that x e\ U,_, Z, g
whenever (x,,) is a d-convergent sequence to x, then (Y, d) is p-SLD.

Proof. Let € =1,-, 6, be a base of the topology of (Y, d), where 6, is a
family of disjoint d-open sets for every n € N. We shall write

€, ={V,: yel,}

and choose an element v’, € V', in every non-void set of €,. Let {s)/.: m € N} be
a p-dense subset of the p-separable subset Z,, for every y e I', and every n e N;
set D, =J{V’: yel,}, for n e N. Since 6, is a family of disjoint sets, we can
define, for every positive integer m, a map f,,,: D,— Y by £, ,(t) =5, if t € V7,
We have

ng:{fm,,,(t):—meN}p, forallt e V7.
Now we are ready to prove that (Y, d) is p-SLD. Given € >0, we define the sets
Yne={t € Dyt p(frn(), 1) < 1}
for every pair m, n of positive integers. Now we show that
Y=U{Ymne mneN}

and for every set Y, ,, . and every point ¢t € Y, ,, . there is a d-neighbourhood V of
t such that p-diam(V NY,,,..) <e

Indeed, given t € Y there are n, e N and vy, e I', such that {V’‘};_, forms a
d-base of neighbourhoods of 7. The sequence of points {v}}, previously chosen,
converges to ¢ in (Y, d). Then it follows that

teU{Zye k eNt =U{fn@): K, meN}’,

SO
te U{Yn k,meN}

To finish the proof let us fix t e Y, ,.. Let y, e, be the index for which
teV,. lfueV,NY,,., we have f,,.(t)=f,..(u)=s,, by the definition of
fin.n- Therefore we have

p(t, u) < p(t, frun () + p(Frun (O, finn(@)) + p(frnn(u), u) <3e
and p-diam(V’, NY,,, ) <e.

Vi

Proof of Lemma 11. 1t is enough to show that the unit ball B of E with |- |
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is || - || e-SLD, since the same proof works in any ball of E. We shall use the same
notation and constructions as in Lemma 12. Indeed, if € ={_J;,_; €, is a o-disjoint
basis of the metric space (Bg, | - ||r), we can construct the functions f,,,.: D, — E,
with

Z,Jny = {f,,,,,,(t):—mef\l}”‘”E for every t e V7,

as above.

Given a positive integer k, o = (04, 0, ..., o) e N, T=(1y, 15, ..., T;) € N¥,
and a = (ay, a, ..., a;) € @F, we define the function g, from D(7) =, Dy,
into E by

gz,r(t) = ; ajf«r,,r](t)'

Let us fix € >0 and consider the sets
Yo, .={teD(1): ||gtt)—tllz<ie} forkeN, o,7eN and a € Q"
As in the proof of Lemma 12, it follows that

Br=U{Y%. . 0, 1e N aeQ keN}

@

and in every set Y5 ;. every point ¢ has a | - || r-neighbourhood V such that

I+ llg-diam(V N Y5 r.) < &.

3. A decomposition method

Another tool which will enable us to deduce the existence of LUR renormings
from the Main Theorem is the following proposition.

ProrosiTioN 13 (Decomposition Method). Let H and L be subsets of a Banach
space E and F be a LUR normed space with the following properties:

(a) H has e-sJNR for some € > 0;

(b) for every x e L there exist a bounded linear operator T, E—F, a
continuous (not necessarily linear) map B.: T.E — E and 8,>0 such that
x—B,T.xeHand T,=T,, B, =B, whenevery € L and || T.(x — y)|| <8&,;

(c) for every >0 we can write L =\_J, L, g in such a way that
ITx]l + 6 >sup{I T.yll: y € Ly}

for every x € L; o, and k e N.
Then L has e-sINR.

From the decomposition method we can deduce the three-space property for
LUR renorming [6]. Indeed, let H be a subspace of E such that both H and
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F = E/H have a LUR renorming. According to the Bartle-Graves result (cf. for
example, [3, p.299]), there exists a continuous (not necessarily linear) map
B: F— E such that TBz =z for every z € F, where T is the canonical quotient
map from E onto F. In the decomposition method set L=F and T, =T, B, =B
for every x e E. It is easy to check that the conditions (a), (b), (c) are fulfilled,
and we obtain that E has g-sJNR for every £ >0.

Let us start by proving the following lemma.

LemMmA 14. Let E be LUR. Then for every € >0, we can write E=\J, E, . in
such a way that E, . < E, 1., and for every z € E,, ., there exists a functional g,
supporting z and such that the inequality

& Iwl —n"'<llzl <g.(w)+n""
implies |w — z|| <e.
Proof. Given £>0, since every point x of Sg is strongly exposed, for every

functional g, supporting x we can find A = A(x, £) <1 such that diam S(g,, A) <&
Now let ¢ >0 and n > ¢!, and denote by E,, . the set of z € E for which

AG/zl s ellzID) <zl =n=D/(zll +n7Y.

Let z € E, . and w e E satisfy (1). Set x =z/||z|| and v=w/||w|. From (1) we
obtain

g:W)>(lzl —n D/ Iwl > Ax, /|z])-
Then |lv —x|| <e&/|z]||. Hence

lw =zl <lzll llv=xIl +[lIwl = Izl [<e+n"" <2

Proof of Proposition 13. Since H has e-sINR, we can write H =_J;,, H), in such
a way that for every v € H/, with j, n € N, there exist A, € Sg« and u, such that

(2) min{h, (v) — w,, e-diam S(H},, h,, p,)} >2/].

From Lemma 14, it follows that for every m € N we can write F =|_J; F’,, in such
a way that F!, c Fi'! and for every z e F’, there exists a functional g. supported
by z such that

3) w—z|<m™,
whenever ||w| —i ' <|z|| <g.(w)+i "
For every x € L and j € N we can find 7, ; € (0, 8,) such that

“4) IB.Tx — B, T.y| <j ',

whenever y € E and | T.x — T,y || <,
Set ®x = B, T.x and Wx =x — ®x. We note that WL c H. Let i, j, k, m,n e N.
By L}/, we denote the set made up of all x e L for which Wx € H), 0., > m !,

T.x € F,, |x| <3i, and x € L; o where 8 =i"%". Evidently L =, xmnLlipn
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Let x € LY, .. Set u=®x, v=Wx, z = Tx, and f = T¥g, +i h,. We can find
& such that
(§)) Mo T2/ <E<h,(v)<E+
From (5) we obtain
f0) =g(Tox) +i?hy(x) = l|z|| + i *(h,(u) + hy,(v))
>z +i2(h(u) + €)= A
So x € S(L{uns f A)- Let y € S(LY,..0, f, ). From (4) we have ¢>h,(v) —3,
and since ||x||, | y|| <3i, we obtain
(6) 8(T.y) =f(y) =i *hy(y)
>N —i?hy(y)
= llzll + i 2(h () + € — hy(y))
>zl +i 2 (h(x—y) =D >zl —i "

Since x € L, 4, we have

(M 1Tyl <ITx||+i% " =zl +i % <zl +i "

Taking into account the fact that z e F, and applying (3) for w = T,y from (6)
and (7), we obtain |T.x — T,y|| = ||z — T,y|| <m~". Since m~' <m,; <§,, we get
T.=T,, B, =B,. This and (3) imply that
(8) lu— @yl = | Px — Py|| = | B, Tox — B, Ty <j "

Since f(y)> A from (6) and (7), we obtain
hy(Wy) = *(f(y) = 8(T.y)) = h(Py)
> (A = | Tey ) = ho(Py)
=2(Izll = 1 Teyl) + & + hy(u — Py)
>l E—lu—Dy| > €2 > p,.

So Wy e S(H), h,, u,). Then from (2) we get ||[v—Wy| <e—2j'. Hence
[x =yl <llu—Py| + lv-Wy| <e

ExampLE [9]. If K is a compact space such that KV = & then C(K) has sINR.

For an ordinal a we set K, = K\ K"V, For t € K, we can find a clopen set
U, such that U, N K, ={t}. Since U, is clopen, we obtain u, = 1,, € C(K). Let {e,}
be the unit vector basis in (K, ). For x € C(K), A c K,, |A| < we set

Pux = E x(Ou;,, Rax=x—Pyx, QOxx= Ex(t)e,.

telA teA

Fix € > 0. For x € C(K), an ordinal a and m, n € N we set
A ={te Ky x(01= e, n%=e—max{x()]: ¢ € K, \ A%,

E;,={ve C(K), |A)l=n,n{>m""}, E*=UE;, E.=U E"

B<a
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Let us observe that x € E, whenever Ay = . In particular, for every x € E“ we
have

(9) RA;rx S Ea'

We shall prove by transfinite induction that, for every a < w,, the set E, has
e-sJNR. Assume that the inductive assertion has already been proved for all
B <a, that is, E? has &-sJNR for 8 <a. Since a <w,;, we find that E, has
e-sINR. Fix m,neN and set H=E,, L=E;,,, E=C(K), F=IL(K,) in
Proposition 13 (the decomposition method). For x e L and y e E we set
T.y = Qacy, B.T.y = Pa:y. Applying (9) we get x — B, T.x = Ry.x € H. So (b)
from Proposition 13 is fulfilled. Let 8 € (0, 1], and g =(gq;)7 € Q" such that
g1l = g2l =...=1q,|=¢e By L, we denote all x € E},,, for which (#)]= Ay,
()= x (1) = ... = |x(t,)| = € and

(10) (%) —qil < 6/Vn.

Let y € L, o. Taking into account the fact that |y(;)| <& <|g,| for all t; ¢ A} and
using (10) we obtain

1 1 1
2 2

1T =(S47) - (S 6w -a7) =(Sat) 6= 1Ty - 26

This implies that (c) in Proposition 13 is fulfilled. In the same way, it is possible
to show that EY, , has e-sINR. So we have proved that E%, a@ < w,, has &-sJNR for
every € > 0.

4. The main theorem

We begin by recalling some definitions.

DEeriNTION 15. A Banach space E (or the norm in E) is said to:
(a) be rotund (R for short) if the unit sphere of E contains no open segment;

(b) be weakly midpoint locally uniformly rotund or midpoint locally uniformly
rotund (WMLUR or MLUR for short, respectively) if given sequences (y,),
(z¢) and x in E we have w-lim,(y, — z,) =0 or lim.|| y, — z|| = 0, respec-
tively, whenever [[y,ll, llzll < x| and lim, ||y, + z, — 2x]| =0.

In order to prove the Main Theorem we add a new equivalence.

MAIN THEOREM (complete version). Let E be a Banach space. The following
conditions are equivalent:

(a) the unit sphere S of E has sINR;
(b) E has sINR;
(¢) E has an equivalent LUR norm; and

(d) E has INR and an equivalent wWMLUR norm.
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In [10] it is shown that K= JNR. In [19] it is proved that K& R imply MLUR.
Hence we have K& R = JNR&wWMLUR. So the metric property K has been
replaced by JNR, which is a condition stated in topological terms. The notion of
wMLUR is stronger than R. Essentially from [16], it follows that wMLUR is
equivalent to all points of S being extreme points of the bidual ball B... In fact
wMLUR is a stronger condition than R even from the point of view of
isomorphism [1,2]. However, in the case of C(7T), R. Haydon characterized
certain trees T for which C(T) has R renorming and showed that they are the
same as those which admit a MLUR renorming. He also characterized the trees T
for which C(T') has a K renorming. In this way he characterized the trees T for
which C(T) has a LUR renorming. Moreover, he obtained a tree T such that
C(T) admits a K renorming but no R equivalent norm. For these and more
results about renormings of these spaces see [7] and the comments of § 6, Chapter
VIl in [3].

Proof of the complete version of the Main Theorem. (d)= (a) Since E has JNR,
we must have S; =, Oy . and for every z € O, . there exists a weak open set V,
containing z such that diam (V, N Q,.) <e. Since E is wMLUR, the proof of
Remark 3 in [16] shows that all points of Sg are extreme points for Bg... Then
it follows that for every x € S the open slices S(f, w) of By form a base
of neighbourhoods for x in the weak topology of B (see [22, Corollary 1.7]).
So we can find a slice S(f, w) of Bg, such that z € S(f, ) =V, N Bg. Since
diam (V, N Q,.) <e&, we have diam S(Q,,., f, n) <e.

(c)=>(b) Let E, . satisfy the condition of Lemma 14. For ¢ e @ we set
E}.={z€E, . ||zl —q|l<1/2n}. We have

zeS(E?,, 8.,9—1/2n) and diam S(E},, g., q —1/2n)<2e.

The implication (b) = (a) is evident.

(¢)=>(d) Let E be LUR. Then evidently E is wMLUR. From the implication
(c) = (b) we infer that E has sINR. Hence E has JNR.

The proof of the existence of a LUR equivalent norm for spaces with sJNR,
that is, the implication (a)=>(c), is based on probabilistic techniques so we
require some more notation.

NotaTion. Here and subsequently we will denote by Q and Q,,, for n € N, the
sets {w: 0 = (w;)7, w; = £1} and {w: o = (w;)}, w; = £1} respectively. For a =
()1 eQ, we set T,={weQ: w=(w;)], @,=w;, i=1,2,...,n}, and J,=
{T)ucar

The symbol &, will stand for {J, Q}, and «,, will be the finite algebra made up
by the empty set and the sets |, 7T, for A =Q,. We will denote by « the
o-algebra generated by the sets of &/, for n=1,2,..., and p will be the
probabilistic measure on /.

Here and subsequently, given a subset A of Q, the symbol A~ will stand for the
complement of the set A, that is, Q\ A (and not the closure of this set).

Let us recall that an E-valued Walsh—Paley martingale (M,,) is a sequence of
functions from Q to a Banach space E such that M, is &f,-measurable for n =0
and [E(Mn|&¢,1,1) =M, _, for n=1. We denote the ‘increments’ of the martingale
(M,) by dMy= M, and dM,,= M, — M,,_, for n =1.

Let H be a cone in E. We set y,(H) = inf{sup, (E | M, ||2)%} where the infimum is
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taken over all E-valued Walsh—Paley martingales (M,,) such that the set

o [, p=1)
M, \(H)

"

has at least k elements. We put y(H) = sup {v,(H): k=1}.

ProrosiTION 16. A Banach space E admits a LUR norm if and only if for every

€>0 there is a sequence {E, .},=1 of cones in E such that E=\J,E, . and
inf, y(E, ) =¢ "

Following the proof in [3, pp. 144-148] we obtain a LUR norm |-| that is not
necessarily symmetric. Then we set |x|| = (Jx|* + |—x|*)” to get a symmetric norm.
Since || is LUR, it is easy to see that || - || is also LUR.

Lemma 17. Let 1O<n<l, Ix|=1, x=EX, and E|X|*<1+7n* If we set
C={IXI?<1—n2}, D={IX|>>1+n}, then

p(© =10’ p)=3n, ([ 1x1) <@n) ([ 1X—xI?) <o’
D D

Proof. The last three inequalities are proved in [3, p. 136]. Moreover we have

r=EpxP= [ xes x| xe
C D D\C

<(1=1)p(C)+6m+(1+n)p(D \C)
<1-n%p(C)+Tn.

DeriNiTION 18. A cone H < E is said to be (g, 6)-admissible if for every
E-valued random variable X we have

E|IX]?=(1+8% [xII?
whenever
EX=xeH and p{|X—x|=¢|x|}NX"'(H))=¢
We say that H is e-admissible whenever there exists a positive 6 such that H is
(e, 8)-admissible.
Now we introduce some notation which will be valid throughout statements

19-23. For fixed e € Sg, f € Sg- such that f(e) =1 we set

d(x)=inf{x — Ae|: X e R}, g(x)=(d*(x)+f*(x))",
= G(lx 1>+ g%(x)))%, and H(e, &) ={x e E: |lx/|x]| —e| <e&b.
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We use E(¢g, §) to stand for the set of the elements x in E such that [3, p. 139]
inf{E | X[* EX =x, E[|X —x[*= (e [|lx])*} = (1 +8) |Ix].

Lemma 19. For every x e E we have x> <2g2(x), (2)? ||lx|| < |x| < || x|.

Proof. Let x € E and p be such that d(x) = ||x — nel||. We have

el <2 max {(lx]l = w), (& = FE} +f(x) <2d(x) + f(x) < 5°g(x).

Then 6g%(x) =5g%(x) + g*(x) = ||x||* + g*(x) = 3 |x|>, which proves the first asser-
tion of the statement. To show the second, it is enough to note that 6]x|*<
587(x) + 5 [lx > =15 ||

Lemma 20. Let x € JH(e, €), |x|=1, EX =x, and E|X —x|*=(12¢)>. Then
EIX]?P=1+4e%

Proof. Since x € J(e, €), we have ?l(x) ¢ x| < (%)%5. Then from Lemma 19
we have for any y € E, d(y —x)<(3)’|y — x| and

3IyP=IylP+ (d(y —x) —d(x))* + f(y —x +x)
=y 17 = Ixll* + g%(y = x) = 2d(x)d(x = y) + 2 (x)f (y —x) + 3 |x]?
=12 = Ixl?+ 2 [y —x? = Se [y = x|+ 2f (x)f (xX)f (y —x) + 3 [x[*.

Taking into account the facts that Ef(X —x)=0 and E | X||?= | x| if in the
above inequality we replace y by the random variable X and integrate, we obtain

3E|XP=3E X — xP — 5¢E |X — x| +3 |x]
=3+ (E|X — xP)2(3(E | X —xP)* —5¢) =3 + 12¢>

ProprosiTioN 21. Let 0<g, 6 <1, and let (M,) be an E-valued Walsh—Paley
martingale. If [4 ||dM, |*>=36¢>, M, (A;)<E(e, 8) for j=1,2,..,r, and r=
ag 8! where a is an absolute positive constant, then E | M, |*= 1.

This proposition essentially follows from [3, Lemmas 3.2, 3.3, pp. 139-144].

COROLLARY 22. Let 0<&<33, e € E, and (M,) be an E-valued Walsh—Paley
martingale. If [, ||dM,|*>=be*> where b=5.12", M,(A;) = (e, 2¢) for j=
1,2,..,r, and r=s(¢) = [3a(2/€)’] + 1, then E | M, |*=2.

Proof. According to Lemma 20 and Lemma 19 we have J(e,2¢)c
E, (24¢, 16¢%), and

1
f |dM,, |V2]> = - f ldM,, ||> = 36(24¢)>.
A, 7 5 A, 7

Now the statement follows from Proposition 21.
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LemMA 23. Let 0<g, 8 <53 and H be a (&, 8)-admissible cone in E, (M,) an
E-valued Walsh—Paley martingale so that Mye H, |M| =1, M,(A;)<=H,
Ja, ||dM,lj||2>cs2 for j=1,2,...,r, and r=s(¢) where c=b +36 and b, s(¢)
are from Corollary 22. Then we have E M, |>=1+n*(e, 8) where (e, §) =
min{8, (¢/10)*}.

Proof. Suppose the contrary is true. Set My=e and B, = A;\ M,,'(%(e, 2¢)).
We begin by distinguishing two possibilities.
First,
f |dM,, ||>=be* forj=1,2,..,r
Aj\ B, !
In this case, according to Corollary 22 we get E|M,||>=2, which is a
contradiction since n(g, §) <1.

Second, we have for some i that [,z ||dMn[||2 < be?. Later we will deduce from
the above inequality that

11) p(B))= ¢
Since M, (B;) N J(e, 2e) = for x € M, (B;), we have
(12) lx = el = max{|lx[ = 1], [lx/llx]| —ell =[xl = 1[}>e.

Let us note that once (11) has been proved, the anticipated contradiction follows
easily from the inequalities

(13) E[|M, [P <EM,|I><E|M,|*<1+n"

On the other hand, since EM,, = e from the admissibility of H, (11) and (12), we
conclude that E ||M, ||>=1+ §* Hence by (13) we get 8 < n, which is contrary to
the choice of 7. We now begin the proof of (11) by observing that

aay [ nam = nam - [ jam, > ce? - be = (662
B, A, ANB;

On the other hand, from (14) and Lemma 17 we deduce that p(C;)<3ny,
p(Dz)S:;n,

(s) (), 1o, R J, iM,1P) = G,

where C; ={|M,_,|>=1+n} and D, ={|M,|>=1+n}.
Moreover, since B, is the disjoint union of the sets B, NC,ND,, B,NC,ND;,
B,NC; ND;, B,NC; ND;, it follows from the triangle inequality that

ay ([ vamp) <(|  pame) ([ pamp)
B, B,NC:ND; B,NC;ND;

([ namgp) ([ amp).
B,NC;ND; B,NC; ND;i”
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It follows from the triangle inequality that, for all measurable sets G;, G,

containing G,
([ nam ) <([ we) ([ 1w, 2).
G Gy G,

From (15), applying this inequality, we obtain

([ vame) < ([ ime) + ([ 1w, 02) =26m)
B.NC,ND; D c
) ) )
([ sy <(] i) + ([ 1m,02)
B,NC,N\D; B;ND; Ci

<(1+n)p(B;) + (6n)%,

1 1 1
([ name) ([ iwge) +([ 1w, )
B,NC;iND; D; B:NCi

<(6m) + (1+1)p¥(B)),

1 1
([ wamge)<([ ) +(]
B,NCrNDr B,ND; B,NC,

1M, 1)
<2(1+n)p(By).

These four inequalities and (16) yield

1

([ 1dm,12) = aomt + 401+ n)pB) < + 5pB).
B;
Combining this with (14) we obtain (11).
The next lemma has some ideas in common with [27, Lemma 4.4].

Lemma 24. Let H, &, 6, s(e), m(e, 86) and c be as in Lemma 23 and
m=re *+1, where r =s(¢). Let (M, be an E-valued Walsh—Paley martingale
such that ny<n,<..<n,, E|M,|*<1, and gy |dM,,|>=Tce* for j=
1,2,...,m. Then

m
EIM, 7= (1+ en*(e, o)0r(™) JE IM, P

Proof. Set 6=c?¢ and T such that E M, |I”>=(1+1)E ||M,,]|> Obviously we
may assume that 7 <}.

Put A, = M, '(H) and C, = A, B;=\U{ ' A, C;= A\ B,, for j=2,3, ..., m.

We denote by Cj, for j <k, the union of all T € 7, such that T'<= C; and

(17) & IM TP ()= am, 2.

ANT
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Evidently (17) implies that

(18) [ <o
ArNDjy

D

M, > where D;; = C;\ Cjy.
k

For g<k —j let I, ={(n, ni, ..., m): j<iy<ir<..<i, =k}, and Cy(m)=
Zzl C] Where T= (I/lil, niz, ceey nl‘(l) S Hj,k,q' Set
C. :{U{C](ﬂ) T e Hj,k,q} 1fq§k_],
e g if >k —J.

Let E‘k‘q = Cj,k,q \ Cj,k,(q+1)' Since Cj,k,(q+1) < Cj,k,q c..eCir1= Cj,k’ we have

>h?

r—1
(19) Cix=Cix, U <qL:J1 Fj,k,q>-

We claim that
(20) Fykg N Epiq =D if (i, ki) # (o, ko).

Indeed, since F;;, < C; and the sets {C;}Z; are disjoint, (20) holds when j; # j,.
Suppose now that j =j, =j, and k = k; <k, =1/ and, contrary to our claim, that
there exists an w € F; ,N F;,,. Then since w € F;, ,, there must exist a sequence
m={i,}{ el , such that w e C;(7m). Since w e F;;,=C;;, we find that w e
Ci(myNC;,=Ci(o) where o = (iy, iy, ..., i, =k, I) e IL;; (,+1). Hence o € C;; (41,
a contradiction.

Denote N, =sup,—, || M,||. Then by an inequality due to Doob [25, p.271], we
have EN;, <4E | M, > Then since T <} for every n <n,,, we have

(21) EN.<A4E |M,|*><4E ||M,,m||2S4(1+T)$5.
Since {C}}Ji" and {D; ,}/“, are families of disjoint sets, (18) and (21) show that

k—1 k=1
> ldM,, I’ <6 >, | IM,|*><6’EN,, <56
j=1 D,v,k

j=1 Ja,npy, .
Since B, = C; where C;=C,, UD;,, according to the previous inequality
we have

-1

k
(22) f ldM,,)17= 2 | IldM,,]|?
ArNBy J

=1 JA,nC

k—1
<3 ([ nam e+ jam,e)
j= Cix ANDj

> ~
_

sEJ |dM,, ||> + 56>
j=1 YCjx

From (19) we deduce that

k—1 k—1 k—1 r—1
(23) > | llam, )P =2 ldM,, |7+ 2 > | lldM,, 7.
j=1JC;x j=17c

Tk J=1 q=1"F,

Since ||dM,, || <M, || + M, .|| <2N,,, according (20) and (21) we have

>

k—1
j=1

r—1
2f |dM,,,|I> < 4(r — DENZ <20(r —1).
q=1"YF

Jik.a

(24) éz
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Combining (22), (23) and (24) we deduce that

m k—1
E ldM, |1>< > > | lldM,]I>+56°(m — 1)

AN By k=2 j=1JCj;

< > Zf |dM,, > +20(r — 1) + 56%(m — 1).
k=r+1 j=1

Ciier

Since the sets {A;\B,} are disjoint, and 20r < (m —1)8*> from the above
inequality and (21), we obtain
am,,|?)

I ) A LS I e
AN By \B

<S([ namgr+af a3
ANBy AR\By

A\By

<> J |dM,, ||> + 4EN3,
AN By

<> J ldM,, |I* + 20
A.NBy, )

= 2 ldM,,|I?

k=r+1 j=
+20(r—1)+592(m—1)+20
m k—r
< > 2| lldM,|*+6(m —1)6"

k=r+1 j=1JC;,

Now fix m=(n,, n,, ..., u; —nk) ell, Let TeJ, and T < Cj(rr). Let us take
K, =M, ., for h =0, 1 2,. —n;, and h;=n; —n; for [ =1, 2, ..., r. Evidently
{K;}i=, is a Walsh—Paley martmgale over T and KO(T) e H, Kh,(A ﬂ T)< H for
[=1,2,...,r. From (17) we obtain

»(T) |dK,|1* = 6% | Ko||* = ce® | Ko> forl=1,2,...,r
A,NT

Now, according to Lemma 23, we have [ ¢, [|M,,,[I>= (1+ 0*)[c,m M, ]I>. Then
since Cy(m)~ € o, we have
EIM =t WM [ =t i E P
Ci(m G(m~ Ci(m
Bearing in mind that the sequence (E |M,,||*) is non-decreasing, we obtain
26) [ (N AR S
C;(m)

Let G be the union of all sets T e 7, for which

@) 20,(DIF p(1) = | 16,
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This implies that [, ||M,1j||2 <Iif G, | M, |I?, and since G, € A, we have
L[ [ MR = 1M, ) < EQM, P - 1M, 7)< T
Gjyk G/,k

Since C(1) € s, and n <3, we conclude from (26) and (27) that

[ vamge=a] amgesa(]  umee[am,re)
Ci(m) Ci(m) Ci(TO\Gj « Gjk

$8<f ||Mnj||2+ T>S8T(l + 1 <9
Ci(TO\Gj 1

Hence
[ amges 3 [ jam,pe
Cikr e ll; ., Y Ci(m)
k—j—1 —2
$9< / >T7f4S9<m >T7f4.
r—1 r—1
This implies that
m k—r m — 2 m m
> ||dM,,k||2$9< >T7f4 > (k—r)SS(m—l)r< )T”ff“.
k=r+1 j=1 9, r—1 Keri1 r

From the above inequality and (25) we obtain
T(m —1)0*>< > |dM,, ||> < 6(m — 1)6% + 5(m — 1)r<m>rn’4,
j=274; r

which implies that
r= 92n4/5r<m>.
r

CoROLLARY 25. There exists a positive absolute constant d such that y(H)=
de !, whenever € >0 and H is an e-admissible cone.

The proof follows from Lemma 24 in the same way as Lemma 3.3 follows from
Lemma 3.2 in [3, pp. 139-144].

LEmMMA 26. Let 0<eg, o<1, keN, QcSg, and LckBg. such that Q =
U{SO, f,1): feL} and diam S(Q, f,1)<e for every f e L. Then the cone
H={ u: ueQ, [uf>1+0, A=0} is 2e-admissible with respect to the norm
x|l = (lx)? + x> + |—x)>, where ||| is the original norm in E, |x|=

sup{f"(x): f e L}, and f"(x) = max(f(x), 0).
Proof. Set
n =014k 0=n*/17k>, &= 0/2k.
We show that H is (2¢, 8)-admissible with respect to ||| - ||| .
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Fix x € Q. Let EX =x and
E X Ml*< 1+ 8% x>

We have |x|<k, |-x|<k, and 6*> (1 +2k*)6*= (2 + k*)8*. Moreover, from
the choice of |-| we obtain

EIXP?=x?>1, E|-XP=|-x* E|X|?=x|*=1
Now the choice of || || and the inequalities above imply that
(28) EIX?< 1+ 8% [lxl*—EQXT + - XT)
< (1+8% x)?+ 8*(xP + [—xP)
<1+8*+28%> <1+ 6%
Similarly, we obtain
29)  EXP<=@+8)[lx[I”=ENX]*+ |- X
<1+ 8 xP+8*(|x|I* + |—x) < (1 + 8*) |x]* + 8*(1 + k?)
<1428+ 8% xP<(1+ 8% xP<(1+6) x|~

From Lemma 17 and (28) we obtain

(30) p(C)=<76% p(D)=36, | [X|*><66,
D,
where C, ={| X||><1— 6} and D, ={|| X ||>>1 + 6}.
Set € =min{6, (]x|> — 1)/2 |x|*}. From the definition of ||, it follows that we can
find g € L such that

(31) gx)=1-¢&) P
So
(32) g —1=(1 =& KP—1=3(xP-1).

Set B ={g(X) <0}. Then using the Cauchy inequality we obtain

s =Es0=| go0=(] £00) (8.

Hence

EXP= | 00 =g0)/p(B) =1+ pENEE)

=1 +pB)(1— &) xP=(1-2¢+p(B)) k*=(1-26+p(B)) [x.
From (29) we have 1+ 68=1-268+ p(B). So
(33) p(B)<36.
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Now from (30) we obtain

| eeo=e] ixpe=e(] x| )
B B D, BNDy

< k%60 + (1 + O)p(B)) < 12k26.

Then from (29) and (31) we obtain
Eg*(X)<E|X|+ f gZ(X)<s(1+0) x|+ 12k*6
B

<1+ 6)(1 +28)g%(x) + 1228
<(1+0+26+280+12k%0)g%(x)
< (1+17k%0)g*(x) = (1 + n*)g*(x).

From Lemma 17 we have

(34) R g*(X) =< 6mg’(x),

where D, = {g*(X) > (1 + n)g*(x)}.
Set C={g*(X)<|X|?<1+ 6}. Since g(x)>1 and 6<m, we have C < D,.
Then from (34) we obtain

P =B =] £+ ]

g+ | g
<6mg*(x) + (1+n)g*(x) — (1 + n)(g(x) — 1)p(C).
This implies that p(C) < 7ng*(x)/(g*(x) — 1). From (32) we have

2 2 2
_lng’() _ 14k _ 14k _

T kP-1 gxP-1 o

(35) p(C)

Set A={X¢e|X||Q, |[X—x||=2¢}. We claim that AcBUCUC,UD,.
Indeed, assume the contrary and let y € X(A\ (B U CU C, U D,)). Then we have

1-:<|yP<1+6, g(y)>Iyl> g(y)>0.

From the last two inequalities it follows that g(y)> | y||. Then for z = y/|| y| we
obtain g(z)>1 and z € Q. Since x, z € S(Q, g, 1) and diam S(Q, g, 1) <e, we
conclude that ||x — z|| <e&. On the other hand, |[x —z||=|x—y|| — |1 — ||y||‘ =
2e — 0>> ¢, a contradiction. Hence applying (30), (33) and (35), we deduce that

p(A)<p(B) +p(C) +p(Cy) + p(D,) <4e’.

Proof of the implication (a) = (c) of the Main Theorem. For each i € N we can
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find O}, = Si, L, < E*, n e N such that Sy =U, 0}, 0, <U{S(Q}, , 1): f e L}}
and for every f e L}, diam(S(Q%, f, 1)) <i~'. Set L%, = kBg.N L}, and

Qien = QN (UAS(Q5 £ 1): f € L),
xlikn = sup{f " (x): f € Li,},

1

. 2
el = (1P + 3 27 xRy + =2 )

ik,n

If we take HY,, ={\u: u € Qi |uffr,>1+j"', A=0}, then from Lemma 26 it
follows that HY/, is a 2e-admissible cone with respect to || - |. Now combining
Corollary 25 and Proposition 16 we deduce that £ has an equivalent LUR norm.

References

1. G. ALEXANDROV and V. BABEV, ‘Banach spaces not isomorphic to weakly midpoint locally
uniformly rotund spaces’, C. R. Acad. Bulgare Sci. 41 (1988) 29-31.
. G. A. ALEKSANDROV and I. P. DmMITROV, ‘On equivalent weakly midpoint locally uniformly
rotund renormings of the space ¢, (in Russian), Mathematics and mathematical education,
proceedings of the 14th Spring Conference of the Union of Bulgarian Mathematicians, Sunny
Beach 1985 (Bulgar. Akad. Nauk., Sofia, 1985), pp. 189-191.
3. R. DEVILLE, G. GODEFROY, and V. ZIZLER, Smoothness and renorming in Banach spaces, Pitman
Monographs and Surveys in Pure and Applied Mathematics 64 (Longman Scientific &
Technical, Harlow, 1993).
4. J. DIESTEL, ‘Geometry of Banach spaces—selected topics’, Lectures Notes in Mathematics 485
(Springer, Berlin, 1975).
5. G. GODEFROY, ‘Existence de normes tres lisses sur certains espaces de Banach’, Bull. Sci. Math.
106 (1982) 63-68.
6. G. GODEFROY, S. TROYANSKI, J. WHITFIELD, and V. ZIZLER, ‘Three space problem for locally
uniformly rotund renormings of Banach spaces’, Proc. Amer. Math. Soc. 94 (1985) 647-652.
7. R. HAYDON, ‘Trees in renorming theory’, Banach File Service, majordomo@Littlewood.math.
okstate.edu (send message ‘subscribe banach’).
8. R. HAYDON, ‘Countable unions of compact spaces with the Namioka property’, Mathematika 41
(1994) 141-144.
9. R. HAYDON and C. A. ROGERS, ‘A locally uniformly convex renorming for certain C(K)’,
Mathematika 37 (1990) 1-8.
10. J. E. JAYNE, I. NAMIOKA, and C. A. ROGERS, ‘o-fragmentable Banach spaces’, Mathematika 39
(1992) 161-188, 197-215.

11. J. E. JAYNE, I. NaMIOKA, and C. A. ROGERSs, ‘Topological properties of Banach spaces’, Proc.
London Math. Soc. (3) 66 (1993) 651-672.

12. J. E. JAYNE, I. NAMIOKA, and C. A. ROGERS, ‘o-fragmented Banach spaces II', Studia Math. 111
(1994) 69-80.

13. J. E. JAYNE, I. NAMIOKA, and C. A. ROGERS, ‘Continuous functions on compact totally ordered
spaces’, J. Funct. Anal. 134 (1995) 261-280.

14. J. E. JAYNE, J. ORIHUELA, A. J. PALLARES, and G. VERA, ‘o-fragmentability of multivalued maps
and selection theorems’, J. Funct. Anal. 117 (1993) 243-273.

15. J. L. KELLEY, General topology, Graduate Texts in Mathematics 27 (Springer, Berlin, 1955).

16. K. KUNEN and H. ROSENTHAL, ‘Martingale proofs of some geometrical results in Banach space
theory’, Pacific J. Math. 100 (1982) 153-175.

17. G. LANCIEN, ‘Dentability indices and locally uniformly convex renormings’, Rocky Mountain J.
Math. 23 (1993) 635-647.

18. G. LANCIEN, ‘On uniformly convex and uniformly Kadec—Klee renormings’, Serdica Math. J. 21
(1995) 1-18.

19. B. L. LN, P. K. LIN, and S. L. TROYANSKI, ‘Characterizations of denting points’, Proc. Amer.
Math. Soc. 102 (1988) 526-528.

20. L. OncINA, ‘Borel sets and o-fragmentability of a Banach space’, masters’ degree thesis,
University College London, 1996.

21. G. PISIER, ‘Martingales with values in uniformly convex spaces’, Israel J. Math. 20 (1975) 326-350.

22. H. ROSENTHAL, ‘On the structure of non-dentable closed bounded convex sets’, Adv. in Math. 70
(1988) 1-58.

[



640 LOCALLY UNIFORMLY ROTUND RENORMING

23. B. S. SPAHN, ‘Measurable selection problems in general Borel structures’, doctoral thesis, Warsaw
University, 1981.

24. V. V. SRIVATSA, ‘Baire class 1 selectors for upper-semicontinuous set-valued maps’, Trans. Amer.
Math. Soc. 337 (1993) 609-624.

25. K. STROMBERG, Probability for analysts (Chapman & Hall, New York, 1994).

26. S. L. TROYANSKI, ‘On locally uniformly convex and differentiable norms in certain non-separable
Banach spaces’, Studia Math. 37 (1971) 173-180.

27. S. L. TROYANSKI, ‘On some generalizations of denting points’, Israel J. Math. 88 (1994) 175-188.

A. Molto S. Troyanski
Departamento de Andlisis Matematico  Faculty of Mathematics and Informatics
Facultad de Matemdticas Sofia University
Universidad de Valencia 5, James Bourchier Blvd.
Dr. Moliner 50 1126 Sofia
46100 Burjassot (Valencia) Bulgaria
Spain
and
J. Orihuela

Departamento de Andlisis Matemdtico
Facultad de Matemdticas
Universidad de Valencia

Departamento de Matemadticas
Universidad de Murcia

Campus de Espinardo Dr. Moliner 50
30100. Espinardo 46100 Burjassot (Valencia)
Murcia Spain

Spain



