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 1 .  Introduction

 In this paper we characterize those Banach spaces that admit a locally uniformly
 rotund renorming by means of a linear topological condition .  Let us recall the
 following definition .

 D EFINITION  1 .  A Banach space  E  (or the norm in  E ) is said to be  locally
 uniformly rotund  (LUR for short) if

 lim
 k

 i  x k  2  x  i  5  0  whenever  lim
 k

 i  1 – 2 ( x k  1  x )  i  5  lim
 k

 i  x k  i  5  i  x  i  .

 The spaces with this property are at the core of renorming theory in Banach
 spaces and consequently have been extensively studied (see ,  for example ,  [ 3 ]) .  It
 is well known that the spaces with a LUR norm have the Kadec property .

 D EFINITION  2 .  A Banach space  E  (or the norm in  E ) is said to have  Kadec
 property  (K for short) if the relative norm and the weak topologies coincide on
 the unit sphere of  E .

 The third named author showed that every rotund Banach space with the
 Kadec property admits a LUR equivalent norm (see ,  for example ,  [ 3 ,  Chapter
 IV]) .  The proof of this result was based on some martingale arguments whose
 origin can be found in a paper by G .  Pisier [ 21 ] .

 On the other hand ,  J .  E .  Jayne ,  I .  Namioka and C .  A .  Rogers introduced and
 studied the class of  s  -fragmentable topological spaces and its applications in
 Banach spaces [ 10 ,   11 ,   12 ,   13 ] ,  arriving at the concept of spaces having a
 countable cover by sets of small local diameter .  We consider this property in a
 particular case and call it the JNR property .

 D EFINITION  3 .  Let ( E ,  7  ) be a Hausdorf f topological space and  r   a metric on  E .
 The topological space  E  is said to have a  countable co y  er by sets of small local
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 r  - diameter  ( r  -SLD for short) if for each  »  .  0 ,  it is possible to write  E  5  ! n  E n , »  ,
 in such a way that for every  n  P  N   and  x  P  E n , »   there exists a neighbourhood  V  of
 x  such that  r  -diam( V  >  E n , »  )  ,  » .  Let  E  be a normed space ,   w  its weak topology ,
 and  r  ( x ,  y )  : 5  i  x  2  y  i  ,  for  x ,  y  P  E ,  the norm metric .  If ( E ,  w ) is  r  -SLD then we
 shall say that  E  has the property JNR .

 In this paper we introduce a concept which is a particular case of JNR ,  and
 allows us to characterize the spaces that have a LUR renorming .

 If  E  is a normed space ,   B E   will stand for the unit ball of  E .  For  L  ’  E , f  P  E *
 and  l  P  R ,  we denote by  S ( L ,  f ,  l )  5  h u  P  L :  f  ( u )  .  l j   the open slice of  L .  If  L  is
 the unit ball of  E ,  we write  S (  f ,  l ) for  S ( L ,  f ,  l ) .

 D EFINITION  4 .  Let  L  be a subset of a normed space  E  and  »  .  0 .  We will say
 that  L  has a  countable co y  er by sets which are a union of slices of diameter less
 than  »   ( »  -sJNR for short) if  L  5  ! n  L n   in such a way that for every  x  P  L n  , n  P  N ,
 there exists a slice  S ( L n  ,  f ,  l ) containing  x  and diam  S ( L n  ,  f ,  l )  ,  » .  If  L  has
 »  -sJNR for every  »  .  0 ,  then we say that  L  has sJNR .

 Our main result is the following .

 M AIN  T HEOREM .  Let E be a Banach space . The following conditions are
 equi y  alent :

 (a)  the unit sphere S E  of E has  sJNR  ;

 (b)  E has  sJNR  ;   and

 (c)  E has an equi y  alent  LUR  norm .

 As we mentioned ,  K and rotundity imply the existence of a LUR renorming .
 Since every point in the unit sphere  S E   of such spaces has a base of
 neighbourhoods in the norm topology made up of slices [ 19 ] ,  this result follows
 immediately from the Main Theorem .

 In [ 17 ] Lancien proves that a Banach space  E  with countable dentability index
 is LUR renormable .  That means there is a countable ordinal  τ   such that for every
 »  .  0 there is a decreasing family ( C a  , »  ) a , τ   of convex subsets of  B E ,  with
 C 0 , »  5  B E  ,  "  h C a  , »  :  a  ,  τ  j  5  [ ,  and such that for every  a  ,  τ   the set  C a  , »  \  C a 1 1 , »
 is a union of slices of diameter less than  »  .  So we have  B E  5  ! a , τ  ( C a  , »  \  C a 1 1 , »  )
 and his result follows from our main theorem .  In the case when  τ   is a finite
 ordinal ,  he obtains a characterization of uniformly rotund renormability and a
 new proof of the well-known James – Enflo – Pisier renorming theorem [ 18 ] .

 If  T  is a one-to-one bounded linear operator from a Banach space  E  into a
 Banach space  F  and  F  has a rotund norm ,  it is well known that  E  also has a
 rotund norm .  For LUR renorming a similar result does not hold ,  and it seems
 natural to ask what conditions it is necessary to impose on the operator  T  to get a
 LUR renorming on  E .  According to the Main Theorem we know that it is enough
 to pull back the sJNR property .  From this point of view it is quite natural to
 require that ( E ,  i  ?  i  T  ) is  i  ?  i  -SLD where  i  x  i  T  : 5  i  Tx  i    (that is ,  if we consider
 the metrics  d ( x ,  y )  : 5  i  Tx  2  Ty  i  ,   r  ( x ,  y )  : 5  i  x  2  y  i  ,  with  x ,  y  P  E ,  and  7   the top-
 ology associated to  d ,  then ( E ,  7  ) is  r  -SLD) .  In this way we arrive at the following
 result which improves the transfer technique of G .  Godefroy [ 5 ;   3 ,  Chapter
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 VII . 2] ,  at least in obtaining LUR renorming without additional properties for
 dual norms .

 T HEOREM  5 (Transfer Technique) .  Let T be a one - to - one bounded linear
 operator from a Banach space  ( E ,  i  ?  i  )  into a  LUR  normed space F and define
 i  x  i  T  5  i  Tx  i   for e y  ery x  P  E . If  ( E ,  i  ?  i  T  )  is  i  ?  i  -SLD ,   then E has an equi y  alent
 LUR  norm .

 As an application of the transfer technique (Theorem 5) we will deduce ,  for
 instance ,  that every Banach space with separable projectional resolution of the
 identity has a LUR renorming [ 26 ] .  Now let us state the existence of such a
 renorming in some new cases .

 C OROLLARY  6 .  Let T be a one - to - one bounded linear operator from the Banach
 space E into the  LUR  normed space F such that for e y  ery bounded sequence  ( x n )
 in E with  i  x n  2  x  i  T  5  0  we ha y  e

 x  P  span( x n )
 i  ?  i E

 ( in particular , whene y  er x  P  conv( x n )
 i  ?  i E

 , or  w-lim  x n  5  x ) . Then E is  LUR
 renormable .

 The conditions imposed in this corollary are very natural when we are dealing
 with  C ( K ) spaces ,  with  K  compact ,  since Grothendieck’s theorem [ 4 ,  p .  156]
 asserts that a bounded set  L  of  C ( K ) is weakly compact if and only if  L  is
 compact in the topology of pointwise convergence on  K .  So from the previous
 corollary we obtain the following .

 C OROLLARY  7 .  Let T be a one - to - one bounded linear operator from C ( K )  into
 the  LUR  normed space F such that for e y  ery bounded sequence  ( x n )  in C ( K )  with
 i  x n  2  x  i  T  5  0  the sequence  ( x n )  pointwise con y  erges to x . Then C ( K )  is  LUR
 renormable .

 C OROLLARY  8 .  Let  ( K n )  be a sequence of closed subsets of a compact space K
 such that K  5  !  K n  and C ( K n )  has an equi y  alent  LUR  norm for e y  ery n  P  N .
 Then C ( K )  has an equi y  alent  LUR  norm .

 This corollary partially answers a question posed by R .  Haydon in [ 8 ] ;  see also
 [ 7 ,  Proposition 2 . 5] .

 As an application of Corollary 6 we will deduce the following result which is an
 extension of the classical transfer technique [ 3 ,  Theorem VII . 2 . 8] .

 C OROLLARY  9 .  Let T be a one - to - one bounded linear operator from the Banach
 space E into the  LUR  normed space F such that T  * F  *  is norm dense in E * . Then
 E is  LUR  renormable .

 A natural application will be the following (see [ 3 ,  Theorem VII . 4 . 10]) .

 C OROLLARY  10 .  Let E be a Banach space . Assume there exists a weak *- compact
 subset K  ’  E *  such that the norm - closed linear hull of K is equal to E * . If C ( K )  is
 LUR  renormable then so is E .

 Moreover ,  we develop a Decomposition Method which will enable us to
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 deduce from the Main Theorem the three-space property for LUR renormings [ 3 ]
 and that  C ( K ) has sJNR and so such a renorming ,  provided  K ( v 1 )  5  [   [ 9 ] .

 From now on the letters  i , j , k , l , m , n ,  will be positive integers ,   »  ,  d  ,  j  ,  h  ,  l  ,  m  ,
 …  ,  θ  ,  reals ,  and  E , F  Banach (or normed) spaces .

 The authors would like to thank J .  E .  Jayne for some fruitful discussions on the
 content of the paper .

 This paper was prepared mainly during the visit of the third named author to
 the University of Valencia in the Academic Year 1994 – 95 .  He acknowledges his
 gratitude for the hospitality and facilities provided by the University of Valencia .

 2 .  A transfer technique

 We start by proving Theorem 5 .

 Proof of Theorem  5 .  Fix  »  .  0 .  We can find subsets  E k , n  ,  with  k , n  P  N ,  such
 that  E  5  ! n ,k  E k , n   and  i  x  2  y  i  ,  »   whenever  x ,  y  P  E k , n   and  i  x  2  y  i  T  ,  k 2 1 .
 Since  i  ?  i  T   is a LUR norm on  E  and  i  ?  i  T  <  i  T  i  i  ?  i  ,  applying the Main
 Theorem we can find  E j

 k ,  with  j ,  k  P  N ,  such that  E  5  ! j  E j
 k   and for every  x  P  E j

 k

 there exists a slice  S ( E j
 k ,  f ,  l ) containing  x  with  i  ?  i  T  -diam  S ( E j

 k ,  f ,  l )  ,  k 2 1 ,
 where  f  P  ( E ,  i  ?  i  T  )* .  Set  E j

 k ,n  5  E k , n  >  E j
 k .  Evidently  E  5  ! j ,k ,n  E j

 k ,n   and every
 x  P  E j

 k ,n   belongs to a slice with  i  ?  i  -diameter less than  » .  Now the statement
 follows from the Main Theorem .

 Nevertheless the SLD property required in the transfer technique may be not
 so easy to check ,  so it will be useful to have easier conditions implying it .  There is
 a recent study of such a property due to L .  Oncina [ 20 ] in the spirit of Spahn [ 23 ] .

 Let  T  be a one-to-one linear map from a normed space ( E ,  i  ?  i  E ) into a
 normed space ( F ,  i  ?  i  F  ) .  Let us mention that when  F  is separable ,  then ( E ,  i  ?  i  T  )
 is  i  ?  i  E -SLD if and only if  E  is also separable .  Therefore ,  in the non-separable
 case ,  if ( E ,  i  ?  i  T  ) is  i  ?  i  E -SLD and  W  is a separable subspace of ( TE ,  i  ?  i  F  ) ,  then
 T  2 1 W  must be separable in  i  ?  i  E .  On the other hand ,  if this property of pulling
 back separable subspaces occurs in a ‘continuous way’ we can also prove the
 converse implication .

 L EMMA  11 .  Let E and F be normed spaces and T  :  E  5  F a one - to - one linear
 map  ( not necessarily bounded ) . If , for e y  ery x  P  E , there exists a separable

 subspace Z x  of E with x  P  span h Z x n
 :  n  P  N j

 i  ?  i E
  whene y  er  ( x n )  is a bounded

 sequence in E with  ( Tx n )  con y  erging to Tx in  i  ?  i  F  , then  ( E ,  i  ?  i  T  )  is  i  ?  i  E -SLD .

 This lemma has as hypothesis the necessary modification of a sequential
 property of maps from metric spaces to normed spaces with the weak topologies
 of [ 24 ,  p .  615 ,   §  1 . 4] ,  which allows us to use the idea of the proof of Srivatsa’s
 Theorem 2 . 1 [ 24 ] to show our conclusion ,  namely ( E ,  i  ?  i  T  ) is  i  ?  i  E -SLD ,  which
 is weaker than his conclusion of being of Baire class 1 .  Indeed ,  if
 T  2 1 :  ( TE ,  i  ?  i  F  )  5  ( E ,  i  ?  i  E )   is only a cluster point of a sequence of continuous
 functions ,  it clearly follows that ( E ,  i  ?  i  T  ) is  i  ?  i  E -SLD .  Although the converse
 implication in Lemma 11 also holds ,  it is not included since it is not within the
 scope of this paper .

 As an application of Lemma 11 and the transfer technique (Theorem 5) it
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 follows easily that every Banach space with separable projectional resolution of
 the identity has a LUR renorming [ 26 ] .

 The simplest application of Lemma 11 is when we deal with the family of
 one-dimensional subspaces  h span  ( x ) :  x  P  E j ;  this ,  together with the transfer
 technique ,  gives us the proof of Corollary 6 stated in the Introduction .

 Proof of Corollary  8 .  For every positive integer let  i  ?  i  n   be an equivalent LUR
 norm on  C ( K n ) such that  i  ?  i  n  <  i  ?  i  ̀  .  Let  F  be the  , 2 -sum of the family of
 Banach spaces  h ( C ( K n ) ,  i  ?  i  n ) :  n  P  N j .  Now the operator  T  :  C ( K )  5  F  defined
 by  Tx  5  ( n 2 1 x 3 K n ) ̀

 n 5 1  has the property that ,  given any bounded sequence ( x n ) in
 C ( K )   for which  Tx n   converges to  Tx ,  we have  x n 3 K n  5  x 3 K n   in  C ( K n ) ,  and hence
 x n  5  x  pointwise in  K .  Applying Corollary 7 we obtain the result .

 Proof of Corollary  9 .  Since  T  * F  * is norm dense in  E * ,  it is well known that on
 bounded sets of  E  the weak topology coincides with the topology of pointwise
 convergence on the elements of  T  * F  * .  Thus  T  2 1 :  TB E  5  E  is continuous from
 i  ?  i  F   to the weak topology and by Corollary 6 we have the required result .

 It is interesting to discuss a concrete example now .

 E XAMPLE .  Let  H  5  h u :  [0 ,  1]  5  h 0 ,  1 j :  u ( s )  <  u ( t ) if  s  <  t j   endowed with the
 pointwise convergence topology .  Then  H  is a compact ,  separable ,  non-metrizable
 space such that every point is a  G d  -set .  Therefore  H  is not Corson compact ,  since
 separable Corson compact spaces are metrizable .  Nor is  H  Valdivia compact ,
 since a Valdivia compact space in which all the points are  G d  -sets must be Corson
 compact .  Nevertheless ,  we will deduce from Corollary 7 that  C ( H ) admits a LUR
 renorming .  Let  D [0 ,  1] be the space of real functions on [0 ,  1] which are left
 continuous and have a right limit at each point ,  endowed with the supremum
 norm .  If  x  P  C ( H ) ,  let us define  x ̂  ( s )  5  x ( ∂ [ s , 1] ) ,  for all  s  P  [0 ,  1] .  Observe that

 lim
 s 5 t ,  s , t

 x ̂  ( s )  5  lim
 s 5 t ,  s , t

 x ( ∂ [ s , 1] )  5  x ( ∂ [ t , 1] )  5  x ̂  ( t ) ,

 and
 lim

 s 5 t ,  s . t
 x ̂  ( s )  5  lim

 s 5 t ,  s . t
 x ( ∂ [ s , 1] )  5  x ( ∂ ( t , 1] ) ,

 so we have  x ̂  P  D [0 ,  1] .  The operator  T  :  C ( H )  5  D [0 ,  1] ,  defined by  Tx  5  x ̂  ,  is
 SLD .  Indeed for every bounded sequence ( x n ) in  C ( H ) such that  x ̂  n   converges to
 x ̂    uniformly on [0 ,  1] ,  we have lim n  x n ( ∂ [ t , 1] )  5  lim n  x ̂  n ( t )  5  x ̂  ( t )  5  x ( ∂ [ t ,  1] ) and ,
 because of the uniform convergence ,

 lim
 n

 x n ( ∂ ( t , 1 ] )  5  lim
 n

 lim
 s 5 t ,  s . t

 x n ( ∂ [ s , 1] )  5  lim
 n

 lim
 s 5 t ,  s . t

 x ̂  n ( s )

 5  lim
 s 5 t ,  s . t

 lim
 n

 x ̂  n ( s )  5  lim
 s 5 t ,  s . t

 x ̂  ( s )  5  x ( ∂ ( t , 1] ) ,

 so ( x n ) converges pointwise to  x  on  H .  Finally ,  the space  D [0 ,  1] is LUR
 renormable [ 3 ,  VII . 3 ;   10 ,  Example 4 . 1] ,  and by our Corollary 7 so is  C ( H ) .

 In order to prove Lemma 11 we shall begin with a topological result for metric
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 spaces ,  and then we will deduce it ,  taking advantage of the linear structure .  A
 consequence of Stone’s proof of the paracompactness of a metric space gives ,  in
 any metric space ,  a  s  -discrete base for its topology [ 15 ,  Theorems 4 . 18 and 4 . 21] .
 Essentially we need even less ,  namely that in any metric space there exists a
 s  -disjoint base for its topology .  This is our main tool for the following lemma .

 L EMMA  12 .  Let Y be a non - y  oid set with two metrics d and  r   defined on it . If for
 e y  ery x  P  Y there is a  r  - separable subset Z x  of Y such that x  P  !

 ̀
 n 5 1  Z x n

 r

 whene y  er  ( x n )  is a d - con y  ergent sequence to x , then  ( Y ,  d )  is  r  -SLD .

 Proof .  Let  #  5  !
 ̀
 n 5 1  # n   be a base of the topology of ( Y ,  d ) ,  where  # n   is a

 family of disjoint  d -open sets for every  n  P  N .  We shall write

 # n  5  h V  n
 g  :  g  P  G n j

 and choose an element  y  n
 g  P  V  n

 g   in every non-void set of  # n .  Let  h s m
 n , g :  m  P  N j   be

 a  r  -dense subset of the  r  -separable subset  Z y  g
 n   for every  g  P  G n   and every  n  P  N ;

 set  D n  5  !  h V  n
 g  :  g  P  G n j ,  for  n  P  N .  Since  # n   is a family of disjoint sets ,  we can

 define ,  for every positive integer  m ,  a map  f m , n :  D n  5  Y  by  f m , n ( t )  5  s m
 n , g   if  t  P  V  n

 g .
 We have

 Z y  n
 g
 5  h  f m , n ( t ) :  m  P  N j

 r
 ,  for  all  t  P  V  n

 g  .

 Now we are ready to prove that ( Y ,  d ) is  r  -SLD .  Given  »  .  0 ,  we define the sets

 Y m ,n , »  5  h t  P  D n :  r  (  f m , n ( t ) ,  t )  ,  1 – 4 »  j

 for every pair  m , n  of positive integers .  Now we show that

 Y  5  !  h Y m ,n , » :  m ,  n  P  N j

 and for every set  Y m ,n , »   and every point  t  P  Y m , n , »   there is a  d -neighbourhood  V  of
 t  such that  r  -diam( V  >  Y m ,n , » )  <  » .

 Indeed ,  given  t  P  Y  there are  n k  P  N   and  g k  P  G n k
   such that  h V  n k

 g k
 j ̀
 k 5 1  forms a

 d -base of neighbourhoods of  t .  The sequence of points  h y  n k
 g k

 j ,  previously chosen ,
 converges to  t  in ( Y ,  d ) .  Then it follows that

 t  P  !  h Z y  g k
 n k :  k  P  N j

 r
 5  !  h  f m , n k

 ( t ) :  k ,  m  P  N j
 r
 ,

 so

 t  P  !  h Y m ,n k , » :  k ,  m  P  N j .

 To finish the proof let us fix  t  P  Y m , n , »  .  Let  g t  P  G n   be the index for which
 t  P  V  n

 g t
 .  If  u  P  V  n

 g t
 >  Y m ,n , »  ,  we have  f m , n ( t )  5  f m , n ( u )  5  s m

 n , g t
   by the definition of

 f m , n .  Therefore we have

 r  ( t ,  u )  <  r  ( t ,  f m , n ( t ))  1  r  (  f m , n ( t ) ,  f m , n ( u ))  1  r  (  f m , n ( u ) ,  u )  ,  1 – 2 »

 and  r  -diam( V  n
 g t

 >  Y m ,n , » )  <  » .

 Proof of Lemma  11 .  It is enough to show that the unit ball  B E   of  E  with  i  ?  i  T
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 is  i  ?  i  E -SLD ,  since the same proof works in any ball of  E .  We shall use the same
 notation and constructions as in Lemma 12 .  Indeed ,  if  #  5  !

 ̀
 n 5 1  # n   is a  s  -disjoint

 basis of the metric space ( B E  ,  i  ?  i  T  ) ,  we can construct the functions  f m , n :  D n  5  E ,
 with

 Z y  n
 g
 5  h  f m ,n ( t ) :  m  P  N j

 i  ?  i E
 for  every  t  P  V  n

 g  ,

 as above .
 Given a positive integer  k ,  s  5  ( s  1  ,  s  2  ,  . . . ,  s k )  P  N k ,  τ  5  ( τ  1  ,  τ  2  ,  . . . ,  τ k )  P  N k ,

 and  a  5  ( a  1  ,  a  2  ,  . . . ,  a k )  P  Q k ,  we define the function  g a
 s , τ   from  D ( τ  )  5  "

 k
 j 5 1  D τ j

 into  E  by

 g  a
 s  , τ ( t )  5  O k

 j 5 1
 a j  f s j , τ j

 ( t ) .

 Let us fix  »  .  0 and consider the sets

 Y a
 s , τ  , »  5  h t  P  D ( τ  ) :  i  g  a

 s  , τ ( t )  2  t  i  E  ,  1 – 4 »  j  for  k  P  N ,  s  ,  τ  P  N k  and  a  P  Q k .

 As in the proof of Lemma 12 ,  it follows that

 B E  5  !  h Y  a
 s  , τ  , » :  s  ,  τ  P  N k ,  a  P  Q k ,  k  P  N j

 and in every set  Y a
 s  , τ  , »   every point  t  has a  i  ?  i  T  -neighbourhood  V  such that

 i  ?  i  E -diam( V  >  Y  a
 s  , τ  , » )  <  » .

 3 .  A decomposition method

 Another tool which will enable us to deduce the existence of LUR renormings
 from the Main Theorem is the following proposition .

 P ROPOSITION  13 (Decomposition Method) .  Let H and L be subsets of a Banach
 space E and F be a  LUR  normed space with the following properties :

 (a)  H has  »  -sJNR  for some  »  .  0 ;

 (b)  for e y  ery x  P  L there exist a bounded linear operator T x :  E  5  F , a
 continuous  ( not necessarily linear )  map B x  :  T x E  5  E and  d x  .  0  such that
 x  2  B x T x x  P  H and T x  5  T y  , B x  5  B y  whene y  er y  P  L and  i  T x ( x  2  y )  i  ,  d x  ;

 (c)  for e y  ery  θ  .  0  we can write L  5  ! k  L k , θ   in such a way that

 i  T x x  i  1  θ  .  sup  h  i  T x  y  i  :  y  P  L k , θ  j

 for e y  ery x  P  L k , θ  , and k  P  N .

 Then L has  »  -sJNR .

 From the decomposition method we can deduce the three-space property for
 LUR renorming [ 6 ] .  Indeed ,  let  H  be a subspace of  E  such that both  H  and
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 F  5  E  / H  have a LUR renorming .  According to the Bartle – Graves result (cf .  for
 example ,  [ 3 ,  p .  299]) ,  there exists a continuous (not necessarily linear) map
 B :  F  5  E  such that  TBz  5  z  for every  z  P  F  ,  where  T  is the canonical quotient
 map from  E  onto  F .  In the decomposition method set  L  5  E  and  T x  5  T  ,   B x  5  B
 for every  x  P  E .  It is easy to check that the conditions (a) ,  (b) ,  (c) are fulfilled ,
 and we obtain that  E  has  »  -sJNR for every  »  .  0 .

 Let us start by proving the following lemma .

 L EMMA  14 .  Let E be  LUR .   Then for e y  ery  »  .  0 , we can write E  5  ! n  E n , »   in
 such a way that E n , »  ’  E ( n 1 1) , »  , and for e y  ery z  P  E n , »  , there exists a functional g z

 supporting z and such that the inequality

 (1)  i  w  i  2  n 2 1  ,  i  z  i  ,  g z ( w )  1  n 2 1

 implies  i  w  2  z  i  ,  » .

 Proof .  Given  j  .  0 ,  since every point  x  of  S E   is strongly exposed ,  for every
 functional  g x   supporting  x  we can find  l  5  l ( x ,  j  )  ,  1 such that diam  S ( g x  ,  l )  ,  j .

 Now let  »  .  0 and  n  .  »  2 1 ,  and denote by  E n , »   the set of  z  P  E  for which

 l ( z  /  i  z  i  ,  »  /  i  z  i  )  ,  (  i  z  i  2  n 2 1 ) / (  i  z  i  1  n 2 1 ) .

 Let  z  P  E n , »   and  w  P  E  satisfy (1) .  Set  x  5  z  /  i  z  i    and  y  5  w  /  i  w  i  .  From (1) we
 obtain

 g z ( y  )  .  (  i  z  i  2  n 2 1 ) /  i  w  i  .  l ( x ,  »  /  i  z  i  ) .

 Then  i  y  2  x  i  ,  »  /  i  z  i  .  Hence

 i  w  2  z  i  <  i  z  i  i  y  2  x  i  1  u  i  w  i  2  i  z  i  u  ,  »  1  n 2 1  ,  2 » .

 Proof of Proposition  13 .  Since  H  has  »  -sJNR ,  we can write  H  5  ! j ,n  H j
 n   in such

 a way that for every  y  P  H j
 n ,  with  j ,  n  P  N ,  there exist  h y  P  S E *  and  m y   such that

 (2)  min h h y  ( y  )  2  m y  ,  »  -diam  S ( H j
 n ,  h y  ,  m y  ) j  .  2 / j .

 From Lemma 14 ,  it follows that for every  m  P  N   we can write  F  5  ! i  F  i
 m   in such

 a way that  F  i
 m  ’  F  i 1 1

 m    and for every  z  P  F  i
 m   there exists a functional  g z   supported

 by  z  such that

 (3)  i  w  2  z  i  ,  m  2 1 ,

 whenever  i  w  i  2  i 2 1  ,  i  z  i  ,  g z ( w )  1  i 2 1 .
 For every  x  P  L  and  j  P  N   we can find  h x , j  P  (0 ,  d x ) such that

 (4)  i  B x T x x  2  B x T x  y  i  ,  j 2 1 ,

 whenever  y  P  E  and  i  T x x  2  T x  y  i  ,  h x , j  .
 Set  F x  5  B x T x x  and    x  5  x  2  F x .  We note that    L  ’  H .  Let  i ,  j ,  k ,  m ,  n  P  N .

 By  L i ,j
 k ,m ,n   we denote the set made up of all  x  P  L  for which    x  P  H j

 n ,  h x , j  .  m 2 1 ,
 T x x  P  F  i

 m ,   i  x  i  ,  1 – 3 i ,  and  x  P  L k , θ   where  θ  5  i 2 2 j 2 1 .  Evidently  L  5  ! i ,j ,k ,m ,n L i ,j
 k ,m ,n .
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 Let  x  P  L i ,j
 k ,m ,n .  Set  u  5  F x ,  y  5    x ,  z  5  T x x ,  and  f  5  T  * x  g z  1  i 2 2 h y  .  We can find

 j   such that

 (5)  m y  1  2 j 2 1  ,  j  ,  h y  ( y  )  ,  j  1  1 – 3 .

 From (5) we obtain

 f  ( x )  5  g z ( T x x )  1  i 2 2 h y  ( x )  5  i  z  i  1  i 2 2 ( h y  ( u )  1  h y  ( y  ))

 .  i  z  i  1  i 2 2 ( h y  ( u )  1  j  )  5  l .

 So  x  P  S ( L i ,j
 k ,m ,n ,  f ,  l ) .  Let  y  P  S ( L i ,j

 k ,m ,n ,  f ,  l ) .  From (4) we have  j  .  h y  ( y  )  2  1 – 3  ,
 and since  i  x  i  ,  i  y  i  ,  1 – 3 i ,  we obtain

 (6)  g z ( T x  y )  5  f  (  y )  2  i 2 2 h y  (  y )

 .  l  2  i 2 2 h y  (  y )

 5  i  z  i  1  i 2 2 ( h y  ( u )  1  j  2  h y  (  y ))

 .  i  z  i  1  i 2 2 ( h y  ( x  2  y )  2  1 – 3 )  .  i  z  i  2  i 2 1 .

 Since  x  P  L k , θ  ,  we have

 (7)  i  T x  y  i  ,  i  T x x  i  1  i 2 2 j 2 1  5  i  z  i  1  i 2 2 j 2 1  <  i  z  i  1  i 2 1 .

 Taking into account the fact that  z  P  F  i
 m   and applying (3) for  w  5  T x  y  from (6)

 and (7) ,  we obtain  i  T x x  2  T x  y  i  5  i  z  2  T x  y  i  ,  m  2 1 .  Since  m 2 1  ,  h x , j  ,  d x  ,  we get
 T x  5  T y  , B x  5  B y .  This and (3) imply that

 (8)  i  u  2  F y  i  5  i  F x  2  F y  i  5  i  B x T x x  2  B x T x  y  i  ,  j 2 1 .

 Since  f  (  y )  .  l   from (6) and (7) ,  we obtain

 h y  (   y )  5  i 2 (  f  (  y )  2  g z ( T x  y ))  2  h y  ( F y )

 .  i 2 ( l  2  i  T x  y  i  )  2  h y  ( F y )

 5  i 2 (  i  z  i  2  i  T x  y  i  )  1  j  1  h y  ( u  2  F y )

 .  2 j 2 1  1  j  2  i  u  2  F y  i  .  j  2  2 j 2 1  .  m y  .

 So    y  P  S ( H j
 n ,  h y  ,  m y  ) .  Then from (2) we get  i  y  2    y  i  ,  »  2  2 j 2 1 .  Hence

 i  x  2  y  i  ,  i  u  2  F y  i  1  i  y  2    y  i  ,  » .

 E XAMPLE  [ 9 ] .  If  K  is a compact space such that  K ( v  1 )  5  [   then  C ( K ) has sJNR .

 For an ordinal  a   we set  K a  5  K ( a  )  \  K ( a 1 1) .  For  t  P  K a   we can find a clopen set
 U t   such that  U t  >  K a  5  h t j .  Since  U t   is clopen ,  we obtain  u t  5  ∂ U t

 P  C ( K ) .  Let  h e t j
 be the unit vector basis in  l 2 ( K a  ) .  For  x  P  C ( K ) ,  L  ’  K a  ,  u L u  ,  ̀    we set

 P L x  5  O
 t P L

 x ( t ) u t  ,  R L x  5  x  2  P L x ,  Q L x  5  O
 t P L

 x ( t ) e t  .

 Fix  »  .  0 .  For  x  P  C ( K ) ,  an ordinal  a   and  m ,  n  P  N   we set

 D a
 x  5  h t  P  K a  :  u x ( t ) u  >  »  j ,  h  a

 x  5  »  2  max  h u x ( t ) u :  t  P  K a  \  D a
 x  j ,

 E a
 m ,n  5  h y  P  C ( K ) ,  u D a

 y  u  5  n ,  h  a
 x  .  m 2 1 j ,  E  a  5  !

 m ,n
 E a

 m ,n ,  E a  5  !

 b , a
 E  b .
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 Let us observe that  x  P  E a   whenever  D a
 x  5  [ .  In particular ,  for every  x  P  E a   we

 have

 (9)  R D x
 a  x  P  E a  .

 We shall prove by transfinite induction that ,  for every  a  ,  v  1 ,  the set  E a   has
 »  -sJNR .  Assume that the inductive assertion has already been proved for all
 b  ,  a  ,  that is ,   E  b   has  »  -sJNR for  b  ,  a .  Since  a  ,  v  1 ,  we find that  E a   has
 »  -sJNR .  Fix  m ,  n  P  N   and set  H  5  E a ,   L  5  E  a

 m ,n , E  5  C ( K ) , F  5  l 2 ( K a  ) in
 Proposition 13 (the decomposition method) .  For  x  P  L  and  y  P  E  we set
 T x  y  5  Q D x

 a  y , B x T x  y  5  P D x
 a  y .  Applying (9) we get  x  2  B x T x x  5  R D x

 a  x  P  H .  So (b)
 from Proposition 13 is fulfilled .  Let  θ  P  (0 ,  1] ,  and  q  5  ( q i )

 n
 1  P  Q n   such that

 u q 1 u  >  u q 2 u  >  . . .  >  u q n u  >  » .  By  L q , θ   we denote all  x  P  E  a
 m ,n   for which ( t i )

 n
 1  5  D a

 x  ,
 u x ( t 1 ) u  >  u x ( t 2 ) u  >  . . .  >  u x ( t n ) u  >  »   and

 (10)  u x ( t i )  2  q i u  ,  θ  / 4 n .

 Let  y  P  L q , θ  .  Taking into account the fact that  u  y ( t i ) u  ,  »  <  u q i u   for all  t i  ̧  D a
 y    and

 using (10) we obtain

 i  T x x  i  > S O  q 2
 i D

 1 – 2

 2 S O  ( x ( t i )  2  q i )
 2 D 1 – 2

 > S O  q 2
 i D

 1 – 2

 2  θ  >  i  T x  y  i  2  2 θ .

 This implies that (c) in Proposition 13 is fulfilled .  In the same way ,  it is possible
 to show that  E 0

 m ,n   has  »  -sJNR .  So we have proved that  E a  ,  a  ,  v  1 ,  has  »  -sJNR for
 every  »  .  0 .

 4 .  The main theorem

 We begin by recalling some definitions .

 D EFINITION  15 .  A Banach space  E  (or the norm in  E ) is said to :

 (a)  be  rotund  (R for short) if the unit sphere of  E  contains no open segment ;

 (b)  be  weakly midpoint locally uniformly rotund  or  midpoint locally uniformly
 rotund  (wMLUR or MLUR for short ,  respectively) if given sequences (  y k ) ,
 ( z k ) and  x  in  E  we have w-lim k (  y k  2  z k )  5  0 or lim k  i  y k  2  z k  i  5  0 ,  respec-
 tively ,  whenever  i  y k  i  ,  i  z k  i  <  i  x  i    and lim k  i  y k  1  z k  2  2 x  i  5  0 .

 In order to prove the Main Theorem we add a new equivalence .

 M AIN  T HEOREM  (complete version) .  Let E be a Banach space . The following
 conditions are equi y  alent :

 (a)  the unit sphere S E  of E has  sJNR  ;

 (b)  E has  sJNR  ;

 (c)  E has an equi y  alent  LUR  norm ;   and

 (d)  E has  JNR  and an equi y  alent  wMLUR  norm .
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 In [ 10 ] it is shown that K  é  JNR .  In [ 19 ] it is proved that K & R imply MLUR .
 Hence we have K & R  é  JNR&wMLUR .  So the metric property K has been
 replaced by JNR ,  which is a condition stated in topological terms .  The notion of
 wMLUR is stronger than R .  Essentially from [ 16 ] ,  it follows that wMLUR is
 equivalent to all points of  S E   being extreme points of the bidual ball  B E * *  .  In fact
 wMLUR is a stronger condition than R even from the point of view of
 isomorphism [ 1 ,  2 ] .  However ,  in the case of  C ( T  ) ,  R .  Haydon characterized
 certain trees  T  for which  C ( T  ) has R renorming and showed that they are the
 same as those which admit a MLUR renorming .  He also characterized the trees  T
 for which  C ( T  ) has a K renorming .  In this way he characterized the trees  T  for
 which  C ( T  ) has a LUR renorming .  Moreover ,  he obtained a tree  T  such that
 C ( T  )   admits a K renorming but no R equivalent norm .  For these and more
 results about renormings of these spaces see [ 7 ] and the comments of  §  6 ,  Chapter
 VII in [ 3 ] .

 Proof of the complete  y  ersion of the Main Theorem .  (d)  é  (a) Since  E  has JNR ,
 we must have  S E  5  ! k  Q k , »   and for every  z  P  Q k , »   there exists a weak open set  V z

 containing  z  such that diam  ( V z  >  Q k , »  )  ,  » .  Since  E  is wMLUR ,  the proof of
 Remark 3 in [ 16 ] shows that all points of  S E   are extreme points for  B E * *  .  Then
 it follows that for every  x  P  S E   the open slices  S (  f ,  m  ) of  B E   form a base
 of neighbourhoods for  x  in the weak topology of  B E   (see [ 22 ,  Corollary 1 . 7]) .
 So we can find a slice  S (  f ,  m  ) of  B E ,  such that  z  P  S (  f ,  m  )  ’  V z  >  B E .  Since
 diam  ( V z  >  Q n , »  )  ,  »  ,  we have diam  S ( Q n , »  ,  f ,  m  )  ,  » .

 (c)  é  (b)  Let  E n , »   satisfy the condition of Lemma 14 .  For  q  P  Q   we set
 E q

 n , »  5  h z  P  E n , »  :  u  i  z  i  2  q u  ,  1 / 2 n j .  We have

 z  P  S ( E q
 n ,e ,  g z  ,  q  2  1 / 2 n )  and  diam  S ( E q

 n , »  ,  g z  ,  q  2  1 / 2 n )  ,  2 » .

 The implication (b)  é  (a) is evident .
 (c)  é  (d)  Let  E  be LUR .  Then evidently  E  is wMLUR .  From the implication

 (c)  é  (b) we infer that  E  has sJNR .  Hence  E  has JNR .
 The proof of the existence of a LUR equivalent norm for spaces with sJNR ,

 that is ,  the implication (a)  é  (c) ,  is based on probabilistic techniques so we
 require some more notation .

 N OTATION .  Here and subsequently we will denote by  Ω   and  Ω n ,  for  n  P  N ,  the
 sets  h v  :  v  5  ( v i )

 ̀
 1  ,  v i  5  Ú 1 j   and  h v  :  v  5  ( v i )

 n
 1  ,  v i  5  Ú 1 j   respectively .  For  a  5

 ( a i )
 n
 1  P  Ω n   we set  T a  5  h v  P  Ω :  v  5  ( v i )

 ̀
 1  ,  a i  5  v i ,   i  5  1 ,  2 ,  . . . ,  n j ,  and  7 n  5

 h T a j a  P Ω n
 .

 The symbol  !  0  will stand for  h [ ,  Ω j ,  and  ! n   will be the finite algebra made up
 by the empty set and the sets  ! a  P L  T a   for  L  ’  Ω n  .  We will denote by  !   the
 s  -algebra generated by the sets of  ! n ,  for  n  5  1 ,  2 ,  . . . ,  and  p  will be the
 probabilistic measure on  !  .

 Here and subsequently ,  given a subset  A  of  Ω ,  the symbol  A 2  will stand for the
 complement of the set  A ,  that is ,   Ω  \  A  (and not the closure of this set) .

 Let us recall that an  E -valued Walsh – Paley martingale ( M n ) is a sequence of
 functions from  Ω   to a Banach space  E  such that  M n   is  ! n -measurable for  n  >  0
 and  E ( M n 3 ! n 2 1 )  5  M n 2 1  for  n  >  1 .  We denote the ‘increments’ of the martingale
 ( M n )   by  dM 0  5  M 0  and  dM n  5  M n  2  M n 2 1  for  n  >  1 .

 Let  H  be a cone in  E .  We set  g k ( H )  5  inf h sup n ( E  i  M n  i  2 )
 1 – 2 j   where the infimum is
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 taken over all  E -valued Walsh – Paley martingales ( M n ) such that the set

 H n :  E
 M n

 2 1 ( H )
 i  dM n  i  2  >  1 J

 has at least  k  elements .  We put  g  ( H )  5  sup  h g k ( H ) :  k  >  1 j .

 P ROPOSITION  16 .  A Banach space E admits a  LUR  norm if and only if for e y  ery
 »  .  0  there is a sequence  h E n , »  j n > 1   of cones in E such that E  5  ! n  E n , »   and
 inf n  g  ( E n , » )  >  »  2 1 .

 Following the proof in [ 3 ,  pp .  144 – 148] we obtain a LUR norm  u  ?  u   that is not
 necessarily symmetric .  Then we set  i  x  i  5  ( u x u 2  1  u 2 x u 2 )

 1 – 2  to get a symmetric norm .
 Since  u  ?  u   is LUR ,  it is easy to see that  i  ?  i    is also LUR .

 L EMMA  17 .  Let  0  ,  h  ,  1 ,  i  x  i  5  1 , x  5  E  X , and  E  i  X  i  2  <  1  1  h  4 . If we set
 C  5  h  i  X  i  2  ,  1  2  h

 1 – 2 j , D  5  h  i  X  i  2  .  1  1  h  j , then

 p ( C )  <  7 h
 1 – 2  ,  p ( D )  <  3 h  ,  S E

 D
 i  X  i  2 D 1 – 2

 <  (6 h  )
 1 – 2  ,  S E

 D
 i  X  2  x  i  2 D 1 – 2

 <  9 h
 1 – 2 .

 Proof .  The last three inequalities are proved in [ 3 ,  p .  136] .  Moreover we have

 1  <  E  i  X  i  2  5 E
 C

 i  X  i  2  1 E
 D

 i  X  i  2  1 E
 D 2 \ C

 i  X  i  2

 ,  (1  2  h
 1 – 2 ) p ( C )  1  6 h  1  (1  1  h  ) p ( D  2  \  C )

 <  1  2  h
 1 – 2 p ( C )  1  7 h  .

 D EFINITION  18 .  A cone  H  ’  E  is said to be ( »  ,  d  )- admissible  if for every
 E -valued random variable  X  we have

 E  i  X  i  2  >  (1  1  d  4 )  i  x  i  2

 whenever

 E  X  5  x  P  H  and  p ( h  i  X  2  x  i  >  »  i  x  i  j  >  X  2 1 ( H ))  >  »  2 .

 We say that  H  is  »  - admissible  whenever there exists a positive  d   such that  H  is
 ( »  ,  d  )-admissible .

 Now we introduce some notation which will be valid throughout statements
 19 – 23 .  For fixed  e  P  S E  , f  P  S E *  such that  f  ( e )  5  1 we set

 d ( x )  5  inf h  i  x  2  l e  i  :  l  P  R j ,  g ( x )  5  ( d 2 ( x )  1  f  2 ( x ))
 1 – 2  ,

 u x u  5  ( 1 – 3 (  i  x  i  2  1  g 2 ( x )))
 1 – 2  ,  and  _ ( e ,  »  )  5  h x  P  E  :  i  x  /  i  x  i  2  e  i  <  »  j .
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 We use  E ( »  ,  d  ) to stand for the set of the elements  x  in  E  such that [ 3 ,  p .  139]

 inf  h E  i  X  i  2 :  E  X  5  x ,  E  i  X  2  x  i  2  >  ( »  i  x  i  ) 2 j  >  (1  1  d  )  i  x  i  2  .

 L EMMA  19 .  For e y  ery x  P  E we ha y  e  u x u 2  <  2 g 2 ( x ) ,  ( 2 – 5 )
 1 – 2  i  x  i  <  u x u  <  i  x  i  .

 Proof .  Let  x  P  E  and  m   be such that  d ( x )  5  i  x  2  m e  i  .  We have

 i  x  i  <  2  max  h (  i  x  i  2  m  ) ,  ( m  2  f  ( x )) j  1  f  ( x )  <  2 d ( x )  1  f  ( x )  <  5
 1 – 2 g ( x ) .

 Then 6 g 2 ( x )  5  5 g 2 ( x )  1  g  2 ( x )  >  i  x  i  2  1  g  2 ( x )  5  3  u x u 2 ,  which proves the first asser-
 tion of the statement .  To show the second ,  it is enough to note that 6  i  x  i  2  <
 5 g 2 ( x )  1  5  i  x  i  2  5  15  u x u 2 .

 L EMMA  20 .  Let x  P  _ ( e ,  »  ) ,  u x u  5  1 ,  E  X  5  x , and  E  u X  2  x u 2  >  (12 »  ) 2 . Then
 E  u X  u 2  >  1  1  4 »  2 .

 Proof .  Since  x  P  _ ( e ,  »  ) ,  we have  d ( x )  <  »  i  x  i  <  ( 5 – 2 )
 1 – 2 » .  Then from Lemma 19

 we have for any  y  P  E , d (  y  2  x )  <  ( 5 – 2 )
 1 – 2  u  y  2  x u   and

 3  u  y u 2  >  i  y  i  2  1  ( d (  y  2  x )  2  d ( x )) 2  1  f  2 (  y  2  x  1  x )

 5  i  y  i  2  2  i  x  i  2  1  g  2 (  y  2  x )  2  2 d ( x ) d ( x  2  y )  1  2 f  ( x ) f  (  y  2  x )  1  3  u x u 2

 >  i  y  i  2  2  i  x  i  2  1  1 – 2  u  y  2  x u 2  2  5 »  u  y  2  x u  1  2 f  ( x ) f  ( x ) f  (  y  2  x )  1  3  u x u 2 .

 Taking into account the facts that  E  f  ( X  2  x )  5  0 and  E  i  X  i  2  >  i  x  i  2 ,  if in the
 above inequality we replace  y  by the random variable  X  and integrate ,  we obtain

 3 E  u X  u 2  >  1 – 2 E  u X  2  x u 2  2  5 »  E  u X  2  x u  1  3  u x u 2

 >  3  1  ( E  u X  2  x u 2 )
 1 – 2 ( 1 – 2 ( E  3  X  2  x u 2 )

 1 – 2  2  5 »  )  >  3  1  12 »  2 .

 P ROPOSITION  21 .  Let  0  ,  »  ,  d  ,  1 , and let  ( M n )  be an E - y  alued Walsh  – Paley
 martingale . If  e A j

 i  dM n j
 i  2  >  36 »  2 , M n j

 ( A j )  ’  E ( »  ,  d  )  for j  5  1 ,  2 ,  . . . ,  r , and r  >
 a »  2 5 d  2 1  where a is an absolute positi y  e constant , then  E  i  M n r

 i  2  >  1 .

 This proposition essentially follows from [ 3 ,  Lemmas 3 . 2 ,  3 . 3 ,  pp .  139 – 144] .

 C OROLLARY  22 .  Let  0  ,  »  ,  1 – 24  , e  P  E , and  ( M n )  be an E - y  alued Walsh  – Paley
 martingale . If  e A j

 i  dM n j
 i  2  >  b »  2   where b  5  5  .  12 4 , M n j

 ( A j )  ’  _ ( e ,  2 »  )  for j  5
 1 ,  2 ,  . . . ,  r , and r  >  s ( »  )  5  [3 a (2 / »  ) 7 ]  1  1 , then  E  i  M n r

 i  2  >  2 .

 Proof .  According to Lemma 20 and Lemma 19 we have  _ ( e ,  2 »  )  ’
 E u ? u (24 »  ,  16 »  2 ) ,  and

 E
 A j

 u dM n j  / 4 2 u 2  >
 1
 5
 E

 A j

 i  dM n j
 i  2  >  36(24 »  ) 2 .

 Now the statement follows from Proposition 21 .
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 L EMMA  23 .  Let  0  ,  »  ,  d  ,  1 – 24   and H be a  ( »  ,  d  )- admissible cone in E ,  ( M n )  an
 E - y  alued Walsh  – Paley martingale so that M 0  P  H ,  i  M 0  i  5  1 , M n j

 ( A j )  ’  H ,
 e A j

 i  dM n j
 i  2  >  c »  2  for j  5  1 ,  2 ,  . . . ,  r , and r  >  s ( »  )  where c  5  b  1  36  and b , s ( »  )

 are from Corollary  22 . Then we ha y  e  E  i  M n r
 i  2  >  1  1  h  4 ( »  ,  d  )  where  h  ( »  ,  d  )  5

 min h d  ,  ( »  / 10) 2 j .

 Proof .  Suppose the contrary is true .  Set  M 0  5  e  and  B j  5  A j  \  M 2 1
 n j

 ( _ ( e ,  2 »  )) .
 We begin by distinguishing two possibilities .

 First ,

 E
 A j  \  B j

 i  dM n j
 i  2  >  b »  2  for  j  5  1 ,  2 ,  . . . ,  r .

 In this case ,  according to Corollary 22 we get  E  i  M n r
 i  2  >  2 ,  which is a

 contradiction since  h  ( »  ,  d  )  ,  1 .
 Second ,  we have for some  i  that  e A i \ B i

 i  dM n i
 i  2  ,  b »  2 .  Later we will deduce from

 the above inequality that

 (11)  p ( B i )  >  »  2 .

 Since  M n i
 ( B i )  >  _ ( e ,  2 »  )  5  [   for  x  P  M n i

 ( B i ) ,  we have

 (12)  i  x  2  e  i  >  max h u  i  x  i  2  1 u ,  i  x  /  i  x  i  2  e  i  2  u  i  x  i  2  1 u j  >  » .

 Let us note that once (11) has been proved ,  the anticipated contradiction follows
 easily from the inequalities

 (13)  E  i  M n i 2 1  i  2  <  E  i  M n i
 i  2  <  E  i  M n r

 i  2  ,  1  1  h  4 .

 On the other hand ,  since  E M n i
 5  e  from the admissibility of  H ,  (11) and (12) ,  we

 conclude that  E  i  M n i
 i  2  >  1  1  d  4 .  Hence by (13) we get  d  ,  h  ,  which is contrary to

 the choice of  h .  We now begin the proof of (11) by observing that

 (14)  E
 B i

 i  dM n i
 i  2  5 E

 A i

 i  dM n i
 i  2  2 E

 A i \ B i

 i  dM n i
 i  2  .  c »  2  2  b »  2  5  (6 »  ) 2 .

 On the other hand ,  from (14) and Lemma 17 we deduce that  p ( C i )  <  3 h  ,
 p ( D i )  <  3 h  ,

 (15)  S E
 C i

 i  M n i 2 1  i  2 D 1 – 2

 <  (6 h  )
 1 – 2  ,  S E

 D i

 i  M n i
 i  2 D 1 – 2

 <  (6 h  )
 1 – 2  ,

 where  C i  5  h  i  M n i 2 1  i  2  >  1  1  h  j   and  D i  5  h  i  M n i
 i  2  >  1  1  h  j .

 Moreover ,  since  B i   is the disjoint union of the sets  B i  >  C i  >  D i  , B i  >  C i  >  D  2
 i  ,

 B i  >  C  2
 i  >  D i ,   B i  >  C  2

 i  >  D 2
 i  ,  it follows from the triangle inequality that

 (16)  S E
 B i

 i  dM n i
 i  2 D 1 – 2

 < S E
 B i > C i > D i

 i  dM n i
 i  2 D 1 – 2

 1 S E
 B i > C i > D i

 2

 i  dM n i
 i  2 D 1 – 2

 1 S E
 B i > C i

 2 > D i

 i  dM n i
 i  2 D 1 – 2

 1 S E
 B i > C i

 2 > D i
 2

 i  dM n i
 i  2 D 1 – 2

 .
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 It follows from the triangle inequality that ,  for all measurable sets  G 1  , G 2

 containing  G ,

 S E
 G

 i  dM n i
 i  2 D 1 – 2

 < S E
 G 1

 i  M n i
 i  2 D 1 – 2

 1 S E
 G 2

 i  M n i 2 1  i  2 D 1 – 2

 .

 From (15) ,  applying this inequality ,  we obtain

 S E
 B i > C i > D i

 i  dM n i
 i  2 D 1 – 2

 < S E
 D i

 i  M n i
 i  2 D 1 – 2

 1 S E
 C i

 i  M n i 2 1  i  2 D 1 – 2

 <  2(6 h  )
 1 – 2 ,

 S E
 B i > C i > D i

 2

 i  dM n i
 i  2 D 1 – 2

 < S E
 B i > D i

 2

 i  M n i
 i  2 D 1 – 2

 1 S E
 C i

 i  M n i 2 1  i  2 D 1 – 2

 <  (1  1  h  )
 1 – 2 p

 1 – 2 ( B i )  1  (6 h  )
 1 – 2  ,

 S E
 B i > C i

 2 > D i

 i  dM n i
 i  2 D 1 – 2

 < S E
 D i

 i  M n i
 i  2 D 1 – 2

 1 S E
 B i > C i

 2

 i  M n i 2 1  i  2 D 1 – 2

 <  (6 h  )
 1 – 2  1  (1  1  h  )

 1 – 2 p
 1 – 2 ( B i ) ,

 S E
 B i > C i

 2 > D i
 2

 i  dM n i
 i  2 D 1 – 2

 < S E
 B i > D i

 2

 i  M n i
 i  2 D 1 – 2

 1 S E
 B i > C i

 2

 i  M n i 2 1  i  2 D 1 – 2

 <  2(1  1  h  )
 1 – 2 p

 1 – 2 ( B i ) .

 These four inequalities and (16) yield

 S E
 B i

 i  dM n i
 i  2 D 1 – 2

 <  4(6 h  )
 1 – 2  1  4(1  1  h  )

 1 – 2 p
 1 – 2 ( B i )  <  »  1  5 p

 1 – 2 ( B i ) .

 Combining this with (14) we obtain (11) .

 The next lemma has some ideas in common with [ 27 ,  Lemma 4 . 4] .

 L EMMA  24 .  Let H ,  »  ,  d  , s ( »  ) ,  h  ( »  ,  d  )  and c be as in Lemma  23  and
 m  >  r »  2 2  1  1 , where r  5  s ( »  ) . Let  ( M n ) n m

 n 5 0   be an E - y  alued Walsh  – Paley martingale
 such that n 0  ,  n 1  ,  . . .  ,  n m  ,  E  i  M n 0  i  2  <  1 , and  e M n j

 2 1 ( H )  i  dM n j
 i  2  >  7 c »  2   for j  5

 1 ,  2 ,  . . . ,  m . Then

 E  i  M n m
 i  2  > S 1  1  »  2 h  4 ( »  ,  d  ) / r S m

 r
 D D E  i  M n 0  i  2 .

 Proof .  Set  θ  5  c
 1 – 2 »   and  τ   such that  E  i  M n m

 i  2  5  (1  1  τ  ) E  i  M n 0  i  2 .  Obviously we
 may assume that  τ  ,  1 – 4 .

 Put  A i  5  M  2 1
 n i

 ( H ) and  C 1  5  A 1  , B j  5  !
 j 2 1
 1  A i  ,  C j  5  A j  \  B j  ,  for  j  5  2 ,  3 ,  . . . ,  m .

 We denote by  C j , k  ,  for  j  ,  k ,  the union of all  T  P  7 n j
   such that  T  ’  C j   and

 (17)  θ  2  i  M n j
 ( T  )  i  2  p ( T  )  < E

 A k > T
 i  dM n k

 i  2  .
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 Evidently (17) implies that

 (18)  E
 A k > D j , k

 i  dM n k
 i  2  <  θ  2 E

 D j , k

 i  M n j
 i  2  where  D j , k  5  C j  \  C j , k .

 For  q  <  k  2  j  let  P j ,k ,q  5  h ( n i 1
 ,  n i 2

 ,  . . . ,  n i q ) :  j  ,  i 1  ,  i 2  ,  . . .  ,  i q  5  k j ,  and  C j ( π  )  5
 "

 q
 h 5 1  C j ,i h  ,  where  π  5  ( n i 1

 ,  n i 2
 ,  . . . ,  n i q )  P  P j ,k ,q .  Set

 C j ,k ,q  5 H !  h C j ( π  ) :  π  P  P j ,k ,q j
 [

 if  q  <  k  2  j ,

 if  q  .  k  2  j .

 Let  F j ,k ,q  5  C j ,k ,q  \  C j ,k , ( q 1 1) .  Since  C j ,k , ( q 1 1)  ‘  C j ,k ,q  ‘  . . .  ‘  C j ,k , 1  5  C j ,k ,  we have

 (19)  C j , k  5  C j ,k ,r  < S  !

 r 2 1

 q 5 1
 F j ,k ,q D .

 We claim that

 (20)  F j 1 ,k 1 ,q  >  F j 2 ,k 2 ,q  5  [  if  (  j 1  ,  k 1 )  ?  (  j 2  ,  k 2 ) .

 Indeed ,  since  F j ,k ,q  ’  C j   and the sets  h C j j m
 j 5 1  are disjoint ,  (20) holds when  j 1  ?  j 2  .

 Suppose now that  j  5  j 1  5  j 2  and  k  5  k 1  ,  k 2  5  l  and ,  contrary to our claim ,  that
 there exists an  v  P  F j ,k ,q  >  F j ,l ,q .  Then since  v  P  F j ,k ,q ,  there must exist a sequence
 π  5  h i h j q

 1  P  P j ,k ,q   such that  v  P  C j ( π  ) .  Since  v  P  F j ,l ,q  ’  C j ,l ,  we find that  v  P
 C j ( π  )  >  C j ,l  5  C j ( s  )   where  s  5  ( i 1  ,  i 2  ,  . . . ,  i q  5  k ,  l )  P  P j ,l , ( q 1 1) .  Hence  v  P  C j ,l , ( q 1 1) ,
 a contradiction .

 Denote  N n  5  sup s < n  i  M s  i  .  Then by an inequality due to Doob [ 25 ,  p .  271] ,  we
 have  E  N 2

 n  <  4 E  i  M n  i  2 .  Then since  τ  ,  1 – 4  for every  n  <  n m  ,  we have

 (21)  E  N 2
 n  <  4 E  i  M n  i  2  <  4 E  i  M n m

 i  2  <  4(1  1  τ  )  <  5 .

 Since  h C j j m
 1   and  h D j , k j m

 j 5 1  are families of disjoint sets ,  (18) and (21) show that

 O k 2 1

 j 5 1
 E

 A k > D j , k

 i  dM n k
 i  2  <  θ  2  O k 2 1

 j 5 1
 E

 D j , k

 i  M n j
 i  2  <  θ  2 E N 2

 n k 2 1  <  5 θ  2 .

 Since  B k  5  !
 k 2 1
 j 5 1  C j   where  C j  5  C j , k  <  D j ,k ,  according to the previous inequality

 we have

 (22)  E
 A k > B k

 i  dM n k
 i  2  5  O k 2 1

 j 5 1
 E

 A k > C j

 i  dM n k
 i  2

 <  O k 2 1

 j 5 1
 S E

 C j , k

 i  dM n k
 i  2  1 E

 A k > D j , k

 i  dM n k
 i  2 D

 <  O k 2 1

 j 5 1
 E

 C j , k

 i  dM n k
 i  2  1  5 θ  2 .

 From (19) we deduce that

 (23)  O k 2 1

 j 5 1
 E

 C j , k

 i  dM n k
 i  2  5  O k 2 1

 j 5 1
 E

 C j , k , r

 i  dM n k
 i  2  1  O k 2 1

 j 5 1
 O r 2 1

 q 5 1
 E

 F j , k , q

 i  dM n k
 i  2  .

 Since  i  dM n k
 i  <  i  M n k

 i  1  i  M n k 2 1  i  <  2 N n k
 ,  according (20) and (21) we have

 (24)  O m
 k 5 2

 O k 2 1

 j 5 1
 O r 2 1

 q 5 1
 E

 F j , k , q

 i  dM n k
 i  2  <  4( r  2  1) E  N 2

 n m
 <  20( r  2  1) .
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 Combining (22) ,  (23) and (24) we deduce that

 O m
 k 5 2

 E
 A k > B k

 i  dM n k
 i  2  <  O m

 k 5 2
 O k 2 1

 j 5 1
 E

 C j , k

 i  dM n k
 i  2  1  5 θ  2 ( m  2  1)

 <  O m
 k 5 r 1 1

 O k 2 r

 j 5 1
 E

 C j , k , r

 i  dM n k
 i  2  1  20( r  2  1)  1  5 θ  2 ( m  2  1) .

 Since the sets  h A k  \  B k j   are disjoint ,  and 20 r  <  ( m  2  1) θ  2  from the above
 inequality and (21) ,  we obtain

 (25)  O m
 k 5 2

 E
 A k

 i  dM n k
 i  2  <  O m

 k 5 2
 S E

 A k > B k

 i  dM n k
 i  2  1 E

 A k \ B k

 i  dM n k
 i  2 D

 <  O m
 k 5 2

 S E
 A k > B k

 i  dM n k
 i  2  1  4 E

 A k \ B k

 N 2
 n k D

 <  O m
 k 5 2

 E
 A k > B k

 i  dM n k
 i  2  1  4 E N 2

 n m

 <  O m
 k 5 2

 E
 A k > B k

 i  dM n k
 i  2  1  20

 <  O m
 k 5 r 1 1

 O k 2 r

 j 5 1
 E

 C j , k , r

 i  dM n k
 i  2

 1  20( r  2  1)  1  5 θ  2 ( m  2  1)  1  20

 <  O m
 k 5 r 1 1

 O k 2 r

 j 5 1
 E

 C j , k , r

 i  dM n k
 i  2  1  6( m  2  1) θ  2 .

 Now fix  π  5  ( n i 1  ,  n i 2  ,  . . . ,  n i r  5  n k )  P  P j ,k ,r  .  Let  T  P  7 n j
   and  T  ’  C j ( π  ) .  Let us take

 K h  5  M n j 1 h   for  h  5  0 ,  1 ,  2 ,  . . . ,  n k  2  n j  ,  and  h l  5  n i l  2  n j   for  l  5  1 ,  2 ,  . . . ,  r .  Evidently
 h K j j h r

 j 5 0   is a Walsh – Paley martingale over  T  and  K 0 ( T  )  P  H , K h l
 ( A i l  >  T  )  ’  H  for

 l  5  1 ,  2 ,  . . . ,  r .  From (17) we obtain

 1
 p ( T  )

 E
 A i l > T

 i  dK h l
 i  2  >  θ  2  i  K 0  i  2  5  c »  2  i  K 0  i  2  for  l  5  1 ,  2 ,  . . . ,  r .

 Now ,  according to Lemma 23 ,  we have  e C j ( π  )  i  M n k
 i  2  >  (1  1  h  4 ) e C j ( π  )  i  M n j

 i  2 .  Then
 since  C j ( π  ) 2  P  ! n j

 ,  we have

 E  i  M n k
 i  2  >  (1  1  h  4 ) E

 C j ( π  )
 i  M n j

 i  2  1 E
 C j ( π  ) 2

 i  M n j
 i  2  5  h  4 E

 C j ( π  )
 i  M n j

 i  2  1  E  i  M n j
 i  2 .

 Bearing in mind that the sequence ( E  i  M n  i  2 ) is non-decreasing ,  we obtain

 (26)  E
 C j ( π  )

 i  M n j
 i  2  <  h 2 4 E (  i  M n k

 i  2  2  i  M n j
 i  2 )  <  τ h  2 4 .

 Let  G j ,k   be the union of all sets  T  P  7 n j
   for which

 (27)  2  i  M n j
 ( T  )  i  2  p ( T  )  < E

 T
 i  M n k

 i  2 .
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 This implies that  e G j , k
 i  M n j

 i  2  <  1 – 2 e G j , k
 i  M n k

 i  2 ,  and since  G 2
 j ,k  P  ! n j

 ,  we have

 1 – 2  E
 G j , k

 i  M n k
 i  2  < E

 G j , k

 (  i  M n k
 i  2  2  i  M n j

 i  2 )  <  E (  i  M n k
 i  2  2  i  M n j

 i  2 )  <  τ .

 Since  C j ( π  )  P  ! n j
   and  h  ,  1 – 2  ,  we conclude from (26) and (27) that

 E
 C j ( π  )

 i  dM n k
 i  2  <  4 E

 C j ( π  )
 i  M n k

 i  2  <  4 S E
 C j ( π  ) \ G j , k

 i  M n k
 i  2  1 E

 G j , k

 i  M n k
 i  2 D

 <  8 S E
 C j ( π  ) \ G j , k

 i  M n j
 i  2  1  τ D  <  8 τ  (1  1  h 2 4 )  ,  9 τ h  2 4 .

 Hence

 E
 C j , k , r

 i  dM n k
 i  2  <  O

 π  P P j , k , r

 E
 C j ( π  )

 i  dM n k
 i  2

 <  9 S k  2  j  2  1
 r  2  1

 D τ h  2 4  <  9 S m  2  2
 r  2  1

 D τ h  2 4 .

 This implies that

 O m
 k 5 r 1 1

 O k 2 r

 j 5 1
 E

 C j , k , r

 i  dM n k
 i  2  <  9 S m  2  2

 r  2  1
 D τ h  2 4  O m

 k 5 r 1 1
 ( k  2  r )  <  5( m  2  1) r S m

 r
 D τ h  2 4 .

 From the above inequality and (25) we obtain

 7( m  2  1) θ  2  <  O m
 j 5 2

 E
 A j

 i  dM n j
 i  2  <  6( m  2  1) θ  2  1  5( m  2  1) r S m

 r
 D τ h  2 4 ,

 which implies that

 τ  >  θ  2 h  4 Y 5 r S m

 r
 D .

 C OROLLARY  25 .  There exists a positi y  e absolute constant d such that  g  ( H )  >
 d »  2 1 , whene y  er  »  .  0  and H is an  »  - admissible cone .

 The proof follows from Lemma 24 in the same way as Lemma 3 . 3 follows from
 Lemma 3 . 2 in [ 3 ,  pp .  139 – 144] .

 L EMMA  26 .  Let  0  ,  »  ,  s  <  1 , k  P  N ,   Q  ’  S E  , and L  ’  kB E *   such that Q  5
 !  h S ( Q ,  f ,  1) :  f  P  L j  and  diam  S ( Q ,  f ,  1)  ,  »   for e y  ery f  P  L . Then the cone
 H  5  h l u :  u  P  Q ,  u u u 2  .  1  1  s  ,  l  >  0 j   is  2 »  - admissible with respect to the norm
 9 x 9  5  (  i  x  i  2  1  u x u 2  1  u 2 x u 2 ) 1 – 2  , where  i  ?  i    is the original norm in E ,  u x u  5
 sup h  f  1 ( x ) :  f  P  L j , and f  1 ( x )  5  max(  f  ( x ) ,  0) .

 Proof .  Set

 h  5  »  2 s  / 14 k 2 ,  θ  5  h  4 / 17 k 2 ,  d  5  θ  / 2 k .

 We show that  H  is (2 »  ,  d  )-admissible with respect to  9 ? 9 .
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 Fix  x  P  Q .  Let  E  X  5  x  and

 E  9 X  9
 2  <  (1  1  d  4 ) 9 x 9

 2 .

 We have  u x u  <  k ,  u 2 x u  <  k ,  and  θ  4  .  (1  1  2 k 2 ) d  4  >  (2  1  k 2 ) d  4 .  Moreover ,  from
 the choice of  u ? u   we obtain

 E  u X  u 2  >  u x u 2  .  1 ,  E  u 2 X  u 2  >  u 2 x u 2 ,  E  i  X  i  2  >  u x  i  2  5  1 .

 Now the choice of  9 ? 9   and the inequalities above imply that

 (28)  E  i  X  i  2  <  (1  1  d  4 ) 9 x 9
 2  2  E ( u X  u 2  1  u 2  X  u 2 )

 <  (1  1  d  4 )  i  x  i  2  1  d  4 ( u x u 2  1  u 2 x u 2 )

 <  1  1  d  4  1  2 d  4 k 2  ,  1  1  θ  4 .

 Similarly ,  we obtain

 (29)  E  u X  u 2  <  (1  1  d  4 ) 9 x 9
 2  2  E (  i  X  i  2  1  u 2  X  u 2 )

 <  (1  1  d  4 )  u x u 2  1  d  4 (  i  x  i  2  1  u 2 x u 2 )  <  (1  1  d  4 )  u x u 2  1  d  4 (1  1  k 2 )

 <  (1  1  2 d  4  1  d  4 k 2 )  u x u 2  ,  (1  1  θ  4 )  u x u 2  ,  (1  1  θ  )  u x u 2 .

 From Lemma 17 and (28) we obtain

 (30)  p ( C 1 )  <  7 θ
 1 – 2  ,  p ( D 1 )  <  3 θ  ,  E

 D 1

 i  X  i  2  <  6 θ  ,

 where  C 1  5  h  i  X  i  2  ,  1  2  θ
 1 – 2 j   and  D 1  5  h  i  X  i  2  .  1  1  θ  j .

 Set  j  5  min h θ  ,  ( u x u 2  2  1) / 2  u x u 2 j .  From the definition of  u ? u ,  it follows that we can
 find  g  P  L  such that

 (31)  g  2 ( x )  >  (1  2  j  )  u x u 2 .

 So

 (32)  g 2 ( x )  2  1  >  (1  2  j  )  u x u 2  2  1  >  1 – 2 ( u x u 2  2  1) .

 Set  B  5  h g ( X  )  ,  0 j .  Then using the Cauchy inequality we obtain

 g ( x )  5  E g ( X  )  < E
 B 2

 g ( X  )  < S E
 B 2

 g 2 ( X  ) D 1 – 2

 (  p ( B 2 ))
 1 – 2 .

 Hence

 E  u X  u 2  > E
 B 2

 g  2 ( X  )  >  g  2 ( x ) / p ( B 2 )  >  (1  1  p ( B )) g  2 ( x )

 >  (1  1  p ( B ))(1  2  j  )  u x u 2  >  (1  2  2 j  1  p ( B ))  u x u 2  >  (1  2  2 θ  1  p ( B ))  u x u 2 .

 From (29) we have 1  1  θ  >  1  2  2 θ  1  p ( B ) .  So

 (33)  p ( B )  <  3 θ .
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 Now from (30) we obtain

 E
 B

 g 2 ( X  )  <  k 2 E
 B

 i  X  i  2  <  k 2 S E
 D 1

 i  X  i  2  1 E
 B > D 1

 2

 i  X  i  2 D
 <  k 2 (6 θ  1  (1  1  θ  ) p ( B ))  <  12 k 2 θ  .

 Then from (29) and (31) we obtain

 E g 2 ( X  )  <  E  u X  u 2  1 E
 B

 g  2 ( X  )  <  (1  1  θ  )  u x u 2  1  12 k 2 θ

 <  (1  1  θ  )(1  1  2 j  ) g 2 ( x )  1  12 k 2 θ

 <  (1  1  θ  1  2 j  1  2 j θ  1  12 k 2 θ  ) g  2 ( x )

 <  (1  1  17 k 2 θ  ) g 2 ( x )  5  (1  1  h  4 ) g 2 ( x ) .

 From Lemma 17 we have

 (34)  E
 D 2

 g 2 ( X  )  <  6 h g  2 ( x ) ,

 where  D 2  5  h g  2 ( X  )  .  (1  1  h  ) g 2 ( x ) j .
 Set  C  5  h g  2 ( X  )  <  i  X  i  2  <  1  1  θ  j .  Since  g ( x )  .  1 and  θ  ,  h  ,  we have  C  ’  D  2

 2  .
 Then from (34) we obtain

 g 2 ( x )  <  E g 2 ( X  )  5 E
 D 2

 g 2 ( X  )  1 E
 D 2

 2 \ C
 g  2 ( X  )  1 E

 C
 g  2 ( X  )

 <  6 h g  2 ( x )  1  (1  1  h  ) g  2 ( x )  2  (1  1  h  )( g  2 ( x )  2  1) p ( C ) .

 This implies that  p ( C )  <  7 h g 2 ( x ) / ( g 2 ( x )  2  1) .  From (32) we have

 (35)  p ( C )  <
 14 h g 2 ( x )
 u x u 2  2  1

 <
 14 k 2 h

 u x u 2  2  1
 <

 14 k 2 h

 s
 5  »  2 .

 Set  A  5  h X  P  i  X  i  Q ,  i  X  2  x  i  >  2 »  j .  We claim that  A  ‘  B  <  C  <  C 1  <  D 1  .
 Indeed ,  assume the contrary and let  y  P  X  ( A  \  ( B  <  C  <  C 1  <  D 1 )) .  Then we have

 1  2  θ
 1 – 2  <  i  y  i  2  <  1  1  θ  ,  g 2 (  y )  .  i  y  i  2 ,  g (  y )  .  0 .

 From the last two inequalities it follows that  g (  y )  .  i  y  i  .  Then for  z  5  y  /  i  y  i    we
 obtain  g ( z )  .  1 and  z  P  Q .  Since  x , z  P  S ( Q ,  g ,  1) and diam  S ( Q ,  g ,  1)  ,  »  ,  we
 conclude that  i  x  2  z  i  ,  » .  On the other hand ,   i  x  2  z  i  >  i  x  2  y  i  2  3 1  2  i  y  i  3  >
 2 »  2  θ  1 – 2  .  »  ,  a contradiction .  Hence applying (30) ,  (33) and (35) ,  we deduce that
 p ( A )  <  p ( B )  1  p ( C )  1  p ( C 1 )  1  p ( D 1 )  ,  4 »  2 .

 Proof of the implication  (a)  é  (c)  of the Main Theorem .  For each  i  P  N   we can
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 find  Q i
 n  ’  S E  , L i

 n  ’  E * , n  P  N   such that  S E  5  ! n  Q i
 n , Q i

 n  ’  !  h S ( Q i
 n ,  f ,  1) :  f  P  L i

 n j
 and for every  f  P  L i

 n ,  diam( S ( Q i
 n ,  f ,  1))  ,  i 2 1 .  Set  L i

 k ,n  5  kB E *  >  L i
 n   and

 Q i
 k ,n  5  Q i

 n  >  ( !  h S ( Q i
 n ,  f ,  1) :  f  P  L i

 k ,n j ) ,

 u x u i ,k ,n  5  sup h  f  1 ( x ) :  f  P  L i
 k ,n j ,

 9 x 9  5 S i  x  i  2  1  O
 i ,k ,n

 2 2 ( i 1 k 1 n ) ( u x u 2 i ,k ,n  1  u 2 x u 2 i ,k ,n ) D 1 – 2

 .

 If we take  H i ,j
 k ,n  5  h l u :  u  P  Q i

 k ,n ,  u u u 2 i ,k ,n  .  1  1  j 2 1 ,  l  >  0 j ,  then from Lemma 26 it
 follows that  H i ,j

 k ,n   is a 2 »  -admissible cone with respect to  9 ? 9 .  Now combining
 Corollary 25 and Proposition 16 we deduce that  E  has an equivalent LUR norm .
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