
Lebesgue property for convex risk

measures on Orlicz spaces

J. Orihuela(a) and M. Ruiz Galán(b)

(a) Universidad de Murcia, Dpto. Matemáticas, 30.100 Espinardo, Murcia, Spain,
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Abstract

We present a robust representation theorem for monetary convex risk measures ⇢ : X ! R
such that

lim
n

⇢(Xn) = ⇢(X) whenever (Xn) almost surely converges to X,

|Xn|  Z 2 X , for all n 2 N and X is an arbitrary Orlicz space. The separable hL1,L1i case
of Jouini, Schachermayer and Touizi, [14], as well as the non-separable version of Delbaen

[6], are contained as a particular case here. We answer a natural question posed by Biagini

and Fritelli in [2]. Our approach is based on the study for unbounded sets, as the epigraph

of a given penalty function associated with ⇢, of the celebrated weak compactness Theorem

due to R. C. James [13].

1 Introduction

Let us fix a probability space (⌦,F ,P) together with X , a linear space of functions in R⌦ that

contains the constant functions. We assume here that (⌦,F ,P) is atomless, though in practice

this is not a restriction since the property of being atomless is equivalent to the fact that on

(⌦,F ,P), one can define a random variable that has a continuous distribution function. The

space X is going to describe all possible financial positions X : ⌦ ! R where X(!) is the

discounted net worth of the position at the end of the trading period if the scenario ! 2 ⌦ is

realized. The problem of quantifying the risk of a financial position X 2 X is modeled with

function ⇢ : X ! R that satisfy:
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• Monotoniticity : If X  Y , then ⇢(X) � ⇢(Y )

• Cash invariance: If m 2 R then ⇢(X +m) = ⇢(X)�m

Such a function ⇢ is called monetary measure of risk, see Chapter 4 in [11]. When it is a convex

function too, i.e.

⇢(�X + (1� �)Y )  �⇢(X) + (1� �)⇢(Y ) for 0  �  1,

then ⇢ is called convex measure of risk.

If X is also a topological space, as it always is in the applications, then it is good to have

results on the degree of smoothness of the risk measure ⇢. If X is a Frechet lattice, the convexity

and monotoniticity of ⇢ lead to continuity and subdi↵erentiability at all positions X 2 X by the

Extended Namioka-Klee Theorem of [2], as well as to strong representations of the form

⇢(X) = max
Y 2(X 0

)

+
{hY,�Xi � ⇢⇤(Y )},

for all X 2 X whenever X is order continuous (see Theorem 1 and Corollary 1 in [2]). Here

(X 0)+ denotes the positive cone of continuous linear functionals, ⇢⇤ is the Fenchel conjugate to

⇢:

⇢⇤(Y ) = sup
X2X

{hY,Xi � ⇢(X)}

for all Y 2 X 0, and h·, ·i denotes the bilinear form for the duality between X and its topological

dual X 0.

When the Frechet lattice X is not order continuous, for instance the Lebesgue space of

bounded and measurable functions X = L1(⌦,F ,P) with its canonical essential supremum norm

k · k1, things are more subtle and we have the representation formula with a supremum instead

of maximum:

⇢(X) = sup
Y 2(X⇠

n )

+
{hY,�Xi � ⇢⇤(Y )}, (1)

where (X⇠
n

)+ denotes the positive cone of the order continuous linear functionals X⇠
n

⇢ X 0,

whenever the risk measure ⇢ is �(X ,X⇠
n

)-lower semicontinuous, as seen in Proposition 1 in [2].

A natural question posed in [2] is whether the sup in formula (1) is attained. In general the

answer is no, as shown by the essential supremum map on L1: see Example 3 in [2].

For risk measures defined on L1, the representation formula with supremum is equivalent

to the so–called Fatou property, given in Theorem 4.31 in [11]. The fact that the order continuity

of ⇢ is equivalent to turning the sup into a max in (1) i.e:

⇢(X) = max
Y 2(L1

)

+
{�E[Y ·X]� ⇢⇤(Y )},
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for all X 2 L1, is the statement of the so called Jouini-Schachermayer-Touzi Theorem in [6] (see

Theorem 5.2 in [14]).

S. Biagini and M. Fritelli show (Lemma 7 in [2]) that order continuity of the risk measure

⇢ is su�cient to turn a maximum in (1) for an arbitrary locally convex Frechet lattice X . Our

main contribution here shows that sequential order continuity only is a necessary and su�cient

condition for it when X is an arbitrary Orlicz space L and the order continuous linear functionals

X⇠
n

= L ⇤
coincides with the Orlicz heart M 

⇤
, i.e., we present the Jouini-Schachermayer-Touizi

Theorem for risk measures defined on Orlicz spaces. Let us remark here that Orlicz spaces

provide a general framework of Banach lattices for applications in matematical finance, described

for instance in [5, 2, 3]. The result reads as follows:

Theorem 1 (Lebesgue Risk Measures). Let  be a Young function with finite conjugate  ⇤ and

↵ : (L (⌦,F ,P))⇤ ! R [ {+1}

be a �((L )⇤,L )-lower semicontinuous penalty function representing a finite monetary risk

measure ⇢ as

⇢(X) = sup
Y 2M ⇤

{�E[XY ]� ↵(Y )}.

The following are equivalent:

(i) For all c 2 R, ↵�1((�1, c]) is a weakly compact subset of M 

⇤
(⌦,F ,P).

(ii) For every X 2 L (⌦,F ,P), the supremum in the equality

⇢(X) = sup
Y 2M ⇤

{�E[XY ]� ↵(Y )}

is attained.

(iii) ⇢ is order sequentially continuous.

Let us remark that order sequential continuity for a map ⇢ in L is equivalent to having

lim
n

⇢(X
n

) = ⇢(X)

whenever (X
n

) is a sequence in L almost surely convergent to X and bounded by some Z 2 L ,

i.e. |X
n

|  Z for all n 2 N, see Proposition 1. For that reason we say that a map ⇢ : L !
(�1,+1] verifies the Lebesgue property whenever it is sequentially order continuous.

As the first author observed, and appears in Appendix in [14], for the L1-case the proof

requires compactness arguments of perturbed James’s type. Indeed, in [6] the Theorem is pre-

sented as a generalization of the beautiful result of of R.C. James on weakly compact sets. In

that case the penalty function ↵ used has a bounded domain. We have obtained general per-

turbed James results for coercive functions ↵ in [15]. Non coercive growing conditions for penalty
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functions in the Orlicz case have been studied in [5], Theorem 4.5, where it is proven that a risk

measure ⇢, defined by a penalty function ↵, is finite on the Morse subspace M ⇢ L if, and

only if, ↵ satisfies the growing condition

↵(Y ) � a+ bkY k
 

⇤

for all Y 2 L ⇤
and fixed numbers a, b with b > 0. We look here for statements without restriction

on penalty functions ↵ that are easy to apply in the context of Orlicz spaces. We shall prove the

following general result that includes the previous separable case in [14] and the non separable

approach of F. Delbaen in [6] for the duality hL1,L1i, as well as new applications here for the

duality hM 

⇤
,L i:

Theorem 2 (Perturbed James’s Theorem). Let E be a real Banach space whose dual unit ball

is w⇤-sequentially compact and let

↵ : E �! R [ {1}

be a proper map such that

for all x⇤ 2 E⇤, x⇤ � ↵ attains its supremum on E.

Then, for all c 2 R, the corresponding sublevel set ↵�1((�1, c]) is a relatively weakly compact

subset of E.

Theorem 2 provides a complement to our study in [15]. It provides answers to questions

stated in the Erratum [4] for the case of Banach spaces with a w⇤-convex block compact dual

unit ball, for instance for all Banach spaces that do not contain a copy of l1, see Section 3.

Let us remark that in finishing the paper we were kindly informed by F. Delbaen of a

surprising result: we always are forced to have the compactness-continuity property ((i)-(iii) in

Theorem 1) restricted to the duality hL1,L1i, whenever the convex risk measure ⇢ is defined on

a rearrangement invariant solid space X such that X \L1 6= ;, as seen n Section 4.16 in [8]. This

result is even true for non-continuous risk measures since F. Delbaen only asks for the property

⇢(X) � 0 = ⇢(0) whenever X � 0

instead of monotonicity. Our Theorem 1 complements Delbaen’s results when looking for

compactness-continuity properties in the duality hM 

⇤
,L i.

Acknowledgement We gratefully thank Walter Schachermayer for providing the first

author with the compactness problem for non-coherent convex risk measures defined on L1.

The coherent case was done by F. Delbaen in [7] and the non-coherent case was presented in [6]

also as the Jouini-Schachermayer-Touizi Theorem. The solution given in [14], together with the

analysis done by S. Biagini amd M. Fritelli in [2] in the framework of Frechet lattices, motivated

the present paper.
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2 The unbounded sup–limsup Theorem

This section contains the tools we need to prove the results in the Introduction. To this end we

modify results in [17] to obtain versions of them in a pointwise bounded context only, the frame

where our results must be formulated to include epigraph sets in the applications later. The

main novelty of our approach here is that we are going to use James-boundaries on unbounded

sets as the epigraph of a fixed function ↵.

From now on T will denote a non-empty set. Given a pointwise bounded sequence {f
n

}
n�1

in RT , we define

co
�p{fn : n � 1} :=

( 1X

n=1

�
n

f
n

: for all n � 1, �
n

� 0 and
1X

n=1

�
n

= 1

)
,

where the functions
P1

n=1

�
n

f
n

2 RT above are pointwise defined on T , i.e. for every t 2 T the

absolutely convergent series
1X

n=1

�
n

f
n

(t)

defines the function
P1

n=1

�
n

f
n

: T ! R.

Lemma 1. If {f
n

}
n�1

in RX is a pointwise bounded sequence and for all m � 1, g
m

2
co

�p{fn : n � 1}, then
co

�p{gm : m � 1} ⇢ co
�p{fn : n � 1}.

Proof.- It follows from [17, Lemma 2].

For f 2 RT we write

I
T

(f) := inf{f(t) : t 2 T} 2 [�1,1[

and

S
T

(f) := sup{f(t) : t 2 T} 2 (�1,1].

Definition 1. If {f
n

}
n�1

is a pointwise bounded sequence in RT , then a sequence {g
m

}
m�1

in RT

is a pointwise–pseudo–subsequence of {f
n

}
n�1

provided that for all m � 1, g
m

2 co
�p{fn : n �

m}.

Lemma 2. Let {f
n

}
n�1

be a pointwise bounded sequence in RT . Then

sup I
T

(co
�p{fn : n � 1}) < 1.

Proof.- Let us prove that if the inequality above does not hold, then for all x 2 X the

sequence {f
n

(x)}
n�1

is not bounded. Thus, let us assume that

sup I
T

(co
�p{fn : n � 1}) = 1
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and let t 2 T . Then, given m � 1, there exists g
m

2 co
�p{fn : n � 1} so that

I
T

(g
m

) > m. (2)

But g
m

is a pointwise function defined on X as

g
m

=
1X

n=1

�(m)

n

f
n

for some {�(m)

n

}
n�1

⇢ [0, 1] with
P1

n

1 �
(m)

n

= 1. Then, in view of (2) we have that

1X

n=1

�(m)

n

f
n

(t) > m,

which implies that there exists n � 1 such that f
n

(t) > m. Thus we have shown that given t 2 X

and m � 1 there exists n � 1 with f
n

(t) > m, i.e.,

sup
n�1

f
n

(t) = 1.

The next lemma is a crucial step towards the proof of Theorem 2. Here we are assuming

that any sum of the form
P

0

m=1

. . . is always defined as 0.

Lemma 3. Suppose that {f
n

}
n�1

is a pointwise bounded sequence in RT and that ⇢, ⌘ 2 (0, 1).

Then there exists a pointwise–pseudo–subsequence {g
m

}
m�1

of {f
n

}
n�1

such that for all k � 0,

I
T

 1X

m=1

⇢mg
m

!
 I

T

 
kX

m=1

⇢mg
m

!
+ ⇢k

 
I
T

 1X

m=1

⇢mg
m

!
+ ⌘

!
. (3)

Proof.- The proof follows from that of [17, Lemma 4(a)], yet now we need to replace the

uniform boundedness with pointwise boundedness and to make use of Lemma 2.

For all q � 1, let C
q

:= co
�p{fn : n � q} and choose g

q

2 C
q

inductively so that

I
T

 
q�1X

m=1

⇢mg
m

+ ⇢qg
q

!
� sup

g2Cq

I
T

 
q�1X

m=1

⇢mg
m

+ ⇢qg

!
� ⌘(⇢/2)q (4)

(Lemmas 1 and 2 guarantee that sup
g2Cq

I
T

(
P

q�1

m=1

⇢mg
m

+ ⇢qg) < 1). Let h :=
P1

m=1

⇢mg
m

pointwise on T and, for all q � 1, h
q

:=
P

q

m=1

⇢mg
m

. Then (4) implies that

for all q � 1, I
T

(h
q

) � sup
g2Cq

I
T

(h
q�1

+ ⇢qg)� ⌘(⇢/2)q. (5)

We can assume that I
T

(h) > �1 and k � 1, since otherwise (3) is clearly valid. So let k � 1

and 1  q  k. Then, from Lemma 1,

(1� ⇢)(h� h
q�1

)/⇢q =
1X

m=0

(⇢m � ⇢m+1)

⇢q
g
m+q

2 C
q

6



and so, it follows from (5) that

I
T

(h
q

) � I
T

(h
q�1

+ (1� ⇢)(h� h
q�1

))� ⌘(⇢/2)q

= I
T

((1� ⇢)h+ ⇢h
q�1

)� ⌘(⇢/2)q

� (1� ⇢)I
T

(h) + ⇢I
T

(h
q�1

)� ⌘(⇢/2)q.

Finally we divide this inequality by ⇢q, arriving at

(1/⇢q � 1/⇢q�1)I
T

(h)  I
T

(h
q

)/⇢q � I
T

(h
q�1

)/⇢q�1 + ⌘/2q,

and adding up these inequalities for q = 1, 2, . . . , k, we conclude that

(1/⇢k � 1)I
T

(h)  I
T

(h
k

)/⇢k + ⌘,

which is nothing more than (3).

The following result is the announced generalization of the sup–limsup theorem of S. Simons

[18], that was stated in terms of sup’s and limsup’s. It follows ideas in [17, Theorem 7] that can

be adjusted to our unbounded case here:

Theorem 3 (Inf-liminf Theorem in RT ). Let {�
k

}
k�1

be a pointwise bounded sequence in RT

and suppose that Y is a subset of T satisfying the following boundary condition:

for all � 2 co
�p{�k

: k � 1} there exists y 2 Y with �(y) = I
T

(�).

Then

I
Y

✓
lim inf
k�1

�
k

◆
= I

T

✓
lim inf
k�1

�
k

◆
.

Proof.- We only have to prove that I
Y

(lim inf
k�1

�
k

)  I
T

(lim inf
k�1

�
k

). We demonstrate

this inequality when I
T

(lim inf
k�1

�
k

) > �1. The proof for the case I
T

(lim inf
k�1

�
k

) = �1
is similar. Let ⌘ > 0. Let t 2 T such that lim inf

k�1

�
k

(t) < I
T

(lim inf
k�1

�
k

) + ⌘, and then

let {f
n

}
n�1

be a subsequence of {�
k

}
k�1

such that sup
n�1

f
n

(t)  I
T

(lim inf
k�1

�
k

) + ⌘. In

particular we have that

I
T

✓
sup
n�1

f
n

◆
 I

T

✓
lim inf
k�1

�
k

◆
+ ⌘. (6)

If we take ⇢ = 1/2 in Lemma 3, we guarantee the existence of a pointwise–pseudo–subsequence

{g
m

}
m�1

of {f
n

}
n�1

such that for all k � 0 the inequality

I
T

 1X

m=1

g
m

/2m
!

 I
T

 
kX

m=1

g
m

/2m
!

+

 
I
T

 1X

m=1

g
m

/2m
!

+ ⌘

!
/2k (7)

is valid. But
1X

m=1

g
m

/2m  sup
m�1

g
m

 sup
n�1

f
n

on T

7



so, from (6) and (7), we have that for all k � 0

I
T

 1X

m=1

g
m

/2m
!

 I
T

 
kX

m=1

g
m

/2m
!

+

✓
I
T

✓
lim inf
k�1

�
k

◆
+ 2⌘

◆
/2k. (8)

We know, in view of Lemma 1 and our hypothesis, that there exists y 2 Y such that

1X

m=1

g
m

(y)/2m = I
T

(
1X

m=1

g
m

/2m).

Therefore, we deduce from this and (8) that for all k � 0,

1X

m=1

g
m

(y)/2m 
kX

m=1

g
m

(y)/2m +

✓
I
T

✓
lim inf
k�1

�
k

◆
+ 2⌘

◆
/2k,

so
1X

m=k+1

g
m

(y)/2m 
✓
I
T

✓
lim inf
k�1

�
k

◆
+ 2⌘

◆
/2k,

hence
1X

m=1

g
m+k

(y)/2m  I
T

✓
lim inf
k�1

�
k

◆
+ 2⌘

and thus

inf
m>k

g
m

(y)  I
T

✓
lim inf
k�1

�
k

◆
+ 2⌘.

In order to conclude the proof it su�ces to note that, letting k ! 1, we obtain that

lim inf
m�1

g
m

(y)  I
T

✓
lim inf
k�1

�
k

◆
+ 2⌘.

But

lim inf
k�1

�
k

 lim inf
n�1

f
n

 lim inf
m�1

g
m

on T,

and so

lim inf
n�1

�
n

(y)  I
T

✓
lim inf
k�1

�
k

◆
+ 2⌘.

Then, the inf–liminf equality follows from the arbitrariness of ⌘ > 0.

The version for the supremum functional reads as follows:

Corollary 1 (Sup-limsup Theorem in RT ). Let {�
k

}
k�1

be a pointwise bounded sequence in RT

and suppose that Y is a subset of T satisfying the following boundary condition:

for all � 2 co
�p{�k

: k � 1} there exists y 2 Y with �(y) = S
T

(�).

Then

S
Y

 
lim sup

k�1

�
k

!
= S

T

 
lim sup

k�1

�
k

!
.
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As a consequence of Theorem 1, we arrive at the following extension of [18, Proposition 1]

for unbounded boundaries, hearafter E will denote a real Banach space.

Corollary 2. If Y ⇢ T are nonempty subsets of E⇤, and {x
n

}
n�1

is a bounded sequence in the

Banach space E such that

for all x 2 co
�

{x
n

: n � 1} there exists y⇤ 2 Y with y⇤(x) = I
T

(x),

(resp. y⇤(x) = S
T

(x)) then

I
Y

✓
lim inf
n�1

x
n

◆
= I

T

✓
lim inf
n�1

x
n

◆
.

(resp. S
Y

�
lim sup

n�1

x
n

�
= S

T

�
lim sup

n�1

x
n

�
.)

3 Unbounded James’s compactness Theorem

A proof for Theorem 2 in the Introduction is presented here. Nevertheless we can prove the

result for Banach spaces with a property more general than w⇤-sequential compactness required

in Theorem 4, a property used years ago in Banach space Theory and that resembles Komlos’s

Theorem when it is applied in spaces of measurable functions.

To introduce it let us recall the following

Definition 2. Given a sequence {v
n

}
n�1

in vector space E, we say that another one {u
n

}
n�1

is a convex block sequence of {v
n

}
n�1

if there isa sequence of finite subsets of integers {F
n

}
n�1

such that

maxF
1

< minF
2

 maxF
2

< minF
3

· · · < maxF
n

< minF
n+1

< · · ·

together with sets of positive numbers {�n

i

: i 2 F
n

} ⇢ (0, 1] satisfying

X

i2Fn

�n

i

= 1 and u
n

=
X

i2Fn

�n

i

v
i

.

When E is a Banach space and each sequence {x⇤
n

}
n�1

in B
E

⇤ has a convex block w⇤–convergent

sequence we say that B
E

⇤ is w⇤-convex block compact.

It is not di�cult to check that if E is separable then the dual unit ball B
E

⇤ is w⇤–convex

block compact. Moreover, J. Bourgain proved in [1] that if the Banach space E does not contain

a copy of l1(N), then its dual unit ball is w⇤–convex block compact. This result was extended for

spaces not containing a copy of l1(R) under Martin’s axiom and the negation of the Continuum

Hypothesis in [12].
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Lemma 4. Suppose that the dual unit ball of E is w⇤–convex block compact and that A is

a nonempty, bounded subset of E. Then A is relatively weakly compact if (and only if) each

�(E⇤, E)–null sequence in E⇤ is also �(E⇤, A
�(E

⇤⇤
,E

⇤
)

)–null.

Proof.- We shall proceed by contradiction, so let us assume that A is not relatively weakly

compact. The Eberlein–Smulian theorem provides us a sequence {x
n

}
n�1

in A together with an

element x⇤⇤
0

2 A
�

(E⇤⇤,E⇤)
\E which is a cluster point of this sequence in (E⇤⇤,�(E⇤⇤, E⇤)). We

can now apply the Hahn–Banach theorem to find x⇤⇤⇤ 2 B
E

⇤⇤⇤ such that

x⇤⇤⇤(x⇤⇤
0

) 6= 0 but x⇤⇤⇤(x) = 0, for all x 2 E. (9)

Goldstine’s theorem and the separability of the subspace E
0

of E⇤⇤ generated by x⇤⇤
0

and {x
n

:

n � 1} guarantee the existence of a sequence {x⇤
n

}
n�1

in B
E

⇤ satisfying

�(E⇤⇤⇤, E
0

)� lim
n�1

x⇤
n

= x⇤⇤⇤. (10)

Since B
E

⇤ is w⇤–convex block compact, there exists a block sequence {y⇤
n

}
n�1

of {x⇤
n

}
n�1

and

an x⇤
0

2 B
E

⇤ such that

�(E⇤, E)� lim
n�1

y⇤
n

= x⇤
0

.

Then, by assumption, {y⇤
n

}
n�1

also converges to x⇤
0

pointwise on A
�(E

⇤⇤
,E

⇤
)

, and so

�(E⇤, E
0

)� lim
n�1

y⇤
n

= x⇤
0

. (11)

Finally, it follows from (9), (10) and (11) that

0 6= x⇤⇤⇤(x⇤⇤
0

) = x⇤⇤
0

(x⇤
0

), but for all n � 1, 0 = x⇤⇤⇤(x
n

) = x⇤
0

(x
n

),

which is a contradiction, since x⇤⇤
0

is a �(E⇤⇤, E⇤)�cluster point of the sequence {x
n

}
n�1

.

We can now prove the following perturbed James’s compactness theorem without any

restriction on the proper perturbation term. It provides an answer to the problem stated in [4]

for a wide class of spaces, see [15] for applications of this result to nonlinear variational problems.

Theorem 4 (Perturbed James’s Theorem). Let E be a real Banach space whose dual unit ball

is w⇤–convex block compact and let ↵ : E �! R [ {+1} be a proper map such that

for all x⇤ 2 E⇤, ↵+ x⇤ attains its infimum on E.

Then for all c 2 R, the corresponding sublevel set ↵�1((�1, c]) is relatively weakly compact.

Proof.- Let us consider the epigraph of ↵, i.e.

Epi(↵) = {(x, t) 2 E ⇥ R : ↵(x)  t}

10



and analyze what our hypothesis tell us about it. We claim that for every (x⇤,�) 2 E⇤ ⇥R with

� > 0, there exists x
0

2 Dom(↵) := {x 2 E : ↵(x) 6= 1} such that

inf{(x⇤,�)(x, t) : (x, t) 2 Epi(↵)} = x⇤(x
0

) + �↵(x
0

). (12)

In fact, the optimization problem

inf
x2E

{hx, x⇤i+ ↵(x)} (13)

may be rewritten as

inf
(x,t)2Epi(↵)

{(x⇤, 1), (x, t)} (14)

and the inf in (13) is attained if and only if the inf in (14) is attained.

Let us first observe that every sublevel set A := ↵�1((�1, c]) is bounded. Indeed, for

every x⇤ 2 E⇤ there is x
0

2 E such that

�x⇤(x
0

) + ↵(x
0

)  �x⇤(x) + ↵(x)

for all x 2 E. Thus we see that

x⇤(x)  x⇤(x
0

)� ↵(x
0

) + c

for all x 2 A and the Banach Steinhauss Theorem a�rms the boundedness of A. Let us now

assume that A is not relatively weakly compact. We derive from Lemma 4 the existence of a

sequence {x⇤
n

}
n�1

in B
E

⇤ , a point x⇤⇤
0

2 A
�(E

⇤⇤
,E

⇤
)\E and � > 0 such that

�(E⇤, E)� lim
n�1

x⇤
n

= 0 (15)

and

for all n � 1, x⇤⇤
0

(x⇤
n

) < ��. (16)

Since we have (12) we can apply the Inf–liminf Theorem to the nonempty sets

T := Epi(↵)
�(E

⇤⇤
,E

⇤
)

, Y := Epi(↵)

and the sequence of pointwise functions on T {�
k

}
k�1

given by

(x⇤⇤, t) 2 T 7! �
k

(x⇤⇤, t) := x⇤⇤(x⇤
k

) +
t

k
,

obtaining, in view of properties (15) and (16) for the sequence {x⇤
n

}
n�1

0 = I
Y

✓
lim inf
k�1

�
k

◆
= I

T

✓
lim inf
k�1

�
k

◆
< ��,

a contradiction which finishes the proof.

The following consequence will be used later:

11



Corollary 3. Let E be a Banach space with B
E

⇤ a w⇤-convex block compact. Let

↵ : E ! R [ {+1}

be a proper map. If for every x⇤ 2 E⇤ the minimization problem

inf{x⇤(y) + ↵(y) : y 2 E}

is attained in E, then the epigraph of ↵ is �(E⇤⇤ ⇥ R, E⇤ ⇥ R)-closed in E⇤⇤ ⇥ R.

Proof.- If not, take (z⇤⇤
0

, µ
0

) 2 Epi(↵)
�(E

⇤⇤⇥R,E⇤⇥R)\E⇥R and a net {(x
↵

, t
↵

) : ↵ 2 (A,�)}
in Epi(↵) with lim

↵2A,�(x↵, t↵) = (z⇤⇤
0

, µ
0

). Take ↵
0

2 A so that µ
↵

 µ
0

+ 1 for all ↵ � ↵
0

.

Then (z⇤⇤
0

, µ
0

) belongs to the �(E⇤⇤ ⇥ R, E⇤ ⇥ R)-closure of the truncated epigraph

Epi(↵, µ
0

+ 1) = {(x, t) 2 E ⇥ R : ↵(x)  µ
0

+ 1},

which coincides with it since ↵�1(�1,m
0

+ 1] is a relatively weakly compact subset of E by

Theorem 4, a contradiction.

4 Convex risk measures on Orlicz spaces

A Young function  is an even, convex function  : E ! [0,+1] with the properties:

1.  (0) = 0

2. lim
x!1 (x) = +1

3.  < +1 in a neighborhood of 0.

The Orlicz space L is defined as:

L (⌦,F ,P) := {X 2 L0(⌦,F ,P) : 9↵ > 0 with EP[ (↵X)] < +1}

and we consider the Luxemburg norm on it:

N
 

(X) := inf{c > 0 : EP[ (
1

c
X)]  1}

for all X 2 L (⌦,F ,P). With the usual pointwise lattice operations, L (⌦,F ,P) is a Banach

lattice and we have inclusions:

L1(⌦,F ,P) ⇢ L (⌦,F ,P) ⇢ L1(⌦,F ,P).

Moreover, (L )⇤ = L 
⇤ �G where G is the singular band and L 

⇤
is the order continuous band

identified with the Orlicz space L 
⇤
, where

 ⇤(y) := sup
x2R

{yx� (x)}

12



is the Young function conjugate to  .

We are interested in risk measures defined on L (⌦,F ,P) and their robust representation.

Given a convex risk measure

⇢ : L (⌦,F ,P) ! (�1,+1]

we look for penalty functions

↵ : (L (⌦,F ,P)⇤ ! (�1,+1]

representing ⇢ as

⇢(X) = sup
Y 2L ⇤

{�E[XY ]� ↵(Y )}

for all X 2 L . We shall study when it is possible to reduce it to a robust representation with

a maximum instead of a supremum, so that for every X 2 L (⌦,F ,P), the supremum in the

equality

⇢(X) = sup
Y 2L ⇤

{�E[XY ]� ↵(Y )}

would be finite and attained. Genuine examples of Young function that induce spaces di↵erent

from the Lp are associated to utility maximization problems as described in [2]. For example, if

we fix the utility function

u
�

(t) := � exp(��t) + 1,

we may consider the associated Young function

 
�

(t) := �u(�|t|) = exp(�|t|)� 1

and the dual function

 ⇤
�

(t) = (| t
�
| ln | t

�
|� | t

�
|)�{| t� |�1}.

In this example we have L ⇤
� = M 

⇤
� , since  ⇤

�

verifies the so-called �
2

condition (see [2]). Let us

remember here that a Young function � verifies the �
2

condition if there are t
0

> 0 and K > 0

such that:

�(2t)  K�(t) for all t > t
0

.

The study of risk measures in the Orlicz heart M , the Morse subspace of all X 2 L such that

EP[ (�X)] < +1

for all � > 0, is di↵erent because for finite functions  we have (M )⇤ = L 
⇤
and we will

have robust representation formulas (1) with a maximum instead of a supremum by using w⇤-

compactness of dual unit balls (see [5]). As byproduct of Theorem 1 we will see in Corollary 7

how to reduce it to M 

⇤
.

Let us state here the Jouini–Schachermayer–Touizi Theorem which motivates our study,

[14]. We remind the reader that a monetary utility function U is nothing else but a function

U : L1(⌦,F ,P) ! R

such that �U is a monetary risk measure:

13



Theorem 5 (Theorem 5.2 in [14]). Let U : L1(⌦,F ,P) ! R be a monetary utility function with

the Fatou property and let

V : L1(⌦,F ,P)⇤ ! [0,1]

be its Fenchel–Legendre transform. The following are equivalent:

(i) For all c 2 R, V �1((�1, c]) is a weakly compact subset of L1(⌦,F ,P).

(ii) For every X 2 L1(⌦,F ,P), the infimum in the equality

U(X) = inf
Y 2L1

{V (Y ) + E[XY ]}

is attained.

(iii) For every uniformly bounded sequence (X
n

) tending a.s. to X, we have

lim
n�1

U(X
n

) = U(X).

The proof presented in [14] is based on the particular case of Theorem 4 which only

concerns to separable Banach spaces. Later on, F. Delbaen gave a di↵erent proof, as seen

in Theorem 2 in [6], which is valid for arbitrary L1(⌦,F ,P) spaces. Delbaen’s approach is

based on a homogenisation trick to reduce the matter to a direct application of the classical

James’s Theorem, as well as the Dunford–Pettis Theorem characterizing weakly compact sets in

L1(⌦,F ,P), see Section 4.12 in [8] for a detailed description of his reduction technique.

We shall present in this section a complete proof for Theorem 1 in the Introduction together

with two corollaries to analyze the case where either  or  ⇤ verifies the �
2

condition. They

represent the extension of Theorem 5 for risk measures on Orlicz spaces. They moreover provide

an answer, for Orlicz spaces, to a question posed by S. Biagini and M. Fritelli in [2], an seen in

Example 3 and Lemma 7.

To begin with, let us prove the following result. It motivates to use the name of Lebesgue

property for the order sequential continuity in the lattice L . Let us remember that a sequence

(X
n

) in L is order convergent to X 2 L if there is a decreasing sequence (Z
n

) & 0, i.e., almost

surely pointwise convergent to zero, such that |X
n

�X|  Z
n

for all n 2 N.

Proposition 1. A sequence (X
n

) is order convergent to X in the Banach lattice L if, and only

if, there is Z 2 L such that |X
n

|  Z for all n 2 N and (X
n

) almost surely converges to X.

Proof.- If (X
n

) converges to X in order, then there is a sequence (Z
n

) pointwise decreasing

to zero in the lattice L with |X
n

�X|  Z
n

for all n 2 N. It follows that |X
n

|  Z
1

+ |X| for
all n 2 N and (X

n

) is almost surely convergent to X. On the other hand, if there is Z 2 L 

such that |X
n

|  Z and (X
n

) is almost surely convergent to X, Egoro↵’s Theorem give us, for

every ✏ > 0, a subset A
✏

2 ⌃ with P(A
✏

) < ✏ and (X
n

) uniformly convergent to X on ⌦ \A
✏

. In

14



particular we choose n
1

< n
2

< · · · < n
k

< · · · so that |X � X
n

|�
⌦\A2�k

 1

2

k for all n � n
k

.

Without loosing of generality we may assume A
2

k+1 ⇢ A
2

k for all k 2 N. Let us define

W
n

=
1

2k
�
⌦\A2�k

+ 2Z�
A2�k

for n
k

 n < n
k+1

. We have |X
n

� X|  W
n

for all n 2 N. Since (W
n

)1
n=n1

is almost surely

decreasing to zero, we conclude that (X
n

) is order convergent to X.

The proof of Theorem 1 needs a little more on weak compactness in Banach spaces:

Proposition 2. Let C be a weakly compact convex subset of a Banach space E and (x⇤
n

) a

bounded sequence in the dual space E⇤. Then we have

lim
n!1

[ sup
x

⇤2co{x⇤
m:m�n}

inf
y2C

hx⇤, yi] = inf
y2C

lim sup
n!1

hx⇤
n

, yi

Proof.- The weak compactness of set C tells us, by the minimax Theorem [19, Theorem

3.2], that

sup
x

⇤2co{x⇤
m:m�n}

inf
y2C

hx⇤, yi = inf
y2C

sup
x

⇤2co{x⇤
m:m�n}

hx⇤, yi

for every n 2 N. Since
lim sup
n!1

hx⇤
n

, yi  sup
m�n

hx⇤
m

, yi

for every n 2 N, we have

inf
y2C

lim sup
n!1

hx⇤
n

, yi  inf
y2C

sup
m�n

hx⇤
m

, yi = sup
x

⇤2co{x⇤
m:m�n}

inf
y2C

hx⇤, yi.

Thus we see that

inf
y2C

lim sup
n!1

hx⇤
n

, yi  lim
n!1

[ sup
x

⇤2co{x⇤
m:m�n}

inf
y2C

hx⇤, yi].

On the other hand,

sup
x

⇤2co{x⇤
m:m�n}

inf
y2C

hx⇤, yi  sup
x

⇤2co{x⇤
m:m�n}

hx⇤, y
0

i = sup
m�n

hx⇤
m

, y
0

i

for every y
0

2 C and n 2 N fixed. So we have

lim
n!1

[ sup
x

⇤2co{x⇤
m:m�n}

inf
y2C

hx⇤, yi]  lim
n!1

[sup{hx⇤
m

, y
0

i : m � n}] = lim sup
n!1

hx⇤
n

, y
0

i

for any y
0

2 C, and the reverse inequality now follows:

lim
n!1

[ sup
x

⇤2co{x⇤
m:m�n}

inf
y2C

hx⇤, yi]  inf
y2C

lim sup
n!1

hx⇤
n

, yi

and the proof is over.

Corollary 4. Let D be a relatively weakly compact subset of the Banach space E and (x⇤
n

) a

sequence in the dual E⇤ that converges to x⇤ 2 E⇤ in the w⇤-topology and uniformly on D. Then

we have

lim
n!1

inf
y2D

hx⇤
n

, yi = inf
y2D

lim
n!1

hx⇤
n

, yi.
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Proof.- Let C the closed convex hull of D. Krein–Smulian’s Theorem says that C remains

weakly compact. When the involved sequence w⇤-converges the former Proposition says:

inf
y2C

lim
n!1

hx⇤
n

, yi = lim
n!1

[ sup
x

⇤2co{x⇤
m:m�n}

inf
y2C

hx⇤, yi] �

� lim sup
n

inf
y2C

hx⇤
n

, yi � lim inf
n

inf
y2C

hx⇤
n

, yi � lim inf
n

[ inf
y2C

hx⇤
n

� x⇤, yi+ inf
y2C

hx⇤, yi] =

= lim inf
n

inf
y2C

hx⇤
n

� x⇤, yi+ inf
y2C

hx⇤, yi = inf
y2C

lim
n!1

hx⇤
n

, yi,

since (x⇤
n

) converges to x⇤ uniformly on C and

lim inf
n

inf
y2C

hx⇤
n

� x⇤, yi = 0,

from which the result follows since infima involved are the same on C or D.

Now we arrive to a proof for Lemma 5.1 in [14] in the frame of Orlicz spaces:

Proposition 3. Let C be a relatively weakly compact subset of M 

⇤
(⌦,F ,P) where  ⇤ is finite.

Let (X
n

)1
n=1

be a bounded sequence in the dual space L (⌦,F ,P) that order converges to X 2
L (⌦,F ,P). Then we have:

lim
n!1

inf
Y 2C

E[X
n

Y ] = inf
Y 2C

E[XY ].

Proof.- The dual space of M 

⇤
coincides with L and the duality is given by

hY,Xi = E[Y X]

for all Y 2 M 

⇤
andX 2 L , as seen in Theorem 4.1.6, p. 105 in [16]. The relatively weakly com-

pact subsets B of M 

⇤
are characterized as bounded sets B such that for each X 2 L (⌦,F ,P),

and each A
n

2 F , with A
n

# A and with P(A) = 0 one has

lim
n!1

Z

An

|X · Y |dP = 0

uniformly in Y 2 B (see Corollary 4.5.2, Chapter IV in [16]). Let us fix Y in M 

⇤
, and thus

we have lim
n!1 E[X

n

Y ] = E[XY ]. Indeed, given the ordered convergent sequence (X
n

) to X in

L , we have

|X
n

�X|  Z
n

# 0

where Z
n

2 L , n = 1, 2, · · · . Once Y 2 M 

⇤
is fixed we will have

|Y ·X
n

� Y ·X|  |Y | · |Z
n

|  |Y | · |Z
1

| 2 L1

and the Monotone Convergence Theorem tells us:

lim
n!1

E[Y X
n

] = E[Y X]. (17)
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Moreover, the former convergence is going to be uniform on Y 2 C by the compactness assump-

tion we have on C. Indeed, Egoro↵’s Theorem tells us that for every � > 0 there is a set A
�

2 F ,

with P(A
�

) < � and such that (X
n

) converges to X uniformly on ⌦ \A
�

. We then have

|E[(X
n

�X)Y ]| 
Z

⌦\A�

|X
n

�X||Y |dP+

Z

A�

|X
n

�X||Y |dP


Z

⌦\A�

|X
n

�X||Y |dP+

Z

A�

|Z
1

||Y |.

Now we apply the compactness for ✏ > 0 fixed, and we find � > 0 so that
Z

A

|Z
1

||Y |  ✏/2

whenever P(A) < �, Y 2 C. Since (X
n

) converges to X uniformly on the set ⌦ \A
�

, there exists

n
0

2 N so that sup
!/2A�

kX
n

(!)�X(!)k  ✏/2l where l = sup
Y 2C kY k

1

. Altogether this tells us

that:

|E[(X
n

�X)Y ]|  ✏

whenever n � n
0

and for all Y 2 C. Therefore, we may apply Corollary 4 to get:

inf
Y 2C

E[XY ] = inf
Y 2C

lim
n!1

E[X
n

Y ] = lim
n!1

inf
Y 2C

E[X
n

Y ]

as we wanted to prove.

Another tool we shall need is the following variant of the uniform boundness principle:

Proposition 4. Let ↵ : E �! R [ {+1} be a proper map such that for all x⇤ 2 E⇤

x⇤ + ↵

is bounded from below on E. Then there exist ⇠ > 0 and K > 0 such that we have the uniform

boundedness from below:

�K  x⇤(x) + ↵(x), for all x 2 E and all x⇤ 2 ⇠B
E

⇤ .

Proof.- The bounded from below hypothesis tell us that:

E⇤ =
1[

n=1

{x⇤ 2 E⇤ : ✏x⇤(x) + ↵(x) � �n for all x 2 E, ✏ 2 {�1,+1}}.

For every n 2 N the set

{x⇤ 2 E⇤ : ✏x⇤(x) + ↵(x) � �n for all x 2 E, ✏ 2 {�1,+1}}

is norm closed in E⇤, so the Baire Category Theorem provides us with an integer n
0

2 N, an
element x⇤

0

2 E⇤ and a number ⇠ > 0 such that

x⇤
0

+ ⇠B
E

⇤ ⇢ {x⇤ 2 E⇤ : ✏x⇤(x) + ↵(x) � �n
0

for all x 2 E, ✏ 2 {�1,+1}}.
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If we take x⇤ with kx⇤k  ⇠, we have

✏(x⇤
0

+ ✏x⇤)(x) + ↵(x) � �n
0

for all x 2 E, ✏ 2 {�1,+1},

thus x⇤
0

(x) + x⇤(x) + ↵(x) � �n
0

and �x⇤
0

(x) + x⇤(x) + ↵(x) � �n
0

and we get that:

x⇤(x) + ↵(x) � �n
0

, for all x 2 E and all x⇤ 2 ⇠B
E

⇤ ,

as announced.

Corollary 5. Let E be a real Banach space and let

↵ : E �! R [ {1}

be a proper map such that

for all x⇤ 2 E⇤, x⇤ � ↵ is bounded from above on E.

Then there are numbers a, b 2 R with b > 0 such that

↵(x) � a+ bkxk

for all x 2 E.

Proof.- By the former result there is ⇠ > 0 (small enough) and K > 0 (big enough) such

that we have the uniform boundedness from above:

sup{x⇤(x)� ↵(x) : x 2 E, x⇤ 2 ⇠B
X

⇤}  K.

Let us take x 2 E and select x⇤ 2 B
E

⇤ so that kxk = x⇤(x), then we see that ⇠x⇤(x)�↵(x)  K

from which it follows ↵(x) � �K + ⇠kxk as we wanted to prove.

The last Corollary is a Banach space version for Theorem 4.5 of P. Cheridito and T. Li,

[5], that we will use later.

Now we are ready for the proof of our main Theorem. We closely follow [14] for arguments

non related with Theorem 4.

Proof of Theorem 1 We assume in all the proof that ⇢(0) = 0 and thus ↵ � 0 too.

Doing so we do not lose generality, since we can always add a constant to ensure it. (ii) ) (i)

Let us remark we are in conditions to apply our Theorem 4 to the penalty function ↵ restricted

to the Banach space M 

⇤
. Indeed, the dual of the Banach space M 

⇤
coincides with L and the

duality is given by

hY,Xi = E[Y X]

for all Y 2 M 

⇤
and X 2 L , as seen in Theorem 4.1.6, p. 105 in [16]. If we consider the

inclusion maps

i : L 7! L1 and j : L1 7! M 

⇤
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we see that for every X 2 L1 = (L1)⇤ the linear form defined by it verifies:

E[X · ] � i = j(X) 2 M 

⇤
.

So the inclusion map i is going to be �(L ,M 

⇤
) to �(L1,L1) continuous. Thus the �(L ,M 

⇤
)

compact subsets of L are homeomorphic to weakly compact subsets of L1 and the Eberlein–

Smulian’s Theorem, see Chapter II in [9], tells us they are sequentially compact. It now follows

that the dual unit ball B
L

 is w⇤ sequentially compact. Thus we can apply Theorem 4 to derive

the implication.

(ii) ) (iii) The representation formula for ⇢ describes it as the supremum of a�ne contin-

uous maps for �(L ,M 

⇤
), hence ⇢ is �(L ,M 

⇤
) lower semicontinuous. Since every sequence

(X
n

) in L (⌦,F ,P) order convergent to X is also convergent in �(L ,M 

⇤
) as seen in the proof

of Proposition 3 above, we will have

⇢(X)  lim inf
n

⇢(X
n

).

We now see that we also have:

⇢(X) � lim sup
n

⇢(X
n

)

from which the conclusion follows. Let us fix ✏ > 0 and for every n 2 N we select Y
n

2 M 

⇤
so

that

⇢(X
n

) = �E[X
n

Y
n

]� ↵(Y
n

). (18)

We claim that (↵(Y
n

))1
n=1

must be a bounded sequence of real numbers. Indeed, if we set

Z  X
n

 Y for all n 2 N in the lattice order of L , then we have

⇢(Y )  ⇢(X
n

)  ⇢(Z). (19)

In the case that (↵(Y
n

))1
n=1

is not a bounded sequence of real numbers, we may take subsequences

if necessary, (18) and (19) force that

lim
n

E[X
n

Y
n

] = �1

since lim
n

↵(Y
n

) = +1 because ↵ is bounded from below. Even more, since the risk measure ⇢

is finite we can apply Corollary 5 to see that ↵(Y ) � a+ bkY k
 

⇤ for some a, b 2 R, b > 0. Then

we will have

⇢(2X
n

) � �E[X
n

Y
n

]� E[X
n

Y
n

]� ↵[Y
n

] = �E[X
n

Y
n

] + ⇢(X
n

)

and lim ⇢(2X
n

) = +1, which is a contradiction with ⇢(2Y )  ⇢(2X
n

)  ⇢(2Z). Let us write:

�⇢(X
n

)  inf
{↵(Y )cn}

E[X
n

Y ] + c
n

where c
n

= ↵(Y
n

) � 0, and fix a point c � 0 and a sequence

n
1

< n
2

< · · · < n
k

< n
k+1

< · · ·
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with lim
k

c
nk = c and |c� c

nk | < ✏, for all k 2 N by compactness. We will have by Proposition

3, since the level sets of ↵ are going to be weakly compact by the former implication (ii) ) (i):

�⇢(X)  inf
{↵(Y )c+✏}

E[XY ] + c+ ✏ = lim
k

inf
{↵(Y )c+✏}

E[X
nkY ] + c+ ✏ 

 lim
k

inf
{↵(Y )cnk}

E[X
nkY ] + c+ ✏  lim

k

inf
{↵(Y )cnk}

E[X
nkY ] + c

nk + 2✏ 

 lim
k

�⇢(X
nk) + 2✏.

Since ✏ > 0 is arbitrary we have the reverse inequality:

⇢(X) � lim
k

⇢(X
nk)

as we wanted to prove. In fact, the former reasoning is valid for any subsequence (X
mk) of (Xn

)

and thus we arrive at

⇢(X) � lim sup
n

⇢(X
n

).

(iii) ) (i) Let us suppose that for some c > 0 the norm bounded set {↵  c} fails to

be relatively �(M 

⇤
,L )-compact in M 

⇤
. Indeed the level sets are bounded by Corollary 5.

Following Corollary 4.5.2, p. 144 in [16], we arrive to the existence of a decreasing sequence (A
n

)

in F with lim
n

P(A
n

) = 0, an element Z 2 L and a sequence of elements Y
n

2 {↵  c} such

that Z

An

|Y
n

· Z|dP � µ > 0

for every n 2 N and some µ > 0. We set X
n

= ✏
n

2c

µ

�
AnZ where ✏

n

(!) = �1 if Z(!)Y
n

(!) � 0

and ✏
n

(!) = +1 if Z(!)Y
n

(!) < 0 for every ! 2 ⌦. We find that (X
n

) is order convergent to

zero in L but

⇢(X
n

) � E[�X
n

· Y
n

]� ↵(Y
n

) � µ
2c

µ
� c = c > 0

while ⇢(lim
n

X
n

) = ⇢(0) = 0, a contradiction with the order sequential continuity assumption

we have in (iii).

(i) ) (ii) Here we use the fact that for all X 2 L = (M 

⇤
)⇤ the function

h�X, ·i � ↵(·)

is bounded from above on M 

⇤
, indeed the representation formula

⇢(X) = sup
Y 2M ⇤

{E[�XY ]� ↵(Y )} < +1 (20)

implies it and we have by Corollary 5 the growing condition ↵(Y ) � a+bkY k
 

⇤ for all Y 2 M 

⇤
.

If the level sets of the penalty function ↵ are weakly compact sets in M 

⇤
, the optimization

problem

sup
Y 2M ⇤

{E[�XY ]� ↵(Y )}

20



has a solution for all X 2 L . Indeed, let us fix X 2 L and take a maximization sequence

Y
n

2 M 

⇤
with

⇢(X) � E[�XY
n

]� ↵(Y
n

) � ⇢(X)� 1/n. (21)

The sequence of real numbers (↵(Y
n

)) must be bounded. Otherwise

lim
n

E[�X · Y
n

] = +1,

at least taking an adequate subsequence. Now it follows that

⇢(2X) � E[�2XY
n

]� ↵(Y
n

) =

= E[�XY
n

] + E[�XY
n

]� ↵(Y
n

) � E[�XY
n

] + ⇢(X)� 1.

So ⇢(2X) � lim
n

E[�XY
n

] + ⇢(X)� 1 = +1, a contradiction with the fact our risk measure ⇢ is

assumed to be finite. Then we have c 2 R such that ↵(Y
n

)  c for all n 2 N. Since the level set

{↵  c} is assumed to be weakly compact in M 

⇤
, a �(M 

⇤
,L ) convergent subsequence (Y

nk)

to some Y
0

2 M 

⇤
can be selected. Thus

lim
k!1

E[�XY
nk ] = E[�XY

0

].

From (20), (21) and the �(M 

⇤
,L ) -lower semicontinuity assumption for the penalty function

↵ we arrive at

⇢(X) = E[�X · Y
0

]� ↵(Y
0

)

as we wanted to prove.

Let us finally mention the fact that the lower semicontinuity of the risk measure ⇢ with

respect to �(L , L 
⇤
) is equivalent to order lower semicontinuity by the results of Biagini and

Fritelli (see Proposition 1 and p. 18 in [2]). This property is called the Fatou property and for a

decreasing sequence (X
n

) almost surely convergent to X it implies that lim
n

⇢(X
n

) = ⇢(X), see

Section 3.1 in [2]. Under the Fatou property, the sequential order continuity is equivalent to the

monotone convergence fact

lim
n

⇢(X
n

) = ⇢(X) whenever X
n

% X in L .

Let us summarize the consequences below.

Corollary 6. Let  be a Young function with conjugate  ⇤ that verifies the �
2

condition. Let

⇢ : L (⌦,F ,P) ! R be a finite convex risk measure with the Fatou property and

⇢⇤ : (L (⌦,F ,P)⇤ ! R [ {+1}

its Fenchel–Legendre conjugate defined on the dual space. The following are equivalent:
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(i) For all c 2 R, (⇢⇤)�1((�1, c]) is a weakly compact subset of L ⇤
(⌦,F ,P).

(ii) For every X 2 L (⌦,F ,P), the supremum in the equality

⇢(X) = sup
Y 2L ⇤

{E[�XY ]� ⇢⇤(Y )}

is attained.

(iii) ⇢ is sequentially order continuous.

(iv) lim
n

⇢(X
n

) = ⇢(X) whenever X
n

% X in L .

(v) Dom(⇢⇤) ⇢ L ⇤
.

Proof.- The �
2

-condition for the conjugate function  ⇤ implies that it is finite and more-

over, the Orlicz space L ⇤
coincides with the Morse subspace M 

⇤
; see Corollary 5, p. 77 in

[16]. The equivalence with (iv) follows from the previous discussion, let us take (X
n

) a sequence

almost surely convergent to X with |X
n

|  Z 2 L and denote with

G
n

:= sup{X
m

: m � n} � X
n

� H
n

:= inf{X
m

: m � n}.

Then we have G
n

& X, H
n

% X and the Fatou property together with (iv) implies that

lim
n!1 ⇢(X

n

) = ⇢(X). The implication with (iii) now follows from Proposition 1. Let us show

the equivalence with (v). We denote with � the restriction of ⇢⇤ on the subspace L ⇤
. Then we

have ⇢ = �⇤ and ⇢⇤ = �⇤⇤, Proposition 7.31 in [10] tell us that

Epi(⇢⇤) = Epi(�)
�((L )⇤⇥R,L ⇥R)

and (v) is equivalent to have Epi(⇢⇤) = Epi(�). Thus (v) implies that � has w⇤-closed epigraph in

the bidual and therefore the level sets in (i) are going to be w⇤-closed in the bidual. Thus weakly

compact sets since they are bounded, indeed ⇢ = ⇢⇤⇤⇠E finite implies boundness for (⇢⇤)�1(�1, c]

and every c 2 R by Corollary 5, that is (i) is fulfilled. From Corollary 3 it follows that (ii) ) (v).

The proof is over.

When  is a Young function that verifies the �
2

condition we have, with the same proof,

a result for the risk measures studied by P. Cheredito and T. Li, see [5]:

Corollary 7. Let  a Young function that verifies the �
2

condition and finite  ⇤. Let ⇢ :

L (⌦,F ,P) ! R be a finite convex risk measure with the Fatou property and

⇢⇤ : L ⇤
(⌦,F ,P) ! R [ {+1}

its Fenchel–Legendre conjugate defined on the dual space. The following are equivalent:

(i) For all c 2 R, (⇢⇤)�1((�1, c]) is a weakly compact subset of M 

⇤
(⌦,F ,P).
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(ii) For every X 2 L (⌦,F ,P), the supremum in the equality

⇢(X) = sup
Y 2M ⇤

{E[�XY ]� ⇢⇤(Y )}

is attained.

(iii) ⇢ is sequentially order continuous.

(iv) lim
n

⇢(X
n

) = ⇢(X) whenever X
n

% X in L .

(v) Dom(⇢⇤) ⇢ M 

⇤
.
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