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1 Introduction

An excellent overview concerning results about midpoint locally uniformly rotund
(MLUR for short) Banach spaces can be found in [5]. We would like to mention
in addition the paper of R. Haydon [7] devoted to renormings of C(T ) where T is a
tree. There he characterizes the trees T for which C(T ) is MLUR renormable and
gives the first example of a Banach space which has an equivalent MLUR norm but
no locally uniformly rotund (LUR for short) renorming. Actually the class of the trees
T for which C(T ) is MLUR–renormable is the same as that of the trees T for which
C(T ) has a rotund equivalent norm. In general this coincidence is not true (see [2],
[1]). In this paper we characterize in terms of linear topological conditions the Banach
spaces which admit an equivalent MLUR norm.

Definition 1 [9] Let A be an arbitrary subset of a normed space X and ε, δ > 0.
The point x ∈ A is said to be an (ε, δ)–strongly extreme point of A if

‖u− v‖ < ε whenever ‖x− (u + v)/2‖ < δ and u, v ∈ A.

The point x ∈ A is said to be ε–strongly extreme point of A if there exists a δ > 0 such
that x is an (ε, δ)–strongly extreme point of A.

Let us recall that a normed space (or the norm on) X is MLUR if all the points
of its unit sphere are ε–strongly extreme points for BX for all ε > 0. This assertion is
equivalent to

lim
k
‖uk − vk‖ = 0 whenever lim

k
‖x− (uk + vk) /2‖ = 0, ‖uk‖ , ‖vk‖ ≤ ‖x‖ = 1;

which in turn is equivalent to limk ‖xk‖ = 0 whenever limk ‖x± xk‖ = ‖x‖ = 1. A
normed space (or the norm on) X is LUR if limk ‖x− xk‖ = 0 whenever limk ‖(x + xk) /2‖ =
‖xk‖ = ‖x‖ = 1.
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Theorem 1 A normed space X is MLUR renormable if and only if for every
positive number ε we can write

X =
∞⋃

n=1

Xn,ε(1)

in such a way that all points of Xn,ε are ε–strongly extreme of conv (Xn,ε).

We have a similar result for dual MLUR renorming.

Theorem 2 A normed space X has an equivalent norm | · | such that (X, | · |)∗ is
MLUR if and only if for any ε > 0 we can write X∗ =

⋃∞
n=1 Xn,ε in such a way that

all points of Xn,ε are ε–strongly extreme of convw∗ (Xn,ε).

Remark 1 A similar characterization for the existence of LUR renormings has
been obtained recently in [11] by means of probabilistic tools where, roughly speaking,
ε–strongly extreme point has been replaced by ε–denting point. Let us recall that a
point x in A ⊂ X is said to be ε–denting for A if there exist f ∈ X∗ and a real number
θ such that the open slice S = {u ∈ A : f(u) > θ} of A verifies x ∈ S and diam S < ε.

The idea of splitting the space in countable pieces in such a way that every point of every
piece is an ε–denting point has its origin in the paper [8] where the notion of countable
cover by sets of small local diameter was introduced. In [12] the above result about
LUR renorming was extended for dual norms in terms of ε–w∗–denting points. The
method in [12] of construction of the norm is based on geometric convexity arguments
mixed with the topological notion of network together with a reduction argument for
the non–convex case based on the Bourgain–Namioka Superlemma [4, p. 157].

Deville’s Master Lemma [3, Chapter VII, §1] is present in most of the construc-
tions of the norms with different convex properties. R. Haydon [7] has extensively used
it for some renormings of C(T ) where T is a tree. The roots of this approach can be
traced back in [13] which in turn is based on some ideas of approximation theory. In § 3
of this paper we develop a linear topological method for LUR and MLUR renormings
which plays the same role as Deville’s Master Lemma when the renormings are obtained
from the above covering characterizations. The geometrical part of this method is the
following:

Proposition 1 Let x be a point of a bounded subset A of a normed space X, let ε,
η, θ be real numbers with ε, η > 0, let f be in X∗, and T : X → X be a bounded linear
operator. Assume that the following hold:

i) supA f = f(x) > θ and ‖Tw−w‖ < η, whenever w belongs to the open slice
S = {w ∈ A : f(w) > θ};

ii) Tx is an ε–strongly extreme (denting) point of conv (TS) (TS respectively).

Then x is a 2(ε + η)–strongly extreme (denting) point of conv (A) (A respectively).

The condition of the existence of a bidual MLUR renorming in a Banach space
is completely different from the LUR one. It is well known and easy to see that for
every Banach space X and for every z ∈ X∗∗ such that ‖z‖ = 1, there exists a sequence
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(xk) in X, ‖xk‖ = 1, such that limk ‖xk + z‖ = 2. Since we have ‖xk − z‖ ≥ dist (z, X)
the unit sphere of SX∗∗ has no LUR point in SX∗∗ \X. In § 4 we prove that in James
space J there exists an equivalent norm | · | such that (J, | · |)∗∗ is MLUR. Let us
mention that recently P. Hájek [6] has proved that J has an equivalent norm |‖ · |‖ such
that (J, |‖ · |‖)∗∗ is rotund.

The final version of this paper was prepared during the stay of the third author
in the University of Valencia and in the University of Murcia during the Academic Year
1998–1999. He acknowledges his gratitude for the hospitality and facilities provided by
the University of Valencia and the University of Murcia.

2 Construction of an MLUR norm

Given a subset A of a normed space X and positive real numbers m, r, s, set

As := {tw : 0 ≤ t ≤ 1, w ∈ A ∩ (sBX)} ,(2)

Am,s := As + m−1BX and

Am,s
r := Am,s ∩ (rBX) .

Lemma 1 Let A be a subset of a normed space X and let ε, δ, η be positive real
numbers with 3η < min(ε, δ). Let x be a non–zero element of X which is an (ε, δ)–
strongly extreme point of A. Then

i) x is a (2ε, 2η)–strongly extreme point of A + ηBX ;

ii) there exist rational numbers r, s with 0 < r < ‖x‖ < s, such that x is a
(2ε, 2η)–strongly extreme point of As \ rBX ;

iii) there exist m ∈ N and rational numbers r, s with 0 < r < ‖x‖ < s, such
that x belongs to the interior of Am,s and such that x is a (3ε, η)–strongly
extreme point of Am,s \ Am,s

r .

Proof. i) Take u, v ∈ A+ηBX with ‖x− (u + v)/2‖ < 2η. We can choose u1, v1 ∈ A
such that ‖u− u1‖ < η and ‖v − v1‖ < η. Then∥∥∥∥x− u1 + v1

2

∥∥∥∥ ≤ ∥∥∥∥x− u + v

2

∥∥∥∥+
∥∥∥∥u + v

2
− u1 + v1

2

∥∥∥∥ < 2η +
∥∥∥∥u− u1

2

∥∥∥∥+
∥∥∥∥v − v1

2

∥∥∥∥ ≤ δ

so ‖u1 − v1‖ < ε and

‖u− v‖ ≤ ‖u− u1‖+ ‖u1 − v1‖+ ‖v1 − v‖ < η + ε + η < 2ε.

ii) Choose rational numbers r, s such that 0 < r < ‖x‖ < s and r − s < η/2. Take u,
v ∈ As \ rBX ,

‖(u + v)/2− x‖ < 2η.(3)
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There must exist u1, v1 ∈ A ∩ sBX such that

u = t1u1, v = t2v1, 0 ≤ t1 ≤ 1, 0 ≤ t2 ≤ 1.

We have that
r ≤ ‖u‖ = t1‖u1‖ ≤ t1s, r ≤ ‖v‖ = t2‖v1‖ ≤ t2s,

so
‖u1 − u‖ = ‖u1‖ − ‖u‖ ≤ s− r < η,

and in a similar way we deduce ‖v1 − v‖ < η. Consequently u, v ∈ A + ηBX . From i)
and (3) we get ‖u− v‖ < 2ε.

iii) Since x ∈ As and Am,s = As + m−1BX it follows that x is an internal point of Am,s.
On the other hand, according to ii) there are rational numbers r1 and s, 0 < r1 <
‖x‖ < s, in such a way that x is a (2ε, 2η)–strongly extreme point of As \ r1BX . Take
a rational number r, r1 < r < ‖x‖ and a positive integer m ∈ N such that

m−1 < min (r − r1, η) .

Let
u, v ∈ Am,s \ Am,s

r = Am,s \ rBX , with ‖x− (u + v)/2‖ < η.

We can choose u1, v1 ∈ As such that

‖u− u1‖ ≤ m−1 and ‖v − v1‖ ≤ m−1.

We have
‖u1‖ ≥ ‖u‖ − ‖u− u1‖ > r −m−1 > r1,

so u1 /∈ r1BX . The same argument shows that v1 /∈ r1BX hence u1, v1 ∈ As \ r1BX .
On the other hand∥∥∥∥x− u1 + v1

2

∥∥∥∥ ≤ ∥∥∥∥x− u + v

2

∥∥∥∥+
∥∥∥∥u1 − u

2

∥∥∥∥+
∥∥∥∥v1 − v

2

∥∥∥∥ < η + m−1 < 2η.

Since x is a (2ε, 2η)–strongly extreme point of As \ (r1BX) we have ‖u1 − v1‖ < 2ε and
finally

‖u− v‖ ≤ ‖u− u1‖+ ‖u1 − v1‖+ ‖v1 − v‖ < m−1 + 2ε + m−1 < 3ε.

�

Lemma 2 Let (An)∞1 be a sequence of closed convex subsets of a normed space X
such that, for every x ∈ X and every ε > 0, there exists n such that x is an ε–strongly
extreme point of An. Then X is MLUR renormable.

Proof. Fix An, we set, as defined before (see (2))

As
n := (An)s , Am,s

n := (An)m,s , Am,s
n,r := (An)m,s

r
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where m ∈ N, r and s are rational numbers such that 0 < r < s. Every one of the sets
Am,s

n and Am,s
n,r is convex and 0 belongs to its interior. If Q+ is the set of all positive

rational numbers we write the sets

{Am,s
n : m, n ∈ N, s ∈ Q+} ∪

{
Am,s

n,r : m,n ∈ N, r, s ∈ Q+, r < s
}

,

as a sequence (Cj)
∞
1 . Let | · |j be the Minkowski functional of Cj. If

‖x‖j :=
(
|x|2j + | − x|2j

)1/2
, x ∈ X,

we have that ‖ · ‖j is an equivalent norm so there exist constants aj > 0 such that

‖|x‖|2 :=
∑
j≥1

aj‖x‖2
j , x ∈ X,

is an equivalent norm in X. We claim that ‖| · ‖| is MLUR. Indeed take x, uk, vk in
X such that ‖|uk‖| ,‖|vk‖| ≤ ‖|x‖| = 1 and

lim
k
‖|(uk + vk) /2− x‖| = 0.

Then
lim

k
|(uk + vk) /2|j = |x|j, j ∈ N,

and
lim

k
‖|(uk + vk) /2|‖ = ‖|x|‖ = ‖|uk|‖ = ‖|vk|‖ = 1.

By standard convexity arguments (see e.g. [3, Fact 2.3, p. 45]) from the above equalities
we conclude that

lim
k
|uk|j = lim

k
|vk|j = |x|j, j ∈ N.

Given ε > 0 there exists An such that x is an ε–strongly extreme point of An. From iii)
of Lemma 1 it follows that there exist a positive integer m, positive rational numbers
r, s, and η > 0 such that 0 < r < ‖x‖ < s and x is an internal (3ε, η)–strongly extreme
point of Am,s

n \Am,s
n,r . Set p, q ∈ N such that Cp = Am,s

n and Cq = Am,s
n,r . Then x belongs

to the interior of Cp. Since ‖x‖ > r, x does not belong to Cq
‖·‖

. Hence |x|p < 1 and
|x|q > 1. Choose a positive integer k0 such that if k ≥ k0 we have

|uk|p < 1, |vk|p < 1, |uk|q > 1, |vk|q > 1, ‖x− (uk + vk) /2‖ < η.

Then
uk, vk ∈ Am,s

n \ Am,s
n,r , k ≥ k0,

so
‖uk − vk‖ < 3ε, k ≥ k0.

Consequently
lim

k
‖uk − vk‖ = 0.
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�

Proof of Theorem 1. To show that the condition is necessary let us assume that the
norm of X is MLUR. Fix ε > 0. For a non–negative rational number r we denote by
Xr,ε the set of all points that are ε–strongly extreme of rBX . We claim that

X =
⋃
r

Xr,ε.

Indeed, let x ∈ X, x 6= 0. Since the norm of X is MLUR we can find δ > 0 such
that x is an (ε/2, δ)–strongly extreme point of ‖x‖BX . According to i) of Lemma 1
there exists η > 0 such that x is an (ε, η)–strongly extreme point of (‖x‖+ η)BX , and
r = ‖x‖+ η is rational. So x ∈ Xr,ε.

To show that the condition is sufficient let X =
⋃{

X1/m,n : n ∈ N
}

in such a way

that all points of X1/m,n are 1/m–strongly extreme points of conv‖·‖
(
X1/m,n

)
= Am,n.

Since the sets Am,n, m, n ∈ N satisfy the conditions of Lemma 2 we have that X admits
an equivalent MLUR norm. �

The proof of Theorem 2 is similar to that of Theorem 1. Since in this case
the sets BX and An are w∗–closed and so are Am.s

n and Am.s
n,r then the norm obtained

following the above argument must be a dual norm.

Remark 2 Let us mention that if for every ε > 0 we can split a radial subset R ⊂ X
(i.e. X =

⋃
λ≥0 λR) into countable pieces Rn,ε in such a way that every x ∈ Rn,ε is

an ε–strongly extreme point of conv(Rn,ε) then (1) is fulfilled. Indeed assume that for
every ε > 0 we can write R =

⋃
n Rn,ε in such a way that for every z ∈ Rn,ε there exists

δ(z, ε) > 0 such that z is an (ε, δ(z, ε))–strongly extreme point of conv(Rn,ε). Since R
is radial for every x ∈ X, x 6= 0, there exists ν(x) > 0 such that z(x) = ν(x)x ∈ R.

For k, m, n ∈ N, q ∈ Q+ by Xk,q
m,n we denote the set of all x ∈ X such that

z(x) ∈ Rn,ε/m and

‖x‖ ≤ m, ν(x) ≥ m−1, δ
(
z(x), m−1ε

)
≥ k−1, 4m |q − ν(x)| ≤ min

{
k−1, m−1ε

}
.

Since ν(x) ≥ m−1 and |q − ν(x)| ≤ (4m)−1 for all x ∈ Xk,q
m,n we have

q ≥ ν(x)− (4m)−1 ≥ 3(4m)−1,(4)

if Xk,q
m,n 6= ∅.

We show that all points in Xk,q
m,n are ε–strongly extreme of conv

(
Xk,q

m,n

)
. Indeed,

let x ∈ Xk,q
m,n and u, v ∈ conv

(
Xk,q

m,n

)
be such that ‖x − (u + v)/2‖ < (4kq)−1. Then

there exist ui, vi ∈ Xk,q
m,n and λi, µi ≥ 0,

∑
λi =

∑
µi = 1 such that u =

∑
λiui,

v =
∑

µivi. We have

‖z(x)−
∑

(λiz(ui) + µiz(vi))/2‖ = ‖ν(x)x−
∑

(λiν(ui)ui + µiν(vi)vi)/2‖ ≤

≤ q‖x− (u + v)/2‖+ |ν(x)− q|‖x‖+
∑

(λi|ν(ui)− q|‖ui‖+ µi|ν(vi)− q|‖vi‖)/2 <
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< (4k)−1 + (4k)−1 + (4k)−1 + (4k)−1 = k−1 ≤ δ(z(x), m−1ε).

Hence ‖∑(λiz(ui)− µiz(vi)‖ < m−1ε. This implies

q‖u− v‖ = ‖
∑

(λiqui − µiqvi)‖ ≤

≤
∑

(λi|q − ν(ui)|‖ui‖+ µi|q − ν(vi)|‖vi‖) + ‖
∑

(λiz(ui)− µiz(vi))‖ <

< (4m)−1ε + (4m)−1ε + m−1ε = 3ε(4m)−1.

This and (4) imply ‖u− v‖ < ε.

3 Decomposition Method.

As we mention in the Introduction, Proposition 1 plays here the same role as the
Decomposition Method does in [3, Chapter VII, §1]. We illustrate this in the following
assertions which are the main tools of R. Haydon [7] for LUR and MLUR renormings
of C(T ) where T is a tree.

If L is a locally compact scattered space by C0(L) we denote the set of all
continuous real valued functions on L vanishing at infinity endowed with the supremum
norm ‖ · ‖∞. For a clopen subset K of L andx ∈ C0(L) we write PKx = 1lKx. Clearly
PKx ∈ C0(L).Let ε > 0, we denote by Eε(K) the set of all x ∈ `∞(K) such that
‖x− (a1lM + b1lN)‖∞ < ε for some a, b ∈ R and M , N ⊂ K, M ∪N = K, M ∩N = ∅.

Proposition 2 [7, Proposition 5.3.] Let L be a locally compact scattered space, let
{Kγ}γ∈Γ be a family of clopen subsets of L and U : C0(L) → c0(Γ) a bounded linear
operator. Assume that, for every x ∈ C0(L), every t ∈ L with x(t) 6= 0, and every
ε > 0, there exists γ ∈ Γ such that Ux(γ) 6= 0, t ∈ Kγ and either C0 (Kγ) is MLUR
renormable or x ∈ Eε (Kγ). Then C0(L) is MLUR renormable.

The key point of our proof of the above proposition is the following assertion
which is a consequence of Proposition 1.

Corollary 1 Let ε, η be positive real numbers. Let Γ be a well ordered set, L a lo-
cally compact scattered space, {Kγ}γ∈Γ a family of clopen subsets of L and U : C0(L) →
c0(Γ) a bounded linear operator. Let ‖ · ‖0 be a LUR equivalent norm in c0(Γ), A a
subset of D = {u ∈ C0(L) : ‖Uu‖0 = 1}, and ∆ a map from A into the set of all finite
increasing sequences of elements of Γ such that for every x ∈ A we have ∆(x) ⊂
{γ ∈ Γ : Ux(γ) 6= 0} and

∥∥∥PK(x)x− x
∥∥∥
∞

< η, where K(x) =
⋃ {Kβ : β ∈ ∆(x)} and

PKβ
x is an ε–strongly extreme (denting) point of conv

(
PKβ

A(x)
)

(respectively PKβ
A(x))

for β ∈ ∆(x), where A(x) = {y ∈ A : ∆(y) = ∆(x)}.

Then we can write A =
⋃

n∈N An in such a way that all the points of An are
2(ε + η)–strongly extreme (denting) points of conv (An) (respectively An).

Proof. We assume that ‖z‖∞ ≤ ‖z‖0 for all z ∈ c0(Γ). Since U is bounded |‖x|‖ =
‖Ux‖0 is a continuous seminorm on X. So for every x ∈ D there exists f ∈ C0(L)∗
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supporting x with respect to |‖ · |‖, i.e.

f(x) = sup
D

f = 1(5)

Let us show that for every x ∈ D and every ξ > 0 there exists δ = δ(x, ξ) such that for
all y ∈ D with f(y) > 1− δ we have

‖Ux− Uy‖0 < ξ.(6)

Indeed since ‖·‖0 is a LUR norm in c0(Γ) we can find δ = δ(x, ξ) such that ‖Ux−Uy‖0 <
ξ whenever y ∈ D and ‖(Ux+Uy)/2‖0 > 1−δ/2. Take now y ∈ D such that f(y) > 1−δ.
From (5) we get

1− δ/2 < f(x + y)/2 ≤ |‖(x + y)/2|‖ = ‖(Ux + Uy)/2‖0.

Now we will split A into a countable number of pieces in such a way that in
any of them we can apply Proposition 1. We say that the pair (`, q), where ` ∈ N, and
q = (qi)

m
i=1 ∈ Qm is admissible if |qi| > `−1 and qi1 = qi2 whenever qi1 ≤ qi2 < qi1 + `−1.

We denote by Aσ
j,`,q the subset of A of all x such that ‖x‖∞ ≤ j and there exists

an increasing sequence αi = αi(x) ∈ Γ, i = 1, 2, . . . ,m, such that, ∆(x) ⊂ (αi)
m
1 ,

qi ≤ Ux (αi) < qi + `−1, i = 1, 2, . . . ,m, mini |qi| > max {|Ux(γ)| : γ /∈ (αi)
m
i=1}+ `−1

and σ = (σi)
m
1 with σi = 0 if αi /∈ ∆(x), σi = 1 if αi ∈ ∆(x). Evidently

A =
⋃{

Aσ
j,`,q : σ ∈ {0, 1}m, j ∈ N, (`, q) is an admissible pair

}
.

Pick x ∈ Aσ
j,`,q. Take f satisfying (5) and

y ∈ S =
{
w ∈ Aσ

j,`,q : f(w) > 1− δ
(
x, `−1

)}
.

From (6) we get that |Ux(γ) − Uy(γ)| ≤ ‖Ux − Uy‖0 < `−1 for all γ ∈ Γ. Hence
αi(x) = αi(y) for i = 1, 2, . . . ,m. Taking into account that (αi)

m
1 is an increasing

sequence we get ∆(x) = ∆(y), so K(x) = K(y) thus∥∥∥PK(x)y − y
∥∥∥
∞

=
∥∥∥PK(y)y − y

∥∥∥
∞

< η.

Since ‖PM∪Nu‖∞ = max {‖PMu‖∞ , ‖PNu‖∞} for every M , N ⊂ L and every u ∈
C0(L) we get that PK(x)x is an ε–strongly extreme (denting) point of conv

(
PK(x)S

)
(respectively PK(x)S). Now we can apply Proposition 1 for A = Aσ

j,`,q, T = PK(x), f
satisfying (5) and θ = 1− δ (x, 1/(2`)). �

The next assertion is a reformulation of [7, Lemma 5.2.].

For x ∈ `∞(K) we set ω(x) = sup{x(t)− x(s) : s, t ∈ K}.

Lemma 3 Given ε > 0, let x ∈ Eε(K) and let y, z ∈ `∞(K) with ‖x−(y+z)/2‖∞ < ε,
‖y‖∞, ‖z‖∞ ≤ ‖x‖∞ + ε, and ω(y), ω(z) ≤ ω(x) + ε. Then ‖y − z‖∞ < 15ε.
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Corollary 2 For any ε > 0 we can write Eε(K) =
⋃

n En,ε in such a way that all the
points of En,ε are 15ε–strongly extreme points of conv(En,ε).

Proof. Given qω, q∞ ∈ Q+ we set

Eqω ,q∞,ε =
{
x ∈ Eε : |ω(x)− qω| ≤ ε/2,

∣∣∣∣‖x‖∞ − q∞

∣∣∣∣ ≤ ε/2
}

.

Evidently for x ∈ Eε and u ∈ conv (Eqω ,q∞,ε) we have ω(u) ≤ qω + ε/2 ≤ ω(x) + ε,
‖u‖∞ ≤ ‖u‖+ ε. This and the former lemma complete the proof. �

Proof of Proposition 2. Let Γ′ be the set of all γ ∈ Γ for which C (Kγ) is MLUR
renormable and let Γ′′ = Γ \ Γ′. Fix ε > 0. From Theorem 1 and Corollary 2 it follows
that

C (Kγ) =
⋃
n

Xγ
n , γ ∈ Γ′; Eε/15 (Kγ) =

⋃
n∈N

Xγ
n , γ ∈ Γ′′,(7)

so that every x ∈ Xγ
n is an ε–strongly extreme point of conv(Xγ

n), γ ∈ Γ, n ∈ N.

Assume now that Γ is well ordered . From the assumption of the proposition it
follows that for every x ∈ C0(L) there exists ∆(x) = {γi(x)}m

1 ⊂ Γ, γ1(x) < γ2(x) <
. . . < γm(x) such that for every t ∈ L with |x(t)| ≥ ε we can find k, 1 ≤ k ≤ m in

such a way that t ∈ Kγi(x) and either γi(x) ∈ Γ′ or PKγi(x)
x ∈ Eε/15

(
Kγi(x)

)
. Let D be

from Corollary 1 and m ∈ N, n = (ni)
m
1 . By Am,n we denote the set of all x ∈ D such

that ∆(x) = {γi(x)}m
1 and PKγi(x)

x ∈ Xγi(x)
ni

, i = 1, 2, . . . ,m. Set K(x) =
⋃m

1 Kγi(x)

and Am,n(x) = {y ∈ Am,n : ∆(x) = ∆(y)}. Then
∥∥∥PK(x)x− x

∥∥∥
∞

< ε. Since ∆(x) is an

increasing sequence we get γi(y) = γi(x) for all y ∈ Am,n(x). Hence according to (7)
and Corollary 1 we can write Am,n =

⋃
A`

m,n in such a way that all the points of A`
m,n

are 4ε–strongly extreme points of conv
(
A`

m,n

)
. Since D is a radial set for C0(L) and

D =
⋃{

A`
m,n : `, m, n ∈ N

}
from Remark 2 we get that C0(L) is MLUR renormable.

�

In a similar way from Corollary 1 and [11, Main Theorem] we can deduce Propo-
sition 4.2 of [7].

In order to prove Proposition 1 we need the following

Lemma 4 Let A, x, f , θ, and S be as in Proposition 1. Then for every convex
combination

y =
∑

λiyi, yi ∈ A, λi > 0,
∑

λi = 1

we have ∑
{λi : yi /∈ S} ≤ ‖f‖ ‖x− y‖ /(f(x)− θ).(8)

Proof. Set I = {i : yi ∈ S} then

∑
i/∈I

λif (yi) ≤ θ
∑
i/∈I

λi,
∑
i∈I

λif (yi) ≤
(

sup
A

f

)∑
i∈I

λi = f(x)
∑
i∈I

λi.
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Hence

‖f‖ ‖x− y‖ ≥ f(x− y) = f(x)− f(y) = f(x)−
∑
i/∈I

λif (yi)−
∑
i∈I

λif (yi) ≥

≥ f(x)− θ
∑
i/∈I

λi − f(x)
∑
i∈I

= f(x)− θ
∑
i/∈I

λi − f(x)

1−
∑
i/∈I

λi

 =

= (f(x)− θ)
∑
i/∈I

λi,

which implies (8). �

Proof of Proposition 1. We can find a δ > 0 such that Tx is an (ε, δ)–strongly
extreme point of conv (TS). Take

a = sup
A
‖w‖ and τ = min{ε/8a, δ/(1 + 4a)‖T‖}.

Let

yi, zi ∈ A, µi, νi > 0,
∑

µi =
∑

νi = 1, ‖x− (y + z)/2‖ < τ min{1, (f(x)− θ)/‖f‖},

where y =
∑

µiyi, z =
∑

νizi.

Set Iy = {i : yi ∈ S}, Iz = {i : zi ∈ S} it follows from Lemma 4 that

1

2

∑
i/∈Iy

µi +
∑
i/∈Iz

νi

 < τ.(9)

Set

u =

∑
i/∈Iy

µi

x +
∑
i∈Iy

µiyi, v =

∑
i/∈Iz

νi

x +
∑
i∈Iz

νizi.(10)

Since ‖x‖, ‖yi‖, ‖zi‖ ≤ a from (9) we get

‖u− y‖ ≤ 4aτ < ε/2, ‖v − z‖ ≤ 4aτ < ε/2(11) ∥∥∥∥x− u + v

2

∥∥∥∥ ≤ ∥∥∥∥x− y + z

2

∥∥∥∥+
∥∥∥∥u− y

2

∥∥∥∥+
∥∥∥∥v − z

2

∥∥∥∥ < τ + 4aτ ≤ δ

‖T‖
.(12)

Taking into account (10) we can write

u =
∑

λiui, v =
∑

λivi, λi ≥ 0,
∑

λi = 1, ui, vi ∈ S.

From (12) we get
‖Tx− (Tu + Tv)/2‖ < δ.

Since Tu, Tv ∈ conv(TS) and Tx is an (ε, δ)–strongly extreme point of conv(TS) from
the above inequality we get

‖Tu− Tv‖ < ε.(13)
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Since ui, vi ∈ S we have ‖Tui − ui‖ < η, ‖Tvi − vi‖ < η. So

‖Tu− u‖ ≤
∑

λi ‖Tui − ui‖ < η, ‖Tv − v‖ < η.

Then from (13) we deduce

‖u− v‖ ≤ ‖u− Tu‖+ ‖Tu− Tv‖+ ‖Tv − v‖ ≤ ε + 2η.

This and (11) imply ‖y − z‖ < 2(ε + η).

The proof of Proposition 1 in the case when Tx is an ε–denting point of TS can
be done in a similar way. �

4 A bidual renorming of the James space.

We start with the following

Proposition 3 Let X be a Banach space with a monotone shrinking basis (ei) and
let u be an element of X∗∗. Assume that, for every ε > 0 there exists δ(ε) > 0 such

that
∥∥∥R∗∗

j z
∥∥∥ < ε whenever the element z of X∗∗ and the natural number j satisfy∥∥∥R∗∗

j (u± z)
∥∥∥− ∥∥∥R∗∗

j u
∥∥∥ < δ(ε)(14)

where Rjx =
∑

i>j fi(x)ei and (fi) is the conjugate system to the basis (ei).

Then there exists an equivalent norm |·| in X such that all the points of S(X,|·|)∗∗∩
Y are strongly extreme of B(X,|·|)∗∗, where Y = span{u, X}.

Proof. For x ∈ X set

|x| =

‖x‖2 +
∑
j≥1

2−j
(
‖Rjx‖2 + (fj(x)/ ‖fj‖)2

)1/2

.

Since the basis (ei) is monotone and shrinking we have for all z ∈ X∗∗ (see e.g. [10, p.
8]) that

lim
`
‖P ∗∗

` z‖ = ‖z‖,(15)

where Pjx = x−Rjx for x ∈ X.

Since (ei) is a monotone basis with respect to | · | replacing in (15) z by R∗∗
j z we

get

|z| = lim
`
|P ∗∗

` z| =

‖z‖2 +
∑
j≥1

2−j
(
‖Rjz‖2 + (z (fj) / ‖fj‖)2

)1/2

for all z ∈ X∗∗.

Pick y ∈ Y . Then y = x + bu for some x ∈ X and b ∈ R. let zk ∈ X∗∗ and

lim
k
|y ± zk| = |y|.
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By convexity arguments we have

lim
k

∥∥∥R∗∗
j (y ± zk)

∥∥∥ =
∥∥∥R∗∗

j y
∥∥∥ , j = 1, 2, . . .(16)

and
lim

k
fj (zk) = 0, j = 1, 2, . . .

This implies
lim

k

∥∥∥P ∗∗
j zk

∥∥∥ = 0, j = 1, 2, . . .(17)

If b = 0 then y ∈ X and limj

∥∥∥R∗∗
j y
∥∥∥ = 0. Since for all j and k we have

‖zk‖ ≤
∥∥∥P ∗∗

j zk

∥∥∥+
∥∥∥R∗∗

j (y + zk)
∥∥∥+ ‖Rjy‖

from (16) and (17) we get
lim sup

k
‖zk‖ ≤ 2 ‖Rjy‖ ,

so limk ‖zk‖ = 0.

Assume now that b 6= 0. By homogeneity we may assume b = 1. Suppose that
for all k

‖zk‖ ≥ 2ε > 0.(18)

Since x ∈ X we can find m such that

‖Rmx‖ < δ(ε)/4.(19)

From (17) it follows that there exists n such that for k > n we have ‖P ∗∗
m zk‖ < ε. Then

from (18) we have for k > n

‖R∗∗
mzk‖ ≥ ‖zk‖ − ‖P ∗∗

m zk‖ ≥ ε.

From (14) we deduce that for k > n

max
α=±1

‖R∗∗
m (u + αzk)‖ ≥ ‖R∗∗

mu‖+ δ(ε).(20)

From (19) we have for all k

‖R∗∗
m (y + αzk)‖ ≥ ‖R∗∗

m (u + αzk)‖ − ‖R∗∗
mx‖ ≥ ‖R∗∗

m (u + αzk)‖ − δ(ε)/4,

‖R∗∗
mu‖ ≥ ‖R∗∗

my‖ − ‖R∗∗
mx‖ ≥ ‖R∗∗

my‖ − δ(ε)/4.

The last two inequalities and (20) imply that for k > n

max
α=±1

‖R∗∗
m (y + αzk)‖ ≥ ‖R∗∗

my‖+ δ(ε)/2,

which contradicts (16). �
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Corollary 3 The James space J has an equivalent norm | · | such that (J, | · |)∗∗ is
MLUR.

Proof. Given x = (xi)
∞
1 ∈ J let us consider the norm

‖x‖ = sup


x2

im +
m∑

j=1

(
xij−1

− xij

)2

1/2

: 1 ≤ i0 < i1 < . . . < im

 .

Taking into account that xi → 0 it is easy to see that ‖ · ‖ is an equivalent norm in J .

For x = (xi)
∞
1 ∈ J , set Pjx = (x1, x2, . . . , xj, 0, 0, . . .) and Rjx = x− Pjx. Since

the unit vector basis in (J, ‖ · ‖) is monotone and shrinking we have (see e.g. [10, p. 8])
for z = (zi)

∞
1 ∈ J∗∗ that

‖z‖ =

= lim
`
‖P ∗∗

` z‖ = sup


z2

im +
m∑

j=1

(
zij−1

− zij

)2

1/2

: 1 ≤ i0 < i1 < . . . < im

 .(21)

It is known that J∗∗ = span{u, J} where u = (1, 1, . . .). From (21) it follows that for
every z ∈ J∗∗ and j ∈ N we have∥∥∥R∗∗

j (u + z)
∥∥∥2

+
∥∥∥R∗∗

j (u− z)
∥∥∥2
≥ 2

(∥∥∥R∗∗
j u
∥∥∥2

+
∥∥∥R∗∗

j z
∥∥∥2
)

.(22)

Now we show that u satisfies (14). Given ε > 0 we set δ(ε) = min {ε2/2, 1} and assume
that for z ∈ J∗∗ and j ∈ N we have

max
α=±1

(∥∥∥R∗∗
j (u + αz)

∥∥∥− ∥∥∥R∗∗
j u
∥∥∥) < δ(ε).(23)

Taking into account that
∥∥∥R∗∗

j u
∥∥∥ = 1 for all j we deduce from (22) and (23)

2
∥∥∥R∗∗

j z
∥∥∥2
≤ max

α=±1

{∥∥∥R∗∗
j (u + αz)

∥∥∥2
−
∥∥∥R∗∗

j u
∥∥∥2
}

< δ(ε)
(∥∥∥R∗∗

j z
∥∥∥+ 2

)
.

It is easy to see that this implies
∥∥∥R∗∗

j z
∥∥∥ < ε. Now we can apply the previous Proposi-

tion. �
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A. Moltó & M. Valdivia J. Orihuela S. Troyanski
Departamento de Departamento de Department of
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